
Occlusion-tolerant and personalized
3D human pose estimation in RGB images

Ammar Qammaz
Computer Science Department, Univ. of Crete, and

Institute of Computer Science, FORTH, Greece
Email: ammarkov@ics.forth.gr

Antonis Argyros
Computer Science Department, Univ. of Crete, and

Institute of Computer Science, FORTH, Greece
Email: argyros@ics.forth.gr

Abstract—We introduce a real-time method that estimates the
3D human pose directly in the popular Bio Vision Hierarchy
(BVH) format, given estimations of the 2D body joints originating
from monocular color images. Our contributions include: (a) A
novel and compact 2D pose representation. (b) A human body
orientation classifier and an ensemble of orientation-tuned neural
networks that regress the 3D human pose by also allowing for
the decomposition of the body to an upper and lower kinematic
hierarchy. This permits the recovery of the human pose even
in the case of significant occlusions. (c) An efficient Inverse
Kinematics solver that refines the neural-network-based solution
providing 3D human pose estimations that are consistent with
the limb sizes of a target person (if known). All the above
yield a 33% accuracy improvement on the Human 3.6 Million
(H3.6M) dataset compared to the baseline method (MocapNET)
while maintaining real-time performance (70 fps in CPU-only
execution).

I. Introduction
Human body pose estimation/recovery is a very active

research topic with a great variety of important applications.
Recent innovations using deep learning-based approaches [1]
have demonstrated remarkable results. However, despite the
significant improvements in accuracy and performance, they
have not yet penetrated the commercial motion capture (MO-
CAP) market that still relies on systems that use cumbersome
MOCAP suits with inertial measuring units (IMUs) [2] or
physical markers and expensive multi-camera setups [3].

In this work we are particularly interested in real-time
methods for markerless human motion capture from RGB im-
ages. We present a method that is inspired by the MocapNET
3D pose estimator [7], the first end-to-end neural network
to directly convert 2D point clouds to BVH motion frames.
The improvements over MOCAPNET are threefold. First, we
propose a neural network ensemble that uses a novel 2D pose
representation we have coined Normalized Signed Rotation
Matrices (NSRMs). NSRMs require 16% less network param-
eters compared to the baseline method. Second, the proposed
network is much more robust to occlusions, as it allows
the decoupling of the human body into two separate (upper,
lower) kinematic hierarchies. Finally, we have developed a
novel and efficient Inverse Kinematics (IK) solver that refines
the DNN-based solution by taking into account possibly
known limb dimensions and camera parameters. Extensive
experimental results in standard datasets demonstrate that the
resulting method achieves a 33% accuracy improvement over

the baseline method, while maintaining real-time execution at
70 fps in CPU only execution. Moreover, extensive qualitative
experiments (see Figure 1) show that our work manages
to capture accurately the 3D pose of humans in RGB data
acquired “in the wild”.

II. RelatedWork

Advancements in neural networks for image classifica-
tion [8], [9] inspired research on human pose estimation
tasks. Early notable works like DeepPose [10] led to more
mature works like OpenPose [11], [12] that was the first
method to robustly and accurately solve the “in-the-wild”
2D pose estimation problem in real-time. As more meth-
ods effectively dealt with the 2D pose estimation problem,
the research frontier naturally progressed towards 3D pose
estimation. Several methods attempt 3D pose estimation in
one step, operating directly on RGB images. An excellent
recent survey of deep-learning methods for monocular pose
estimation from RGB sources is provided by Chen et al. [1].
3D human pose estimation methods include interesting recent
works like LCR-Net [13], [14], DensePose [15] and a variety
of other methods [16], [17], [18], [19], [20], [21] that achieved
impressive 3D pose estimation results directly from RGB data.

Our work belongs to the so-called “two-stage” approaches.
The first stage of these methods extracts 2D human joints
which are then lifted in 3D in the second stage. The method we
present in this paper is inspired by MocapNET [7] which we
consider as our baseline due to its very fast estimation speeds
and its direct BVH output. Another similar work is [22] that
utilizes the Euclidean Distance Matrix (EDM) encoding as its
input representation. Other recent relevant works include [23]
which directly models joint connections instead of having an
exhaustive joint-to-joint relation map to offer more features for
the neural network. Translation and rotation invariant features
have also been suggested [24], as well as representations that
handle rotation discontinuities [25] and works that better en-
code structural properties such as kinematic chain spaces [26].
The neural network we use shares the compact formulation
of [27] although it does not use residual connections or
physics simulations [28]. Although our method uses a BVH
armature [29] that targets the motionbuilder [30] armature,
many two-stage methods [31], [32] utilize the SMPL [33]
linear model and regress both 3D pose as well as 3D shape.

Fig. 1. Qualitative results when testing our method on the Leeds sport dataset [4]. Our BVH output is rendered using Blender [5] and MakeHuman [6].

Other methods [34], [35] use different models and perform
regression on monocular data that, however, originate from an
RGBD camera. Recent trends show the importance of high-
level inference like the one we attempt since state of the art
RGBD methods now even account for garments [36] and RGB
methods have been proposed that combine body, hand and face
pose estimation [37].

The Hierarchical Coordinate Descent (HCD) Inverse Kine-
matics (IK) module we present shares some similarities with
FABRIK [38], however we only perform forward steps and
we do not use 3D conic sections as a heuristic to improve
3D angles. Our method is inspired by non-linear least squared
methods that are used by methods like CERES [39] and their
internal implementation of the Levenberg-Marquardt [40], [41]
algorithm. It is also conceptually similar to the semi-stochastic
coordinate descent [42], however we do not rely on random
selection of joints but instead use a hierarchical approach that
processes all joints.

III. Methodology

Our method (see Figure 2) achieves 3D human pose estima-
tion in three discrete steps, (a) computation of 2D joints and
encoding them using a Normalized Signed Rotation Matrice
(NSRM), (b) classification of a NSRM-based 2D human pose
into four orientation classes and use of appropriate neural
networks to regress it to a 3D pose and (c) Inverse Kinematics
for fine-tuning and personalization of the obtained results. The
neural networks in step (b) need to be trained in appropriate
data sets containing ground truth by also employing data aug-
mentation techniques. The output of our method is a BVH [29]
file with 498 motion fields. This can be used to animate

and render any rigged 3D mesh since this representation is
compatible with a wide variety of 3D editing applications like
Blender [5] and popular 3D graphics engines like Unity, etc.
The BVH motion fields correspond to the degrees of freedom
of the depicted human armature and can accommodate pose
data about the body, the human face, hands as well as feet.
The proposed body pose estimation method currently only
populates 87 of the degrees of freedom of the armature, leaving
the rest to their default values. The basic components of the
above steps are described below in more detail.

Estimation of 2D joints: We use the OpenPose pose estima-
tor [11], [12] on incoming RGB images to produce 2D human
joints in the popular BODY25 [12], [43] format.

Normalized Signed Rotation Matrices (NSRMs): The es-
timated 2D joints hierarchy is encoded into two Normalized
Signed Rotation Matrices (NSRMs), one for the upper body
and one for the lower body. An NSRM is a novel scheme
to encode 2D poses that is translation and scale invariant and
efficient in terms of the total element count required to encode
a 2D pose. It is conceptually similar to Euclidean Distance
Matrices (EDMs) [44] and Normalized Signed Distance Ma-
trices (NSDMs) [7]. EDMs are simple data representations
that encode joints in relation to each other by storing their
Euclidean distances. This makes poses invariant to translation.
NSDMs are normalized to be invariant also to scale changes.
However, their disadvantage is that they require two encoding
channels, one for X and one for Y joint coordinates. NSRMs
share the same design considerations as the other encodings
while offering a lower total parameter count.

To describe NSRMs we must first further describe our input.

Fig. 2. Overview of the proposed method. A 2D human pose extracted from an RGB image using OpenPose [12] is converted to two Normalized Signed
Rotation Matrices (NSRMs) encoding the upper and lower body. A classifier uses these NSRMs to identify the orientation of the observed person. We choose
an ensemble specifically trained for the classified orientation to convert the NSRMs to a BVH pose. Finally, we refine the BVH pose by inverse kinematics
(IK) with optionally known limb dimensions and camera configuration.

The employed BODY25 [43] 2D joint input consists of 25
2D points J2D = {p1, ..., p25} [12]. Out of those, we select
subsets of 2D joints to create an NSRM matrix. In particular,
the body hierarchy is split in upper and lower body to combat
occlusions, so we define one NSRM for each part. To derive
the upper body NS RMu we use joints hip, l/r eye, neck, l/r
shoulder, l/r elbow and l/r hand. For the lower body NS RMl

joints used are hip, r/l thigh, r/l knee, r/l heel and r/l big toe.
An NSRM associated with M joints is constructed as

follows. The coordinates (ax, ay) of a participating 2D joint
a are normalized to the input image frame dimensions and are
thus bounded in the range [0, 1]. We also associate each such
joint with a visibility parameter av provided by thresholding
the OpenPose joint confidence values (1 if joint is visible, 0
if joint is occluded).

For each pair of 2D points a, b we can declare a new point
c = (bx, by− | b−a |) that is the point b translated vertically by
the length of vector ab. Using these three points and the atan2
function [45] we can encode (Equation 1) the relation between
points a and b as well as their relative rotation towards a fixed
vertical axis, that is:

NS RMh(a, b, c) =

atan2(AxBy − AyBx, AxBx + AyBy)
a 6= b,

0, otherwise,
(1)

where Ax = bx − ax, Ay = by − ay, Bx = cx − bx and
By = cy−by. NS RMh(a, b, c) is invariant to skeleton translation
and scale. The representation encodes the relative position of
joints (albeit using the rotation formed from triangle ab̂c), as
well as orientation (since bc is parallel to the y axis of the
world). Finally, joint order is preserved through the sign of
the atan2 function. An advantage of this encoding compared
to NSDMs [7] is that we can easily force alignment of all
retrieved angles using a pivot point and rotation. In our body
pose estimation scenario where humans typically stand upright
this is not a very important characteristic but we predict that

hand pose estimation using NSRMs might benefit from the
possibility of controlling the encoded rotation of the 2D joints
by always aligning input matrices to a pivot point (e.g. hip to
neck) in a way that makes the descriptor rotation invariant.

NS RMu for upper and NS RMl for lower body are formed
by computing the respective NSRM for all joint pairs of the
corresponding body part. Having all pairwise joint relations
encoded in a matrix means that available features for the neural
network can be readily leveraged in a relatively shallow and
thin network without requiring too many operations. A great
improvement compared to NSDMs [7] is that an NSRM is
encoded in a single channel, as opposed to NSDMs that require
two, one for the x and one for y joint coordinates. Thus,
NSRMs use half the element count compared to NSDMs.
For dense neural networks this amounts to a drastic parameter
decrease.

The neural network ensemble: The NSRMs encoding a
human skeleton are given as input to an orientation classi-
fier that decides on the orientation of the depicted person.
Depending on classifier output, we select the most qualified
neural network ensemble to regress the NSRM matrices to
a 3D pose. For our novel ensemble orientation classifier we
use an 8 hidden layer, densely connected network with 322,
161, 107, 80, 64, 46, 40 and finally 36 parameters in each
layer and SeLU activations starting from a dropout of 20%
and set to 40% dropout after the 4th layer. The final layer
uses a softmax activation to produce compatible results for
our categorical cross-entropy loss function. Orientations are
encoded using a one-hot encoding with four categories (front,
back, left and right) with the correct category set to 1 and the
rest set to 0 for our training samples. While using our classifier
we use a winner-takes-all strategy treating the highest scoring
classification as the correct orientation.

The neural network for 3D pose estimation uses 6 hidden
layer self normalizing neural networks (SNNs [46]) of 152K
weights for each encoder, ∼6.3M parameters for each joint
hierarchy, amounting to ∼12.7M parameters for the aggregate
ensemble as seen in Figure 3. This is a ∼16% improvement in

Fig. 3. Overview of a neural network ensemble trained for a particular orientation class. We use 4 hidden layers for the SNNs [46] that regress the 3D
skeleton position and 7 layer SNN encoders to retrieve 3D angles. Layer widths and dropout rates are listed for each layer. Values ‘inp = 33, inr = 289 refer
to the number of layer input elements.

parameter count over the baseline network that had ensembles
of 270K weights and a ∼15M parameter network.

An important design characteristic of our proposed network
is that the upper body hierarchy is completely independent
from the lower body part. This means that even in cases of ex-
treme occlusions (i.e., having the whole lower body occluded)
our method can still produce accurate pose estimation results
for the upper body. This is in contrast to the baseline method
that would completely fail in this case.

Leveraging the findings of research on neural networks [47],
[48] we have introduced a much higher degree of dropout that
starts at 20% and reaches 40% as seen in Figure 3 instead
of the flat 20% dropout rate of the baseline method [7]. This
seems to also have a positive effect on occlusion handling since
the trained network learns to derive accurate results even if a
big part of the data is missing. This also seems to amplify the
benefits of the occlusion resistant properties of the separation
of upper and lower body.

Besides SNNs, we performed experiments with many other
candidate neural networks. Particularly interesting were ex-
periments using convolutional layers that allowed similar
training accuracy to the baseline dense network using only
15K weights for each encoder. However, such convolutional
encoders proved to be prone to overfitting and produced noisy
results after thorough testing on validation data.

Training the ensemble: We use Keras [49] and Tensor-
flow [50] as our deep-learning framework. Our networks are
trained using the RMSProp optimizer with a batch size of
128, learning rate of 0.0002, e = 10−6 and employing a
variable epoch configuration depending on the difficulty of
the joint. Hips and shoulders are considered difficult joints
and are trained for 20 epochs. Elbows, knees, chest and neck
joints are considered medium difficulty joints and are trained
for 15 epochs, while the rest of the joints are considered
easy and trained for 10 epochs. The loss function we use
is mean squared error (MSE) between predicted and ground
truth 3D joint rotations. We train one encoder for each degree
of freedom of each joint hierarchy for each orientation class.
SNN [46] layers are initialized with random samples from a

truncated normal distribution centered at 0 with σ =
√

1/N
where N is the number of input units in the weight tensor. As
we gradually train encoders, instead of starting from scratch,
we load the weights of neighboring joint encoders to retain
knowledge previously acquired in our training session. We
perform early-stopping by monitoring loss and terminating
training if loss delta is less than 0.001 in 5 or more consecutive
training epochs. We also use model checkpoints [51] so that
each training session returns the best loss achieved, regardless
of the epoch it was encountered. This helps against overfitting.
Training dataset filtering: To train the neural network part
of our method we employ the BVH conversion [52] of the
Carnegie Mellon University MOCAP dataset [53]. We use
datasets 1 to 144 each of which contain various actions like
jumping, dancing, walking and climbing. A pitfall we encoun-
tered is that 187 of the 2535 BVH files [52] have corrupted
arm or leg angles, so we manually discarded incorrect files1.
We also appended the original joint hierarchy with a complete
facial rig as well as feet that also model toes.

The BVH files have some degree of repetition because they
are recorded in high frame rate and because each action is
repeated several times (see Figure 4). This skews the training
procedure as it overemphasizes over-represented poses against
some interesting, under-represented ones. Thus, we filtered the
original dataset (see Figure 4) and discarded 30% of the poses
where all joints where clustered around the same positions,
leaving approximately 2.2M training poses. This is another
improvement compared to the baseline [7] method that, due to
no dataset pose filtering, had to be trained on a much smaller
selection of CMU actions leading to poorer overall training
pose diversity. The clustering tool is available in the github
repository [54].
Training dataset augmentation: The dataset depicts persons
performing actions in fixed trajectories, so to further enrich it
we augment it by randomizing the location of the observed
skeleton for each frame. Directly randomizing the 3D coordi-
nates of the skeletons leads to sub-optimal 2D coverage of the

1The modified dataset including the flagged incorrect pose files described
will become publicly available for download.

Fig. 4. Joint location heatmaps of the 3.9M poses of the CMU dataset after translation and rotation normalization. Left: frontal and side illustration of the
accumulated joint frequencies in the raw dataset. Right: same information, after dataset filtering and augmentation.

input frame. Instead, we pick a random 2D point on the virtual
camera frame and then pick a random depth value to create our
randomized point. This way the randomization covers more
uniformly the whole view frustrum.

A second data augmentation procedure diversifies the
recorded 3D joint configurations. The perturbations use uni-
form random values so that the new value is at most ±x◦ away
from the original orientation. We perturb the r/l shoulder by
±30◦, r/l elbow ±16◦, abdomen and chest by ±10◦, r/l hip
±30◦ and r/l knee ±10◦.

A final data augmentation concerns the orientation random-
ization of the human skeletons on the basis of the four consid-
ered orientation classes. Therefore, we split randomization in
four quadrants (front, back, left, right). All quadrants have the
same limits for rotations on the x and z axis (−35◦ ≤ rx ≤ 35◦

and −35◦ ≤ rz ≤ 35◦). The orientation ry is split into
overlapping quadrants of 100◦ each, to ensure proper handling
in the case of marginally inexact orientation classification. This
class separation scheme not only allows smaller, more accurate
and higher-performance neural networks that have an easier
task to accomplish, but also mitigates neural network learning
problems due to angle discontinuities [25].

These filtering and augmentation processes result in ∼2.2M
poses per orientation class. Thus, the final “ensemble of
ensembles” is trained with over 8.8M poses, however, without
needing to generalize to all of them at once or contain them
all in RAM during training.
Hierarchical Coordinate Descent (HCD) inverse kinemat-
ics: The inverse kinematics solver is used to refine the pose
regressed by the neural network. IK solvers typically rely on a
non-linear least squares optimizer, with the CERES [39] solver
being a very popular choice. However, from a computational
point of view, this is an expensive operation. In our 3D human
pose estimation problem, we obtain consistently, fairly accu-
rate joint estimations. Moreover, each neural network encoder
is conditionally independent from the others. This suggests the
appropriateness of an iterative solution to the pose refinement
problem. Additional inspiration comes from the performance
of efficient, heuristic IK methods like FABRIK [38] that
iteratively traverse the kinematic chain by making individual
improvements to each joint. Specifically, we think of our IK
problem as the refinement of a hypothesis vector h that consists
of individual 3D human pose parameters resulting from the
neural network of the previous step. We also consider the

objective function E2DJ that quantifies the mean squared error
(MSE) of the 2D joints projected, compared to the 2D joints
observed.

EJ2D (h, o) =
1

mJ

mJ∑
i=1

| jhi − joi |
2. (2)

We assume that changes in, e.g., the parameters of the left arm
will not affect errors on the right leg, therefore we decompose
the human body into 6 kinematic chains. The first kinematic
chain C1 consists of hips, shoulders and neck. The rest of the
kinematic chains are C2 (abdomen, neck, shoulders), C3 (right
shoulder, elbow, hand), C4 (left shoulder, elbow, hand), C5
(right hip, knee, heel, toe) and C6 (left hip, knee, heel, toe).

For a certain kinematic chain, we define an iterative error
minimization scheme. At the nth iteration of this process, we
modify each parameter c of the chain by dn

c defined as:

dn
c = βdn−1

c + lr

(
EJ2D (hn−1, o) − EJ2D (hn, o)

2(dn−1
c + e)

)
. (3)

In the above equation, β is a momentum control parameter we
set to 0.9 and e = 0.0001 is used to avoid division by zero.
lr = 0.001 is a learning-rate-type of parameter that controls
the rate at which the change of the error affects the change
of a parameter. For a certain joint of the kinematic chain, we
alternate between its x, y and z rotational parameters for 30
epochs and only accept combined value updates if the achieved
objective function is improved compared to the initial starting
point. We finish the procedure after going through every joint
of the kinematic chain for 5 iterations. We experimentally
identified the 5 iteration sweet-spot after synthetic experiments
on CMU [53] data as seen in Fig 5 (right). Kinematic chains
are optimized in groups, with the first being C1, C2, followed
by C3 to C6 which can be considered in parallel.

IV. Experiments
We base the quantitative evaluation of the proposed method

on the Human 3.6M (H36M) [55] dataset which is used
to compare a variety of methods [37], [7], [66], [67], [58],
[16], [59], [60], [61], [62], [63], [19], [13], [64], [35], [17],
[68]. Evaluation on H36M is performed through specified
protocols that use mean per joint estimation error (MPJPE)
after Procrustes alignment [69] of the output of a method
compared to the ground truth. The H36M protocol 1 dictates
training on subjects 1, 4, 6, 7, 8 and testing on subjects 9
and 11 on 2D points originating from all available cameras.

Fig. 5. Proposed method accuracy with (left) and without (middle) the HCD IK module for various levels of Gaussian noise on H36M [55] 2D input.
Right: Synthetic experiments on CMU [53] data. Varying the HCD iterations parameter reveals a performance/accuracy sweet-spot at 5 iterations.

Input Dir Dis Eat Gre Pho Pos Pur Sit Smo Pho Wai Wal Dog WaT Sit. Avg
Ours (NN+HCD) 69 78 92 78 100 79 134 141 97 89 84 85 102 81 165 108
Ours (NN only) 88 105 116 99 120 102 152 165 127 116 114 112 146 98 180 122
MocapNET [7] 135 140 145 143 153 137 174 215 156 150 151 156 166 134 246 160

TABLE I
Comparison of our method with the baseline approach [7] with respect to theMPJPE error metric. Methods are trained on CMU and tested using H36M

Blind Protocol 1.

[55] [7] NN [56] [57] [58] [16] [59] NN+HCD [60] [61] [62] [63] [19] [13] [64] [35] [17] [65]
162 160 122 119 118 116 113 108 108 107 101 93 88 88 88 82 80 72 40
N/A 2.5 2.0 N/A <0.1 <0.1 <0.1 <0.1 0.6 N/A N/A 0.01 1.8 0.28 N/A 0.46 0.38 N/A N/A

TABLE II
Comparison of methods tested on H36M Protocol 1. 1st row: MPJPE in mm (the smaller, the better), 2nd row: ratio of achieved frame rate overMPJPE (the

larger, the better).

An important consideration is that the baseline method we are
improving upon [7] does not train on any subjects provided
by H36M. Therefore, in order to assure a fair comparison,
we also performed experiments without training on H36M
samples. Hence, following [7], we also label the protocol for
our quantitative experiments as Blind P1 (BP1).
Comparison to the baseline: The obtained results are sum-
marized in Table I. The compared methods are (a) NN+HCD,
the full proposed solution, (b) NN, the estimation provided
by the neural network component of our method (no HCD)
and (c) MocapNET, the baseline approach [7]. Table I reveals
that the proposed solution (NN+HCD) is superior compared
both to the network-only solution and to the baseline, by a
great margin. Importantly, the network-only solution of our
approach, is also superior to the baseline, a fact that we
attribute to our superior 2D joints encoding, the twice as
many orientation categories and the more elaborate orientation
classifier. H3.6M [55] quantitative tests do not feature scene
occluders so occlusions are tested using in-the-wild videos
with cases of severe occlusions (last 3 examples on bottom
row of Fig 6) the baseline method predictably breaks down
providing incoherent results, since its single NSDM [7] matri-
ces are architecturaly not designed to deal with this scenario.
Each missing joint eliminates one line and one column of
the matrix and even with a few occlusions matrices become
extremely sparse causing neural network convolutions to only

produce corrupted poses. The proposed approach however is
much more robust to these scenarios.

Evaluation with respect to noise tolerance: In order to assess
the robustness of our approach to noise, we repeated the above
evaluation assuming different levels of noise contamination of
the input 2D joints. Specifically, we considered ground truth
2D joint positions contaminated errors following the normal
distribution N(µ, σ2). Figure 5 illustrates the relevant results
by showing the percentage of joints that are estimated within a
certain distance from their ground truth positions for different
noise levels. We observe that when 2D joints are accurate,
the inverse kinematics provides a consistent improvement. As
noise becomes more intense, the performance are degraded
due to the effort of the Inverse Kinematics module to strictly
comply to the corrupted input data. This is in contrast to
the neural network which responds in a more timid way
performing some kind of internal pose filtering.

Comparison to SoTA: Comparison to other methods is sum-
marized in Table II. Keeping in mind that the neural network
ensemble is evaluated at sustained rates of over 250fps on
CPU execution when executed on a relatively dated i7-4790
CPU and over 70fps when using both the neural network and
the unoptimized HCD module, we believe that we achieve
a very good balance in the performance/accuracy trade-off.
Moreover, we stress that, contrary to the rest of the evaluated

Fig. 6. Qualitative results of our method (green) compared to the baseline [7] (red) when tested on “in-the-wild” YouTube videos. We observe improved
accuracy, robust orientation classification and better occlusion tolerance.

methods, our method has not been trained with any of the
H3.6M data, therefore, the comparison is disadvantageous to
our method. Last but not least, our method always outputs
anatomically valid results that comply to the same joint
dimensions, compared to methods that ignore joint dimensions
and relevant constraints.

Qualitative evaluation: For the qualitative assessment of
the proposed method we used RGB videos collected from
the web. The BVH files that were output by our method
were loaded in Blender [5] where we animated a skinned
model created using MakeHuman [6] to visualize the results.
Indicative results of single frame pose estimation can be seen
in Figure 1. Still shots from the aforementioned YouTube
videos can be seen in Figure 6 in comparison to the results of
the baseline approach [7]. We observe improved accuracy over
the baseline approach, especially in the case of considerable
joint occlusions. Failure cases arise when supplying erroneous
focal lengths to the Inverse Kinematics module which then
tends to make persons bend forward in order to satisfy the
2D joint constraints while also adhering to the supplied focal
lengths. Further results are provided in the supplementary
material accompanying the paper2.

V. Discussion

We presented a series of novel ideas and methods that allow
3D human pose estimation at a 33% accuracy improvement
compared to the closest competing method. Our method re-
ceives RGB images and can directly derive poses in the pop-
ular BVH format in real-time allowing a variety of interesting
applications and achieving a very good accuracy/performance
ratio. We also believe that the techniques described here
offer an interesting divide-and-conquer approach that can be
generalized and extended to accommodate hand and face
pose estimation. This constitutes our next research goal. The
research presented, along with its supplementary material and
source code are publicly available [54].

Acknowledgments

We gratefully acknowledge the support of NVIDIA Corpo-
ration with the donation of a Quadro P6000 GPU used for the
execution of this research. This work was partially supported
by EU H2020 project Co4robots (Grant No 731869).

2https://youtu.be/Jgz1MRq-I-k

References

[1] Y. Chen, Y. Tian, and M. He, “Monocular human pose estimation: A
survey of deep learning-based methods,” Computer Vision and Image
Understanding, p. 102897, 2020.

[2] NANSENSE Inc., “Nansense,” 2019, [Online; accessed 8-April-2019].
[Online]. Available: https://www.nansense.com/

[3] Oxford Metrics, “Vicon motion capture system,” 2019, [Online;
accessed 8-April-2019]. [Online]. Available: https://www.vicon.com/

[4] S. Johnson and M. Everingham, “Clustered pose and nonlinear ap-
pearance models for human pose estimation.” in bmvc, vol. 2, no. 4.
Citeseer, 2010, p. 5.

[5] Blender Online Community, Blender - a 3D modelling and rendering
package, Blender Foundation, Blender Institute, Amsterdam, 2019.
[Online]. Available: http://www.blender.org

[6] MakeHuman Community, “Makehuman,” 2019, [Online; accessed
8-April-2019]. [Online]. Available: http://www.makehumancommunity.
org/

[7] A. Qammaz and A. A. Argyros, “Mocapnet: Ensemble of snn encoders
for 3d human pose estimation in rgb images,” in BMVC, 2019.

[8] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–551,
1989.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012, pp. 1097–
1105.

[10] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep
neural networks,” in IEEE CVPR, 2014, pp. 1653–1660.

[11] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-
person 2d pose estimation using part affinity fields,” arXiv preprint
arXiv:1611.08050, 2016.

[12] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “OpenPose:
realtime multi-person 2D pose estimation using Part Affinity Fields,” in
arXiv preprint arXiv:1812.08008, 2018.

[13] G. Rogez, P. Weinzaepfel, and C. Schmid, “Lcr-net: Localization-
classification-regression for human pose,” in IEEE CVPR, 2017, pp.
3433–3441.

[14] ——, “Lcr-net++: Multi-person 2d and 3d pose detection in natural im-
ages,” IEEE transactions on pattern analysis and machine intelligence,
vol. 42, no. 5, pp. 1146–1161, 2019.

[15] R. Alp Güler, N. Neverova, and I. Kokkinos, “Densepose: Dense human
pose estimation in the wild,” in IEEE CVPR, 2018, pp. 7297–7306.

[16] X. Zhou, M. Zhu, S. Leonardos, K. G. Derpanis, and K. Daniilidis,
“Sparseness meets deepness: 3d human pose estimation from monocular
video,” in IEEE CVPR, 2016, pp. 4966–4975.

[17] G. Pavlakos, X. Zhou, K. G. Derpanis, and K. Daniilidis, “Coarse-to-
fine volumetric prediction for single-image 3d human pose,” in IEEE
CVPR, 2017, pp. 7025–7034.

[18] B. Tekin, P. Márquez-Neila, M. Salzmann, and P. Fua, “Learning to fuse
2d and 3d image cues for monocular body pose estimation,” in IEEE
ICCV, 2017, pp. 3941–3950.

[19] A. Kanazawa, M. J. Black, D. W. Jacobs, and J. Malik, “End-to-end
recovery of human shape and pose,” in IEEE CVPR, 2018, pp. 7122–
7131.

[20] V. Tan, I. Budvytis, and R. Cipolla, “Indirect deep structured learning
for 3d human body shape and pose prediction,” 2018.

https://youtu.be/Jgz1MRq-I-k
https://www.nansense.com/
https://www.vicon.com/
http://www.blender.org
http://www.makehumancommunity.org/
http://www.makehumancommunity.org/

[21] G. Varol, D. Ceylan, B. Russell, J. Yang, E. Yumer, I. Laptev, and
C. Schmid, “BodyNet: Volumetric inference of 3D human body shapes,”
in ECCV, 2018.

[22] F. Moreno-Noguer, “3d human pose estimation from a single image via
distance matrix regression,” in IEEE CVPR, 2017, pp. 2823–2832.

[23] X. Sun, J. Shang, S. Liang, and Y. Wei, “Compositional human pose
regression,” in IEEE ICCV, 2017, pp. 2602–2611.

[24] D. E. Worrall, S. J. Garbin, D. Turmukhambetov, and G. J. Brostow,
“Harmonic networks: Deep translation and rotation equivariance,” in
IEEE CVPR, 2017, pp. 5028–5037.

[25] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the conti-
nuity of rotation representations in neural networks,” arXiv preprint
arXiv:1812.07035, 2018.

[26] B. Wandt, H. Ackermann, and B. Rosenhahn, “A kinematic chain space
for monocular motion capture,” in ECCV, 2018, pp. 0–0.

[27] J. Martinez, R. Hossain, J. Romero, and J. J. Little, “A simple yet
effective baseline for 3d human pose estimation,” in IEEE ICCV, 2017,
pp. 2640–2649.

[28] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deepmimic:
Example-guided deep reinforcement learning of physics-based character
skills,” ACM Trans. on Graphics (TOG), vol. 37, no. 4, p. 143, 2018.

[29] M. Meredith, S. Maddock et al., “Motion capture file formats explained,”
Department of Computer Science, University of Sheffield, vol. 211, pp.
241–244, 2001.

[30] A. inc. (2019) The daz-friendly bvh release of cmu motion
capture database. Accessed: 2019-10-05. [Online]. Available: https:
//www.autodesk.com/products/motionbuilder/

[31] S. Li, W. Zhang, and A. B. Chan, “Maximum-margin structured learning
with deep networks for 3d human pose estimation,” in IEEE ICCV, 2015,
pp. 2848–2856.

[32] F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero, and M. J.
Black, “Keep it smpl: Automatic estimation of 3d human pose and shape
from a single image,” in ECCV. Springer, 2016, pp. 561–578.

[33] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black,
“Smpl: A skinned multi-person linear model,” ACM Trans. on Graphics
(TOG), vol. 34, no. 6, p. 248, 2015.

[34] A. Qammaz, D. Michel, and A. A. Argyros, “A hybrid method
for 3d pose estimation of personalized human body models,”
in IEEE Winter Conference on Applications of Computer Vision
(WACV 2018). IEEE, March 2018. [Online]. Available: http:
//users.ics.forth.gr/argyros/res personalizedHumanPose.html

[35] D. Mehta, S. Sridhar, O. Sotnychenko, H. Rhodin, M. Shafiei,
H.-P. Seidel, W. Xu, D. Casas, and C. Theobalt, “Vnect: Real-
time 3d human pose estimation with a single rgb camera,” ACM
Transactions on Graphics, vol. 36, no. 4, 2017. [Online]. Available:
http://gvv.mpi-inf.mpg.de/projects/VNect/

[36] T. Yu, Z. Zheng, Y. Zhong, J. Zhao, Q. Dai, G. Pons-Moll, and
Y. Liu, “Simulcap: Single-view human performance capture with cloth
simulation,” arXiv preprint arXiv:1903.06323, 2019.

[37] D. Xiang, H. Joo, and Y. Sheikh, “Monocular total capture: Posing face,
body, and hands in the wild,” in IEEE CVPR, 2019, pp. 10 965–10 974.

[38] A. Aristidou and J. Lasenby, “Fabrik: A fast, iterative solver for the
inverse kinematics problem,” Graphical Models, vol. 73, no. 5, pp. 243–
260, 2011.

[39] S. Agarwal, K. Mierle, and Others, “Ceres solver,” http://ceres-solver.
org.

[40] J. J. Moré, “The levenberg-marquardt algorithm: implementation and
theory,” in Numerical analysis. Springer, 1978, pp. 105–116.

[41] M. I. Lourakis et al., “A brief description of the levenberg-marquardt
algorithm implemented by levmar,” Foundation of Research and Tech-
nology, vol. 4, no. 1, pp. 1–6, 2005.

[42] J. Konečnỳ, Z. Qu, and P. Richtárik, “Semi-stochastic coordinate de-
scent,” optimization Methods and Software, vol. 32, no. 5, pp. 993–1005,
2017.

[43] CMU Perceptual Computing Lab, “Openpose output format
specifications,” 2019, [Online; accessed 9-July-2019]. [On-
line]. Available: https://github.com/CMU-Perceptual-Computing-Lab/
openpose/blob/master/doc/output.md

[44] Wikipedia contributors, “Euclidean distance matrix — Wikipedia,
the free encyclopedia,” 2018, [Online; accessed 8-April-
2019]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
Euclidean distance matrix&oldid=862708912

[45] ——, “Euclidean distance matrix — Wikipedia, the free encyclopedia,”
2020, [Online; accessed 8-April-2020]. [Online]. Available: https:
//en.wikipedia.org/wiki/Atan2

[46] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-
normalizing neural networks,” in NIPS, 2017, pp. 971–980.

[47] P. Baldi and P. J. Sadowski, “Understanding dropout,” in NIPS, 2013,
pp. 2814–2822.

[48] D. Molchanov, A. Ashukha, and D. Vetrov, “Variational dropout sparsi-
fies deep neural networks,” in ICML. JMLR. org, 2017, pp. 2498–2507.

[49] F. Chollet et al., “Keras,” https://keras.io, 2015.
[50] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[51] F. Chollet et al., “Keras documentation - model checkpoint,”
2015, [Online; accessed 8-April-2019]. [Online]. Available: https:
//keras.io/callbacks/#modelcheckpoint

[52] B. Hahne. (2010) The daz-friendly bvh release of cmu
motion capture database. Accessed: 2018-10-05. [Online]. Avail-
able: https://sites.google.com/a/cgspeed.com/cgspeed/motion-capture/
daz-friendly-release

[53] C. M. University, “Cmu graphics lab motion capture database,” http:
//mocap.cs.cmu.edu/, 2003, accessed: 2017-06-01.

[54] A. Qammaz, “Mocapnet github repository,” 2019, [Online;
accessed 11-July-2019]. [Online]. Available: https://github.com/
FORTH-ModelBasedTracker/MocapNET

[55] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3. 6m:
Large scale datasets and predictive methods for 3d human sensing
in natural environments,” IEEE transactions on pattern analysis and
machine intelligence, vol. 36, no. 7, pp. 1325–1339, 2014.

[56] Y. Du, Y. Wong, Y. Liu, F. Han, Y. Gui, Z. Wang, M. Kankanhalli, and
W. Geng, “Marker-less 3d human motion capture with monocular image
sequence and height-maps,” in ECCV. Springer, 2016, pp. 20–36.

[57] I. Kostrikov and J. Gall, “Depth sweep regression forests for estimating
3d human pose from images.” in BMVC, vol. 1, no. 2, 2014, p. 5.

[58] L. Bo and C. Sminchisescu, “Twin gaussian processes for structured
prediction,” International Journal of Computer Vision, vol. 87, no. 1-2,
p. 28, 2010.

[59] H. Yasin, U. Iqbal, B. Kruger, A. Weber, and J. Gall, “A dual-source
approach for 3d pose estimation from a single image,” in IEEE CVPR,
2016, pp. 4948–4956.

[60] X. Zhou, X. Sun, W. Zhang, S. Liang, and Y. Wei, “Deep kinematic
pose regression,” in ECCV. Springer, 2016, pp. 186–201.

[61] B. Tekin, P. Márquez-Neila, M. Salzmann, and P. Fua, “Fusing 2d
uncertainty and 3d cues for monocular body pose estimation,” arXiv
preprint arXiv:1611.05708, vol. 2, no. 3, 2016.

[62] M. Sanzari, V. Ntouskos, and F. Pirri, “Bayesian image based 3d pose
estimation,” in ECCV. Springer, 2016, pp. 566–582.

[63] D. Tome, C. Russell, and L. Agapito, “Lifting from the deep: Convolu-
tional 3d pose estimation from a single image,” in IEEE CVPR, 2017,
pp. 2500–2509.

[64] C.-H. Chen and D. Ramanan, “3d human pose estimation= 2d pose
estimation+ matching,” in IEEE CVPR, 2017, pp. 7035–7043.

[65] X. Sun, B. Xiao, F. Wei, S. Liang, and Y. Wei, “Integral human pose
regression,” in ECCV, 2018, pp. 529–545.

[66] N. Sarafianos, B. Boteanu, B. Ionescu, and I. A. Kakadiaris, “3d human
pose estimation: A review of the literature and analysis of covariates,”
Computer Vision and Image Understanding, vol. 152, pp. 1–20, 2016.

[67] B. Tekin, X. Sun, X. Wang, V. Lepetit, and P. Fua, “Predicting people’s
3d poses from short sequences,” arXiv preprint arXiv:1504.08200, vol. 2,
no. 5, p. 6, 2015.

[68] D. Mehta, H. Rhodin, D. Casas, P. Fua, O. Sotnychenko, W. Xu, and
C. Theobalt, “Monocular 3d human pose estimation in the wild using
improved cnn supervision,” in 2017 International Conference on 3D
Vision (3DV). IEEE, 2017, pp. 506–516.

[69] J. C. Gower, “Generalized procrustes analysis,” Psychometrika, vol. 40,
no. 1, pp. 33–51, 1975.

https://www.autodesk.com/products/motionbuilder/
https://www.autodesk.com/products/motionbuilder/
http://users.ics.forth.gr/ argyros/res_personalizedHumanPose.html
http://users.ics.forth.gr/ argyros/res_personalizedHumanPose.html
http://gvv.mpi-inf.mpg.de/projects/VNect/
http://ceres-solver.org
http://ceres-solver.org
https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/output.md
https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/output.md
https://en.wikipedia.org/w/index.php?title=Euclidean_distance_matrix&oldid=862708912
https://en.wikipedia.org/w/index.php?title=Euclidean_distance_matrix&oldid=862708912
https://en.wikipedia.org/wiki/Atan2
https://en.wikipedia.org/wiki/Atan2
https://keras.io
https://www.tensorflow.org/
https://keras.io/callbacks/#modelcheckpoint
https://keras.io/callbacks/#modelcheckpoint
https://sites.google.com/a/cgspeed.com/cgspeed/motion-capture/daz-friendly-release
https://sites.google.com/a/cgspeed.com/cgspeed/motion-capture/daz-friendly-release
http://mocap.cs.cmu.edu/
http://mocap.cs.cmu.edu/
https://github.com/FORTH-ModelBasedTracker/MocapNET
https://github.com/FORTH-ModelBasedTracker/MocapNET

	Introduction
	Related Work
	Methodology
	Experiments
	Discussion
	References

