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ABSTRACT

Action Quality Assessment (AQA) is a video understanding task
aiming at the quantification of the execution quality of an action.
One of the main challenges in relevant, deep learning-based ap-
proaches is the collection of training data annotated by experts.
Current methods perform fine-tuning on pre-trained backbone
models and aim to improve performance by modeling the subjects
and the scene. In this work, we consider embeddings extracted us-
ing a self-supervised training method based on a differential cycle
consistency loss between sequences of actions. These are shown to
improve the state-of-the-art without the need for additional anno-
tations or scene modeling. The same embeddings are also used to
temporally align the sequences prior to quality assessment which
further increases the accuracy, provides robustness to variance
in execution speed and enables us to provide fine-grained inter-
pretability of the assessment score. The experimental evaluation
of the method on the MTL-AQA dataset demonstrates significant
accuracy gain compared to the state-of-the-art baselines, which
grows even more when the action execution sequences are not well
aligned.
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derstanding.

KEYWORDS

computer vision, video understanding, action quality assessment,
video alignment

ACM Reference Format:

Konstantinos Roditakis, Alexandros Makris, and Antonis Argyros. 2021.
Towards Improved and Interpretable Action Quality Assessment with Self-
Supervised Alignment. In The 14th PErvasive Technologies Related to Assistive

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PETRA 2021, June 29-July 2, 2021, Corfu, Greece

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8792-7/21/06...$15.00
https://doi.org/10.1145/3453892.3461624

507

amakris@ics.forth.gr

Computer Science Department,
University of Crete
Greece
argyros@ics.forth.gr

Environments Conference (PETRA 2021), June 29-July 2, 2021, Corfu, Greece.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3453892.3461624

1 INTRODUCTION

Action Quality Assessment entails the evaluation of the execution
of performed actions. It is a significant problem with applications
in many domains, including healthcare (e.g., evaluate the progress
of patients in performing certain rehabilitation tasks or train the
personnel for performing medical procedures) and sports (e.g., to
help athletes improve their performance).

The problem has recently attracted the interest of the computer
vision community. Current approaches use either image or pose fea-
tures or a combination of both to tackle the problem. The problem is
treated as a regression or classification problem. In the former case,
the action quality score is regressed, while in the latter, pairwise
action execution comparisons are performed. In both cases, one
significant challenge is the collection and utilization of data that
domain experts annotate.

In this work, we propose a novel action quality assessment
method that employs self-supervised features and video alignment.
We consider a self-supervised training method that minimizes a
differential cycle consistency loss between sequences of actions [5].
The resulting embeddings complement the commonly used appear-
ance features (I3D) [2] and improve the performance without the
need for additional annotations, scene modeling, or pose estimation.
We also use the self-supervised embeddings to align the sequences
before assessing the action execution quality. The goal of alignment
is twofold: (a) to increase the accuracy of the quality assessment
and (b) to allow for fine-grained interpretability at the frame level.
To account for the inherent uncertainty of the action quality score
(i.e., different judges may assign different scores), we regress the
score distribution instead of a single value.

Video representations that rely on self-supervision enable the ex-
traction of information-rich embeddings from raw video sequences
without the need for annotations. This property allows the effortless
transfer of methods in different domains. In this work, we employ
the temporal cycle-consistency (TCC) learning method [5]. The
method is based on the task of alignment between videos. There-
fore, the resulting per-frame TCC embeddings can be directly used
to align video sequences.

Temporal alignment is a crucial step in our approach. Typically,
to perform the quality assessment, manually clipped sequences
of a particular action are used. The limits of the clips that result
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from this manual annotation process are typically not consistent
among different executions of the same action. Furthermore, the
action execution speed and rhythm between subjects vary. These
inconsistencies deteriorate the accuracy of the quality assessment
methods. We alleviate this problem by performing temporal align-
ment of the sequences to a reference one before performing the
quality assessment.

Given that the assessment is performed on sequences that are
aligned at the frame level, we are able to support fine-grained
explainability which is not the case for methods that rely on mis-
aligned sequences.

In summary, the contributions of this work are the following:
(a) We introduce the self-supervised TCC embeddings as a comple-
mentary representation to the I3D features, (b) We perform video
alignment before the quality assessment relying on the same TCC
embeddings. Both contributions result in increased accuracy of
the quality score estimation. Furthermore, the performed action
alignment enables us to provide explainability of the assessment at
frame level.

2 RELATED WORK

Previous action quality assessment approaches include task-specific [1,
27] and generic methods [3, 25]. The assessment is performed either
by regressing an execution quality score [25] or by performing pair-
wise comparisons [3]. Recent methods exploit several deep learning
architectures including Siamese networks [3, 10], sequence mod-
els [27], and incorporate temporal [4] and spatial attention mech-
anisms [12]. The training process is based on transfer learning
and is typically supervised [4, 19]. Both appearance [3, 19, 25] and
pose [15, 17, 22] based features have been exploited. Interpretability
emerges by the exploitation of the properties of back-propagation
and attention modules [3, 10].

Appearance-based methods: Appearance-based methods utilize
RGB features to assess the performed actions [11, 20, 21, 25, 26].
Most approaches use either C3D [11, 20], or I3D features [2, 25].
Li et al. [11] split a video into clips to extract C3D features and
concatenate them to predict action scores. Tang et al. [25] proposed
an uncertainty-aware score distribution to model the ambiguity
arising from score variation among multiple judges. Parmar and
Morris [20] proposed a multi-task learning approach that improves
performance compared to methods that only regress a score.

Pose-based methods: Human pose estimation can be particularly
challenging in certain situations. For instance, in sports, several
factors such as fast motion, occlusions, and extreme body poses
hinder the performance of most current pose estimation methods.
Nevertheless, several works exploit the pose as it is a significant cue
for assessing the quality of the performed action to complement
appearance information. Pirsiavash et al. [22] rely solely on pose
data and train a linear SVR to regress the execution score of athletic
performances. Sardari et al. [23] trained a two stage CNN. The first
stage is a viewpoint invariant descriptor of the trajectories of the
body joints and the second stage regresses the action quality. Pan
et al. [17] perform graph-based modeling of joint relations. Gao et
al. [7] use I3D features along with a proposed asymmetric inter-
action module to model actions that include agents with different

508

Konstantinos Roditakis, Alexandros Makris and Antonis Argyros

roles. Nekoui et al. [14, 15], use both pose and appearance features
and present a dataset with extreme poses to boost the performance
of pose estimation in such scenarios. In our work, we avoid using
pose altogether. Instead, we complement appearance information
with the self-supervised TCC embeddings, which are shown to
boost the action accuracy without the need for difficult to obtain
pose annotations.

Self-supervision in videos: Recently, several self-supervised video
representation learning methods have been proposed. Shuffle and
Learn (SaL) [13] learns to predict the temporal order of shuffled
triplets. Time-Contrastive Networks (TCN) [24] is based on multi-
view videos where utilization of a metric learning loss enforces
simultaneous viewpoint observations to be near in the embedding
space. A Single-view version of TCN enforces embedding simi-
larity within a small temporal window of observations. Temporal
cycle consistency (TCC) learning [5] is a method that learns spatio-
temporal representations by aligning video sequences of the same
action. This is done by utilizing a differential cycle consistency loss
when comparing nearest neighbors between two sequences.

To the best of our knowledge, there are no previous works that
employ self-supervised embeddings to solve the action quality as-
sessment problem. We use the TCC embeddings both to align the
video sequences and to complement the appearance features.

3 METHODOLOGY

The proposed method regresses the action execution quality score
of video segments. It relies on two learning stages and a temporal
alignment step. The first learning stage is self-supervised and
performs representation learning to extract the TCC embeddings.
The TCC embeddings are subsequently used to align the video seg-
ments temporally. The aligned segments are then fed to the Action
Quality Assessment (AQA) learning stage, which is supervised and
uses two backbone models (TCC and I3D) to encode segments of
videos and learn the action quality score.

3.1 Self-supervised TCC embeddings

Segment encoding: A base network encodes the spatial informa-
tion of each frame independently. Spatiotemporal information is
computed by fusing frame-level convolutional features within a
segment. More specifically, a ResNet-50 [9] architecture extracts con-
volutional features from the Conv4clayer, with a size of 14x14x1024.
Temporal encoding is performed with 3D convolutions and spa-
tiotemporal pooling. Linear projections (FC-layers) are used to
produce a 128-dimensional embedding vector. It is important to
note that an embedding of a video segment can be viewed as a
segment-aware frame that encodes spatiotemporal information of
k context frames.

Cycle consistency in videos: Temporal Cycle-Consistency learn-
ing dictates two segment-aware frames u; and v, in sequences U
and V respectively, to establish cycle consistency if they express
the same motion within their sequence context. To test cycle con-
sistency, initially we select a point u; € U. Then we find the nearest
neighbor of u;, v; € V and nearest neighbor of v}, uj € U as:
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Figure 1: Overview of the proposed pipeline. Each video sample is aligned to a fixed-sized reference video V},; of the training
set. The aligned sequence is split into M segments, which are passed to I3D and TCC backbones. Feature concatenation with
average temporal pooling produces clip-level representation. AQA consists of FC-layers that aim to minimize USDL loss.

vj = argmin ||u; — |2 (1)
veV
and
ug = argmin ||v; — ul|? (2)

uel

Cycle consistency exists, if k = i.

Temporal Cycle Consistency learning: In order for temporal
cycle consistency formulation to be differentiable and ready to be
integrated into a deep learning architecture, Soft-Nearest Neigh-
bors (SSN) [6] with Cycle-back Regression is introduced. Learning
is performed by randomly selecting pairs of videos and using seg-
ments to compute Cycle-back Regression which is the loss signal
to optimize the encoder network.

Soft Nearest Neighbors: Given any frame with embedding x, we
compute its soft nearest neighbor x, located in another video se-
quence U with N frames length, as:

N e~ llx=o;lI?

X = ajvi, where aj= ————. 3
Z 7 TSN e llx-vl ®
J 2 e

Cycle-back Regression loss: Initially, we select a frame u; € U
and keep the frame index i. First we compute the SNN of u;, &1 € V.
Then we compute the similarity values f; for each up € U using:

o lla—ug |2

Br 4

- SN el
Each fj and the frame index i are used to formulate the final objec-
tive:
i p?
o2

= + Alog(o), (5)

where i = ijvﬁk -k, o = ijvﬁk ~(k—p)? and A = 0.001 is a
regularization weight.
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3.2 AQA pipeline
We adopt the architecture from [20, 25] with the addition of a TCC

based alignment pre-processing step and the incorporation of the
TCC embeddings as complementary features to the I3D (see Fig. 1).

Video preparation: Prior to any other processing, the input videos
are temporally aligned. We select a reference video Vj ., that corre-
sponds to the best execution of an action, and we uniformly sample
it to 103 frames. Each raw variable-length sample is aligned to the
fixed-size reference video. The alignment is based on the TCC em-
beddings. We use the dynamic time warping (DTW) algorithm with
the Euclidean distance metric.

Each fixed-length video of N = 103 frames is divided into M =
10 overlapping segments of size k = 16. Each RGB frame in the
sequence is resized to (w, h, ¢) = (224, 224, 3). The segment size k
and spatial resolution (w, h, c¢) is dictated from the I3D backbone
model we use in this work. The choice of input length N number
utilized M segments is chosen according to be comparable with the
baseline method [25].

Clip encoding: Each segment is encoded using two backbone
models, the TCC [5] and the I3D [2]. The full feature vector is
produced by concatenating the 1024-dimensional I3D feature vector
and the 128-dimensional TCC embedding vector. The I3D model is
pre-trained on the large-scale Kinetics dataset [2].

All segments with their accompanying segment-level features
are passed from temporal pooling to produce a clip-level repre-
sentation. Temporal pooling is performed with the AVG operator.
Recent works [20, 25] demonstrate that applying temporal pool-
ing after averaging features from the backbone part yields better
performance.

Score prediction: The front-end transforms a clip-level represen-
tation to the prediction of the score annotation. It consists of 3 fully
connected (FC) layers. The input dimension of the first FC-layer
depends on the dimension of clip-level representation. The output
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dimension of the last layer depends on the input requirements of the
loss function that is chosen. The L1-L2 distance score loss function,
used in [20], requires an output of a scalar value that corresponds
to the score annotation. The USDL loss we use requires a quantized
probability distribution. Thus, the output dimension of the last FC
layers depends on the number of chosen bins. To predict probability
ratios, the output of the end FC-layer is passed through a soft-max
layer. The accepted score is the score that corresponds to the bin
with the maximum probability value.

AQA loss function: We use the USDL loss function introduced
in [25] due to its higher performance over L1-L2 regression loss [20]
and the ability to model uncertainty in single score labels. This is
done by transforming each scoring label I to a Normal probability
distribution Q(x) = N(x|u = 1, o%), where o is provided as hy-
perparameter. With USDL loss, training is based on minimizing
the statistical discrepancy between predicted score distribution P
and ground-truth score distribution Q. Kullback-Leibler (KL) Di-
vergence is used in USDL loss where both score distributions are
discretized into b = 100 bins.

4 EXPERIMENTS

4.1 Implementation details

Self-supervised training is performed, independently on the train-
ing set, for 150K iterations using AdamOptimizer with a fixed learn-
ing rate of 0.0001. The base network of the TCC encoding is pre-
trained on ImageNet. We used the publicly available tensor-flow
implementation of TCC [5].

Supervised AQA training is performed for 100 epochs using
AdamOptimizer with a learning rate of 0.0001 and a weight decay of
0.00001. Our proposed AQA implementation is based on a publicly
available implementation of [25]. During supervised training, the
I3D backbone (pre-trained on kinetics datasets) is fine-tuned on the
MTL-AQA dataset. The TCC encoding network does not consider
the AQA loss and is not fine-tuned to the MTL-AQA dataset due to
the incompatibility between the utilized deep-learning frameworks.
Both encoding networks consider common spatial input of size of
224 x 224 and a temporal window of 16 frames.

4.2 Evaluated methods

We conducted a series of experiments to evaluate our method
against state of the art in varying conditions. Specifically, we eval-
uate and compare the following methods and variants:

e U-I3D: Baseline method using I3D features [25].

e A-I3D+TCC: Proposed method using TCC based alignment
and the TCC embeddings in the AQA pipeline.

e A-I3D: Our method using TCC based alignment only.

e U-I3D+TCC: Our method using the TCC embeddings in the
AQA pipeline only.

4.3 Evaluation metrics

For compatibility with the evaluation process of previous works [8,
17, 20, 21, 25], we utilize the Spearman’s rank correlation coefficient
as an evaluation metric. To improve the quality of experiments, we
repeat each model evaluation 5 times and report the median value as
the final performance. Each model is trained for 100 epochs for the
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Table 1: Spearman’s correlation scores of the evaluated
methods on the selected dive.

l Method ‘ Spearman’s rank correlation
U-I3D 0.62
A-I3D 0.70
U-I3D+TCC 0.66
A-I3D+TCC 0.77

supervised AQA training, and its corresponding self-supervision
session was performed in 150K iterations.

4.4 Dataset

Evaluation is based on the MTL-AQA dataset that is introduced

n [20]. This dataset focuses on diving performances and is the
largest AQA dataset available with a total of 1412 samples. With
respect to other introduced diving datasets [18, 21], it has higher
variability in diving actions, performer gender (both males and
females), and background variation. Each sample is labeled with a
final score, calculated from 7 individual judges, and filtered through
the decision process that considers action difficulty. Additionally, it
is accompanied by fine-grained annotations such as action type at-
tributes and commentary text. Regarding the action type attributes,
each dive is annotated with the initial position of the athlete, such as
a handstand (yes or no) and the type of dive flip that is performed
(position, rotation type, number of somersaults, and number of
twists). Moreover, each diving type is characterized by a difficulty
score.

We test our method on a specific dive. We test the hypothesis
that our proposed approach can improve existing methods which
are designed to evaluate a variety of diving types by considering ad-
equate samples. As in [16, 20], we pick action types by utilizing the
action attributes (arm stand, position, rotation_type, ss_no, tw_no).
The training and test sets of each sub-action are generated using
the split0 dataset split, which is the standard evaluation split for
MTL-AQA.

4.5 Quantitative results

Based on the selected dataset, we obtained quantitative results re-
garding the performance of all considered methods. The selected
dive consist of 112 train and 33 test samples. The results are sum-
marised on Table 1. To obtain these results, we used the original
dataset annotations for the video limits. We didn’t consider the pre-
processing step that is used in the implementations of [20, 25] which
considers only the end limit. We consider that this pre-processing
step artificially creates an alignment that does not generalize in
other datasets or action types. As it can be verified in Table 1, in
this realistic setting (i.e., using the original annotations) our A-
I3D+TCC method results in a clear performance improvement
compared to the U-I3D baseline.

We also evaluated the influence of the alignment and of the
TCC embeddings on the performance of the proposed method. The
results of Table 1 show that the use of the TCC embeddings in
the AQA pipeline improves the modeling capability of the net-
work as well as the performance (U-I3D+TCC) compared to the
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Table 2: Spearman’s correlation scores of the baseline and
the proposed method in the presence of annotation noise.

l Method ‘ Spearman’s rank correlation
U-I3D 0.67
A-I3D+TCC 0.77

Score of reference dive:92.8

—— dive with score:40
dive with score:59.2
—— dive with score:91.2

L3 distance in TCC embedding space

L S e e e e e e L S e e e e e N
1 6 111621263136 41 4651 56 61 66 71 76 81 86 91 96101
frame number

Figure 2: Per frame discrepancy of three diving sam-
ples in the TCC embedding space, when compared
with the best performer. By aligning the action exe-
cutions and comparing them in the embedding space,
it is possible not only to perform AQA but also to lo-
calize appearance deviations temporally from the best
performance.

baseline. Using only the alignment (A-I3D) also improves the per-
formance compared to the baseline. This indicates that even though
the baseline method provides robustness to small alignment errors,
in practice, the actual alignment errors in the dataset deteriorate
its performance.

To further investigate the relationship between alignment and
the performance of the methods, we conducted another experiment
where we added uniform noise with range 2 segments to the orig-
inal annotation limits. The results are shown in Table 2. In this
specific experiment, the baseline is favored by utilizing the heuris-
tic pre-processing step that considers only the end limit [21, 25].
When annotation noise is applied to the baseline U-I3D, which
uses heuristic prepossessing, performance drops from 0.79 to 0.67.
Our proposed method considers all annotation noise in both self-
supervised and supervised stages. Our method is shown to be robust
to this noise, having the same performance as without the noise.

4.6 Interpretability and qualitative results

To the best of our knowledge, the interpretability of existing AQA
methods is demonstrated coarsely by visualizing segments of single
sequences. Practically, each visualized segment is not guaranteed to
correspond to a specific part of the action. In Fig. 2, we demonstrate
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the effectiveness of the alignment techniques in interpretability.
We select the best performer, and we perform a frame-by-frame
comparison with other performers by utilizing the Euclidean dis-
tance of their representations in the TCC embedding space. It is
worth noting that, in this work, TCC embeddings are not trained
or fine-tuned with a loss function that is aware of score labels. At
certain parts of the sequence, performers tend to deviate consid-
erably from the best performer. As an example, the spike of the
blue line that corresponds to the performer with a score of 40.0
indicates that there is a high-performance discrepancy of this per-
former when compared with the best performer, localized at that
particular temporal point. This type of discrepancy visualization
can assist anomaly detection and guide judges to focus their at-
tention on that specific part of the sequence. What is mentioned
above demonstrates that utilizing alignment-based representation
learning has a strong potential towards interpretable AQA systems.

The influence of the alignment process on the input that is fed
to the AQA pipeline is demonstrated qualitatively in Figure 3. The
ending of a reference video is shown in the first row. In rows 2, 3,
the three columns correspond to three different executions with a
different score. The second row shows which frames are obtained
when we uniformly normalize diving samples, i.e., without aligning
them to the reference. The third row shows the obtained frames
after alignment has been performed. The reference video stops a
few frames before the athlete enters the water. From what is shown
in the second row, we can observe that corresponding frames differ
significantly and are not comparable since they are not aligned
and, thus, they don’t represent the same part of the action. In the
third row, we can observe that frames are aligned closer to the
frame of the reference videos; thus frame-by-frame comparison and
evaluation is possible.

5 CONCLUSIONS

We proposed a novel action quality assessment method that em-
ploys self-supervised embeddings and video alignment. We choose
the TCC embeddings since they don’t have any special training
requirements, and they are, by construction, able to perform video
alignment. Integration of the embeddings is simple (feature con-
catenation only) and is not coupled to a specific network type. On a
selected diving action of the MTL-AQA dataset, we have experimen-
tally shown that the proposed method outperforms the previous
approaches and can provide fine-grained interpretability of the
action quality assessment scores. As future work, we plan to test
our approach on datasets with performances from different sports
and render the method able to generalize to multiple action types.
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