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Most people touch their faces unconsciously, for instance to scratch an itch or to rest one’s chin in their hands. To reduce the
spread of the novel coronavirus (COVID-19), public health officials recommend against touching one’s face, as the virus is
transmitted through mucous membranes in the mouth, nose and eyes. Students, office workers, medical personnel and people on
trains were found to touch their faces between 9 and 23 times per hour. This paper introduces FaceGuard, a system that utilizes
deep learning to predict hand movements that result in touching the face, and provides sensory feedback to stop the user from
touching the face. The system utilizes an inertial measurement unit (IMU) to obtain features that characterize hand movement
involving face touching. Time-series data can be efficiently classified using 1D-Convolutional Neural Network (CNN) with minimal
feature engineering; 1D-CNN filters automatically extract temporal features in IMU data. Thus, a 1D-CNN based prediction model is
developed and trained with data from 4800 trials recorded from 40 participants. Training data are collected for hand movements
involving face touching during various everyday activities such as sitting, standing, or walking. Results showed that while the
average time needed to touch the face is 1200 ms, a prediction accuracy of more than 92% is achieved with less than 550 ms of IMU
data. As for the sensory response, the paper presents a psychophysical experiment to compare the response time for three
sensory feedback modalities, namely visual, auditory, and vibrotactile. Results demonstrate that the response time is significantly
smaller for vibrotactile feedback (427.3 ms) compared to visual (561.70 ms) and auditory (520.97 ms). Furthermore, the success
rate (to avoid face touching) is also statistically higher for vibrotactile and auditory feedback compared to visual feedback. These
results demonstrate the feasibility of predicting a hand movement and providing timely sensory feedback within less than a second
in order to avoid face touching.
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provides sensory feedback to stop the user from touching the face. The system utilizes an inertial measurement unit (IMU) to
obtain features that characterize hand movement involving face touching. A Convolutional Neural Network (CNN) based prediction
model is developed and trained with data from 4800 trials recorded from 40 participants. Training data are collected for hand
movements involving face touching during various everyday activities such as sitting, standing, or walking. Results showed that
while the average time needed to touch the face is 1200 ms, a prediction accuracy of more than 92% is achieved with less than 550
ms of IMU data. As for the sensory response, the paper presents a psychophysical experiment to compare the response time for
three sensory feedback modalities, namely visual, auditory, and vibrotactile. Results demonstrate that the response time is
significantly smaller for vibrotactile feedback (427.3 ms) compared to visual (561.70 ms) and auditory (520.97 ms). Furthermore,
the success rate (to avoid face touching) is also statistically higher for vibrotactile and auditory feedback compared to visual
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ABSTRACT2

Most people touch their faces unconsciously, for instance to scratch an itch or to rest one’s3
chin in their hands. To reduce the spread of the novel coronavirus (COVID-19), public health4
officials recommend against touching one’s face, as the virus is transmitted through mucous5
membranes in the mouth, nose and eyes. Students, office workers, medical personnel and people6
on trains were found to touch their faces between 9 and 23 times per hour. This paper introduces7
FaceGuard, a system that utilizes deep learning to predict hand movements that result in touching8
the face, and provides sensory feedback to stop the user from touching the face. The system9
utilizes an inertial measurement unit (IMU) to obtain features that characterize hand movement10
involving face touching. Time-series data can be efficiently classified using 1D-Convolutional11
Neural Network (CNN) with minimal feature engineering; 1D-CNN filters automatically extract12
temporal features in IMU data. Thus, a 1D-CNN based prediction model is developed and trained13
with data from 4800 trials recorded from 40 participants. Training data are collected for hand14
movements involving face touching during various everyday activities such as sitting, standing,15
or walking. Results showed that while the average time needed to touch the face is 1200 ms, a16
prediction accuracy of more than 92% is achieved with less than 550 ms of IMU data. As for the17
sensory response, the paper presents a psychophysical experiment to compare the response18
time for three sensory feedback modalities, namely visual, auditory, and vibrotactile. Results19
demonstrate that the response time is significantly smaller for vibrotactile feedback (427.3 ms)20
compared to visual (561.70 ms) and auditory (520.97 ms). Furthermore, the success rate (to21
avoid face touching) is also statistically higher for vibrotactile and auditory feedback compared to22
visual feedback. These results demonstrate the feasibility of predicting a hand movement and23
providing timely sensory feedback within less than a second in order to avoid face touching.24

Keywords: Face touching avoidance, IMU-based hand tracking, sensory feedback, vibrotactile stimulation, wearable technologies for25
health care26
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1 INTRODUCTION
Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-27
CoV-2), has spread worldwide, with more than 88 million cases and 1.9 million fatalities as of January,28
2021 WHO (2020). Maintaining social distancing, washing hands frequently, avoiding touching the29
face including eyes, nose, and mouth, are the major methods associated with preventing COVID-1930
transmission Chu et al. (2020). Contaminated hands have the potential to disseminate COVID-19 especially31
if associated with touching the face Macias et al. (2009). Face touching is an act that can happen without32
much thought, and in fact, happens with such a high occurrence that reducing it could mitigate a heavy33
source of transmission. Beyond simple skin irritations, face touching has been linked to emotional and34
cognitive processes Barroso et al. (1980); Mueller et al. (2019), increasing with attentiveness while tasks35
are being performed, as well as with increasing pressure and anxiety Harrigan (1985). For such common36
underlying motives, it is no surprise to see that on average a person touches their face 23 times in an hour37
Kwok et al. (2015). Given that the primary source of COVID-19 transmission is through contact with38
respiratory droplets (via the nose, mouth, or eyes, either directly from another individual or picked up from39
a surface Pisharady and Saerbeck (2015)), avoiding face touching is of a great value.40

Developing a system to avoid face touching outright by stopping hand movement raises two main41
challenges. First of all, a system must predict rather than detect when a hand movement will result in face42
touching well before the hand reaches the face. Secondly, once a hand movement is predicted to result in43
face touching, a sensory feedback must be presented immediately in order to stop the hand movement and44
thus avoid face touching. Note that the prediction and response components are evaluated separately to45
better analyze the capabilities/limits of each component.46

1.1 Predicting hand movement47

Predicting face touching requires precise hand tracking. Two common approaches for tracking hand48
movement are vision-based approaches Al-Shamayleh et al. (2018) and wearable sensor-based approaches49
Mummadi et al. (2018); Jiang et al. (2017b). A combination of these have also shown potential for50
enhanced accuracy Jiang et al. (2017a); Siddiqui and Chan (2020). Vision-based hand tracking utilizes51
camera networks Pisharady and Saerbeck (2015), and as mentioned, can be supplemented with wearable52
devices such as motion sensor systems placed along the body, to map either whole body or hand movement53
Liu et al. (2019). One particular wearable device often used is the inertial measurement unit (IMU), capable54
of collecting data along 6 degrees of freedom, with three additional angular sensors to enable a total of 955
inputs. Found in many smart watches, the IMU is equipped with an accelerometer and gyroscope, providing56
an inexpensive option that is not only accurate, taking measures along all three dimensions for each of its57
components, but also one that does not require complementary infrastructure to operate. This allows the58
IMU to be versatile yet effective in the context in which it is implemented.59

Paired with an appropriate machine learning model, the data from an IMU can be used to notify a user60
how often they are touching their face, as well as whether they have done so after each movement. IMUs61
have been used to correctly identify a completed face touch with high accuracy Fu and Yu (2017); Rivera62
et al. (2017). Even though detecting face touching greatly supports awareness training, it does not prevent63
face touching from happening. The motivation of the proposed system is to apply machine learning in64
order to predict face touching and provide vibrotactile feedback to prevent it rather than detecting it.65

1.2 Sensory Feedback for Motor Control66

Along with the development of hand tracking, the user must also be notified of their impending action67
before it is committed, with ample time for them to react. The notification must be delivered through a68
medium that will elicit the fastest response time. The three feedback modalities of relevance are visual,69
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auditory, and vibrotactile, and it has been shown that vibrotactile feedback produces the fastest response70
times Ng and Chan (2012). Vibrotactile feedback systems can be used to achieve this, with benefits similar71
to that of an IMU, being cost-effective, and easily implemented into a wearable device.72

A low-cost wearable system that prevents people from touching their face, and in the long run, assist73
people in becoming more aware of their face-touching, is proposed. The system exploits widespread and74
off-the-shelf smartwatches to track the human hand and provide timely notification of hand movement75
in order to stop touching the face. The decision to build the system with just a smartwatch makes it76
immediately available to people, without the requirement of building or wearing additional hardware. The77
system assumes a smartwatch with an IMU module and a vibration motor; a reasonable assumption as most78
commercial smartwatches are equipped with such hardware. Although preventing the spread of COVID-1979
is the most evident, the system can be adapted for other applications such as habit reversal therapy (HRT)80
Bate et al. (2011) and treatment of chronic eye rubbing McMonnies (2008). The main contributions of this81
paper are summarized as follows:82

1. Proposing a conceptual approach that utilizes IMU data to predict if a hand movement would result in83
face touching and provides real-time sensory feedback to avoid face touching.84

2. Developing a model for tracking hand movement and predicting face touching using convolutional85
neural networks based on IMU data. To train the model, a database of 4,800 hand motion trials86
recording with 40 users under three conditions, sitting, standing, and walking is built.87

3. Presenting a psychophysical study with 30 participants to compare the effectiveness of sensory feedback88
modalities, namely visual, auditory, and vibrotactile, to stop the hand while already in motion before89
reaching the face. The response time and success rate were used as the evaluation metrics for the90
comparison.91

2 RELATED WORK
2.1 Understanding Hand Movement92

The detection and classification of body activity is a major area of research, with applications and93
techniques ranging from wearable electrocardiogram recorders to classify body movements in patients with94
cardiac abnormalities Pawar et al. (2007), recognition and 3D reconstruction of the face using computer95
vision Chen et al. (2017); Zhao et al. (2018); Yang and Lv (2020); Lv (2020), to activity tracking of remote96
workers through sensory systems Ward et al. (2006); Manghisi et al. (2020). For instance, a system named97
HealthSHIELD utilized Microsoft Kinect Azure D-RGB camera to detect high/low risk face touching in98
order to monitor compliance with behavioral protection practices. Results demonstrated an overall accuracy99
of 91%. Inertial Measurement Units (IMU) are another particularly common alternative that although can100
be used in tandem with other systems Corrales et al. (2008), can provide exceptional results on its own101
Olivares et al. (2011).102

In connection to real-time hand movement recognition in virtual reality games, a wearable IMU has103
been investigated as an alternative to simple button presses on a controller to identify player action intent104
Fu and Yu (2017). Similar to the IMU implementation of our own study, an accelerometer, gyroscope,105
and magnetometer are used as the sensor inputs for classification. Once a user moves their hand in a106
predetermined pattern, a trained long short term memory (LSTM) model identifies the movement, and the107
relevant in-game controls are carried out.108

Detecting the touching of one’s face using an IMU has been examined recently Christofferson and Yang109
(2020). A convolutional neural network is used to identify whether a user had touched their face at the end110
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of a gesture. Once a user made their move, the collected data from the 9 data modes of the IMU are passed111
through a trained model, with a face touch classification provided simply as true or false. This approach112
resulted in a 99% accuracy rate.113

As is seen in previous studies, the deep learning model used alongside the IMU varies. Requiring a time114
series based solution, recurrent neural networks, particularly LSTM, and convolutional neural network115
(CNN) models have been implemented with significant success Rivera et al. (2017); Christian et al. (2019).116
Combinations of CNN layers with LSTM models have also been effective in processing IMU data Silva do117
Monte Lima et al. (2019). However, in related works where classification time is relevant, a standalone118
CNN has shown great promise Huang et al. (2017).119

2.2 Real-time Sensory Feedback120

In order to provide a real-time sensory feedback to stop the hand movement and avoid face touching,121
multiple feedback sensory modalities can be utilized. Sensory feedback is usually presented through122
visual, auditory, and tactile modalities. Visual modality stimuli such as flashing is common in several123
warning systems, such as road transport industries Solomon and Hill (2002) and crosswalk warning systems124
Hakkert et al. (2002). In addition to the use of vision, auditory modality is widely used in transport, heath125
care, and industrial environments as it has an immediate arousing effect Sanders (1975). For instance, a126
previous study showed that auditory alarms used in helicopter environments conveyed urgency Arrabito127
et al. (2004). Comparing the two modalities, it was found that the response time to visual and auditory128
stimuli is approximately 180–200 and 140–160 milliseconds, respectively Thompson et al. (1992). This is129
based on a previous finding that an auditory stimulus takes only 8–10 ms to reach the brain whereas visual130
stimulus takes 20–40 ms Kemp (1973). However, there are several factors that influence the average human131
response time include age, gender, hand orientation, fatigue, previous experience, etc. Karia et al. (2012).132

Vibrotactile modality has also been found to improve the reaction time for several applications such133
as drone tele-operation Calhoun et al. (2003); Macchini et al. (2020), collision avoidance while driving134
Scott and Gray (2008), and alteration of motor command in progress (such as altering a reach in progress)135
Godlove et al. (2014). The temporal aspects of visual and vibrotactile modalities, as sources of feedback136
about movement control, are examined in Godlove et al. (2014). A modified center-out reach task where the137
subject’s hand movement was occasionally interrupted by a stimulus that instructed an immediate change138
in reach goal is utilized. Results demonstrated that the response for tactile stimuli was significantly faster139
than for visual stimuli.140

Utilizing vibrotactile feedback for alarming the user about face touching has recently been studied. A141
commercial product, named IMMUTOUCH, utilized a smart wristband that vibrates every time the user142
touches their face Immutouch (2020). A recent research study presented a wearable system that utilizes a143
smartwatch to provide vibrotactile feedback and a magnetic necklace to detect when the hand comes to a144
close proximity to the face D’Aurizio et al. (2020). Even though these solutions are a great step forward to145
reducing the number of face touches and their duration, they do not consider real-time touch avoidance.146
Furthermore, these studies did not perform any systematic studies to determine the most effective sensory147
feedback modality to stop the hand movement and eventually avoid face touching. Aside from differences148
in the type and architecture of the deep learning model used for classification, our study employs a wearable149
IMU not just to classify a gesture, but to predict a gesture before it happens. The motion input data therefore150
will not include the final portion of an individual’s hand movement, placing a limit on the available data for151
training. In examining feasibility of success under such constraints, optimal sensory feedback thus plays a152
significant role.153
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3 PROPOSED APPROACH
A high-level description of the system is visualized in Figure 1. The system utilizes IMU data to measure154
hand movement, convolutional neural networks to predict, in real time, whether a hand movement will155
involve touching the face, and vibrotactile feedback to alert the user so they stop their hand movement156
before touching their face. Note that the system must perform in real time in order to generate response to157
stop the hand movement before it reaches the face.158

Figure 1. The application scenario involves a smartwatch with Inertial Measurement Unit to detect hand
movement, a machine learning model to predict when a movement results in touching the face, and a
vibration motor to alert the user in order to stop the hand movement.

A more detailed description of the system is shown in Figure 2 while a technical description of the system159
is further analyzed in Section 4. The prediction component involves a sequence of three processes, namely160
feature selection, data segmentation, and a Convolutional Neural Network (CNN). Three sensory feedback161
modalities are considered for the response component, namely visual, auditory, and vibrotactile. Section 5162
presents a psychophysical experiment to compare these modalities and inform the decision about using163
vibrotactile feedback.164

A wearable device with an embedded IMU recording 9 different types of hand motion data (x, y, and165
z components for accelerometer and gyroscope, and rotational pitch, roll, and yaw) makes the input166
to the prediction component. In the feature selection process, features are extracted and evaluated for167
relevance to predicting face touching hand movement. These features are used to improve the performance168
of the prediction model. Feature selection included several data pre-processing procedures such as data169
augmentation (to increase the size of training data), data filtration to enhance the signal-to-noise ratio, hand170
orientation calculation, Fast Fourier Transform (FFT) features extraction, and optimization of the combined171
features.172

Once the features are identified, the time-series of the selected features are segmented according to a time173
window. The window size is an extremely important parameter to optimize in this process since it controls174
the tradeoff between response time and prediction accuracy. Once the time series data are segmented, all175
the features are fed into a one dimensional convolutional neural network (1D-CNN) model. 1D-CNNs are176
generally excellent in automatically detecting temporal relationships in multi-channel time-series data with177
minimal feature engineering. Using the 1D-CNN kernels allows an automatic extraction of the temporal178
features in IMU data, which is deemed important in recognizing hand movement towards the face through179
its corresponding IMU data. The model is trained and evaluated with data generated for this purpose that is180
recorded from 40 participants. Each participant went through a data collection session that consisted of181
two runs. In each run, the participant had to perform 10 face-touching hand movements during each of the182
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following everyday activities: (standing, walking, sitting) as well as 10 non-face touching hand movements183
during the same activities. Thus, each participant contributed 120 trials, yielding a total of 4800 trials. The184
CNN model provides a binary output, whether the respective hand movement is predicted to result in face185
touching or not.186

As soon as a prediction of face touching event is made, the response component renders a sensory187
feedback to alert the user, while the hand is in motion, to immediately stop the hand movement in order to188
avoid face touching. Based on the findings of Section 5, vibrotactile feedback is utilized as the sensory189
feedback modality as it provided superior performance (measured using the response time and success rate190
of avoiding face touching), compared to visual or auditory.191

Figure 2. Overview of the FaceGuard system. Abreviations: FFT (Fast Fourier Transform), IMU (Inertial
Measurement Unit), CNN (Convolutional Neural Network).

4 PREDICTION OF FACE TOUCHING
4.1 Data Collection192

The data collection procedure combines computer and smartwatch interfaces to collect the needed193
participant data. The hardware used to collect the IMU data is an Esp32-powered, M5Stack development194
watch known as M5StickC. It has 6 degrees of freedom consisting of a 3-axis accelerometer and a 3-axis195
gyroscope, with pitch, yaw, and roll being calculated internally.196

Using an Arduino IDE, the M5StickC is programmed to read the IMU data and store it into a file through197
a serial connection to a computer. It relies on input from two buttons: the main button used to start and stop198
the recording of IMU data, and the side button used for user error correction related to trial invalidation and199
repetition. The program runs for a predetermined number of trials per session before sending an end signal200
to the computer that saves all the data to a file. The participation protocol in a session consists of two runs,201
with 60 trials each (30 face-touching and 30 non-face touching hand movements), that are repeated twice202
to gather a total of 120 trials. As can be seen in Figure 3, sitting, standing, and walking are considered as203
the three main activity types due to them being the most common positions taken in our daily lives. Thus,204
gathering data for touching and not touching the face for each of those stances would allow the trained205
model to make accurate predictions regardless of the user’s position.206
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The M5StickC is used in conjunction with a computer GUI application developed to ensure a holistic,207
user-friendly collection protocol. Its main purpose is to guide users through the participation and to store208
auxiliary user information that may be useful in optimizing the prediction model, including height, arm209
length, and age group. Users are first asked to fill out the aforementioned optional information fields. Then,210
the application window displays a list of the different sessions to be completed and their associated number211
of trials, with instructions on the watch’s hardware as well as the next steps. Both interfaces rely on a212
communication of signals to control the start and end of the data collection process. The M5StickC starts213
recording the moment the main button on the watch is pressed and stops recording when the same button is214
pressed again by the participant. A single gesture is recorded in this fashion.215

The data are then stored into a file. To prevent the loss of data that may occur if the serial connection is216
interrupted, the user is provided with the option to save their data at any point during the participation upon217
exiting the computer application.218

Figure 3. The general setup of the participation. The user is provided with a Windows laptop, the M5StickC
watch, a USB-C cable, as well as a USB extension cable to be used for the walking trials.

The general protocol for collecting the data relies on remote participation in compliance with global219
social-distancing and safety procedures. Users first receive a consent form and statement containing220
information and instructions pertaining to the participation. If consent is provided, they are given the221
watch, a compatible laptop, and all needed accessories to complete the required number of sessions in222
their own homes, as can be seen in Figure 3. The equipment is then sanitized properly before being passed223
on to the next participant. To ensure overall user anonymity, no identifying information is asked for or224
stored. Additionally, the protocol is asynchronous, which provides users with the freedom to complete the225
participation at their own pace as it is not compulsory to complete all trails and sessions in one run, rather226
users are encouraged to take a break at any point and return later to finish.227
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Overall, 40 sessions were recorded by 40 participants collecting 4800 trials in total as elaborated in228
Section 3. Of the information disclosed to us, 15 of the 40 participants were female, 15 were male, and 10229
undisclosed. Additionally, most of the participants were young adults, with the most common age range230
being 16–20 years followed by 21–25 years.231

4.2 Data Preparation and Inputs232

Once data collection is completed, data are prepared for the training and testing of the CNN-based233
prediction model. Each gesture lasts varying amounts of time, and therefore, requires a select window234
size to ensure prediction before a face touch has occurred. However, during data collection, users are able235
to begin their gestures at any point once the start button has been pressed. As such, each trial recording236
includes a static component (the duration before the hand movement starts), potentially shifting relevant237
data outside of the determined window. A script that produces plots displaying averaged sensor values over238
time identifies the lengths of these gestures. The script is applied to each file individually, providing plots239
for each feature (IMU sensory data) - split into sub plots for each stance (sitting, standing, and walking).240
The lengths of the static component of every plot at the beginning of the gesture are recorded and averaged,241
with the resulting values to be referenced for trimming during data preparation. These plots are also used to242
observe data trends amongst each feature. It is observed that the roll and yaw did not yield a discriminative243
pattern for the hand touch condition and thus they are excluded from the analysis. Further confirmation is244
obtained during the training process of the model; removing these two features improved the accuracy of245
the model. Furthermore, it is observed that it takes around 1200 ms to complete a hand movement that246
involves face touching, which marks the upper limit for the total response time of the proposed system247
(prediction and motor response).248

From the total number of gestures (4800), the training and testing data sets are formed, randomly split249
80% to 20% (3840/960 gestures), respectively, and the two 3D input matrices are constructed. Splitting250
was done by participants; data from a single participant exist either in the training or the test set. This is251
to ensure the model is resilient to behavioral differences among participants. Filtration is also undergone,252
where gestures that finish before reaching the time required for the allotted window size are removed. In253
other words, gestures with very short duration (shorter than the window size of the 1D-CNN) are omitted254
from the dataset.255

One challenge for developing a robust prediction model comes from the lack of large-scale data samples256
(40 participants with 120 trial repetition). To overcome this problem, data augmentation is introduced to257
prevent overfitting and improve generalization of the model. Augmentation is done by creating copies of the258
training data set and shifting it in time with ’N’ number of steps while maintaining a constant window size.259
Augmentation is a great tool for populating the training data such that they share the same characteristics260
of the original set (representing the events of touching or not touching the face).261

Frequency domain signature of hand movement towards the face can be obtained by taking the Fourier262
transform of the chosen IMU signals. Frequencies of noise can be learnt and discarded once the frequency263
domain features are obtained. The fast Fourier transform algorithm which is readily available in NumPy264
library in python was used towards the calculation of the FFT coefficients for all the gestures. Raw and FFT265
IMU data are then stacked to form 3D matrices, both for the training and testing data sets. Both sets are also266
standardized, with the testing data set standardized in reference to the training data set statistics. In other267
words, the data are transformed to have a mean of zero and a standard deviation of 1 across each feature.268
This is done in response to differing scales between the components of the IMU, particularly between the269
accelerometer, gyroscope, and pitch angle. The dimensions of the training and testing matrices are thus270
41808×W×14, and 844×W×14.271
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One dimensional output matrices are constructed to provide the desired output of the model, aligned272
with each hand movement in the testing and training matrices. The output of the prediction model is set to273
binary, designating a face touch to (1), or not a face touch to (0).274

4.3 CNN-based Prediction Model Architecture275

The input data used to train the model is arranged into a three-dimensional matrix: the first dimension276
represents the number of trials in the dataset, the second dimension is the time length of the gesture (each277
index represents a time step of 11 ms, in accordance to the 90.9 Hz IMU sampling rate), and the third278
dimension is the number of features. The number of features is defined by 6 degrees of freedom from279
the IMU (acceleration and gyroscope data), as well as the pitch angle value, and corresponding FFT280
coefficients to form a total depth of 14 features. These data are used to train and test the model, where281
first a convolution layer (conv1D) is applied, comprising 64 filters of kernel size 8. This is followed by282
a rectified linear unit (ReLu) activation function applied to the previous output, a batch normalization283
layer (BN), and a max-pooling layer with a pool size of 2. A dropout layer of value 0.8 is then applied. A284
second convolution layer is used, consisting of 128 filters also of kernel size 8, followed by another ReLu285
activation function. Batch normalization is utilized once more, along with a dropout layer of value 0.9,286
after which the input at its current state is passed through a flatten layer. Finally, two fully connected layers287
separated by a third dropout layer of value 0.8 are applied. The first fully connected layer has a dimensional288
unit of 256, with a softmax activation function, and the second has a dimensional unit of 2, with a ReLu289
activation function. The last fully-connected layer outputs two probabilities, one for each class (Not a face290
touch, face touch). The architecture for the CNN-based prediction model is shown in Figure 4.291

Figure 4. The architecture of the CNN-based prediction model. Note that W represents window size for
the input matrix.

4.4 Training and Performance Measures292

The model shown in Figure 4 was trained using a categorical cross-entropy cost function with a default293
learning rate of 0.001, batch size of 512, and 300 epochs. The model was optimized (weights adjustment)294
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using Adam optimizer Kingma and Ba (2014) during the training process. Batch normalization layers (BN)295
were used after each of the convolutional layers which basically re-centers and re-scales the input data296
leading to a faster and more stable training process. To avoid overfitting and prevent co-adaptation of the297
network weights, a dropout ratio (0.8–0.9) was used in the model. This high dropout ratio proved to work298
well with our study due to the relatively limited dataset which makes the model more prone to overfitting.299
The training accuracy reached 96.2% with a loss of 0.1. Table 1 shows the normalized confusion matrix of300
the results. The trained model has a sensitivity of 0.929 and a specificity of 0.935. This 1D-CNN model301
was finalized after many optimization rounds for the different hyper-parameters including the number of302
layers, filters and dropout ratios. An accuracy of 87.89%, 89.7%, 87.31% was obtained for a model with 3,303
4, and 5 1D-convolutional layers respectively and thus, a model with 2 layers proved to be more efficient.304
Reducing the dropout ration to 0.5 reduces the classification accuracy to 90%. Thus, an optimized ratio of305
0.8 or 0.9 was used.306

Table 1. Normalized confusion matrix of the face touching/not face touching classification.

Predicted Label

Tr
ue

L
ab

el Not Face Touching Face Touching

Not Face Touching 0.97 0.03

Face Touching 0.11 0.89

4.5 Results307

With a focus on prediction rather than classification, the period for data collection in real time becomes a308
significant parameter to select. This window size limits the collection of data from the IMU during a hand309
movement. Figure 5 displays the resulting prediction accuracy as this window size is varied.310

A shown in Figure 5, the prediction accuracy increases as the window size increases, with 95.7% test311
accuracy reported at around 935 ms. As expected, increasing the window size provides the CNN-based312
model with further information about the hand movement and thus improves the prediction accuracy.313
However, increasing the window sacrifices how fast a sensory feedback is presented to the user. When314
fully implemented, this prediction delay will also be extended by the inference time of the model. At a315
window size of 700 ms, the average inference time, in which the trained model classifies a single gesture,316
is 0.313 ms, and at a window size of 990 ms, is 0.446 ms. These values are small enough that they become317
negligible to the total time delay, effectively reducing time delay before prediction to depend only on318
window size.319

The significance of this delay depends on the application of this device. In a case where it is crucial to320
keep the user from touching their face, a smaller window size will reduce the time delay before a prediction321
is made (and before the user can be warned sooner), thereby maximizing time for reaction. This increases322
the probability that the user will indeed be able to stop their hand movement and avoid touching their face.323
As is shown in Figure 5, the consequence of this is a reduced prediction accuracy, as reducing the size of the324
time window reduces the amount of information about the hand movement. With urgency being prioritized,325
however, false-positives along with ample time to react is still more favorable. In a case where the device326
is meant to act as a reminder and perhaps a non-essential deterrent, such as may be the case during the327
COVID-19 pandemic, a larger window size may be excused to achieve higher accuracy. Therefore, finding328
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Figure 5. The prediction accuracy of the model against the input window size, averaged for the three
conditions (sitting, standing, and walking). The input window size range is 440 ms to 990 ms, in increments
of 11 ms, out of the 1200 ms average time needed to touch the face.

an optimum trade-off between response time and prediction accuracy through the window size depends329
largely on the application.330

5 SENSORY FEEDBACK FOR MOTOR CONTROL
A psychophysical experiment is presented to compare the effectiveness of three different sensory modalities,331
visual, auditory, and vibrotactile, as sources of feedback to stop the hand movement. The ability of a subject332
to stop their hand movement when confronted with sensory information is quantified by comparing the333
response time and success rate (percentage of times the user succeeds in avoiding face touching) for the334
three sensory modalities (p < 0.05). Finally, a questionnaire was introduced to the participants at the end335
of the experiment to subjectively evaluate their quality of experience.336

5.1 Participant337

Thirty participants (15 female, 15 male, ages 25–50 years) are recruited for the experiment. None of338
the participants have any known sensorimotor, developmental or cognitive disorders at the time of testing.339
Written informed consent is obtained from all participants. The study is approved by the Institutional Review340
Board for Protection of Human Subjects at New York University Abu Dhabi (Project # HRPP-2020-108).341

5.2 Experimental Setup342

A custom wristband is developed to provide the three sensory modalities, shown in Figure 6. A strip of343
five 3 mm LED’s is attached along the top face of the wristband to provide blinking visual feedback. On344
the bottom face of the wristband a coin type vibration motor is attached to provide vibrotactile feedback345
(Pico Vibe 310-177, Precision Microdrives vibration motor). At the middle of the top face, a 9 Degrees346
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of freedom (DoF) IMU is placed in order to sense any movements (displacements and rotations) when347
the wristband is strapped on a hand. The wristband is connected to a control box which hosts the driving348
circuit of the vibration motor. A 1 kHz piezoelectric buzzer is utilized to provide auditory feedback. An349
ATMEGA328 microcontroller unit to control and acquire data from all of the aforementioned hardware350
components is used. The experimental setup is connected to a laptop through a serial connection over a351
USB cable.352

Figure 6. The wristband used in this study with all its components labeled.

Participants sit around two meters in front of the experimenter where they could make unrestricted arm353
movements. Participants are asked to wear the wristband at their dominant hand and keep their hand in a354
resting position (on the table). The experimenter instructs the participants through the experiment verbally.355

5.3 Experimental Task and Protocol356

In this experiment, participants complete a face touching task. Participants are instructed to move their357
dominant hand to touch their face, during which the hand movement is occasionally interrupted by a358
stimulus cue that informs the subject to stop the movement in order to avoid touching the face. Each359
participant completes a total of 100 trials, with 30% of these trials provide sensory feedback while the360
other 70% of the trials have no sensory feedback and thus result in touching the face. Among the 30% with361
sensory feedback, 10% are visual, 10% are auditory, and 10% are vibrotactile. To minimize the learning362
effects that influence the response time, the trials are presented in a counterbalanced fashion.363

A trial starts with the experimenter asking the participant to rest their dominant hand on the table with364
tactile sensing capability to detect the start of the hand movement. The experimenter instructs the participant365
to move their dominant hand and touch their face. During the hand movement, the sensory cue is applied at366
the wristband. The hand movement is analyzed based on the recorded IMU data. At the end of the trial,367
the experimenter prompts the participant to confirm whether they touched their face or not. The sensory368
stimulus is given at a random time during the movement. The visual stimulus is a blinking red light that369
shines around the wristband to make it clearly visible, and lasts for 500 ms. The auditory stimulus is a370
beeping sound at 1000 Hz for 500 ms. The vibrotactile stimulus has a vibration frequency of 200 Hz371
and lasts for 500 ms. The intensity of vibration is set to be readily detected (defined as >95% correct in372
stimulus detection). After completing the experiment, participants fill a questionnaire in order to evaluate373
their subjective experience.374
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The main quantification is the response time, which indicates how rapidly a subject can respond to a375
stimulus as a source of feedback and stop the ongoing hand movement. The response time is measured376
as the time between the onset of the sensory feedback stimulus and the time when the hand reaches a377
complete stop or reverses the direction of motion. The success rate – the percentage of times the participants378
succeeds to respond timely to the sensory feedback stimulus and avoid touching their face – is also recorded.379
The data are analyzed using repeated measures ANOVA (Analysis Of Variance) after confirming normal380
distribution (D’Agostino-Pearson normality test).381

It is also worth noting that the experimental protocol followed COVID-19 preventive measures in terms382
of social distancing, symptom check for all participants, disinfection of study visit area before, and wearing383
personal protective equipment (surgical mask and gloves).384

5.4 Results385

The average response time for vibrotactile stimulus is 427.3 ms with standard deviation of 110.88 ms.386
The average response time for visual stimuli is 561.70 ms with standard deviation of 173.15 ms. With387
regards to auditory stimulus, the average response time is 520.97 ms with standard deviation of 182.67 ms.388
Response time to vibrotactile stimulus is found to be significantly shorter than that to auditory stimulus389
(p<0.01) and visual stimulus (p<0.01). Furthermore, the response time to auditory stimulus is found to be390
significantly shorter than that to visual stimulus (p<0.05). A summary of these findings is shown in Figure391
7.392

Figure 7. Response time for visual, auditory, and vibrotactile feedback. The middle red line of the blue
box indicate a median value and the bottom and top edges indicate the 25th and 75th percentiles respectively
(** means p<0.05, *** means p<0.01).

Another important performance parameter to compare is the success rate. The average success rate for393
vibrotactile stimulus is found to be statistically larger than that of visual stimulus (p<0.05). Furthermore,394
the average success rate for auditory stimulus is found to be statistically larger than that of visual stimulus395
(p<0.05). However, there is no significant differences between vibrotactile stimulus and auditory stimulus396
(p=0.07). Figure 8 shows the differences in success rate among the three groups.397

The questionnaire is designed to capture the participant’s quality of experience. Participants are asked398
about their favorite modality for feedback, which modality provides the most pleasant experience, whether399
vibrotactile feedback creates any fatigue or discomfort, and the chance to provide any further feedback.400
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Figure 8. Success rate associated with visual, auditory, and vibrotactile feedback. The middle red line of
the blue box indicate a median value and the bottom and top edges indicate the 25th and 75th percentiles
respectively (* means p<0.05).

As for preference, 25 participants (83.34%) selected vibrotactile as their favorite modality for feedback, 3401
(10%) selected auditory feedback, and 2 (6.67%) preferred visual. 29 participants (96.67%) reported that402
they clearly perceived the vibrotactile stimulation. 28 participants (93.34%) selected vibrotactile feedback403
as the most pleasant among the three modalities. Finally, none of the participants reported significant404
fatigue or discomfort during the experiment.405

6 DISCUSSION
The CNN-based prediction model requires less than 550 ms of IMU data to predict face touching events406
with an accuracy greater than 92%. Furthermore, the sensory feedback experiment showed that around407
427 ms is needed to stop the hand movement using vibrotactile feedback. Therefore, it will take less than408
a second from the start of the hand movement until complete stop. Meanwhile, our study suggests that409
the average time for a hand to reach and touch the face is 1200 ms. Therefore, the proposed system is410
capable of providing timely response to avoid face touching within less than one second. It is worth noting411
that there is a tradeoff between the prediction accuracy and the response time. In order to improve the412
prediction accuracy, the input window size must increase, which implies that it will take more time to stop413
the hand movement, which causes a decrease in chances to avoid face touching.414

Another important factor is the relationship between prediction accuracy and practical usefulness of415
the system: an increase in the number of false positives would create unnecessary buzzing which may416
distract/annoy the user while an increase in false negatives would not prevent face touching entirely.417
Therefore, while the current prediction system is based solely on the IMU data, fusing other sensory418
modalities into the CNN-based model that are relevant to face touching and hand movement would419
significantly improve the prediction accuracy. For instance, gender, arm length, hand size, and age group420
may provide complementary information to improving the prediction accuracy. This involves recruiting a421
significantly larger number of participants to generate enough data points to train the model. In situations422
where camera data are available, such as when the user is sitting in front of a PC, computer vision423
approaches can be applied in order to fine-tune the model for improved performance.424
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A major source for false positives stems from the lack of information about the head posture in reference425
to the hand movement. Therefore, it would be interesting to augment the current CNN-based prediction426
model with the head position and/or orientation. With appropriate sensors or camera systems, the head427
posture can be continuously monitored and used as an auxiliary input to the prediction model to further428
improve the prediction accuracy. This is an interesting direction for future work. Furthermore, collecting429
hand movements that are likely to cause false positives (such as eating where the hand movement is very430
similar to that of face touching) and training the model with such data would significantly reduce the false431
positives.432

Although the findings of the present study demonstrate the feasibility of developing a system to avoid face433
touching, a few limitations should be mentioned. First, the dataset utilized to train the CNN-based prediction434
model is rather limited. A larger dataset improves the prediction accuracy, including false positives and435
negatives, which allows for a reduced window size and improved system response. Furthermore, running436
the CNN model is computationally expensive. Therefore, the inference about the prediction of face touching437
may have to be performed on a computationally powerful machine such as a smart phone or even the438
cloud. This adds further delays to the overall system response. Additionally, the current study focused on439
preventing face touching through the dominant hand. It might be desirable for several applications to avoid440
touching the face with both hands, and thus evaluating the performance of the system while tracking both441
hands is necessary for such applications.442

Another very important limitation is that the collected IMU data were pre-segmented such that each443
trial is known to have a single hand gesture. As the IMU signals are continuous streaming data, a sliding444
window must be used to segment the raw data to individual pieces in real time, each of which is the input445
of the CNN model. The length and moving step of the sliding window are hyper-parameters that need to be446
carefully tuned to achieve satisfactory performance. This problem is present not only in tasks that require447
constant gesture recognition Liu et al. (2017), but also in other fields such as continuous speech recognition448
Palaz et al. (2015). Finally, the participants’ behaviour or activities could modulate the hand movement and449
thus may impact the accuracy of the prediction model. More data must be collected while participants are450
engaged in various activities/behavior in order to enhance the resilience of the classifications against users’451
activities/behaviour.452

7 CONCLUSION
This paper presented a system that utilizes IMU data to predict hand movement that results in face touching453
and provide sensory feedback to stop the hand movement before touching the face. A 1D-CNN-based454
prediction model, capable of automatically extracting temporal features of the IMU data through 1D-CNN455
filters, was developed and trained with IMU data collected from 4800 trials recorded from 40 participants.456
Results demonstrated a prediction accuracy of more than 92% with less than 550 ms of IMU time series data.457
Compared to visual and auditory modalities, it was found that vibrotactile feedback results in statistically458
faster response, better success rate, and improved quality of user experience.459

As for future work, it is of an importance to evaluate the combined prediction/response system as a460
whole in a realistic experimental environment (while performing everyday life activities). Furthermore, the461
authors plan to develop a light-weight CNN-based prediction model that optimizes computational power in462
order to run the prediction model on a wearable device (with limited computational power). Improving the463
dataset by collecting more data can immensely improve the model training and performance. In particular,464
collecting data from tasks that exhibit similar hand movements to face touching but do not involve face465
touching (such as eating) will improve the system robustness, particularly against false positives.466
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