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Abstract. Nowadays, deep learning approaches lead the state-of-the-art
scores in human activity recognition (HAR). However, the supervised na-
ture of these approaches still relies heavily on the size and the quality of
the available training datasets. The complexity of activities of existing
HAR video datasets ranges from simple coarse actions, such as sitting,
to complex activities, consisting of multiple actions with subtle varia-
tions in appearance and execution. For the latter, the available datasets
rarely contain adequate data samples. In this paper, we propose an ap-
proach to exploit the action-related information in action label sentences
to combine HAR datasets that share a sufficient amount of actions with
high linguistic similarity in their labels. We evaluate the effect of inter-
and intra-dataset label linguistic similarity rate in the process of a cross-
dataset knowledge distillation. In addition, we propose a deep neural net-
work design that enables joint learning and leverages, for each dataset,
the additional training data from the other dataset, for actions with
high linguistic similarity. Finally, in a series of quantitative and qualita-
tive experiments, we show that our approach improves the performance
for both datasets, compared to a single dataset learning scheme.

Keywords: Human action recognition · Natural language processing ·
Deep learning · Video understanding.

1 Introduction

In recent years deep learning has become the dominant learning direction in
several research fields, including computer vision. Human activity recognition
(HAR) is one of its challenging sub-fields, with a wide range of applications
from Human-Robot Collaboration (HRC) and assistive technologies for daily
living, to surveillance and entertainment. Deep learning models have dominated
the field due to their high representational power, long-range temporal modelling
capacity, as well as their end-to-end training capabilities. The majority of these
models rely on a supervised learning process, with the most powerful ones re-
quiring large-scale datasets with diverse video content and action/activity sets,
especially for layer-related hard optimization cases, such as 3D convolutional
filter-based ones. However, the number of publicly available large-scale HAR
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datasets is rather small. The most common workaround to improve performance
and generalization on small-scale datasets is to exploit a model that has been
trained on large-scale image or video recognition datasets, such as ImageNet [9]
or Kinetics [4], as a generic feature extractor and only train a shallow tem-
poral model on the target dataset [14], or fine-tune the entire spatio-temporal
model [26,11], a concept known as transfer learning.

Another direction is to consider action category commonalities between dataset
pairs, and apply a joint learning scheme (multi-task learning) for the two action
domains [21], leveraging of additional data for the class set that lies in the shared
label space, referred as supervised Domain Adaptation (DA) [30]. The evalua-
tion of the contribution of this learning tactic is carried out in carefully selected
dataset pairs that fulfill the criteria of having a sufficient number of common
action classes and similar motion and appearance characteristics, in order to
constrain the distribution gap due to the domain shift. In the existing literature,
there exists only a limited number of such dataset pairs, which are defined via
manual evaluation of the aforementioned attributes [7,5]. Under this premise,
the development of a generalized framework for automatically evaluating the
potential compatibility of two or more datasets, is an interesting but still unad-
dressed research direction. Our work is an attempt to tackle this problem, with a
flexible and interpretive domain adaptation-oriented dataset association process
based on label linguistic similarities for the considered datasets.

2 Related Work

Cross-Domain learning in action recognition: aims at reducing the dis-
tribution gap between the feature spaces of the considered domains through
joint modelling. To achieve this, existing works have incorporated feature distri-
bution similarity measures, such as the Kullback–Leibler (KL) divergence, and
the Maximum Mean Discrepancy (MMD), along with the task of image [17,2],
video classification [31,5]. Expanding on the task of action recognition, a set of
deep learning works, instead of only relying on distribution similarity error met-
rics, attempt to reduce the domain gap at feature level, by introducing domain
alignment layers that consider batch-level statistics and cross-domain batch con-
tamination strategies [3,21] in their designs of a cross-dataset HAR learning deep
model, which operates on the concatenated label set of the datasets.
Dataset association: has been considered in numerous works, as a means to
increase the generalization of models, expand the supported label space, and han-
dle imbalanced datasets [22,27]. In the contexts of video cross-domain learning
and DA, existing works have combined dataset pairs with a range of approaches.
These approaches include simple strategies, such as formulating a new dataset
comprised of the union of the label sets [21] or re-annotating the labels of the
second dataset following the annotation protocol of the first [15]. Delving into
the task of DA, a set of works considers only common actions between datasets
to define the basis in which the shared latent subspace is defined [12,25]. This
set of common action classes can be further expanded by grouping semantically
similar action labels, considering notions such as word semantic similarity and
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Fig. 1. Hierarchical action label decomposition in coarse, fine action levels via verb-
POS analysis. Datasets: MHAD (A), J-HMDB (B)

lexical hierarchy. These linguistic associations are usually exploited indirectly
via the inherent linguistic knowledge of the annotators, either in the form of di-
rect relabelling of the source dataset to the target [5], or, to provide annotations
regarding linguistic and semantic relations between the two label sets [28]. The
advantage of the second approach is that these intermediate annotations allow
to further analyze the characteristics of the datasets, to compute the general rel-
evance score between the datasets, as well as to generation of a range of dataset
label fusions, by considering stronger or weaker label associations.

Different from these works, our work does not utilize annotators for the
derivation of the linguistic similarity between the labels, but instead exploits
the word semantic similarities and relations from large lexical databases, such
as WordNet [19], to define and control the strength of the label associations. In
addition, by exploiting dataset relevance statistics, in a similar basis with the
work of Yoshikawa et al [28], we are able to evaluate the resulting association.
Finally, we investigate the impact of the cross-dataset linguistic similarity rate
requirements and single dataset inter-class linguistic label sentence correlation
rate on the potential performance gain in a HAR deep model design that exploits
the joint label space in a multi-task learning scheme. The core design direction for
this model follows the principles of HAR-oriented DA models, and can be related
with the work of Bousmalis et al [2], in that we also follow a combined dataset-
wise (private) and shared subspace learning scheme. In addition, compared to [2]
despite mitigating the problem of cross-domain knowledge transfer to the task
of action recognition, our model design aims to learn discrete representations for
both datasets and their respective action sets (multi-task learning).

3 Proposed Method

The proposed method provides a framework for the relation of video HAR
datasets based on the linguistic similarities of their label sentences. Our work
shows that such associations can be exploited in a dual-dataset learning scheme
applicable to any deep HAR architecture with minor modifications. We argue
that such learning schemes and architectures access a richer training sample pool
for action classes that share the same or semantically similar linguistic defini-
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tions. Our experiments show that as this sample pool size increases, the model’s
representational strength is enriched, leading to better action discrimination.

3.1 Dataset label association via NLP

The proposed method pipeline operates as follows. First, we present the NLP
tools utilized in the computation of label linguistic similarity, and, a label de-
composition process that provides an interpretive and precise definition of the
linguistic association between action labels. This process transforms the label set
of each dataset into two action granularity-based label sets, (a) a coarse-grained
action set, consisting of simple verb-based labels that denote the common action
motif between a set of associated actions (for the actions get the cup and get
the bottle, coarse label is the verb get), and, (b) a fine-grained action set, with
the initial labels enriched with coarse-grained membership information. Subse-
quently, we present a process to define association rules between a dataset pair
and highlight key elements and assumptions of this dataset relation process.

Dataset-wise label association and hierarchical decomposition: In our
recent work [1] we presented an NLP-assisted label sentence analysis approach
to define a two-level action tree hierarchy from a given set of action labels, ei-
ther focusing on a specific part-of-speech (POS) or by exploring the semantic
relations between the entire label (via word-ordering & semantic content simi-
larities) relying on the work of Yuhua Li et al. [16]. In this work, we also follow
a verb-POS action label direction to group semantically similar labels based on
verb commonalities, or high verb semantic content similarity.

For the latter case, we evaluate the semantic relation between the verbs of
the label sentences based on two metrics. The first metric expresses the seman-
tic relation as defined within the WordNet [19] semantic knowledge base. We
define the verb semantic similarity rate between a label pair by thresholding
the normalized (to [0,1]) length of the shortest path between the word (verb)
nodes relatively to the common word-ancestor node, as defined in WordNet, fol-
lowing the direction of Redmon and Farhadi [22]. The second metric follows a
more simplified direction and directly compares the word embeddings of the two
words (verbs), generated via the Word2Vec [18] embedding model, using the co-
sine similarity metric. We found that combining these metrics best expresses the
relation between the label sentences in terms of verb semantic content similarity.

Given the detected label associations we can define a two-level action hierar-
chy based on the verb semantic similarities between the action classes. The first
action tree level, consists of a set of coarse action classes, defined by the shared
verbs3, indicating the presence of a common coarse motion pattern between the
related actions. The second level contains the fine-grained action classes, belong-
ing to the dataset’s original set, enriched with info regarding the coarse class
to which each fine-grained label has been clustered. We should mention that a

3 For associated labels with different verbs, with high semantic similarity, the verb of
1st label is used as a coarse label.
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more complex hierarchy could surface more informative clues4, however more
complex semantic relation trees are scheduled to be explored in the future.

Inter-dataset label association: In a similar fashion, to associate a dataset
pair, we utilize NLP to identify action labels that are common or exhibit high
semantic similarity, focusing only on the verb POS sets (coarse classes), and
fuse the two action trees into a shared, two-level action tree hierarchy. The first
level now contains a set of coarse action classes that correspond to the verb-POS
elements that are shared between the class sets of the dataset pair, indicating a
similar coarse action primitive, as well as the remaining unique coarse classes of
both datasets. The second level consists of the fine-grained classes for which a
coarser action class was defined. Figure 1 shows a simplified illustration.

In more detail, for a pair of datasets A,B, with isolated verb label sets noted
as TA and TB , we define the shared coarse action label set C, with the verbs-
POS of the labels k, l in A, B, whose verbs are the same, TA ∩ TB , or, (a) the
relative path length in WordTree between verbk ∈ TA, verbl ∈ TB ≤ 0.5, and (b)
the cosine similarity between verbk ∈ TA, verbl ∈ TB ≥ 0.9. The gains for each
dataset from this formulation depend on the portion of action labels for each
dataset that are shared. A simple, intuitive criterion to define the dataset label
set fusion compatibility, is to set thresholds on the minimum portion of labels
of each dataset that needs to be included in the shared, coarse label set. Based
on this, we can define the label set compatibility for the dataset pair as follows:

Criterion for assessing the dataset label set compatibility: |C ∩ TA| ≥
t1|TA| and |C ∩ TB | ≥ t2|TB | conditioned that t1+t2

2 ≥ t3, with t1, t2, t3 ∈ (0, 1].

The parameters t1, t2, t3 determine the required degree of similarity between
the two datasets in order to consider the content of their action sets as cor-
related. Thresholds t1, t2, express the portion of the dataset’s class set that is
encapsulated in the generated coarse action class set C. The degree of the over-
all dataset pair similarity rate is expressed with t3. The higher the t3 value, the
larger becomes the requirement for the datasets to exhibit higher label semantic
associations. With that in mind, we can define levels for the dataset association
power (low, partial, high) by setting dataset-appropriate values for t3. For this
purpose in our experiments we evaluated the aspect of inter-dataset compatibil-
ity by defining the dataset association levels, (a) t3 < 0.3 - low, (b) 0.3 < t3 < 0.6
- partial, and, (c) 0.6 < t3 < 0.9 - high, with t3 = 1 signifying full association.

The importance of intra-dataset label similarity: The information gain
from the fusion of two datasets will be higher as the amount of associated classes
increases. A factor that affects the gain is the dataset-wise intra-class label simi-
larity. Ideally, a high label relation threshold (high cosine similarity, short-length
paths between words in WordTree) guarantees that only labels with close seman-
tic contents are associated, and exploit the coarser representation knowledge that
is acquired from this learning scheme. However, it is interesting to examine the

4 For example, we could add a level that defines associations based on nouns, referring
to the presence of common objects in different actions.



6 K. Bacharidis and A. Argyros

BiLSTM 
cells

Coarse-grained 
Action label 

Fine-grained 
Dataset B 
Class label 

Dataset 
Switch

Fully 
Connected 

layers

Fine-grained 
Dataset A 
Class label 

Dataset B 
samples

Dataset A 
samples

A&B 
samples BiLSTM 

cells

BiLSTM 
cells

BiLSTM 
cells

Fully 
Connected 

layers

Fully 
Connected 

layers

Fully 
Connected 

layers

Fully 
Connected 

layers

Fully 
Connected 

layers

Fig. 2. Baseline BiLSTMDNN for dual-dataset learning. Batch consists of both dataset
samples. Each sample contains also a scalar ∈ [0, 1], indicating dataset membership.

effect of subtle linguistic relations between labels that have been included in the
shared set, and the ones that were not. To express this in set theory, for the two
datasets A and B, and their shared action set C, we define the relative comple-
ment of B in A as AD : (TA−TB), and the one of A in B as BD : (TB−TA). Our
goal is to assess the performance of the dataset association learning scheme based
on the degree of the lexical similarity between the labels in AD and the ones in
C, and, in similar fashion, for BD and C. In a similar factor assessment direction
to the one described for the dataset fusing compatibility, in our experiments we
examine the effect of the linguistic similarity rate between the intersection C,
and non-intersection, AD (or BD) sets, under the same three association levels
(no, partial, high). In addition, since it is difficult to find different dataset pairs
that satisfy these conditions, we design a simple algorithm which, given the re-
quested association condition, splits the MPII Cooking Activities [23], into two
subsets whose label sets satisfy the requirements. Details in the next section.

3.2 Dual-dataset learning deep architecture

We now present design directions, applicable to the majority of HAR DNNs,
that allow the utilization of the dataset association scheme in a dual-dataset
learning format, improving the model’s performance on one or both datasets.

The simplest HAR DNN design that allows the support of a dual-dataset
learning functionality is to merge the datasets into a new expanded action set,
A∪B, and classify an input sequence to the unified action label set. In this work
we propose a DNN structure, that mimics the hierarchical action decomposition
and dataset relation scheme that we defined earlier. It is a triple-branch DNN
design (fig 2), consisting of two distinct sub-nets assigned to model each dataset
and an additional sub-net that handles the spatio-temporal modelling of the
shared coarser actions. Moreover, skip connections introduce the learned coarse-
grained representation as complementary information in the fine-grained sub-
nets, guiding them to learn representations towards finer action details.

Regarding the objective function, the network learns a shared representation
of two different distributions, thus, we need to evaluate the learned representa-
tion for the shared coarse action labels. For this we follow the guidelines of cross-
domain learning approaches and use the Maximum Mean Discrepancy (MMD)
loss [10] to compute the marginal distribution between the domain distributions.
The loss function to be minimized is defined as:

L = Ltask + LMMD(Gen, F ineA) + LMMD(Gen, F ineB), (1)
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where Ltask refers to the classification problem between the coarse and fine
action classes, and LMMD refers to the MMD domain distribution distance loss.
In detail, the classification loss is defined as the cross-entropy loss for the two
action granularities (coarse, fine):

Ltask = −
K∑

k=0

T gen
k log (Y gen

k )−
1∑

i=0

J∑
j=0

wi,jT
fine
i,j log

(
Y fine
i,j

)
, (2)

with (a) the wi vector denoting the dependencies between the fine-grained action
classes of the dataset i (details in [1]), T gen denoting the ground-truth labels for

the joint coarse-grained action set, (c) T fine
i being the ground-truth fine-grained

labels for dataset i, and, (d) (Y gen, Y fine
i ) being the estimated action classes for

the coarse- and the fine-grained action sets for dataset i.
The LMMD loss, is actually the summation of two MMD losses, between

the learned shared distribution and each dataset-specific learned distribution.
Intuitively, regarding the two design directions, the first is simpler to define and
learns a mapping from both input domains to the distinct concatenated output
label set. However, HAR model of this design can be harder to train. The reason
can be thought as a potential combination of, a) model capacity inadequacy
due to the fine-grained label space significant expansion, and, b) label cases
with similar characteristics combined with data scarcity, resulting in weaker
representations for each class that easily lead to mis-classifications.

3.3 Factors that affect learning

The performance of cross-domain and dataset fusion learning such as the one we
propose, is affected by a number of factors. The most important one that affects
the efficiency of learning in HAR datasets is the differentiation in the dataset
characteristics, such as whether the actions are performed in a constrained or
unconstrained environment, under a fixed or with multiple viewing angles, the
presence of moving objects in the background etc. In HAR cross-domain learn-
ing and domain-adaptation setups, the examined datasets share similar action
characteristics and are defined under more controlled conditions, such as envi-
ronments with static scenes with minimal background motions and noise. This
allows for the impact on the representation difference to be smaller since the
appearance feature manifold is more constrained. To further restraint the effect
of such elements, in our experiments we limit the processing area in the actor’s
region, removing any background information that may induce a negative affect.

A consequence of the aforementioned domain-related differences between the
datasets is the distance between the learned representational sub-space in the
feature manifold to which the action set of each dataset is mapped to. Ideally,
when working with an action set consisting of the union of the label sets, for
the cases of actions that are shared, or associated via linguistic similarities, we
expect the learned representations to be mapped closely in feature space. How-
ever, in the appearance domain (RGB), variations in the background or in the
actor/object characteristics can expand the feature representation subspace of
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each action and increase the representation gap between actions with similar
coarse motion motifs (take a bottle and grab a glass). To constrain the repre-
sentation gap for such cases we can work with high-level representation spaces,
such as optical flow (OF) or pose-based feature representations. In our experi-
ments we also follow this direction by utilizing OF data of, (a) the entire scene,
(b) human body part regions.

4 Experimental Setup

We evaluate the benefits and constraints of the proposed learning and DNN de-
sign scheme on three known HAR datasets of ranging action complexity. The first
dataset pair consists of the Berkeley’s MHAD [20] (11-classes) and J-HMDB [13]
(21-classes) datasets. The specific dataset pair shares a number of six coarser
classes. The coarser action set for this dataset pair consists of (a) the common
coarser classes for both datasets, (b) the remainder of the coarser action classes
for the dataset A (MHAD), and, (c) the remainder of the coarser action classes
for the dataset B (J-HMDB). A simplified illustration is shown in Figure 1.

The third dataset that has been explored is Max Planck’s Cooking dataset
(MPII Cooking Activities [23]), which is used to better understand the signifi-
cance and impact of the similarity rate on the proposed learning scheme. Specifi-
cally, it’s action label size and complexity as well as the high inter-class similarity
(appearance&motion characteristics) between its action label set makes it ideal
to serve as the experimental basis for evaluating the inter- and intra-dataset
cases, presented in Section 3.1. To adjust MPII Cooking to this format, we de-
signed a simple algorithmic process that splits the dataset into two subsets that
satisfy the specifications of different scenarios of inter- and intra-dataset label
linguistic similarity. Details are presented in the next subsection.

For the reported scores, for MPII and J-HMDB, we report the accuracy
score on split-1, whereas for MHAD, we follow the provided train/test scheme.
Regarding input sources, we focus on the OF domain, and consider two feature
design strategies, (a) OF estimates on the actor’s region, and, (b) OF estimates
on distinct body-parts of the actor. OF data were generated with TV-L1 [29].

4.1 Inter- and intra-dataset evaluation

To evaluate the notions in 3.1, instead of searching for dataset pairs that satisfy
the inter- and intra-dataset similarity cases, we manually construct them. For
this, we designed a simple algorithmic pipeline that splits MPII Cooking Activ-
ities into two subsets MPIIA, MPIIB , that satisfy a specified configuration for
inter- and intra-dataset label linguistic similarity.

To decouple the inter- and intra-dataset similarity factors and assess their
impact, the algorithmic process5 contains two functionality sets:
Inter-dataset: generate random splits of the dataset class set into two subsets,
under the condition that the similarity rate between class sets of the two subsets
satisfies the required threshold, t3. To evaluate the satisfaction of the requested

5 The process utilizes the label set, and, the respective word embeddings.
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inter-dataset similarity, we estimate the inter-dataset similarity score. For this,
we identify the verb-POS of the labels that have been assigned to each subset
and compare them using the metrics presented in Section 3.1. The achieved score
is evaluated based on t3. If the threshold is not satisfied the process is repeated.

Intra-dataset: To evaluate intra-dataset similarity for each of the possible simi-
larity rate scenarios, the initial step of the dataset splitting algorithm is to define
an intersecting class set MPIIC , and then proceed to gradually add the non-
intersecting classes to each subset, checking after each insertion the satisfaction
of the conditions of each case. This format allows for all generated splits for each
condition to share the same common coarse action set, in order to exclude the
impact of this factor from the assessment.

The examined association scenarios for the non-intersecting subsets ofMPIIA,
MPIIB , noted as MPIIAD

, MPIIBD
, with the intersection MPIIC , are:

(1) MPIIAD
, MPIIBD

with a relative large portion of labels with high similar-
ity with the ones in MPIIC ,
(2) MPIIAD

, MPIIBD
with a relative small portion of labels with high simi-

larity with the ones in MPIIC ,
(3) MPIIAD

with a large portion of labels with high similarity with the ones in
MPIIC , and, MPIIBD

a low,
(4) MPIIBD

with a large portion of labels with high similarity with the ones in
MPIIC , and, MPIIAD

a low.
In detail, the process begins with the construction of the label self-similarity

matrix (LSM), by computing the pairwise cosine similarity of their respective
word-embeddings. Based on the LSM scores, we select the N most similar label
pairs, and use them as the basis for the intersection label set, MPIIC , assigning
from each pair, labeli in subset MPIIA, and, labelj in MPIIB . The rest of the
labels, MPII−MPIIC serve as the label pool to construct MPIIAD

,MPIIBD
.

This process involves first clustering these labels, using k-means, based on the
linguistic similarity of their verb-POS with the verb-POS of the labels inMPIIC ,
which allows the detection of the labels with the most impact on the intra-dataset
similarity scores, Sim(MPIIAD

,MPIIC), Sim(MPIIBD
,MPIIC). For each

label in each cluster, we use LSM to find each most similar label in the same
cluster, and, in MPIIC . We assign each of the two labels to the subset, whose
label in MPIIC exhibits the highest similarity with it. After all non-intersecting
labels have been assigned to one of the subsets, we compute the intra-dataset
similarity scores to evaluate their satisfaction. If the requested thresholds are
unsatisfied, we randomly select one label from the clusters with the highest
dissimilarity and assign the label to the opposite subset, and, recompute the
similarity rates. The process repeats until the goal constraints are satisfied.

4.2 Feature extraction

For optical flow (OF), 16-OF frame sequences were used for the I3D network.
Contrary, for the case of the Bi-LSTM based architecture, the OF frames were
fed to VGG-16 [24]. We then extracted 2D feature maps from the last 2D layer,
resulting in a frame-wise feature tensor of 7-by-7-by-512 for the sequence. For the
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Table 1. Performance difference between a single dataset (NM), and, a dual dataset
(M) DNN designs. Inputs are OF frame sequences. For MPII, splits are A-31 classes,
B-33 classes, with intersection similarity rate of 0.38, leading to 11 coarse classes.

Architecture Datasets Acc.%, Input: OF
Design MHAD/JHMDB MPIIA/MPIIB
NM-lstm 60.18 38.75 28.17 29.65
M-lstm 63.59 41.87 36.45 29.74

NM-I3D [4] 86.37 49.89 47.05 48.33
M-I3D 90.67 49.58 46.62 49.83

second input modality, we follow the work of Chéron et al [6], to generate frame-
wise CNN-based features for the actor’s right hand, left hand, upper body, full
body and full image regions, utilizing the positions of body joints. This results
in frame-wise 5 × 4096 feature maps. The final descriptor formulation stage of
PCNN [6] involves a feature map aggregation scheme, that defines a spatial
descriptor for each part by computing minimum and maximum values for this
part following a max and min pooling scheme, leading to a 1×512 feature vector
for each part per frame, and finally concatenating the resulting body part spatial
descriptors. In this work we consider motion attributes by using OF as input.

4.3 Temporal modelling architectures

For the evaluation of the proposed DNN directions, we compared baseline single-
dataset architectures to their modified proposed dual-dataset versions.

Baseline BiLSTM DNN & modification: we design a two-layer BiLSTM
net with three Fully-Connected (FC) top layers, with activation functions, Leaky
ReLU x2 and soft-max for classification. Inputs are frame-wise deep embeddings.
To support dual-dataset learning, the modifications involve the use of a BiLSTM
layer as a shared temporal modelling layer between the datasets, followed by
decoupling into three sub-nets tasked with representation learning for datasets
A, B, and, set C of coarse classes. In detail, the coarse-level sub-net consists of a
BiLSTM layer followed by a two-level FC layer set, with Leaky ReLU and soft-
max. This sub-net generates probability distribution estimates for coarse-grained
classes. Contrary, the fine-grained sub-nets consist of a BiLSTM layer followed
by a three-FC layer set, with the first two using Leaky ReLU and dropout, and
the last a soft-max. The second FC layer input is the concatenation of the feature
maps of the first FC layers of the coarse and the dataset-specific sub-net.

I3D [4] & modification: We maintain the original design up until the last
receptive field up-sampling layer-block, using the pre-trained weights on Ima-
geNet [8] and Kinetics [4], and fine-tune the last layers on the new datasets.
The design modifications to support the dual-dataset learning scheme, follow
the same coarse- and fine-grained sub-network structural principles as previous
with the difference of replacing BiLSTM with Conv3D layers.
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Table 2. Action recognition performance for the MHAD, JHMDB and MPII datasets
between a single dataset (NM), and, a dual dataset (M) DNN designs, d refers to the
usage of the MMD loss besides cross-entropy. Input source pose OF features [6].

Architecture Datasets Acc.%, Input: Body-part OF
Design MHAD/JHMDB MPIIA/MPIIB
NM-lstm 75.18 42.28 32.48 38.33

M-lstm 70.89 47.43 30.39 31.54
M-lstmd 80.31 55.29 36.02 39.14

Table 3. Inter-dataset similarity threshold and accuracy. Random split of MPII Cook-
ing under a inter-dataset similarity requirement t3. At each scenario we generate a new
splitting of MPII into MPIIA and MPIIB datasets, C contains MPIIA ∩MPIIB .

Threshold MPII Acc.%, Input: Body-Part OF
Value Subsets (A/B) C Acc. %

NM-lstm 37/27 - 25.50/30.00
t3 < 0.3, M-lstmd 37/27 (0.2 ) 14 20.62/30.87

NM-lstm 31/33 - 32.48/38.33
t3 ∈(0.3,0.6),M-lstmd 31/33 (0.38 ) 11 36.02/39.14

NM-lstm 53/11 - 21.04/48.98
t3 > 0.6, M-lstmd 53/11 (0.72 ) 10 23.84/55.37

5 Experimental Results

The first set of experiments, shown in Tables 1 and 2, illustrate the contribution
of a dual-dataset learning strategy, relying on the label-centered linguistic fusion
and action decomposition methodology. We can observe that for both modalities
and architecture variations there is a clear benefit, with improvements in accu-
racy reaching up to 9%. An additional observation is that the BiLSTM-based
DNN appears to benefit the most, with improvements being observed in both
datasets and modalities. Contrary, the proposed design scheme in an I3D-based
model, appears to assist recognition on the small-sized subsets, following the
observed learning trend reported in existing dual-dataset learning works [21]. It
is noted that in this experimental setup, MHAD has 9 training samples/class (a
single view was used), compared to J-HMDB that has around 3-4 times more
samples/class. For MPII Cooking, for the specific split, MPIIB has on average
44 samples/class, as opposed to the 47 of MPIIA. We aim to publicly release
the MPII splits created for intra-dataset evaluation.

MMD loss contribution: Table 2 presents the contribution of the distribution
adaptation part of the objective function. We observe that for the body part OF
modality the inclusion of this term is crucial for the success of the proposed
method, improving recognition accuracy on both datasets.
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Table 4. Dataset-wise intra-class linguistic similarity impact. Random split of MPII
Cooking with tSsim=0,34. A, B refer to MPIIA,MPIIB , C to MPIIA ∩MPIIB .

Threshold MPII Acc.%, Input: Body-part OF
Value # classes of (A / B / C) Acc.

A / B 7/57 37.30/21.01%
Intra-Case 1 7 (0.32 )/ 57 (0.31 )/ 4 44.69/23.15%

A / B 31/33 21.39/23.72%
Intra-Case 2 31(0.54 )/ 33 (0.33 )/ 4 25.83/30.51%

A / B 29/35 23.63/25.24%
Intra-Case 3 29(0.52 )/ 35(0.38 )/ 4 30.09/29.32%

A / B 10/54 43.38/20.12%
Intra-Case 4 10 (0.33 )/ 54 (0.46 )/ 4 55.18/24.89%

Inter-dataset label similarity rate: In Table 3 we present our findings on the
role of the inter-dataset label similarity rate on the proposed learning strategy
effectiveness. The results on 3 split versions of the MPII Cooking that satisfy
each case (low, partial, high relation), show that for the proposed method to be
beneficial, the pair has to show partial to high label set linguistic association.

Intra-dataset label similarity rate: In Table 4 we present our findings on the
role of the intra-dataset label similarity rate. The obtained results for the 4 iden-
tified scenarios (see Section 4.1), indicate that the presence of subtle linguistic
similarities between the labels in the intersecting and non-intersecting subsets of
a dataset, appear to affect the contribution of the proposed dataset fusion and
joint learning scheme. This can be observed from the fact that the inclusion of
new labels (in the smaller dataset A), that have high similarity with the labels
in the intersecting subset, leads to a decrease in the recognition accuracy.

6 Conclusions and Discussion

We proposed an approach to fuse HAR datasets pairs by exploiting NLP to iden-
tify linguistic similarities on the label sets. To exploit such associations, we de-
signed a DNN to allow joint dataset learning, leveraging the dataset association
knowledge under a multi-task learning scheme. We evaluated parameters that
control its effectiveness like the intra-dataset label similarity. Our method posi-
tively affects the performance of HAR DNNs, however its effectiveness requires
careful consideration of dataset characteristics and label linguistic similarity.

An aspect of the method open for discussion is the context information lo-
cality in Word2Vec’s embeddings and the fact that WordTree represents general
notions of word semantics. As such, they do not encode semantic relations be-
tween a word and other parts-of-speech that co-exist in a sentence. Word2Vec
relies on local statistics, incorporates the local context information of the neigh-
boring words to the target word, defined within the corpus. This can lead to
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semantic context ambiguities, with words associated to different semantic inter-
pretations. In simpler action datasets, this is not an issue as the label sentence
length and semantic context is constrained and simplified. However, for fine-
grained datasets larger sentences and multiple verbs/nouns are encountered.
Thus, a global word context relationship will lead to more informative embed-
dings. Non-local embedding methods or DNNs with text sequential ordering and
long-range dependency modelling mechanisms will be ideal for label similarity
evaluation in such datasets. We aim to explore such methods to enrich the se-
mantic context our method considers.
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