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ABSTRACT

We present a method for simultaneous 3D hand shape and pose es-
timation on a single RGB image frame. Specifically, our method fits
the MANO 3D hand model to 2D hand keypoints. Fitting is achieved
based on a novel 2D objective function that exploits anatomical
joint limits, combined with shape regularization on the MANO
hand model, jointly optimizing the 3D shape and pose of the hand
in a single frame. In a series of quantitative experiments on well-
established datasets annotated with ground truth, we show that it is
possible to obtain reconstructions that are competitive and, in some
cases, superior to existing 3D hand pose estimation approaches.
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1 INTRODUCTION

Hands are the most important tools for humans. They are the pri-
mary means of interacting with the world and assist humans in
performing a multitude of tasks. Machines that are capable of ob-
serving and understanding the motion of human hands will be able
to interact effectively with humans and they will have the capacity
to mimic such motions to automate certain repetitive tasks. More-
over, with the rise of Virtual Reality headsets that use egocentric
cameras for tracking, 3D hand pose estimation can be deployed for
a more realistic experience in the virtual world, so that the manip-
ulation of virtual objects is performed with a non-instrumented
hand instead of a controller.

Many recent approaches [1, 2, 6, 8, 9, 15, 21, 23-25] try to solve
the 3D hand pose estimation problem using either RGB or RGBD
input. With RGBD input, 3D hand pose is typically estimated by
fitting a 3D hand model to the depth observations. Depth is a power-
ful cue for inferring the shape and articulation of a visible hand and
methods which use such input have great accuracy [9, 12, 15, 17-20].
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If only RGB information is available, the problem becomes more dif-
ficult due to ambiguities, self occlusions and uniform hand texture.
However, using RGB input alone is highly preferable compared to
RGBD camera-based solutions because RGB cameras are cheaper
and much more common. Moreover, such solutions are operational
in outdoor environments where RGBD sensors typically do not
perform appropriately due to the direct sunlight.

State of the art methods with RGB input, use neural networks,
such as Convolutional Neural Network (CNN) to directly regress the
3D joint locations of the hand from the RGB image. Moreover, they
either predict 2D joint locations on the image as an intermediate
step and then produce the 3D joints [2, 23, 24] or they produce the
3D joints directly from the input image [6, 25]. Because the training
data with annotated 3D ground truth is somewhat limited, the
use of 2D supervision as an intermediate step improves accuracy.
However, these methods fail to completely generalize to unseen
hand poses and shapes or in the presence of strong occlusions.

In this work, we rely on 2D hand keypoints that we lift into 3D
via an optimization scheme. More specifically, we fit a 3D hand
model, jointly optimizing its shape and pose parameters, to the 2D
observations. The employed optimization scheme minimizes the
3D reprojection error, that is, the distances of the reprojected 3D
hand joints estimations and the 2D keypoints detected by a state
of the art 2D keypoint estimation [13]. We show that our method
performs competitively to the state of the art on 3D hand pose esti-
mation. This is demonstrated qualitatively, but also quantitatively
on standard datasets that are annotated with ground truth.

2 RELATED WORK

We discuss computational methods that use single image RGBD or
RGB input for 3D hand pose estimation. Methods with RGBD input
typically fit a generative hand model to the depth data. Optimization
methods for RGB fit a 3D hand model to 2D evidence in the image [2,
10]. On the contrary, learning-based methods directly regress joint
locations or joint rotations and hand shape parameters.
Depth-based methods leverage the rich depth data to fit a model
of the hand. Sridhar et al. [15] perform hand tracking via a detection
guided optimization using a single depth sensor. They first detect
and classify pixels into parts of the hand and then they combine
the detected part labels with a Gaussian mixture representation
of the depth to fit a hand model pose. The hand model’s shape
is also defined with a mixture of Gaussians and they present an
automatic procedure to fit the model to a specific user. The depth
data provides strong constraints for the optimization leading to
great accuracy of the method but the depth sensor is sensitive to
direct sunlight making it harder to use for outdoor scenarios.


https://orcid.org/0009-0001-1464-550X
https://orcid.org/0000-0001-8230-3192
https://doi.org/10.1145/3594806.3594838
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3594806.3594838
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3594806.3594838&domain=pdf&date_stamp=2023-08-10

PETRA ’23, July 05-07, 2023, Corfu, Greece

Using an RGB sensor can eliminate these issues while being a
more accessible and lower cost solution. Optimization based meth-
ods for RGB predict the 2D hand keypoints in the image and then
lift the 2D representation to 3D. Panteleris et al. [10] use a fixed
hand model and optimize the joint rotations by minimizing the 2D
reprojection error of the joints. Learning-based methods directly
regress the 3D joint locations or the parameters of a 3D model.
Zhang et al. [23] present a method to recover a hand mesh repre-
sentation using the more expressive MANO hand model [11]. Using
this representation makes it possible to also obtain the joint loca-
tions with linear interpolation of the mesh vertices as well as the 2D
keypoints in the image by projecting the 3D joints computed. The
fact that MANO parameterizes effectively hand shape and pose in
a differentiable manner simplifies the training of neural networks
that regress a mesh representation of the hand.

Jointly optimizing the hand shape and pose parameters of a
hand model based only on 2D evidence though is challenging. A
naive optimization of both parameters in a single frame is under-
constrained, that is, there exist several optimal hand shape - pose
pairs. Makris and Argyros [5] perform online shape adaptation
while tracking the pose of the hand. They use the already computed
poses of previous frames to infer a better shape and continue track-
ing the hand pose with the newly computed shape. This approach
relies on progressively adapted poses computed based on a pro-
gressively adapted hand shape with the goal to both converge to
accurate estimations. We use shape regularization provided by the
MANO 3D hand model [11] which essentially makes the optimizer
to converge to the shape that is closer to the mean hand shape. This
way we can compute both the shape and pose from a single frame.

Boukhayma et al. [2] proposed a learning based approach to
directly predict the shape and pose parameters of the MANO hand
model [11] and they also tested an optimization scheme for hand
pose estimation, similar to that of [10]. They compare the optimiza-
tion scheme that performs 2D fitting on the 2D detections with their
learning-based method, which also uses 2D keypoint detections
from a separate CNN, showing that their method outperforms the
fitting. In the optimization method though they optimize a pose
space that has reduced dimensionality using PCA in an effort to
remove implausible hand articulations by using regularization in
that pose space. We show that by setting explicit anatomical limits
in the full pose space instead, we outperform the optimization in
the PCA pose space and perform similarly with the learning-based
method that they proposed.

Several learning-based methods have been proposed that make
substantial progress to generalization capabilities of neural net-
works. Zimmermann and Brox [25] use a CNN to directly regress
3D joint locations from the RGB image. Mueller et al. [6] propose
the use of a Generative Adversarial Network to translate synthetic
images of hands to real in an effort to bridge the real-synthetic do-
main gap when training networks to perform hand pose estimation
from RGB input. Spurr et al. [14] propose the use of Variational
Autoencoders, Baek et al. [1] proposes to use a neural network
combined with a differentiable renderer and Igbal et al. [3] propose
to estimate the hand pose through a 2.5D representation, estimating
the pose up to a scaling factor that can be determined if a prior of
the hand size is known.
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Learning and optimization can be combined to leverage the
advantages of each one. Xiang et al. [21] present a method to jointly
estimate the pose of a human body, face and hands and they predict
a single representation that encodes the poses of all body parts
from an RGB image. They use the predicted representation along
with predicted joint confidence maps to fit a deformable 3D mesh
model via optimization.

Zhou et al. [24] proposed a learning based approach that detects
the 3D joint positions of the hand and then computes the shape
and pose of the MANO hand model. Their method uses a learning
based inverse kinematics (IK) solver to obtain the joint rotations
from the joint positions and performs PSO optimization using the
bone lengths to obtain the shape of the hand, thus getting the full
pose and shape of the hand. Li et al. [4] propose a hybrid analytical
and neural inverse kinematics solution for human pose estimation.
For the hand however, the analytical part of the solution suffices
for correctly computing inverse kinematics. So, with these two
methods, one can obtain the full shape and pose of the MANO hand
model from 3D joint positions by performing a PSO optimization
for the shape and analytically computing the pose from the joint
positions. This method achieves state of the art results on the well
established datasets Dexter+Object [16] and EgoDexter [7].

3 METHOD

Our method takes as input one RGB image, detects the 2D hand
keypoints and then fits a parametric 3D hand model to the 2D
keypoints via optimization, minimizing an objective function with
a joint reprojection error.

Hand Model: We use the MANO hand model [11] that takes as
input 45 rotation parameters 6 and 10 shape parameters f§ and
produces a 3D hand mesh. The MANO model is defined as a differ-
entiable function as follows:

M(B,0) =W(Tp(B,0),](B),0,W) (1)

and
T,(B.0) =T + Bs(B) + Bp(6), 2

where g € R1® and 6 € R1>*3 are the hand shape and pose param-
eters, respectively, and W a linear blend skinning function applied
to a template hand mesh T, which is obtained by deforming a mean
hand mesh T with shape and pose blend shape functions Bg and
Bp, respectively. Moreover, joints are denoted with J and blend
weights with W. The resulting mesh M € RN*3, where N the num-
ber of vertices, is then posed in space with orientation r € R? and
translation ¢ € R3.

2D keypoint detector: We utilize the OpenPose hand keypoint
detector [13], a CNN which takes as input an image containing
a human hand and outputs the 21 hand keypoint locations along
with a confidence score for each keypoint.

Error function: The error function that guides the optimization
consists of 3 terms, a keypoint reprojection error Eg,, an anatomi-
cal joint limits error Ej;;;;s and a shape regularization error Egpgpe:

E(ﬁ, 0,t, r) = Ekey(ﬁ» 0,t, r) + Elimits(e) + Eshape(ﬁ)~ (3)
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In more detail, the keypoint reprojection error Eg,,, penalizes the
difference between the 2D keypoints detected by the CNN and the
projections of the 3D joints of the hand model to the image plane.
In notation,

n
Egey(B,0,t,7) = > willpi = kill3, o)
i=0

where k; is the it? keypoint detected with confidence w; and p; =
jiKT with j; being the 3D joint obtained with linear interpolation
of the hand mesh vertices, projected onto the image with a camera
intrinsics matrix K. It is noted that the camera is assumed to be at
the world origin.

The anatomical joint limits error Ej;,i;s penalizes the 45-
dimensional pose vector (3 Degrees of Freedom for each joint)
when it exceeds some experimentally defined anatomical limits
for obtaining plausible hand articulations, similar to [20]. This er-
ror is defined as a soft constraint with two exponential functions
with starting positions at the lower and upper bound of the limit,
respectively. Specifically,

m
Li=0; | ,0i—u;
Elimirs(0) = aimits Z(e +e i), (5
i=0

where [I;, u;] are the joint limits for joint angle 6; and aj;p;ss = 10°
is an experimentally identified weight factor.

The shape regularization error Egp,yp, penalizes the shape pa-
rameters and forces the optimizer to converge to a plausible shape
as close to the mean (zero) hand shape as possible. In notation,

Eshape(ﬂ) = Gshape ||ﬂ||§ > (6)

with agpape = 103

Implementation details: We use PyTorch for optimization. For
the 2D keypoint estimation we feed a crop of the frame containing
the hand to OpenPose [13]. An important detail is how we detect
the bounding box of the hand. For that, we employ SRHandNet [22]
bounding box detection module and feed that to OpenPose hand
keypoint detection CNN.

We use the LBFGS optimizer to fit the MANO model parameters
to the detected 2D keypoints, minimizing the objective function
described above, obtaining the 3D shape and pose of the hand in
the image.

4 EVALUATION

We compare our method to the state of the art methods and to
optimization methods competitive to ours.

Datasets: We evaluate our method with the well established
datasets EgoDexter (ED) [7], Dexter+Object (DO) [16] and the
Hands in Action (HIC) [20]. EgoDexter is an egocentric hand ma-
nipulation dataset containing 4 sequences and has heavy hand
occlusions both from objects and self occlusions. Dexter+Object
is a dataset containing 6 sequences showing a hand manipulating
an object from a third view. The Hands in Action dataset contains
sequences both from hand-only motion and hand object manipu-
lations and exhibits less occlusions compared to EgoDexter and
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Figure 1: Percentage of correct frames on the HIC dataset.

Dexter+Object. This dataset is used to directly compare our method
to the baseline method of Panteleris et al. [10].

Metrics: We evaluate our method on the above datasets using the
metrics used by the state of the art methods for a direct comparison.
We use the Percentage of Correct Keypoints (PCK) metric which
describes how many keypoints are correctly detected when their
distance from the ground truth is less than a threshold. We compute
this metric for thresholds ranging from 20mm to 50mm and also
measure the Area under Curve (AUC) for this range of thresholds.
For direct comparison with Panteleris et al. [10], we use the Mean
Joint Error metric and the percentage of frames that have a mean
joint error less than a threshold. We also perform global alignment
of the 3D joints and the ground truth. For [10] we use a translation
and rotation invariant alignment based on [25] and for the rest of
the methods we use a translation invariant alignment, aligning
the centroids of the keypoints.

Quantitative evaluation: In Figure 1 we compare our method
with the optimization method by Panteleris et al. [10] on the basis
of the percentage of correct frames metric. The obtained results
demonstrate that our method is preferable for lower error thresh-
olds. For example, for the method of Panteleris et al. [10], 30% of the
sequence frames have an error below 15mm while for our approach
the corresponding percentage of frames is raised to almost 60%.

In Figure 2 we compare our method with state of the art meth-
ods on the Dexter+Object dataset [16]. It is clear that our method
performs favourably compared to the optimization method by
Boukhayma et al. [2] and competitive with the learning-based state
of the art.

Similarly, in Figure 3 we measure the performance of our method
on the EgoDexter dataset [7] and we see that it performs better
than Boukhayma et al.[2] optimization method and competitively
with the state of the art.

In Table 1 we provide the Area under the Curve (AUC) for each
3D PCK curve in Figures 2 and 3 for a more compact comparison
of our approach to the state of the art methods.

Boukhayma et al. [2] optimization scheme performs worse than
Panteleris et al. [10] and their learning based approach performs
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Table 1: Comparison with the state of the art methods on DO and ED datasets.

Zhou | Zhang | Baek | Xiang | Boukhayma | Igbal | Spurr | Mueller | Z&B
AUC of PCK | Ours
(4] | [23] | [1] | [21] (2] (3] | [14] (6] (25]
Dexter+Object | 0.764 | 0.948 | 0.825 | 0.650 | 0.912 0.763 0.672 | 0.511 0.482 0.573
EgoDexter 0.563 | 0.811 - - - 0.674 0.543 | 0.466 - 0.552
Table 2: Robustness testing of our method on the HIC dataset.
1.0 i Optimization is performed either for pose+shape (1st col-
umn) or for pose alone (2nd column) with either an optimal
0-91 shape (1st row) or a noisy shape initialization (2nd, 3rd, 4th
0.8 — row).
—— Ours e
0.7 1 Spurr et al. : ; B
5 — 78&B Mean Joint Error (mm) Pose+Shape fitting | Pose fitting, only
9 0.6 1 —— Boukhayma et al. Fitting Optimal Shape 14.73 14.59
0.5 4 - mTTtyaTa etal. Learning Optimal Shape + N(0, 1) 14.69 15.04
0.4 Mueller et al. Optimal Shape + N (0, 2) 14.92 15.58
— Zhouetal. Optimal Shape + N (0, 3) 14.89 16.93
0.3 4 Xiang et al.
—— Zhang et al.
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Figure 2: 3D Percentage of Correct Keypoints for Dex-
ter+Object dataset.
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Figure 3: 3D Percentage of Correct Keypoints for EgoDexter
dataset.

better. Our method outperforms their fitting method and performs
similarly with the learning-based method that they proposed. The
reason for this is that in order to produce plausible hand poses,
they use a regularization term on the MANO pose PCA coefficients,
which are a lossy representation of the pose space, but the anatom-
ical joint limits that we use seem to limit more effectively the pose
space while maintaining its whole representational power. The
datasets chosen for evaluation are not used in training by any of
the learning based methods thus getting a fair comparison with the
state of the art.
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We also perform a robustness testing of our method on the HIC
dataset. More specifically, we evaluate the pose estimation error
of our approach when both hand shape and pose is estimated (1st
column of Table 2) and when a fixed hand model is used (2nd
column of Table 2). This is performed for three different hand
models, the ground truth one, as well as two noisy variants of it
which is contaminated with increasing Gaussian noise (the three
rows of Table 2, respectively). As it can be verified, when both shape
and pose are optimized, the method performs satisfactorily even
when the original hand model is quite noisy. On the contrary, if
shape is not estimated, pose estimation becomes increasingly more
inaccurate as a function of the discrepancy of the hand model from
the actual one.

Qualitative evaluation: In Figure 4 we show example hand
pose+shape estimations in frames of the EgoDexter (ED) [7], Dex-
ter+Object (DO) [16] and the Hands in Action (HIC) [20] datasets.
It can be verified that accurate estimations can be obtained even
with strong occlusions, provided that the 2D keypoints are correctly
detected in the image.

Limitations: The accuracy of the proposed approach depends
highly on the accuracy of the estimated 2D keypoints. If several 2D
keypoints are missing, e.g., due to occlusions, then the computed
3D hand pose will be invalid. This limitation could be addressed
by adopting an occlusion-aware 2D keypoint detector, perhaps by
passing, along with the image, the 2D mask of the object occluding
the hand. Moreover, the 2D data is far more easily obtained than 3D
ground truth and an even more powerful 2D keypoint detector could
be created to directly improve the 3D accuracy as well. Another
limitation is that, in some cases, an ambiguity is not pruned by
the joint limits allowing the optimizer to converge, for example, to
either positive or negative depth rotation of joints, in particular for
joints near the tip of a finger. Some of these ambiguities could be
pruned if the 2D mask of the hand is used in the optimization as
well along with the 2D keypoints.
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Figure 4: Qualitative results from HIC, DO and ED datasets.

5 SUMMARY

We presented a 3D hand shape and pose estimation method on
RGB images that was based on the minimization of the 2D keypoint
reprojection error using the MANO hand model. As was verified
by several experiments on standard well-established datasets, the
accuracy of the proposed method is competitive to the state of the
art and superior to the accuracy of other optimization approaches.
Future work can be directed to further improving the 2D keypoint
estimation accuracy, leveraging the ease of obtaining 2D data over
3D, or incorporating other 2D evidence cues to the optimization
such as holding object and hand masks in order to have some
constraint about the occluded parts of the hand holding an object,
and directly improve the 3D hand tracking accuracy as well.
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