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Abstract

In the field of video-based human action recognition
(HAR), standard hand-crafted and deep learning-based ap-
proaches are constrained by the computational and memory
requirements of their models and the length of the input se-
quence that can be processed during learning. Sampling
techniques employing a windowed or a random clip crop-
ping have been the simplest and most effective ways to cope
with limitations on the maximum possible length of the in-
put sequence. However, such designs do not guarantee that
the correct ordering of the action steps is captured, or re-
quire several learning iterations. In this work we address
this problem for the class of repetitive actions. Specifically,
given a temporal segmentation of a repetitive action into
its repetitive segments, we propose and develop novel ap-
proaches for ranking and selecting/sampling segments so
as to improve learning in deep models for HAR. We show
that by employing the proposed repetition-aware sampling
schemes in state-of-the-art deep models for HAR, the action
recognition accuracy is increased. The proposed approach
is evaluated on existing datasets and on a new dataset that
is tailored to the quantitative evaluation of the task at hand.
The obtained results reveal how our approach performs in
relation to various characteristics of the observed repetitive
actions (repetition frequency, their effects on scene objects,
etc) and demonstrate the performance improvements.

1. Introduction
Human action recognition (HAR) is a crucial perceptual

component for the development of robotic systems that are

able to interpret and understand human actions and pre-

dict future ones. HAR enables robots to respond to hu-

man actions enhancing task performance and the possi-
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bility of human-robot interaction in real-world scenarios.

Thus, HAR facilitates the seamless integration of robots

into human-centric environments.

Human actions exhibit high variability in their durations,

execution style, temporal orderings which results in diverse

appearance and motion characteristics [1, 11]. The extent

of these variations also depends on the nature of the ac-

tion and the scene context in which it takes place. To deal

with these complexities, HAR models attempt to assimilate

both short and long-term action-related information. At the

same time, coping with arbitrarily long temporal informa-

tion has a negative impact on the computational footprint of

the model. In order to deal with this trade-off, the length of

the input frame sequence is constrained using temporal se-

quence sampling and clip (segment) encoding techniques.

Existing sampling strategies in HAR methods (deep learn-

ing, hand-crafted and hybrid [11, 36]) tend to not always

maintain the temporal ordering of the action steps. This

is mainly due to the temporal duration variations of the ac-

tions and the presence of video segments that record actions

that are irrelevant to the one that needs to be recognized.

This has a negative impact in the effectiveness of HAR, es-

pecially when distinguishing between actions that exhibit

similar appearance, motion and execution characteristics.

While a general solution to the problem is still lacking,

we foresee that there is a lot of space for improvement in

the very interesting and quite common case of repetitive ac-
tions. A number of techniques [23, 7] are capable of decid-

ing whether an action is repetitive or not without recogniz-
ing its action class. Moreover, they can count the repetitions

and segment them temporally in the input sequence. We

claim that a repetition-depended input sequence segmenta-

tion would remove redundant information during the sam-

pling process (i.e., due to repetition segment similarities) or

irrelevant information (i.e., due to other, irrelevant actions

appearing before, after or between the repetition segments).

Given the above-mentioned observation, in this work,

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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we develop such repetition-aware input sequence sampling

strategies and investigate their potential impact on the input

configuration of HAR deep models. In addition, we show

how the temporal localization of the repetitive segments al-

lows the spatio-temporal detection of a possible effect that

the action has on the appearance and state of the actor and/or

the object(s) that participate in it. Finally, we propose a

set of intuitive modifications of the structure of HAR deep

models that enable them to exploit repetition-relevant infor-

mation sources to significantly improve their accuracy. The

analysis of the obtained quantitative results in a series of ex-

periments in several well-established datasets and on a new

dataset that we introduce in this work, demonstrates the sig-

nificant accuracy gains achieved by the proposed approach.

2. Related Work
Action recognition & sequence sampling: The temporal

capacity of HAR models, even in the deep learning era, does

not scale with the range of the temporal complexities, order-

ing, appearance and duration variations of video recordings

of human actions. To address this limitation, HAR methods

apply input video/sequence sampling to constrain the com-

putational load and memory requirements by processing

only salient video parts. The majority of recent deep learn-

ing HAR methods still rely on simple sparse or dense sam-

pling routines. Sampling is performed at a frame level over

the entire image sequence or at a segment (clip) level. The

sampled frames (or segments) are forwarded to the model

either in the raw RGB format (entire sequence [25, 5, 8],

segment-wise [28, 27]) or in a deep encoded representa-

tion generated from pretrained image and video deep mod-

els (2D-CNN models at a frame-wise level [33, 26], or 3D-

CNN models at a segment-wise level [34, 29]). Each sam-

pling density favors the short- or long-range modeling of

the action dynamics, and is always related to the temporal

modeling capacity of a certain model.

Despite their computational efficiency, these sam-

pling schemes do not guarantee that the discriminative

stages/steps of an action and/or their temporal order is main-

tained. Moreover, treating every video frame/clip equally

for the model’s input configuration also allows the consider-

ation of frames/clips that are irrelevant to the labeled action

category, thus negatively affecting the learning process. To

alleviate this problem, a set of methods proposed to sample

the frames/clips containing the most informative or discrim-

inative parts of the sequence. The works of Wu et al. [30]

and Korbar et al. [18] structure their proposed sampling

schemes based on frame information importance ranking

operations of modern video compression representations,

and train their HAR deep models on the compressed video

representations. Contrary, another class of approaches in-

corporates the task of key-frame/clip identification into the

action recognition problem by also scoring the importance

of frames/clips on the classification outcome, with super-

vised [14] or reinforcement learning schemes [31].

Detection & counting of repetitive actions: The proposed

approach for repetition-aware HAR capitalizes on the avail-

ability of methods that are able to segment the repetitive

segments of repetitive actions. A number of methods have

dealt with the topic of periodicity/repetitiveness detection

and classification in video data, evaluating their success by

measuring their accuracy in repetition counting. Towards

this end, the most common strategy followed in the lit-

erature for estimating the number of repetitions is to de-

tect the set of repetitive segments in the frame sequence

by examining frame-wise/clip-wise correlations. This is

achieved by constructing a Temporal Self-similarity Ma-

trix (TSM). In TSMs, each frame/clip is encoded using

hand-crafted [22, 15] or deep [7, 12] features. The repet-

itiveness estimates are then generated by casting the prob-

lem as a shortest path estimation problem with graph-based

methods applied to the TSM [22], or as a multi-class classi-

fication task in deep models [19, 7, 15, 12], with each class

corresponding to a different repetitive segment length. Fi-

nally, another set of recent works exploit Fourier or Wavelet

analysis [23] to detect repetitiveness in 1D signals generated

from frame-wise motion or appearance feature descriptors.

Our contribution: The present work serves as an exten-

sion of our earlier research [3], which introduced a foun-

dational dual-branch neural network architecture utilizing

repetition-focused input segmentation for HAR. In this con-

tinuation, our objective is to refine and advance this frame-

work, while also demonstrating its adaptability to various

established deep learning HAR models. To elaborate, the

main contributions of this study can be outlined as follows:

• We propose a novel approach for exploiting repetition-

aware information in HAR, by contributing a new

ranking scheme based on segment-wise differences

that highlights the importance of each repetition seg-

ment on the recognition of the repetitive action. This is

combined with a novel subnet design that, compared to

[3], captures more effectively the appearance changes

on scene elements, as they are inflicted by the execu-

tion of the repetitive action.

• We demonstrate that our new proposal for repetition-

aware segment sampling, when incorporated into two

state-of-the-art HAR deep models (TDN [27], Slow-

Fast [8]), results in significant accuracy improvements.

• We introduce a new HAR dataset that contains an-

notations of the temporal boundaries of the repetition

segments, thus allowing the quantitative evaluation of

techniques that exploit repetitiveness for HAR.
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3. Action Repetitiveness

In repetitive actions, the execution of each repetitive seg-

ment has the same structure, with potential variations being

observed in the execution tempo and on the effects of the

action on the scene and the involved objects. The presence

of task repetitiveness can be considered as an indicator of

information redundancy since the motif of the action can

be recognized by only viewing a single repetitive segment

of the task, as for example in the action of jumping jacks.

However, some repetitive actions may have an effect on the

actor and/or the surrounding scene as, for example, in the

case of slicing a fruit/vegetable. As far as action recogni-

tion is concerned, these gradual changes in the scene el-

ements may contain information of strong discriminative

power. This is particularly true for the case of actions that

share similar motion motifs and appearance characteristics,

e.g. the actions of slicing and dicing a vegetable/fruit.

An additional characteristic of repetitive actions is that

the number of repetitions is rarely known a priori. Any ac-

tion can become repetitive if it is repeated within the same

temporal segment more than once, and the repetition counts

can differ between different samples of the action. Ideally,

we would like a HAR method to be able to process all the

repetitions of the action in order to learn the discriminative

information regarding the action’s structure, motion motif

and effect on the surrounding space. An important arising

question is whether it is necessary for a model to process ev-
ery execution of the action in order to learn recognize that
action. The answer is not obvious as it depends on the ac-

tion complexity and context. For simple, repetitive actions

with highly discriminative motion or appearance cues, such

as clapping, a single or a few repetitions might be enough.

On the other hand, for complex and fine-grained actions,

such as slicing, a more elaborate repetition segment selec-

tion is required to capture the action’s intrinsic complexity.

4. Proposed Approach

We propose HAR strategies and modifications to exist-

ing HAR architectures to effectively exploit action repeti-

tiveness during the definition of their input. The goal is to

highlight both the execution steps and gradual effects of the

action (if any). Firstly, we present a process that allows for

a compact and meaningful representation of the gradual ef-

fects of the repetitive execution of the action. Then, we pro-

pose a set of augmentations and modifications on two main-

stream deep HAR models to better exploit the information

content of an input under a repetition-aware perspective.

We assume the availability of a mechanism that can per-

form a temporal segmentation of a repetitive action into its

repetitive segments. As stated in Section 2, there exist a

number of unsupervised methods that allow for a temporal

segmentation of the input sequence based on task repetitive-

(a) (b) (c)

(d) (e) (f)

Figure 1: Example of repetition selection under a segment

processing capacity of 3 segments. The input video shows a

dicing carrot action. The repetition-centered temporal seg-

mentation of the video was performed manually, and pro-

duced 13 segments. (a)-(c): the last frames of the first 3 ex-

ecutions following a simple ordered selection. (d)-(f): the

last frames of the 1st, 10th, and 13th executions, of the 3

segments selected with the proposed KKZ [16] approach.

ness. In our work we rely on RepNet by Dwibedi et al. [7]

to define each repetition’s temporal boundaries.

4.1. Capturing action effects on the scene

Splitting the input sequence based on task repetitive-

ness allows the decoupling of the execution steps, motion

and coarse appearance characteristics of the action from the

gradual action effect on the scene and objects-in-use. The

potential effect of the execution of each repetitive segment

is manifested with shape deformations and appearance vari-

ations on the object/person/scene elements that are involved

in the action. Such changes are characteristic of the ac-

tion, and may be very important for discriminating between

fine-grained action classes. This means that given an ac-

tion segment with a single execution, the sampled frames

should encapsulate (a) the action steps, and, (b) the action

effects. This process is not trivial since the temporal execu-

tion tempo in realistic conditions varies in each action sam-

ple as well as between each execution repetition for a spe-

cific sample. This, in turn, means that a sampling approach

that is based on a fixed-size window might be suboptimal.

In order to effectively capture the consequences of an

action onto a scene, we can utilize video sequence sum-

marization or temporal encoding and rank pooling meth-

ods to encode sequence clips into static image templates,

such as Motion History Images (MHIs) [2], Dynamic Im-

ages (DIs) [10, 4] or Dynamic Appearance (DA) [13]. Such

representations encapsulate the dynamic appearance of a se-

quence in a compact and visually interpretable manner that

is able to encode the gradual effects of an action to the scene

elements. In this work, we adopt the direction presented
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in [3] and also use DIs for this purpose due to their superior

representation capacity or power compared to MHIs [10].

4.2. Selecting the most informative repetitions

Not all repetitions of repetitive actions are equally in-

formative. Ideally, we would like to model all repetition

segments using a sufficient amount of sampled frames for

each. However, existing HAR deep models (e.g., the Tem-

poral Segment Network (TSN), by Wang et al. [28]) are

able to process only for up to three concurrent input seg-

ments. Given a repetition-based segmentation of the input

sequence, this would account for only three repetitions.

Under these conditions, we propose an unsupervised

process for ranking the repetition segments based on infor-

mation content and distinctiveness compared to the initial

execution segment for each sample, which will generate a

codebook representing the N most characteristic repetition

segments. To achieve this we exploit the KKZ cluster seed-

ing algorithm by Katsavounidis et al. [16], which allows for

constructing a codebook, C of arbitrary size, containing the

set of most distinct segments (codewords), yi ∈ Rk. To

construct the codebook, at each iteration of the KKZ algo-

rithm, the candidate segment with the largest distance from

the codebook is chosen to be the new codeword.

The first item of the codebook is always set to be the

initial (first) execution of the action. The goal is to pop-

ulate the codebook with the most distinctive repetitions.

To compare each candidate repetition with the codewords,

we use their distance as measured by the Dynamic Time

Wrapping (DTW) algorithm when applied to their frame

sequences. Each frame is first encoded into a [1 × 1024]
feature vector using the VGG-16 network [25], pretrained

on ImageNet [6]. The outcome is a ranking of the repe-

tition segments based on content difference, which allows

for a better selection of the most informative segments. As

an example, Figure 1 shows four segments that were identi-

fied by the proposed KKZ-based strategy for a carrot dicing

video. This leads to a better selection of the most informa-

tive repetition segments that depict the gradual effect of the

dicing action on the carrot, compared to the naı̈ve selection

of the first four repetition segments.

4.3. Infusing repetition-awareness to HAR models

Early deep HAR methods [25, 9, 10] do not consider

the temporal dynamics of the actions, but instead focus on

appearance and short motion variations. Although such a

strategy is highly effective in short-range action modeling, it

proves itself insufficient for recognizing long-term actions.

For long-range action modeling these methods apply tem-

poral sampling using predefined windows, leading to a risk

of “skipping” important action-related information.

To address this issue, and achieve both short- and long-

range modeling of action sequences, recent state-of-the-art

HAR deep models opt for configurations of the input se-

quence that rely on either segment-wise input sets with seg-

ment prediction consensus mechanisms [28, 35, 27], or in-

puts sampled at different temporal resolutions (speeds) [8,

32, 21]. In both schemes the input sequence is sampled uni-

formly without any prior consideration of the presence of

information redundancy and the preservation of important

information cues. In the previous sections we argued that

the presence of a repetition-centered segmentation stage has

the potential to address these issues. To prove this claim, we

showcase the integration of such strategies in two exemplar,

state of the art deep models for HAR. Moreover, we propose

design modifications to further increase the exploitation of

action repetitiveness towards increasing their performance.

4.3.1 Enhancing segment-based methods

Segment-wise video processing is perhaps the dominant in-

put configuration approach of the recent HAR deep meth-

ods, since it expands the temporal view of the video content

for the model. It was first shown to be effective by Wang et
al. [28], with their Temporal Segment Network (TSN) model

and was followed by numerous subsequent works that were

based on their design, such as Temporal Relation Network

(TRN) [35], Temporal Shift Module (TSM) [20] and Tem-

poral Difference Network (TDN) [27].

As an exemplar method for this category, we focused on

the recent Temporal Difference Network (TDN) [27]. As

shown in Figure 2(a) in the rectangular box, TDN first di-

vides a video into 8 segments uniformly along time. For

each temporal segment, it randomly samples a key-frame

and T adjacent frames. Short-term modeling operates at a

segment-wise level with RGB differences between the key

and neighboring frames, which is then fused with an RGB

CNN representation of the segment’s keyframe via a resid-

ual connection, aiming at capturing short-term motion con-

tent. Long-term modeling is achieved with a module that

operates on cross-segment temporal differences with multi-

scale and bidirectional attention mechanisms and aims to

learn the long-range temporal structure of the action. The

final action estimate is produced with an average pooling of

the segment-wise representations.

To integrate the notion of repetitiveness in this model,

we propose a new model variant, dubbed TDNRDI , with

the following modifications (depicted in Figure 2(a)).

Input configuration: The first intuitive approach is to ex-

ploit the repetition-based segmentation as a more meaning-

ful way to define the temporal segments used as inputs to

TDN. In our input configuration scheme, the starting seg-

ment in TDN is the initial execution segment. For the re-

maining segment spots, considering the segment processing

capacity of the model (1+7 segments), we follow the rep-

etition segment ranking approach described in Section 4.2
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Figure 2: Original (rectangular box, with solid lines indicating original input) and proposed modifications (unbounded sub-

net and new inputs depicted with red dotted lines): TDN (a) and SlowFast (b) architectures. In TDN, the original architecture

uses a segment-wise split of the video.

to select the seven most discriminative ones, sorted in an

ascending (by repetition index) order. We note that in a

sample case with less than 7 repetitions, we duplicate seg-

ments. With this repetition-centered input segment config-

uration policy, the short-term dynamic learning module of

TDN is able to access a better-defined ordering of the action

steps, and inherently formulate a stronger representation of

the action. Moreover, the segmental representation differ-

ence operations in the long-term module are guided to in-

directly express the fine-grained differences between each

execution, which encode the effects of the repetitive action

execution on the object of interest or the entire scene.

Temporal history of encoded repetition segments: The

second proposed modification on TDN is the incorpora-

tion of a subnet that presents in a compact and complete

way the history of the action-imposed effects on scene el-

ements. For this, we utilized the Dynamic Image (DI) en-

codings [10] of all repetition segments. The set of repetition

segment DIs is introduced to a two-layer (Conv3D, LSTM)

network. This subnet aims to learn the spatio-temporal rep-

resentation changes corresponding to the deformations on

the shape/appearance of scene objects due to the repetitive

action execution. As a final step, we fuse the representation

of this branch with the representation of the core TDN. Such

knowledge acts as a complementary information for the de-

tailed appearance representations of the selected distinctive

repetition segments that are introduced in their RGB format

in the core TDN branch, and provides a compact represen-

tation of the entire action execution history.

4.3.2 Enhancing temporal multi-resolution methods

To capture the tempo and motion variations of actions while

also retaining knowledge about the spatial semantics of

the visual content of the action, this set of methods fol-

low a temporal multi-resolution input sampling and pro-

cessing scheme, either at a frame-level [8], or at a feature-

level [32, 21]. In this work, we focus on the SlowFast

model [8], shown in the rectangular box of Figure 2(b). In

SlowFast, an input video is sampled at two different tem-

poral speeds/pathways, (a) the slow pathway at low frame

rates, to learn the semantics of the finer spatial video con-

tent, and, (b) the fast pathway at a high temporal resolution,

to capture a range of motion speed changes. The represen-

tations from the two temporal scales are fused at various

model levels with lateral connections. To transform Slow-

Fast into a repetition-aware model, we examined two varia-

tions of the model (Figure 2(b)).

SlowFastDI : We re-structure the slow pathway to sam-

ple the required frames from the DIs temporal encodings

of the repetition segments (4 most discriminative), and the

fast pathway to operate on the initial execution segment.

The basis for this design choice is that the initial execution

of the action usually provides a better view of the action

steps at slower tempo compared to the subsequent repeti-

tions, which will guide the model to a clearer view of the

motion motif of the action. Contrary, the repetition seg-

ments will contain the action-inflicted changes on the scene

elements, and thus will allow for a better representation of

the action’s effects at a spatial domain level. This is on par

with the design purpose of the slow pathway, which is to

capture the key scene appearance characteristics.

SlowFastRDI : we re-structure the slow pathway to sam-

ple the required frames from the last repetition segment and

the fast pathway to operate on the initial execution segment,

following the same intuitive route as in the previous variant.

The input difference on the slow pathway stems from the
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Figure 3: Repetition count distributions of HMDB51 (a), CountixHAR (b), and, GradEffects (c) datasets.

assumption that the last repetition potentially encapsulates

the most noticeable action effects on scene elements, and

should be considered since the action outcome is a discrimi-

nating factor when distinguishing between actions with sim-

ilar motion and appearance characteristics.

As with TDN, we incorporate on SlowFast a repetition

history modeling sub-net to learn the action-induced effects

on the scene elements during each execution of the action.

This sub-net is structured as in the TDN variant. Its input is

comprised of the DIs of the K most distinct repetitions1.

5. Experiments
Our experiments examine the impact of a repetition-

aware model design under these policies:

• naı̈ve, in which each repetition segment is used as

a distinct sample, without modifications on the input

sampling and structure of the original models. We re-

fer those cases as TDNR and SlowFastR.

• repetition-centric, refers to the proposed model vari-

ants, TDNRDI , SlowFastRDI & SlowFastDI .

5.1. Datasets

We evaluate the performance of the proposed methodol-

ogy on the following datasets, whose repetition count dis-

tributions are illustrated in Figure 3.

CountixHAR: It is introduced in our previous work [3] and

is based on the Countix dataset by Dwidebi et al. [7]. Con-

tains actions with 2 to 10 repetitions per sample.

HMDB-51: The HMDB-51 dataset has a small percentage

of repetitive actions (average 1.2 rep/sample).

GradEffects: is a new dataset2 that is a subset of Coun-
tix [7]. The videos in GradEffects have been annotated with

the temporal boundaries of the repetition segments and the

repetition counts. GradEffects consists of 10 action classes,

8 of which belong to the original Countix dataset, (bench
pressing, front raises, jumping jacks, planning wood, saw-
ing wood, slicing onion, push up), and 2 additional classes

1K in TDN is set to 7 whereas, for SlowFast is set to 4.
2Project & Dataset page: http://www.ics.forth.gr/cvrl/rephar/.

(slicing carrot, dicing carrot). The purpose of the new ac-

tion classes is to investigate the contribution of the pro-

posed method on distinguishing between fine-grained ac-

tion cases by exploiting the information content from the

action-inflicted gradual effects. These two classes are typi-

cal fine-grained action cases, since they exhibit similar mo-

tion/appearance characteristics. For each action class, we

annotate 40 action clips to ensure dataset balance, and ap-

ply an 80-20 train/test split scheme. The repetition counts

reach up to 32 repetitions, at various durations.

5.2. Training and testing configurations

For TDN we use the ResNet50-based version with 8

frames for each video, pre-trained on Kinetics-400 [17].

The batch size was set to 8, and the learning rate to 0.01,

with the learning rate decay that is reported in the original

paper. For the testing phase, we followed the experimental

settings reported in [27] for HMDB-51 (working on split1),

which we also extend for the CountixHAR and GradEffects,

and report top-1, top-5 precision score under a 10-clip and

3-crop evaluation scheme.

For SlowFast, we use 32 sampled frames for the fast

pathway and 4 sampled frames for the slow pathway and

the reported training configurations for the Kinetics dataset

in the original paper. We report the top-1, and top-5 accu-

racy scores under the 1-clip and center-crop testing scheme.

The batch size was set to 16, and the number of epochs was

maintained the same for each model and their variants. Fi-

nally, both original models and the examined variants were

trained on RGB data, and the repetition-based history sub-

nets on DIs of the selected repetition segments.

5.3. The effect of repetition awareness on accuracy

The experimental results shown in Table 1 indicate that

the consideration of action repetitiveness in the design and

learning schemes of HAR deep models contributes posi-

tively in their performance. Even the naı̈ve exploitation of

repetitions as distinct samples, leads to an increase in accu-

racy for both models, in almost every dataset case. This is
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Prec@1,@5% for TDN & Acc@1,@5% for SlowFast, RepDI-Net
Datasets

Method HMDB51 CountixHAR GradEffects
TDN [27] 47.90 / 77.97 19.80 / 41.10 44.10/100.0

TDNR 53.44 / 84.57 22.05 / 53.42 39.10 / 100.0

TDNRDI 54.02 / 84.38 34.26 / 73.97 61.11 /100.0
SlowFast [8] 30.85 / 64.31 25.59 / 48.54 50.00 / 98.00

SlowFastR 37.91 / 61.90 26.78 / 55.10 53.06 / 100.0
SlowFastDI 38.00 / 66.14 27.97 / 61.20 55.20 / 96.92

SlowFastRDI 36.57 / 67.69 26.09 / 53.55 51.02 / 95.92

RepDI-Net [3] 49.61 / 74.27 56.18 / 77.89 75.16 / 93.75

RepDI-Netmod 50.97 / 79.00 58.71 / 82.75 77.25 / 93.75

Table 1: Comparison of TDN, SlowFast, RepDI-Net vari-

ants on (a) HMDB51, (b) CountixHAR, (c) GradEffects.

a logical outcome since the model views a temporally con-

strained execution of the action with less frequent omissions

of action steps or alterations of their execution order.

We can observe that TDNRDI improves by a large mar-

gin the model’s accuracy, especially for the datasets that

contain a large set of repetitive actions. A similar positive

effect on these datasets is also observed in the case of Slow-

Fast, in which the more intuitive and simple set of mod-

ifications appears to better harness the information of the

repetition-aware learning scheme. An interesting observa-

tion is that the contribution of the repetition-aware action

learning differs between the two model designs, with the

TDN’s segmental splitting and consensus learning scheme

better exploiting the more temporally bounded representa-

tion of the action steps, compared to SlowFast.

Finally, we incorporated our proposals on the repetition-

aware model of our previous work [3] and observe an im-

provement of the model’s scores by 1.36% on HMDB51,

2.53% on CountixHAR, and 2.09% on GradEffects. We

used the closest training configuration to the ones used in

TDN, and SlowFast, which is the case of 10-frame se-

quences, with random clip cropping.

5.4. Impact of repetition segmentation accuracy

The performance of the proposed repetition-aware mod-

els depend on the performance of the repetition segmenta-

tion method. Despite the large set of methods that tackle

repetition detection in video data, all of them formulate the

problem on the coarser task of repetition counting, and by-

pass the fine-grained task of the temporal localization of

the repetitive segments. The selection of repetition count-

ing as the learning objective results in artifacts, usually in

the form of unrelated short-duration clips within the repe-

tition segments. These artifacts, depending on their dura-

tion, can potentially affect the temporal encoding outcome

of each segment. Nevertheless, repetition awareness is ben-

eficial despite errors in the estimation of temporal repetition

boundaries. This is manifested by the fact that the accuracy
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Figure 4: Confusion matrices of SlowFast[8] (top) and

SlowFastDI (bottom), trained on GradEffects.

of HAR improves (e.g., in the HMDB51 and CountixHAR

datasets) regardless of the noise that is inevitably introduced

by these repetition counting methods.

To better examine the impact that errors in the temporal

segmentation of repetition boundaries might have in HAR

in a controlled setting, we introduced Gaussian noise on

the ground-truth repetition boundaries in the GradEffects
dataset. Specifically, each repetition boundary was moved

in time according to a sample of a Gaussian with μ equal to

0 and σ equal to 10% of the average duration of the rep-

etitions. The application of the perturbed dataset on the

repetition-aware model of our previous work [3], enhanced

with our new modifications, leads to a 2.08% accuracy drop.

5.5. Repetition-aware recognition of action effects

To evaluate a model’s ability to distinguish between fine-

grained action classes by focusing on the presence of action-

induced scene effects, we capitalize on the GradEffects

dataset that includes the slicing carrot and dicing carrot ac-

tion pair. These two actions have identical coarse motion

patterns, object set, and visual features. The final state of

the object affected by the action (i.e., the carrot), can be

identified as the most distinctive appearance feature. There-

fore, this action pair presents a challenging disambiguation
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task for the model, necessitating careful attention.

The proposed scheme’s ability to improve a model’s per-

formance in such action cases is evident from the confusion

matrices in Figure 4, which present the classification per-

formance of the baseline SlowFast model [8] and the pro-

posed SlowFastDI variant on GradEffects. We observe that:

(a) the discrimination between the two classes poses a con-

siderable challenge, and (b) the proposed method demon-

strates improved discriminatory capability for these two ac-

tion classes. In a broader analysis, we find that our variant

enhances performance for a majority of actions that induce

a perceptible impact on the environment (e.g., slicing onion

or carrot, dicing carrot), and in other cases, yields more con-

textually plausible misclassification outcomes. To illustrate

the latter, we can examine the planning wood class, whose

classification errors in the proposed scheme are attributed

entirely to the sawing wood class, compared to original

model that can misclassify it as bench pressing.

To further illustrate the ability of the proposed scheme

to guide the model’s focus on the regions of the scene in

which the effect of the action takes place we employ Grad-

Cam [24]. Figure 5 presents a visualization of the attention

mechanisms employed by both the original SlowFast model

(top row) and the SlowFastDI variant (bottom row) across

four distinct action classes, namely, slicing onion, slicing
carrots, slicing bread, and jumping jacks. Our findings re-

veal that SlowFastDI successfully directs the model’s atten-

tion into regions and objects affected by the performed ac-

tion, demonstrating its efficacy in guiding the model’s focus

towards relevant scene features. Furthermore, we observed

that even for actions that do not visibly alter the surrounding

environment, such as jumping jacks, the proposed scheme

effectively guides the model’s attention towards key scene

parts that undergo changes during task execution, such as

the actor’s legs, waist, and hand/shoulder regions.

6. Discussion: Handling non-repetitive actions
One crucial inquiry pertains to the generalizability of

the proposed learning scheme for both repetitive and non-

repetitive actions. It should be noted that not all instances of

an action necessarily exhibit repetitiveness, even if the ac-

tion itself is generally categorized as repetitive. Moreover,

not all actions can be repetitive. HAR models should pos-

sess the capability to effectively leverage repetitiveness as a

means of modeling actions whenever it is present.

In non-repetitive action instances, the repetition segmen-

tation module can yield two possible outcomes: either erro-

neous estimations or failure to detect repetition segments.

In the former scenario, the proposed repetition history sub-

net encodes the progress of the action, effectively tempo-

rally encoding and modeling segmented portions of the ac-

tion. This provides a supplementary temporal representa-

tion of the sample. In the latter case, the repetition count-

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Grad-Cam [24] visualization of the regions of fo-

cus for SlowFast [8] (a-d) and the proposed SlowFastDI (e-

h), for the action classes slicing onion (a,e), slicing carrot

(b,f), slicing bread (c,g) and jumping jacks (d,h).

ing method will indicate a repetition count of zero, which,

according to the proposed learning scheme, will result in

the initial sequence being sampled using the input process-

ing strategies of the initial models. In this situation, the

proposed repetition history subnet processes the DI encod-

ings of K uniformly sampled segments from the entire input

sequence, thus, functioning again as a temporal modeling

module, complementary to the encoded initial input.

7. Summary

This paper introduced effective mechanisms for incor-

porating a repetition-aware input segmentation step in the

learning of deep models for HAR. In addition, we proposed

a set of intuitive modifications of two state of the art HAR

models that extend the exploitation capabilities of action

repetitiveness, further improving the performance of these

models. A series of experiments showed the significant ben-

efits of the proposed approach. Our investigation demon-

strates that considering action repetitiveness in the design

and learning process of HAR models has a significant pos-

itive impact on HAR accuracy. Future research will exploit

spatiotemporal (rather than purely temporal) localization of

repetitive actions as a means of focusing on the spatiotem-

poral volume at which repetitive actions occur towards bet-

ter capturing action effects on the involved objects.
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