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Abstract

Although existing methods for action anticipation have
shown considerably improved performance on the pre-
dictability of future events in videos, the way they exploit in-
formation related to past actions is constrained by time du-
ration and encoding complexity. This paper addresses the
task of action anticipation by taking into consideration the
history of all executed actions throughout long, procedu-
ral activities. A novel approach noted as Visual-Linguistic
Modeling of Action History (VLMAH) is proposed that fuses
the immediate past in the form of visual features as well as
the distant past based on a cost-effective form of linguis-
tic constructs (semantic labels of the nouns, verbs, or ac-
tions). Our approach generates accurate near-future action
predictions during procedural activities by leveraging in-
formation on the long- and short-term past. Extensive ex-
perimental evaluation was conducted on three challenging
video datasets containing procedural activities, namely the
Meccano, the Assembly-101, and the 50Salads. The results
confirm that using long-term action history improves action
anticipation and enhances the SOTA Top-1 accuracy.

1. Introduction
Anticipating future actions during an observed complex

activity is a critical ability that enables humans to recog-

nize intended goals and outcomes to proactively plan and

engage in interactions with other humans and the environ-

ment in a timely, efficient, and safe manner. We accom-

plish this task naturally by perceiving visual information

and learning from a few activities as well as based on self-

experimentation; thus, it encompasses harnessing relevant
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Figure 1. We consider the problem of action anticipation in

untrimmed videos of procedural activities. At a certain moment

in time (decision point), the proposed framework (VLMAH) an-

ticipates the action (i.e., the unobserved action “take screw”) that

is most likely to be performed after some anticipation time Tant

(depicted with orange color). This is performed on the basis of the

history of all past actions up to the decision point (depicted with

purple) which is modeled by integrating visual input regarding the

immediate past and a linguistic description of the distant past.

kinematic and contextual knowledge rooted in perception,

personal experience, and skills. These competencies are re-

garded as fundamental constituents of human intelligence.

Deriving effective solutions for similar competencies is

also beneficial to AI-enabled agents and robots that operate

in industrial and domestic environments in a multitude of

real-world applications [22]. In particular, the anticipation

of near or long-term future actions can efficiently be used

to advance autonomous navigation or driver-assistance sys-

tems, leverage the ability of industrial or home/socially as-

sistive robots towards fluent human-robot collaboration and

interaction, drive optimization of industrial workflows and

enhance human safety through real-time hazard/anomaly

identification to preemptively signal alerts and aids [38].

To enhance AI agents’ capabilities, researchers have

concentrated on video-based human understanding, yield-

ing impressive outcomes in tasks like recognition, detec-

tion, and short- or long-term action prediction during ex-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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tended activities [22]. Among these, action anticipation

stands out, involving forecasting upcoming action labels

based on partial ongoing action observation and recent ac-

tion history [42, 7], as depicted in Figure 1. The ability to

use recent action history is crucial for proposing potential

actions at the decision point Tant before the expected start

time of the next action. This anticipation time captures valu-

able insights and the sequence of actions leading to the an-

ticipated one. We identify the following questions towards

this challenging task, which effective solutions have to deal

with by assessing the best trade-off between the complexity

of spatiotemporal visual feature modeling and the accuracy

performance of action anticipation:

• How much of the action history should be considered

to accurately predict future actions during complex ac-

tivities?

• What is the most efficient way to model the temporal

ordering of action history (past actions)?

• What information modalities could enhance action an-

ticipation accuracy?

We tackle the challenge of anticipating actions within in-

structional activities by merging visual and linguistic data

from ongoing actions. This encompasses recent and distant

history, vital for predicting the future. While visual fea-

tures offer rich information, they are resource-intensive for

storage and computation. In contrast, language-based ac-

tion descriptions are less detailed but more storage and pro-

cessing efficient. Our approach balances these aspects by

integrating high-cost visual features for recent events and

low-cost language features for remote ones.

We explore action anticipation in the context of proce-

dural activities, where variations of the temporal ordering

of actions are usually more constrained. Based on that, it

is not surprising that the majority of existing works [14, 15,

58, 37, 31, 46, 61, 43, 18] aspire to tackle this problem us-

ing video datasets [7, 8, 27, 53, 24, 47, 41, 5] containing

procedural activities. For instance, EpicKitchens [8] is one

of the largest and most popular video datasets, among oth-

ers [27, 53, 24, 50, 62], deals with the task of action an-

ticipation featuring videos of cooking activities. Another

popular domain of instructional activities that regard com-

plex assembly activities [47, 41, 5, 19, 25, 39] in the context

of industrial and non-industrial scenarios.

In particular, we focus on videos of assembly activities

using the Meccano [41] and the Assembly-101 [47] video

datasets. Those two can are considered complementary

with respect to the types of the target activities, as partici-

pants in the former are provided with specific instructions to

accomplish the assembly process of a toy vehicle, whereas

in the latter participants were free to disassemble a fixed

toy vehicle and then to assemble it from its parts, following

a less constrained process.

Our contributions can be summarized as follows:

• We propose the Visual-Linguistic Modeling of Action

History (VLMAH) framework that combines short-

term visual and longer-term lexical information of ob-

served past actions to estimate the label of the near-

future anticipated action.

• We show that the combination of cost-effective pro-

cessing and integration of linguistic information along

with visual information can greatly benefit prediction

accuracy in various types of procedural activities.

• An extensive experimental evaluation was conducted

with state-of-art results on three challenging datasets,

Meccano [41], Assembly-101 [47] and 50-salads [53],

for a large set of different experimental setups,

and anticipation times. VLMAH improves the

noun/verb/action predictions for the Meccano and

Assembly-101 dataset while for the 50Salads dataset,

our method is amongst the top performing.

2. Related Work
Action/Activity Recognition sets the thematic base upon

which more fine-grained video understanding tasks, such as

action detection, early action recognition, and action antic-

ipation/prediction have been defined. In its most challeng-

ing form, it comprises the recognition of actions that in-

volve human-object interactions, and action sets with high

intra- and inter-class variability. With the advent of deep

learning, video action recognition methods have become ex-

tremely efficient and effective in modeling short-range de-

pendencies of actions with CNN-centered models [52, 6].

Moreover, the ability to model long-range dependencies

of complex actions or long, composite activities has also

been considerably improved using memorization layers,

such as RNNs and their variants [60, 28], attention mech-

anisms [57, 2], and temporal frame dependency modeling

at multiple time scales [11, 59].

The significant performance gains that have been wit-

nessed in this field have also been fueled by the emer-

gence of large-scale datasets [7, 36], that contain diverse

action sets, viewing conditions (egocentric [7, 51, 16] or

third-person [1, 26]) and videos in various contexts pro-

viding rich, multi-level annotation data and different in-

formation modalities. Such datasets enabled the design of

multi-modal models that apart from appearance and mo-

tion, also exploit audio, gaze-related data, and most impor-

tantly language [20, 17]. In the concept of multi-modal ac-

tion/activity modeling, the visual-linguistic fusion scheme

is shown to be extremely effective at representing the vari-

ability of complex actions and activities. This mainly relies
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on the action-related knowledge that is extracted using the

lexical description of the action sequence and transitions,

which is presented in the form of a simple text label or

rich transcription/captions per action [20]. This information

can be further processed using text statistics [45]. Recently,

deep learning language models [54, 56], have also been pro-

posed acting as a complimentary information source to the

visual representation, expressed with handcrafted [44, 45]

or deep learned [32, 23, 3, 4] descriptors.

Action Anticipation/Forecasting is defined as the task

of predicting the class(es) of one or more future actions

for which no observations are available at the decision

time [22, 26]. The tasks of prediction and anticipation have

been well-explored for actions of various complexity that

range from simple motion primitives of a single human ac-

tion [34] or a human-object interaction [22, 18, 35] to long,

composite, procedural or unconstrained activities [48, 33].

Anticipating the near-future actions is performed towards a

limited set or even thousands of action categories [7, 47].

Forecasting of the next actions is performed at “anticipa-

tion time” in the video that can be set at variable time hori-

zons ranging from short- to long-term predictions. Many

existing approaches fix this important task parameter to 1
second prior to the start of the action of interest [30, 14],

while others explore the predictability of actions for sev-

eral seconds [40, 12, 31, 1, 21]. The problem was ini-

tially introduced in third-person videos [18, 1], but it has

recently gained significant popularity in first-person (ego-

centric) videos [7, 16], too.

The prominent method of Furnari et al. [13] explored

the problem of action anticipation using “rolling-unrolling”

LSTMs in order to summarize past actions and make pre-

dictions for the verb, noun and action of the next segment

for multiple anticipation times. In [49] a multi-scale tempo-

ral model is proposed so that the past actions are aggregated

for the future actions to be iteratively predicted. This frame-

work performs predictions for the next action with an antic-

ipation time of 1 second and is also capable of performing

dense anticipation considering a large number of anticipated

action classes. Our work complies with both methodologies

so that the verb, noun, and action predictions are made in

the range of [0.25, 2] seconds with a step of 0.25 seconds.

Natural language processing (NLP) initially gained pop-

ularity in the cooking domain since recipes naturally con-

tain a large variety of texts with instructions on food prepa-

ration. These large texts of instructions have attracted the

interest for predictions of the next unobserved steps of the

recipe in natural language in the form of sentences. Sener et
al. [50] created a hierarchical model for learning multi-step

procedures of recipe datasets with text and visual context.

Their zero-shot anticipation framework is able to transfer

knowledge from large-scale text corpora to the visual do-

main for the prediction of coherent and plausible recipe in-

structions. The same authors improved their framework by

integrating a temporal segment proposal method into the

video encoder and additional losses at the recipe encoder

to improve convergence [48]. By comparing to recipe gen-

eration networks they showed that this method can perform

better even for unseen recipes and dishes. Contrary to meth-

ods [50, 48] that exploit text to provide information to the

visual domain, Mahmud et al. [33] proposes a two-step ap-

proach where information on the visual spatiotemporal con-

text of the observed actions and the linguistic labels of the

anticipated actions along with scene context are incorpo-

rated for caption prediction. Text and/or captions of the ob-

served actions are not utilized.

Our framework deviates from the aforementioned ap-

proaches that use NLP, as we do not focus on the prediction

of captions/sentences of the near-future, still unobserved

actions. Instead, we focus on using linguistic information

complementary to the vision module [3, 4] for the encoding

of the short- and long-term history of the observed past.

3. Proposed Approach

The proposed Visual-Linguistic Modeling of Action His-

tory framework noted as VLMAH, is shown in Figure 2. It

features a two-stream three branch deep neural network de-

sign that comprises (a) a vision-based action anticipation

sub-network, (b) an activity-level sub-network for temporal

modeling based on natural language processing (NLP), and,

(c) a vision-based action recognition sub-net. The action an-

ticipation visual sub-net is able to estimate the next action

given the visual representation of the current/ongoing action

segment exploring the short- and long-term action dynam-

ics. The action recognition sub-net exploits the same input

to provide estimates for the current action class. Addition-

ally, the NLP-driven activity-centric sub-net is responsible

for the long-range temporal modeling of the relation of the

current action to the previously observed actions to learn a

stochastic model of the forthcoming action.

The last architecture stage combines the two representa-

tions (visual action anticipation sub-net & language model-

ing sub-net) to anticipate one of the following events, (a) the

next action (fine-grained label), (b) the active object of the

next segment (noun), or (c) the next motion motif (verb).

3.1. Visual Action Anticipation Module

Given an input sequence xt of the action yt of an activity

video sample Xi = {x1, ..., xN} −→ Y , the visual action-

anticipation sub-net aims at learning the representation of

the on-going action at a segment-wise level, that will enable

the prediction of the forthcoming action yt+1. To achieve

this, the proposed module follows a multi-branch design

that operates on an ensemble of different vision-driven rep-

resentations of the entire scene or of the key to the action
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Figure 2. The proposed VLMAH architecture. The Visual Action Anticipation and the Linguistic Action History modules are presented.

For the Meccano dataset, the encoders of the action module, generate Object, Hands, Gaze representations, whereas, for the Assembly-101
dataset, there is a single encoder network, TSM [29] while representations are split into 3 sub-sequences, as mentioned in Section 4.2.

The detail level regarding the textual label descriptions is adaptable to the anticipation task at hand (action, motion motif (verb), or object

(noun)). The final format also includes two special labels (START, END) that indicate the start and end of the action history sequence.

scene elements, such as the actor’s body part regions or the

appearance states of the active object.

On a technical basis, each branch of the proposed

multi-branch design comprises a two-layer Bidirectional

LSTM (BiLSTM) temporal encoder, followed by a Fully-

Connected (FC) layer, that further encodes the representa-

tion into a [1 × 256] feature vector. Finally, the represen-

tations of all branches are fused via concatenation and for-

warded to an FC layer that generates the final representa-

tion, which encodes the action segment into a [1×1024] fea-

ture vector. To form the inputs of this sub-net, we follow a

sparse uniform sampling policy on the input sequence. Re-

garding the case of visual scene representation in the two

datasets of interest, every single action of the action se-

quence that represents the activity has been encoded using a

segment-wise temporal encoder network1. Therefore, it cor-

responds to the feature-based representation of a segment

formed based on the adjacent frames. This formulation of

the subnet’s input enables the modeling of both short- and

long-term appearance variations of the scene elements.

3.2. Linguistic Action History Module

We argue that the knowledge of the preceding action oc-

currences, noted as action history, is important for learning

to estimate at a certain time in the video, the label of the

next-anticipated action (action forecasting/anticipation) or

of the active object in that action, as it provides efficient,

discriminative features to opt among potential candidate tar-

gets. We address this issue using a compact textual descrip-

1For example, in Assembly-101 each action instance has been encoded

using the effective Temporal Shift Module (TSM) [29]

tion of the preceding actions, in the compact form of action

labels, compared to captions that feature extensive textual

descriptions of actions. The sentence-based textual descrip-

tion of the preceding actions is processed using the NLP

sub-network that comprises a Word Embedding layer fol-

lowed by the same layer set as the branches of the action-

centric visual module. This representation forms a [1×256]
feature vector, which is concatenated with the representa-

tion of the action-centric module. The combined represen-

tation is then forwarded to a set of two FC layers to provide

estimations on the next action/object class.

Delving into this representation of the action history, we

restructure each label (length, semantic complexity, part-

of-speech element position (verb, noun, adverb)), in a spe-

cific lexical format depending on the task at hand (action,

motion verb, or noun anticipation), to facilitate the learn-

ing process. Specifically, in the case of the verb (coarse

motion motif) or noun (next-segment active-object) antici-

pation, we may have to deal with actions of a similar mo-

tion and object basis but of a different type of object upon

which the action is performed. For example, consider the

actions, screw a screw with hands and screw a screw with
screwdriver. When asked to predict the key object(s)2 of

the next anticipated action, the action history module should

maintain the key objects of the preceding action segments,

and therefore the knowledge that the tool-medium is of no

importance in this coarser anticipation problem. A similar

convention is also considered for the task of predicting only

the coarse motion motif label for the next action.

2As key objects we refer to objects that affect the outcome of the activ-

ity, e.g. in a toy assembly activity on the parts that can alter the result.
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Under this premise, for the tasks of verb/noun next-

segment prediction we restructure the available lexical in-

formation/labels of actions by discarding parts of the labels

that refer to the usage of extra tools (annotated as nouns) to

implement the corresponding action, i.e. the action labels

are restructured to follow the format action verb + noun. In

fact, this meta-processing of action labels that allow for a

decoupled prediction of the next action verb or next action

object(noun), is a common practice followed by the recent

datasets targeting isolated motion motif or next-segment ob-

ject prediction (e.g. Assembly-101 [47]). If such an ac-

tion label format is available for the dataset in question, this

label restructuring is skipped. The gain from such lexical

decomposition is that the prediction task becomes simpler

since the number of classes decreases, due to the fact that

labels sharing the same action verb or action object (noun)

are being merged, which allows for more samples to be as-

sociated with the specific motion motif or object state. Fi-

nally, in the case of the next action prediction (entire action

context), we do not restructure the initial labels since the en-

tire context of the preceding action labels is required to dis-

ambiguate between actions that share the same motion and

object characteristics but differ on the execution medium.

3.3. Visual Action Recognition Module

The two aforementioned modules can be regarded as in-

dependent action anticipation models. In addition, a vi-

sual action recognition model is incorporated independently

which during the inference stage operates on the same input

sequence, denoted as xt, as the action yt. The purpose of

this model is to provide estimates specifically for the current

action yt and fill the language-based action history.

Since the purpose of this model is to fill the action his-

tory, it remains independent from the action anticipation

modules without any influence or connection, it can be

trained separately and applied during the inference stage

of the framework. In this work, instead of developing

and training an action recognition module from scratch, we

leverage the capabilities of state-of-the-art (SOTA) action

recognition models that have been documented in the ex-

isting literature for each dataset. This approach is moti-

vated by our objective to construct a visual-linguistic ac-

tion anticipation framework, which can benefit from the ad-

vancements achieved by action recognition models specific

to each dataset, thereby enhancing its overall performance.

4. Experimental Setup
We evaluate the proposed framework on three popular

datasets of procedural activities. The main characteristics

of the datasets are described in this section, such as the tar-

get activities, camera viewpoints, annotation data as well as

multi-modal data and features provided (Section 4.1), fol-

lowed by the evaluation protocols.

The experimental evaluation for the proposed frame-

work follows a two-way narrative. Firstly, the population

of the action history module involves simulating the pre-

diction scores of a realistic action recognition model on a

given dataset. This step aims to showcase the model’s per-

formance in relation to the latest advancements for each

dataset. Subsequently, the complete potential of the model

is presented by populating the action history module with

past predictions obtained from an ideal visual action recog-

nition model for each respective dataset. We should note

that the realistic visual action recognizer performance fol-

lows the current SOTA action recognition scores reported

for each examined dataset. Finally, we conduct experiments

regarding different portions of the linguistic action history

to assess the effect of the different action history sizes on

the anticipation capabilities of the proposed framework.

4.1. Datasets

Meccano [41] is a multi-modal egocentric dataset created

to study the interactions of humans and objects in indus-

trial settings during instructional activities. Twenty differ-

ent participants were requested to build a toy model of a

motorbike. There exist 20 object classes, which include 16
classes that categorize 49 different toy components, 2 tool

classes namely the screwdriver and the wrench, the instruc-

tions booklet, and a special class, noted as a partial model,

for the under-construction toy object. Also, the dataset con-

tains 12 verb classes and 61 action classes. In total, 20
videos are provided, 11 of which are used for training while

the rest 9 videos are used for validation and testing.

The Meccano dataset provides gaze, object-centric fea-

tures, and hands-centric features. The former type of fea-

tures are computed based on the occurrences of the objects

in each frame following the work of [12, 13]. Gaze features

have been obtained by weighting the object-centric features

with the distance between the center of objects bounding

boxes and the gaze position in the image. The hand annota-

tions of the dataset that contain the bounding boxes of both

hands were used as hands-related features.

Assembly-101 [47] is a large-scale video dataset for the

analysis and understanding of procedural activities regard-

ing assembling and disassembling 101 ”take-apart” toy ve-

hicles captured from multiple viewpoints. In total 362
unique data sequences were captured synchronously by 4
egocentric and 8 static cameras and annotated with more

than 100K coarse and 1M fine-grained action segments, tar-

geting the challenging tasks of action recognition, action

anticipation, temporal action segmentation, and mistake de-

tection. Participants were instructed to disassemble and

then assemble a toy vehicle without any instructions, which

enhances the variability of the temporal ordering of actions

performed by the participants during the procedural activi-

ties. A set of 90 object classes is considered that includes 5
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tools together with the ”hand”. Also, 24 verbs are included

along with the object classes form 1380 fine-grained action

classes. A 60% of the available videos is used for training,

while the rest 15% and 25% are utilized for validation and

testing, respectively. Of the 101 toys, 25 of them are shared

between all splits which sets the dataset even more chal-

lenging. For the RGB input, 2048-D frame-wise features

are calculated using TSM [29] with an 8-frame input.

50Salads [53] is a multi-modal third-person instructional

dataset of cooking-related activities. Twenty-five different

participants prepared a set two mixed salads. The dataset

provides RGB videos, depth maps, accelerometer data, and

high- to low-level activity annotations. The dataset consists

of 17 action classes. We report top-1 accuracy averaged

over the 5 pre-defined splits following the work of [42].

4.2. Training, Testing & Input Configurations

As noted in Section 3, the structure of the action-

centered temporal modeling sub-net follows a three-branch

design, that acquires three vision-centered input sequences.

For the Mecanno dataset [41], input refers to the avail-

able feature representations for a) Gaze, b) Objects, and

c) Hands. For the Assembly-101 [47], the available TSM

[29] features for the RGB videos are utilized, which refer

to frame-wise [1 × 2048] feature vectors. We restructure

this representation to fit in the action-centric visual antici-

pation sub-net, as follows: a) split feature vectors into a set

of two [1 × 1024] feature vectors to drive input to the first

two branches and b) uniform sub-sampling is applied on the

feature vector of the current frame of size [1 × 2048] into

a [1 × 1024] and then calculate discrepancies between the

sub-sampled feature representation of the previous frame

to form the input feature vector for the third branch. For

50Salads [53] we utilized pre-extracted I3D features from

[10, 42], which correspond to frame-wise [1×2048] feature

vectors, which were restructured in the form described for

the ones of the Assembly dataset.

Regarding the training configurations, the batch size was

set to 4 for all datasets. The loss minimization is performed

using the Adam optimizer, with a learning rate of 0.001.

The input sequence length was set to 8 frames, while a ran-

dom clip cropping sampling scheme was utilized. During

the inference phase, we simulated the performance of the re-

alistic visual action recognizer, by exploiting the SOTA per-

formance of SlowFast [11] for Meccano, with 49.66% top1

accuracy, of TSM [29] for Assembly101 with 39.2% top1

accuracy, and, of Therbligs [9] for 50Salads with 76.5%.

5. Experimental Results
5.1. Action Anticipation

Predicting future actions is challenging, while modeling

and performance greatly depend on the designated time

horizon of the predictions. More specifically, predictions

can be made at different decision points in time (timesteps)

prior to the start of the next segment. In order to establish

an extensive performance assessment of the proposed

framework, we adopt the evaluation protocol reported in

Furnari et al. [13] where predictions are made at 8 different

anticipation timesteps before the start of the near-future

anticipated action. Noted as τant, the set of anticipation

time refers to discrete values in the range of [2s, 0.25s]
for a timestep of 0.25s. At the same time, the upper limit

of this interval, that is 0.25s is closest to the start of the

anticipated action.

Meccano: For the prediction of each action, the input to

our framework regards information originating from the se-

lected anticipation time point and runs backward, toward

the start of the video (see Figure 1). As described in the pre-

vious sections, we exploit visual information related to the

recent past (visual-action module) for modeling the short-

term action history and the long-term past with the linguis-

tic action history module. We report Top-1/Top-5 accuracy

of the predicted action of the next segment, according to

the [41]. In this work, the authors proposed the RULSTM

framework [13] to anticipate the next action. We employ the

publicly available code3 of RULSTM for Meccano to repli-

cate the experiments and also provide accurate results for

the prediction of the noun and the verb of the next action-

segment. We utilized a combination of information based

on haze, object-centric and hand-centric features that are

provided by [41], as those are the most discriminative fea-

tures according to their experimental evaluation.

We evaluate the proposed VLMAH framework for ac-

tion forecasting using different anticipation timesteps (see

Table 1), and under the use of a realistic and an ideal (ora-

cle) action predictor (denoted as VLMAH and VLMAHGT

respectively) for past actions that populate the action history

subnet. Under the use of a realistic visual action recognizer

for past actions, our framework is compared to [41] which

is the baseline and currently the SOTA method for the Mec-

cano dataset. Our method outperforms the SOTA in Top-

1 accuracy for the noun, verb, and action scenarios for al-

most every anticipation time, by a considerable margin. We

present to have a slight decrease in performance in the Top-

5 accuracy for the verb and action scenarios. This happens

due to the impact of the action recognizer in the linguistic

action history from which we draw information for making

predictions. Our accuracy margin increases significantly

from 4.1% up to 9.05% if we consider an ideal (oracle-like)

visual action recognizer that feeds the linguistic action his-

tory module with the true past action classes. Any enhance-

ment in action recognition accuracy is expected to similarly

boost action anticipation, too.

3https://github.com/fpv-iplab/MECCANO
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Top-1 / Top-5 Accuracy% @ different τant

Timesteps
Method 2s 1.75s 1.5s 1.25s 1s 0.75s 0.5s 0.25s
Meccano [41] 30.89/65.14 30.50/65.11 30.99/66.17 30.85/65.92 30.53/66.49 31.10/67.06 31.10/67.84 31.24/70.00

VLMAH

Noun
33.12/77.85 32.12/77.78 31.48/78.49 32.33/80.41 31.25/76.30 32.17/82.39 34.07/78.58 38.34/79.19

VMAHGT 15.91/72.58 27.63/69.46 25.37/65.83 28.93/73.29 26.21/70.31 25.08/71.73 28.83/69.81 29.50/70.88
VLMAHGT 37.57/79.40 41.33/82.88 35.09/80.75 35.65/79.33 39.35/82.31 40.55/84.94 39.55/81.24 40.63/80.54

Meccano [41] 36.06/ 93.19 35.11/93.01 34.96/92.98 35.92/93.19 35.32/93.38 35.39/ 93.62 34.75/ 93.76 35.00/ 93.83
VLMAH

Verb
36.35/93.00 35.42/92.33 35.61/91.31 35.96/92.88 36.73/91.08 36.30/90.62 37.19/91.14 39.06/90.93

VMAHGT 25.71/87.85 29.75/87.64 25.71/88.06 29.11/89.48 27.48/87.99 25.92/85.51 25.78/86.57 31.25/84.30
VLMAHGT 40.76/91.40 41.26/93.39 40.83/92.61 43.39/92.96 39.91/91.69 40.98/93.18 43.67/92.68 43.55/91.65

Meccano [41] 23.37/54.65 23.48/55.99 23.30/56.56 23.97/57.73 24.08/58.23 24.50/59.96 25.60/61.31 28.87/63.40
VLMAH

Action
24.75/54.23 24.35/55.16 24.22/53.09 22.79/53.98 28.90/58.13 25.29/53.16 26.47/56.71 29.12/ 58.01

VMAHGT 27.20/49.08 28.91/51.63 26.99/48.57 28.98/52.20 28.62/50.49 26.99/49.94 27.77/49.86 28.03/51.70
VLMAHGT 34.73/67.75 36.86/69.53 35.01/67.18 34.30/69.24 35.15/68.25 33.59/67.89 34.65/66.90 33.09/65.98

Table 1. Action anticipation accuracy for different timesteps (prior to the beginning of the next segment) for the Meccano dataset.
VLMAHGT and VMAHGT represent the two variants of the proposed method when ground truth annotations are used as the linguis-

tic action history. VLMAH makes use of the Linguistic Action History module while the action history is generated from the visual action

recognition module. The comparison is between the [41] and the VLMAH methods.

Top-1/Top-5 Accuracy% @ τant = 1s
Method Noun Verb Action
TempAgg [47] 17.19 / 55.65 24.20 / 75.38 08.62 / 27.73

TempAgg [47]* 18.99 / 57.29 28.52 / 77.16 09.00 / 29.79

VLMAH 27.70 / 54.37 42.17 / 82.52 14.18 / 30.95
VMAHGT 22.68 / 55.32 40.59 / 85.11 13.14 33.98
VLMAHGT 55.27 / 83.89 61.12 / 93.03 34.26 58.89

Table 2. Top-1/Top-5 accuracy results of [47] and the VLMAH

variants on the Assembly-101 dataset for anticipation time

τant = 1s, with or without the use of the linguistic action his-

tory module. TempAgg∗ denotes the single-task learning variant.

Assembly101: In [47] that have also introduced the

Assembly-101 dataset, action anticipation is performed at

the fixed timestep τant = 1s. To assess action anticipation

performance in [47], the TempAgg [49] method is used4.

Both the VLMAH and the TempAgg methods are trained

to generate predictions at anticipation time τant = 1s that

are evaluated using the Top-1 and Top-5 accuracy measures.

Since the test split of the dataset is not yet available, we

train and test both methods on the training and validation

splits, respectively, using the egocentric viewpoint and data

captured by the e4 camera which yields the best results

according to the experiments reported in [47]. Both the

proposed VLMAH and the TempAgg methods have been

trained/tested on data captured by this specific viewpoint.

Table 2 presents the accuracy results at τant = 1s.

We provide two results for our framework. We compare

our work with the state-of-art on Assembly-101 dataset,

the TempAgg [49] framework. Our work is a single-task

learning framework so for a fair comparison we test Tem-

pAgg [49] under two learning settings, a multi-task and a

single-task. The single-task setting is denoted with ∗ in Ta-

ble 2. The proposed approach outperforms state-of-the-art

performance for the verb, noun, and action predictions by

4Code online athttps://github.com/assembly-101

Top-1 Acc% @ τant = 1s

Method Action
DMR [55] 06.20

RNN [1] 30.10

CNN [1] 29.80

TempAgg [49] 40.70

AVT [14] 48.00
VLMAH 43.58

VLMAHGT 55.49

Table 3. Top-1 accuracy results on the 50Salads dataset for the

anticipation time τant = 1s.

a large margin for this large and challenging dataset, even

in the case that the linguistic action history module is not

used. In particular, by using a realistic visual action rec-

ognizer to populate the action history module, an increase

in accuracy of 13.65% for the verb prediction, 8.71% for

the noun prediction, and 5.18% for the action prediction

for τant = 1s was reported. Similarly to Meccano, the use

of an oracle-like visual action recognizer to verify/correct

past estimates in the history module further increases the

action anticipation performance of the proposed method.

Even if we use only the visual information (VMAH), we

outperform the TempAgg∗ framework in general for a

minimum of 4% up to 12%.

50-Salads: In Table 3 we present the accuracy scores at

τant = 1s, and compare our proposed framework with re-

cent works that tackle action anticipation in this dataset.

We can observe that under the use of realistic action, rec-

ognizer to validate/correct the past action estimates stored

in the action history module, our method is only surpassed

by AVT [14] (≈ 4%), with our proposed action anticipation

method however, having a vastly lower number of trainable

parameters (AVT: 378M, Ours: 10M), and ease in adapt-

1923



ing/incorporating the current action recognition advance-

ments in each dataset.

5.2. How much history is enough?

In this study, we conducted ablation analyses to evalu-

ate the performance of our proposed framework under var-

ious scenarios that pertain to the linguistic action history

module’s role and the required amount of linguistic action

history to enhance the predictability power of the frame-

work. Despite the fact that action history can obtain long-

term information faster and with less cost compared to the

visual features one question to be answered is “how much
history is enough?”. To answer this we evaluate our frame-

work on the Assembly-101 dataset with different lengths

of linguistic action history. From the previous sections, we

have acquired the results of the evaluation of our framework

with the full linguistic history of the observed actions5. In

this experiment, we assess our framework by reducing the

linguistic history to different percentages. The history per-

centages are in the range from 0% to 100%. Zero percent

indicates the use of the VMAHGT framework while all the

other percentages imply the use of the VLMAHGT frame-

work with different percentages of action history. In this

experiment, we use the VLMAHGT instead of VLMAH in

order to assess the effect of the available size of action his-

tory in case no errors from the Visual Action Recognition

module are present in the action history. As seen in Table 4,

the results differ between the action and the verb/noun pre-

dictions considering different amounts of observed history.

Initially, all experiments were performed using 100% of

the textual action history, which referred to a memorization

capacity of 854 actions (slowest assembler). Our experi-

ments show that, for the task of fine-grained action antici-

pation (full label), considering the entire linguistic history

was the best strategy since it allowed us to disambiguate

between cases of candidate actions that exhibited high sim-

ilarity in their preceding action history.

In contrast, for the prediction of the coarse-grained verb

and noun classes our experiments indicate that consider-

ing a more recent history is the best strategy. We observe

that considering a larger percentage of the action history

on these cases introduces noise that results in a consider-

able decrease in prediction accuracy, potentially due to sim-

ilarities in the sequence of verb/noun transitions between

different assembly scenarios. This is a valid assumption

since, as stated in Section 3.2, in these tasks the initial ac-

tion labels were restructured into a two-part-of-speech label

(verb+noun). This way, we discarded the fine-grained con-

text of the label that refers to the mediums (tools) utilized

to perform the action. For example, in the case of the ac-

tion label pair “screw cabin with screwdriver” and “screw

5A full history refers to the number of actions the slowest assembler

from the training set performed to complete the assembling task.

Top-1/Top-5 Accuracy% @ τant = 1s

History Noun Verb Action
0% 22.68 / 55.32 40.59 / 85.11 13.14 / 33.98

1% 56.98 / 83.35 62.33 / 92.78 28.49 / 53.69

12.5% 56.86 / 84.08 62.83 / 93.40 28.20 / 51.38

25% 53.86 / 83.03 62.92 / 93.06 28.96 / 53.15

50% 56.92 / 84.54 63.99 / 93.16 27.13 / 51.02

75% 56.19 / 84.53 63.20 / 93.21 29.83 / 53.75

100% 52.16 / 83.81 61.12 / 93.03 34.51 / 58.44

Table 4. The Top1 and Top5 accuracy scores achieved by the pro-

posed framework using variable lengths of the linguistic action

history on the Assembly-101 dataset. Zero percent (0%) is equiv-

alent to the use of VMAHGT variant, while other action history

percentage values refer to the use of the VLMAHGT .

cabin with hands”, which are two different action classes,

the restructuring operation merged the two classes into the

action “screw cabin”. We note that in Assembly-101 similar

format is provided as annotation data.

6. Conclusions and Future Work
This paper assessed the impact of a language-driven

history-logging method on action anticipation. This mech-

anism complements visual action representation by memo-

rizing prior actions. We explored its performance and re-

silience across diverse past action misclassification rates

and the length of encoded action history in anticipation

tasks (action, motion motif, object). Our experiments reveal

the strategy’s benefits, notably enhancing scores on tough

video datasets showing procedural activities. Moreover, the

proposed method proves robust even with limited memory

and high misclassification rates. Future research will in-

vestigate the effects of incorporating the history of preced-

ing actions on long-range action anticipation and examine

the impact of the temporal positions of miss-classifications

(e.g., short-term and long-term past) on action anticipation

accuracy.
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