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Abstract

With the increase of AI applications in the field of 3D
estimation of hand state, the quality of the datasets used
for training the relevant models is of utmost importance.
Especially in the case of datasets consisting of real-world
images, the quality of annotations, i.e., how accurately the
provided ground truth reflects the true state of the scene,
can greatly affect the performance of downstream applica-
tions. In this work, we propose a methodology with sig-
nificant impact on improving ubiquitous 3D hand geome-
try datasets that contain real images with imperfect annota-
tions. Our approach leverages multi-view imagery, tempo-
ral consistency, and a disentangled representation of hand
shape, texture, and environment lighting. This allows to re-
fine the hand geometry of existing datasets and also paves
the way for texture extraction. Extensive experiments on
synthetic and real-world data show that our method outper-
forms the current state of the art, resulting in more accurate
and visually pleasing reconstructions of hand gestures.

1. Introduction
The estimation of hand shape, pose, and appearance

from visual input has been a topic of great interest in the

fields of computer vision, Human Computer Interaction and

robotics for many years, due to the significant impact of a

potential solution to a wide range of applications. The prob-

lem presents several challenges including handling of am-

biguities, occlusions, variability of hand shape, movement

and context, and the requirement for real-time performance.

The Visual AI revolution that started in 2012 [27] also

revolutionized the field of 3D hand state estimation through

deep learning. This approach gradually gained popularity

since 2014 [68]. Soon, the research community actively

acknowledged the value behind collecting and training on

large amounts of high-quality annotated data, which has led
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Figure 1: Using (a) multi-view image sequences (videos)

of a moving hand, our method (DMVR) can refine (b) an

initial inaccurate hand pose and geometry estimate to (d) an

estimate of higher fidelity, beyond (c) what was attainable

with the SOTA approach in [24] (SMVR). Through DMVR,

datasets such as InterHand2.6M can be greatly improved.

to the proliferation of relevant datasets (see Section 2.2).

Still, the task of establishing new datasets is always rel-

evant, as there is no single dataset to serve all purposes.

Additionally, improvements in methodologies call for better

annotation quality, constantly feeding a need for new, bet-

ter annotated datasets, essentially rendering current datasets

of inadequate quality. This becomes immediately apparent

when looking at State-of-the-Art (SOTA) datasets, such as

InterHand2.6M. In fact, both in [40] and in [24], one can see

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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(a) LISA [9]

(b) Our method

Figure 2: We are motivated by how LISA [9] aspires to do

monocular estimation of geometry and color. It is a very

challenging task, which is reflected in the superimposition

of their results. For the same pose, DMVR can provide

ground truth that is of significantly better quality than the

one LISA was trained on, improving their results.

how easily discernible the culprit is, through visual inspec-

tion. Utilizing such datasets inherently requires overcom-

ing the shortcomings in annotation quality, as exemplified

in Fig. 2. Simultaneously, as involvement with AI inten-

sified, the “data rules” campaign emerged, championed by

Andrew Ng [43], Anandkumar [1], Gil Press [52], Michael

I. Jordan [22] and others. Along these lines, Karvounas et
al. [24] set out to address the issue at its source, trying to

“fix” the InterHand2.6M dataset and, thus, relieving all fur-

ther research from annotation issues. They introduced high-

fidelity ray tracing to extract as much detail as possible for

realistic differentiable rendering, in an effort to maximize

the accuracy and fidelity of the resulting annotations.

This work shares this motivation and aspires to further

improve datasets such as InterHand2.6M (see Fig. 1). In-

terHand2.6M, as well as most contemporary hand-related

datasets, employ MANO [59] as a highly regularized yet

expressive 3D hand representation. This is attractive for

several reasons, so, better versions of datasets, i.e. more ac-

curate MANO representations, are of significant value. The

work in [24] brought together converging evidence from

multiple views, through ray tracing, to super-sample and

constrain even more the process of fine-tuning inaccurate

3D annotations in an image-based fashion. We take this

notion several steps further by (a) extending the constraint

extraction across time, and, (b) by properly accommodat-

ing different types of constraint contributions through de-

parting from simple diffusion reflectance and going towards

full-blown radiance. In turn, this clarifies the contributions

of lighting and hand texture in the formation of image se-

quences of moving hands. We consider this a necessary fea-

ture, as otherwise, different observations of the same parts

of hand texture would clash, due to the effect of light, i.e.

changes in shadowing and shading as a lit hand moves. The

end result is that, as far as SOTA is concerned, fewer cam-

eras are now needed to deliver significantly better results,

yielding a version of InterHand2.6M that is better than be-

fore and has the prospect of still becoming even better in the

near future. A noteworthy side effect is that hand textures

where light has been factored-out can now be considered,

which opens entirely new improvement paths. Put plainly,

one might be better off observing a moving hand with fewer

cameras, getting not only an accurate 3D estimation, but

also more complete (because, as the hand moves, more of

its surface is revealed) and lighting-free hand textures.

2. Related Work
3D Hand pose estimation from markerless visual input

is a significant and challenging problem with a wide range

of applications. Researchers have been exploring it for

decades [55], and it continues to be an active area of re-

search today [37, 20, 17, 62, 61, 74, 16, 57, 45].

Due to the complexity of the problem, early approaches

for hand pose estimation primarily relied on multiview in-

put to mitigate ambiguities caused by occlusions. This ap-

proach has regained popularity in recent years [55, 11, 46,

48, 69, 18, 17, 60, 72], along with stereo input [49, 56, 32].

With the widespread availability of commodity depth sen-

sors around 2010, research efforts also focused on monoc-

ular depth or RGBD input [47, 26, 63, 53, 65, 35, 64,

44, 70, 37, 14, 57]. However, the emergence of deep

learning shortly thereafter, coupled with the availability of

hand-related datasets, led to the development of robust ap-

proaches that can effectively estimate 3D hand pose from

monocular RGB input [58, 75, 50, 5, 41, 20, 15, 13, 66, 28,

4, 74, 16, 61, 62, 51, 6, 36].

The most relevant work to the present one is [24]. Our

work builds upon [24] to incur two types of significant con-

tributions, namely, the dramatic increase in integration level

(from images to videos), as well as the quality of the end

results, i.e. the amount of improvement on given input. To

better serve the comparison between the two, we will refer

to [24] as Static Multi-View Refinement (SMVR), and to

our work as Dynamic Multi-View Refinement (DMVR).

2.1. 3D Hand Reconstruction

De la Gorce et al. [10] proposed the first holistic method

to reconstruct a hand from a scene using a monocular

RGB camera. Due to the fact that differentiable render-

ers were not available at that time, the authors had to cre-

ate custom implementations of many components of the

rendering pipeline in order to accommodate the optimiza-

tion task. More recently, using a differentiable render [25]

and MANO [59] with the combination of iterative refine-

ment, Baet et al. [2] proposed a deep learning-based method

to estimate the pose and shape of an observed hand from
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RGB images. Zhang et al. [73] proposed an end-to-end

refinement-based framework for recovering the shape of the

hand. Using synthetically textured hands, Boukhayma et

al. [3] proposed a DNN to recover the mesh of a hand from

an RGB image in the wild. Using a higher resolution hand

model than MANO, Kulon et al. [29] created the first graph

morphable model of the human hand. Lv et al. [34] pro-

posed HandTailor, a lightweight CNN based 3D hand mesh

recovery approach. The first self-supervised 3D hand re-

construction pipeline was proposed by Chen et al. [8]. The

input to their proposed network was an RGB image of a

hand. Using encoders, the method estimated the texture of

the hand, the light of the scene and the parameters of the

MANO model along with the camera. SeqHAND [71], es-

timated the 3D hand pose and shape, exploiting temporal

information directly from sequential RGB images, consid-

ering the appearance of a hand and incorporating motion

information. Chen et al. [7] proposed a hand model with

12,337 vertices and a Deep Learning architecture, implicitly

learning the texture and the reflectance of the hand, using a

self-occlusion-aware shading field, without taking account

the lighting conditions of the scene. Using a NeRF archi-

tecture, Corona et al. [9] reconstructed the shape and the ap-

pearance of a hand using temporal information. However,

the network cannot capture the details of the appearance and

resolve some depth ambiguities, despite using multiview.

Finally, HARP [23] used a monocular video of a masked

hand and they approximated the self-shadows of the hand

using a rasterizer. Among these works, those that require

graphics rendering do not use ray tracing as we do, but re-

sort to simpler approaches such as rasterization or implicitly

learned appearance synthesis. Furthermore, most of these

works rely on datasets, and therefore on the quality of their

annotations. We advocate that there is room for better re-

sults if these approaches utilize better annotated datasets.

2.2. Datasets

Mueller et al. [42] proposed two datasets, the Synth-

Hands and the EgoDexter, a synthetic and an egocentric re-

spectively. ObMan is a synthetically generated hand-object

interaction dataset proposed by Hasson et al. [19] with 141k

training samples, 6.4k validation samples and 6.2k testing

samples. FreiHand, the first multi-view hand-object dataset

with 3D hand pose and shape annotations was proposed

by Zimmermann et al. [76]. The dataset contains record-

ings of 32 subjects performing gestures or interactions with

objects, using 8 RGB cameras. Kulon et al. [28] created

YouTubeHands, a dataset that has been automatically an-

notated, sourced from YouTube. It consists of 54,000 im-

ages for training and 1,500 images each for testing and

validation purposes. InterHand2.6M is the largest so far

RGB 3D hand pose estimation dataset proposed by Moon

et al. [40]. The dataset is captured using 80 to 140 high

resolution calibrated cameras from 28 subjects performing

a variety of poses with one or both hands. For the annota-

tion, the authors employ a semi-automatic approach, which

is a combination of manual and automatic annotation [38].

The dataset also provides 3D mesh annotations built using

MANO [59]. Finally, ARCTIC [12] is the first dataset de-

picting free-form interactions between hand and articulated

objects, with 1.2M images.

2.3. Parametric Hand Models

Parametric models, pertaining to the geometry and the

appearance of the hand, are invaluable in the 3D recon-

struction of hands. MANO [59] is the most commonly

used geometric model, disentangling shape and pose. Deep-

HandMesh [39] is similar in nature, with the distinction of

relying on a more complex and expressive model (neural

instead of PCA). Qian et al. [54] propose the Hand Tex-

ture Model (HTML) to model hand appearance. The HTML

is a statistical model created based on scans of 51 subjects

from various ethnicities. For compatibility, the scans are

registered to MANO [59]. Piano [31] integrates anatomi-

cal components into its model, focusing specifically on the

bone structure and corresponding joints. This approach en-

ables it to generate believable hand motions that respect the

physical constraints of human anatomy. In a similar vein,

Nimble by Li et al. [33] uses MRI scans to inform its hand

model. This allows to capture nuanced information about

the muscles and bones of the hand. Moreover, Nimble in-

corporates texture representation of the hand, proposing a

comprehensive approach to hand modeling.

3. Methodology
We present our approach for improving the ground truth

annotations of a hand pose dataset, such as InterHand2.6M.

Accurate annotations of hand poses are critical for train-

ing and evaluating computer vision models for hand track-

ing and pose estimation. However, bundled annotations are

often inaccurate and inconsistent, which can hinder down-

stream applications. To address this issue, we propose a

method (Fig. 3) that uses a fine-tuning optimization process

to improve the quality and accuracy of the ground truth an-

notations by tapping the relevant imagery. Specifically, we

aim to generate improved annotations that better capture the

nuances and variations of hand poses in the dataset. Our ob-

jective is to enhance the alignment of 3D annotations across

all views, through 2D backprojections, which invariably im-

proves the fidelity of the 3D annotations, themselves.

3.1. Input

We largely model the input to our method after Inter-

Hand2.6M [2]. InterHand2.6M comprises several short

multi-camera videos, each briefly demonstrating a hand

motion or gesture. The input to our method amounts to
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Figure 3: During optimization, a time-independent texture and environment map serve as slack variables for photocon-

sistency, to accommodate consensus across views. For each multi-view, we estimate the hand geometry as a function of

time-dependent pose and time-independent shape, since the hand identity remains the same across the video. We employ ray

tracing to produce multi-views, which we compare with observations. The optimizer updates all relevant parameters using

their difference.

any of these (or similar) videos. Any such video V =
{Ic,t, c = 1, . . . ,C, t = 1, . . . ,T} comprises C views sam-

pled across T time instants, for a total of I = C × T images

Ic,t. Each view c is intrinsically and extrinsically calibrated,

and all cameras share a common frame of reference. Within

this frame, each time instant t is associated with a 3D an-

notation ht in the form of MANO poses, explicitly or im-

plicitly (i.e. a MANO pose is not provided but can be recon-

structed from other 3D annotations). We are not concerned

with other types of annotations.

3.2. Output

Our method yields time-dependent MANO pose and ar-

ticulation correctives δhpt and δhat , respectively. It also

yields a time-independent MANO shape hs, a hand texture

map hd and an environment map e. The correctives, applied

through simple addition on ht, along with the newly com-

puted shape, hand texture and environment map comprise

an improved annotation of the input video V . Treating no-

tation loosely, we refer to the improved result as V̂ although

it is not a video itself, but rather video annotations. We do

this because this information can be used to synthesize im-

ages that optimally match the input videos, which is in fact

the process we follow to optimize V̂ .

3.3. Processing

To improve the provided annotations our method solves

an image-based fine-tuning optimization problem, across

space and time, simultaneously. The objective of this op-

timization problem is defined as:

L (v) = λdataLdata (v) + λpriorLprior (v) , (1)

and

V̂ = argmin
v

L (v) , (2)

where v captures the whole state to be optimized, namely

δhpt
, δhat

, hs, hd and e.

3.4. Data term

At any given iteration within an optimization loop, the

data term Ldata quantifies the image-based difference be-

tween the current state v and the imagery V . To con-

vert 3D information into comparable images, Monte Carlo

Ray Tracing RMC (·) is employed [30] over procedural

3D hand meshes generated through the MANO decoder

DMANO (·) [59]. Canny edge detection is employed to put

extra weight on the comparison between the image-based

edges of the model and the corresponding edges in the im-

agery. This is relevant as it is not uncommon for hand parts

to stand out as intensity discontinuities. This yields the fol-

lowing formulation:

Ldata (v) =
C∑

c=1

T∑

t=1

‖RMC (DMANO (vc,t))− Ic,t‖. (3)

This basic formulation is augmented, through addition, with

the edge enhancement and, through multiplication, by the

cross-camera tone mapping methodology also described

in [24] (i.e., photo-consistency across views is assumed up

to some linear color transform).

A feature that sets apart DMVR and SMVR [24] is the

difference in the employed ray tracing mode. In SMVR the

rendering channel1 is set to “diffuse reflectance“, which per-

1This is a reference to the python-based implementation of Redner.
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tains to the fraction of light that is scattered in all directions

when it hits a surface. In DMVR the rendering channel is

set to “radiance”, which pertains to the amount of light en-

ergy per unit area per unit solid angle that is emitted or re-

flected by a surface. The difference between them is that

radiance includes both diffuse and specular components, as

well as other effects such as shadows and inter-reflections,

while diffuse reflectance only includes the diffuse compo-

nent. Without employing radiance computations one cannot

gain access to information that can factorize image forma-

tion, i.e. light-texture disentanglement, which is critical for

the success of DMVR. This sets apart the two in terms of

factorization, realism, and, compute, with the more realistic

variant (radiance) being almost 3× as costly.

Other differences aside (e.g. different terms), an impor-

tant distinction is that, as opposed to SMVR, in DMVR

the summation runs across time, as well. By including all

accessible constraints and by distinguishing between time-

dependent and time-independent variables, we accommo-

date all observational cues in a cross-pollinating fashion.

3.4.1 Hand Texture Map

As in [24], we employ a hand texture slack variable to ac-

commodate the photo-consistency assumption at the surface

of the hand. However, it’s important to note that [24] could

not work across time unless the hand texture is decoupled

from lighting. Otherwise, the photo-consistency assump-

tion that premises the formulation would be violated.

Similarly to [24], we adopt a multi-Level of Detail (LoD)

formulation. Every texel amounts to a blend of increasingly

larger 2D images that are interpolated to match a predeter-

mined texture size. This formulation allows the scheduling

of LoD during optimization so that rough information is first

extracted, and then more detail is accommodated.

We use Redner [30] for rendering the hand, which not

only allows gradients to be routed to texture updates in a

disentangled fashion, but also ensures that they are correct

in terms of sampling. Aliasing can be an issue when sam-

pling textures. The use of Redner mitigates this problem

and improves the quality of the rendered images.

3.4.2 Environment Map

As already mentioned, a key feature of our work is the dis-

entanglement between light and texture. This factorization

is what allows us to adhere to the photo-consistency as-

sumption, in the sense that different intensities for the same

parts of the hand texture can be explained by lighting con-

ditions. Since we are not interested in high-frequency envi-

ronment mapping, we use spherical harmonics to model the

environment light. We employ 12 coefficients to represent

the environment map, sufficient to capture most of the infor-

mation present in natural lighting conditions. The lighting

conditions in InterHand2.6M, in particular, are comfortably

accommodated in this formulation, as the goal of the devel-

opers during capture was to provide uniform lighting.

The use of Redner [30] as our rendering engine enables

the correct routing of updates from the loss term to the en-

vironment map. This allows us to incorporate the lighting

conditions into our optimization process and achieve more

accurate results.

3.5. Temporal Prior term

To account for the temporal relationship between the cor-

rectives across time t, we use a temporal smoothing term to

encourage smoother gesturing. This term is imposed on the

articulation correctives δhat
for any point during optimiza-

tion and is formulated as follows:

Lprior (δhat
) = ‖hat

+ δhat
−BF (hat

+ δhat
)‖ , (4)

where BF (·) applies time-wise Bilateral Filter-

ing (BF) [67] to the input signal. We use BF because

we need the articulation correctives to be robust against

discontinuities that are due to noise while accommodating

greater discontinuities that are likely to be structured.

There are two sources of structured discontinuities. The

first is the motion of the user, which could be abrupt. The

second and most prevalent source, is the irregular sampling

of videos in time in InterHand2.6M. After close inspection,

we observed that the videos are quite irregularly sampled

in time. Not only that, but each Ic,t is not associated with

exploitable time information (i.e. timestamp), in any way.

The effect that temporal smoothing has on optimization

is that it regularizes an ill-posed problem, which otherwise

would lead to deviations rather than convergence during op-

timization. We did not pursue filtering beyond the articula-

tion correctives, as this aspect of hand pose was experimen-

tally determined to suffice.

3.6. Optimization

Our approach involves a 3-stage optimization schedul-

ing process. In the 1st stage, we optimize over the envi-

ronment map e for 10 iterations. Subsequently, in the 2nd

stage, we optimize over the hand texture hd of dimensions

1024 × 1024, by enabling the 2 lowest LoDs out of 8, for

10 iterations. Finally, in the 3rd stage, we jointly optimize

over the all the aforementioned variables, enabling all hand

texture LoDs, as well has the hand shape hs, the pose cor-

rectives δhpt
and the articulation correctives δhat

, for 80 it-

erations. This order was experimentally determined to yield

good results, essentially starting from coarse appearance

and proceeding all the way down to fine details. Through-

out all stages, we optimize for color constancy as well.

Optimization was performed using the Adam optimizer.

The learning rates were experimentally determined to be

lhd
= 0.014 for the the hand texture, lhd

= 0.003 for the
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Figure 4: Comparison of the fine-tuning ability, between

DMVR and SMVR on synthetic data, against well-defined

ground truth. DMVR clearly outperforms SMVR in all as-

pects. The plots encode mean values and standard devia-

tions of error metrics, with lower values being better.

hand shape, lha = 0.0087 for the articulation correctives,

lpq = 0.0015 for pose rotational correctives, lpx = 0.0047
for pose displacement correctives, lcc = 0.001 for color

constancy, and le = 0.1 for the environment map. The ob-

jective term weights were set to λdata = λprior = 1. For

the BF, we use σ = 0.6, a = 0.5, and the window size is

set to 3.

4. Experiments
We compare our method with the method proposed

in [24] (SMVR), which we designate as the baseline. We

demonstrate on the InterHand2.6M that the SOTA is both

quantitatively and qualitatively improved.

4.1. Quantitative Evaluation

We shortly analyze the structure of InterHand2.6M

across axes that are relevant to our experimentation. In-

terHand2.6M contains several calibrated multi-view videos

of hand gestures (we focus on single-hand gestures in this

work). The recording cameras are distributed across a half-

sphere with the hand being at the center of this volume. The

videos regard 28 subjects performing more than 20 gestures,

each. The videos vary in the count of samples in time. Close

inspection reveals that the videos have varying rates and

are not timestamped. All cameras use a common reference

frame. In this reference frame, 3D annotations are provided,

for each sample, using the MANO representation. These

annotations are evidently inaccurate. As demonstrated in

[40], it is reasonable to assume that for imagery of the type

of InterHand2.6M, such annotations can be automatically

provided, with a reconstruction error that is no greater than

10mm (a 5mm error is claimed in [40]).

In order to circumvent the lack of reliable ground truth

in InterHand2.6M we resort to synthetic experiments, where

the ground truth is well-defined. The synthetic data resem-

ble InterHand2.6M by borrowing hand geometry informa-

tion from the dataset, skinning it with HTML [54] and light-

ing it artificially. We extend this across time, too.

For any candidate sample (a single hand gesturing video

within InterHand2.6M), we synthetically generate a ran-

domized approximation x0 of the provided ground truth,

which is chosen close to the actual ground truth x∗ in our

synthetic data, and is constrained to have a 10mm recon-

struction error. The generated imagery, the camera infor-

mation and x0 is provided to both DMVR and SMVR. If

T is the amount of time samples in the video, then DMVR

solves for the entire video jointly, while SMVR solves for

each time instant independently. All results are compared

with respect to reconstruction error. We vary the camera

count C, to estimate the improvement that DMVR has over

SMVR as a function of C. The camera selection prioritizes

cameras that see larger areas of the hand on average.

The results provided in Fig. 4 indicate that DMVR

clearly and always outperforms SMVR in fine-tuning x0,

measured in 3D error. Interestingly, DMVR seems to have

a better ability to incorporate the provided visual cues as the

number of cameras increases. The improvement in 3D er-

ror goes hand-in-hand with an improvement in reprojection

error, as shown in the same figure. According to the results,

it can be argued that time can be more valuable than adding

new camera views. Of course, this is not entirely indepen-

dent of the actual poses being captured, but is very relevant

to the task of designing data acquisition sessions, as in [40].

4.1.1 Hand Texture Reconstruction

DMVR extracts textures that are more faithful to the true

textures, compared to SMVR. This is attributed to two fac-

tors, namely the integration over time which reveals more of

the true texture and the light-texture disentanglement which

leads to the right kind of updates on the time-independent
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(a) (b) (c) (d)

Figure 5: Exemplar results on InterHand2.6M. The columns represent (a) actual data, (b) bundled annotations, (c) the im-

provement that DMVR can incur, and, (d) how DMVR reconstructs the relevant observations, through rendering all estimated

parts. The better fitting of the normal-mapped silhouettes is revealing of the improvement. It is important to note that the

shadows are simulated through ray tracing, are part of the optimization, and are factored out of the extracted texture.

hand texture. Despite the disentanglement, there are still el-

ements of ill-posedness in our formulation, as infinite com-

binations of color tones and intensities, on the lights and the

texture, can yield the same final result. To be robust against

this ill-posedness when comparing to ground truth textures,

we employ a robust Peak Signal-to-Noise Ratio (PSNR)

metric, which we term as ̂PSNR. ̂PSNR becomes invari-

ant to global color tone and intensity by being estimated up

to a 3× 4 linear color transform M :

̂PSNR (I0, I1) = argmax
M

PSNR (I0,M (I1)) . (5)

By computing the improvement r over all synthetic ex-

periments as:

r = ̂PSNR (Igt, IDMVR) /̂PSNR (Igt, ISMVR) , (6)

with Igt being a ground truth texture, ISMVR being the

texture reconstructed by SMVR and IDMVR being the tex-

ture reconstructed by DMVR, we estimate the average im-

provement to be r̄ = 3.84% over a baseline average of

29dB. For the combined improvement, that incorporates

the geometry estimation, as well as the estimation of the

environment lighting, the hand texture, and the comparison

of the backprojection errors corresponding to SMVR and

DMVR (see Fig. 4).

4.2. Qualitative Evaluation

We apply DMVR on real samples, drawn directly from

InterHand2.6M, to provide supporting evidence that what

is being reported to be quantitatively better than the SOTA

transfers to real data, too. For more results please refer to

the supplementary.

Analyzed in isolation, DMVR systematically incurs sig-

nificant geometry refinements on InterHand2.6M, as shown

in Fig. 5. The improvement is such that allows a high-

frequency reconstruction of the input (see Fig. 5d), which

could not be achieved for geometry estimations that do not

align well across views, as is the case with the bundled an-

notations (see Fig. 5b).

Analyzed in comparison to SMVR [24], Fig. 6 acts as
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Features Error Deterioration
Ledges , Ltemp 1.962 ± 0.4948mm -

Ltemp 2.01± 0.4801mm 2.44%
Ledges 2.032± 0.5394mm 3.56%
None 2.41± 0.7845mm 22.83%

Table 1: Ablation results. Evidently, employing all features

is best.

(a) Observation (b) DMVR (c) SMVR

Figure 6: Comparison between SMVR and DMVR on real

data. DMVR is evidently advantageous to SMVR in the

geometry refinement task.

evidence of the performance improvement that DMVR in-

curs. The improvement in Fig. 6 is easily discernible at the

boundaries, where differences in pixels can amount to dif-

ferences in millimeters. This difference is associated with

a decrease in the number of cameras (32 for SMVR, 13 for

DMVR) and the increase in the number of samples in time

considered (T = 1 for SMVR, T = 10 for DMVR). The

consideration of temporal information also led to the estab-

lishment of a full hand texture (see Fig. 7) which is not at-

tainable for SMVR, even in the case of the open hand. We

expect even better results for videos that are more revealing,

through more complex hand motions.

4.3. Ablation Study

We conducted an ablation study using 16 cameras, to as-

sess the impact of various features on the performance of

our method (Table 1). Using all features yielded the best

results. Incorporating both Ledges and Ltemp resulted in an

error of 1.962mm. Removing Ltemp caused a slight decline

in performance and excluding Ledges led to a 3.56% dete-

rioration. Not using any features significantly increased the

error by 22.83%. These findings emphasize the critical role

of both Ledges and Ltemp in achieving accurate results.

5. Discussion
In this work, we proposed a significant improvement

over the SOTA in reconstructing the geometry and ap-

Figure 7: An example of a texture that DMVR extracted

from real data, using a sequence of T = 7 multi-views. A

full texture has been recovered despite self-occlusions and

occlusions from the acquisition equipment itself.

pearance of hands from multi-view video sequences. Our

method combines temporal consistency with path tracing,

leading to accurate and detailed results. We demonstrated

the superiority of our method over SOTA on synthetic data,

as well as on real-world examples from the InterHand2.6M.

Our approach also outperformed existing methods in terms

of texture reconstruction.

We are thrilled about the possibilities of enhancing well-

established and widely recognized datasets by improving

their accuracy and extracting additional relevant informa-

tion, such as environment lighting and hand textures. This

opens the door for additional future improvements. For ex-

ample, we are interested in endowing our modeling with

physical substance, in order to more effectively handle more

difficult poses that require the incorporation of stronger pri-

ors to properly infer visually ambiguous situations (e.g.

fist). Incorporating physical substance will help us extend

our method to the case of two interacting hands. We are also

interested in applying our improvements to more similar

datasets (see Section 2.2) and to improve the computational

cost, the rendering (e.g. the latest installment of the Mit-

suba renderer [21] shows promise) and the optimization dy-

namics. Finally, an interesting direction of further improve-

ment is to extend our framework to jointly consider multiple

videos at once, so that the observation of time-independent

variables and its robustness, are further improved.
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