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Abstract

We tackle the challenging problems of 3D facial capture,
head pose and gaze estimation. We do so by extending Mo-
capNET, a highly effective deep learning motion capture
framework. By leveraging state-of-the-art RGB/2D joint es-
timators, the proposed network ensemble converts 2D facial
keypoints into a real-time 3D Bio-Vision Hierarchy (BVH)
skeleton in an end-to-end fashion, incorporating inverse
kinematics computations. Our approach achieves satisfac-
tory performance on benchmark datasets and also archi-
tecturally excels in challenging scenarios with significant
facial occlusions. Moreover, it runs in real-time on CPU,
which makes it an ideal choice for applications requiring
low-latency interactions. Overall, our unified approach for
facial capture, head pose and gaze estimation provides a
robust solution for capturing facial expressions and visual
focus, with huge potential in HCI and AR/VR applications.
Notably, our approach is naturally integrable with Mocap-
NETs for 3D human body and hands pose estimation, offer-
ing one of the few state-of-the-art unified approaches that
enable holistic recovery of 3D information regarding hu-
man gaze, face, upper/lower body, hands, and feet.

1. Introduction
Facial pose estimation and gaze detection are indis-

pensable in various computer vision applications, includ-

ing automotive safety, assistive technologies, collaborative

robotics, human-computer interaction, smart homes and

AR/VR. The rise of neural networks has significantly in-

fluenced the development of methods for monocular gaze

estimation [13], head pose estimation [4], and facial cap-

ture [74]. In line with the remarkable advancements seen

this year, such as the release of ChatGPT, previously dis-

Figure 1. (1) Given an RGB image, we extract 68 2D Multi-
PIE [28]/IBUG [54] facial landmarks, and 2 iris positions. We en-
code the points as enhanced Normalized Signed Rotation Matrices
(eNSRMs) [51] and feed them as input to our neural network that
directly emits a (2) Bio Vision Hierarchy (BVH) [40] skeleton, in-
cluding inverse kinematics that can (3) be directly used to animate
the vertices of a skinned facial model or (4) with the help of a 3D
renderering program like Blender [8], a realistic virtual avatar.

tinct areas of study in 3D human perception are converg-

ing [47, 66, 53, 72, 70, 68, 23]. The field of computer

vision research is witnessing a trend of integrating diverse

concepts under a unified subsymbolic knowledge base [32].

Motivated by this trend, we propose (see Figure 1) a

novel approach that extends the highly effective MocapNET

deep learning motion capture framework [1, 49, 50, 51, 48]

to now accurately estimate 3D head pose, facial capture,

and gaze detection. MocapNET was originally designed

for human body pose estimation, offering low computa-

tional complexity and an extendable Bio Vision Hierarchy

(BVH) [40] motion capture output format compatible with

various 3D graphics engines and editors. It has demon-

strated occlusion tolerance [50], has been extended to 3D

hand pose estimation [51], and was proven to be suitable

for low-resource devices like mobile platforms [48].

Building upon this foundation, the work presented in

this paper tackles 3D gaze and facial estimation, Novelties

of the method include leveraging facial symmetry and

being occlusion tolerant by design. We introduce a series

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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of novel additions to the baseline like incorporating Sobol

sequences [57] and integrated BVH rendering sample

generation among others, to overcome the encountered

challenges and to achieve our goal. Moreover, this work

completes the puzzle of transcending the boundaries for

total human capture using MocapNETs since now 3D gaze,

face, upper/lower body, hands, and feet can all be addressed

within the same unified framework.

Summarizing our contributions:

1. To the best of our knowledge, this is the first work

to directly regress facial 3D Bio-Vision-Hierarchy

(BVH) [40] motion capture data in an end-to-end fash-

ion from monocular RGB/2D data.

2. The proposed approach runs on CPU-only systems

with state of the art computational performance.

3. Combined with upper body [50], feet and hand [51]

MocapNETs, it yields a total body capture solution.

Our source code is publicly available on GitHub [2],

serving as a resource to bolster further research.

2. Related Work
Due to the broad scope of related work we will attempt

to address them on a per topic basis and subsequently iden-

tify similar methods to the one we propose in the holistic

total capture scenario. The methods can be broadly split

into two major categories, 1-stage and 2-stage methods. 1-

stage methods directly regress the output from RGB obser-

vations. 2-stage methods first estimate 2D landmarks from

RGB, and then regress the target based on this 2D data.

3D Head Pose Estimation: A recent survey [4] summa-

rizes 3D head pose estimation research. The problem is

long standing with early approaches using RGB-D cameras

and stochastic optimization [45]. The advent of neural net-

works yielded seminal works like Liu et al. [36] that regress

roll, pitch and yaw in 1 stage using convolutional neural net-

works (CNNs), while methods like [61] using 2D landmark-

based face alignment to improve accuracy. Our method has

conceptual similarities to ASMNET [21] which is a 2-stage

method that uses a statistical shape model to match 2D ob-

servations to facial structure and thus regress its pose.

3D Gaze Estimation: Gaze estimation methods focus pri-

marily on the eyes and typically employ head mounted RGB

cameras. A recent survey [13] provides a detailed study of

the topic. Influential 1-stage methods include ITracker [35]

which paired a CNN with an RNN for temporal refinement,

MPIIGaze [69] which uses a CNN to regress 3D gaze from

a single eye image, achieving high accuracy and robust-

ness to variations in head poses and illumination condi-

tions. Our method, however, falls in the 2-stage category

with notable methods that follow this approach being Eye-

Net [64] that operates on infrared images of the eye from a

head mounted camera. Methods that also handle head pose

include [44] for full views of the body far from the cam-

era. RT-GENE [22] achieves real-time performance and

demonstrated accurate gaze estimation in natural environ-

ments. The method features eyetracking glasses for record-

ing ground-truth and a smart inpainting GAN solution to

provide realistic training samples. A new class of heav-

ier offline algorithms uses Generative Adversarial Networks

(GANs) like GazeDirector [63], head2head [34, 17] and im-

plicitly deals with gaze detection by modifying gaze at will

while also maintaining high fidelity video output.

3D Facial Capture: A recent monocular facial capture

survey is offered by Zollhofer et.al. [74]. After a period

where RGB-D cameras were frequently used for 3D fa-

cial capture [31], there is now a recent push with meth-

ods using GANs [18] or Diffusion Models [9], that ex-

ploit their ability for texture completion and extract a 3D

morphable facial model along with texture, UV maps and

BRDF maps [46]. Methods like EMOCA [15] employ

very elaborate architectures with differentiable renderers

and provisions like “Emotional Recognition” and “Emo-

tional Consistency Losses”. Other methods employ the

same high quality model while also integrating a large num-

ber of frames from a video source to further improve visual

fidelity [27]. Neural Radiance Fields have recently been

coupled with morphable face models [5]. These methods

perform very dense and high quality facial capture which is

not at all possible in our case since our method just animates

a sparse BVH skeleton which by design offers a more lim-

ited expressional output. Our method is much more light-

weight in a manner similar to Kartynnik et.al. [33], how-

ever instead of regressing a facial tessellated mesh we em-

ploy purely rotational BVH configurations for the face. This

is a much higher level representation that does not encode

appearance at all, however it makes calculations (about e.g.

how open are the eyes, or the mouth, the gaze, eyebrow tilt

etc.) very accessible to potential applications since they can

be directly accessed as Euler angle floating point numbers.

Facial Models: Several 2D and 3D facial models have been

proposed, offering various degrees of detail and complexity.

A Facial 3D model survey [19] offers a comprehensive list.

Out of them two stand out having been used in many sub-

sequent works, 3DMM [58] and the FLAME model [15].

FLAME combined with the SMPL model makes the SMPL-

X [47] full body model which is commonly used in most

Total Capture Methods in the literature that we will exam-

ine in the next section. 2D Facial models are also important

and typically dictated by the popularity of facial databases

and their ground truth annotation error. Very sparse fa-

cial models make annotation more accurate and inference

during runtime faster while more complex facial models
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Figure 2. We propose three region separation of the human face with R/L eyebrows, eyelids and eyes and the nose/mouth. Upon receiving
2D facial joints we create three eNSRM [51] descriptors which are fed to an ensemble of encoders. The illustration highlights encoder
architecture which is densely connected with skip connections every three layers and a relatively high 20% dropout until layer 8. Encoder
output includes BVH inverse kinematics concatenate-able without any further processing and rendered using a skinned 3D model.

have the opposite effect. Influential 2D models include

XM2VTS [42] and Multi-Pie/IBUG [28] model which is

compatible with OpenPose [11] and thus very commonly

used in the literature. For that reason we adopt IBUG and

go into details regarding its keypoints in Section 3. Our

3D BVH output results can be used to re-animate a virtual

skinned avatar of arbitrary appearance. We inherit the BVH

armature of the baseline body pose estimation method [51]

and use MakeHuman [37] making our work integrateable

with open-source community developed tools.

Total Capture Methods: Our work combined with the

baseline for body [50] and hands [51], yields a Total Cap-

ture Method. The first total capture methods appeared in

2019 [47, 66]. They were offline and regressed coarse

3D facial expressions without explicit 3D gaze estimation.

These methods did not offer quantitative results on the fa-

cial capture task due to their main focus being the torso. The

first real-time total capture method [72], used a combination

of the SMPLH body model with a 3DMM [58] head model.

In 2021 two more Total Capture methods appeared [70, 53]

Notable recent methods include ZoomNAS [68] and a re-

cent work during 2023 focusing on sign language [23].

3. Methodology

The MocapNET [51] baseline formulation that we used

as the basis for the development of this work was initially

conceived for body tracking purposes [49]. It thus required

substantial methodology changes throughout its formula-

tion in order to be successfully applied to our problem. We

will attempt to provide a complete methodological descrip-

tion while also highlighting the most contrasting aspects.

The overall design of the method is illustrated in Figure 2.

Our framework receives an RGB image and performs 2D

Joint Estimation resulting in 68 facial and 2 iris input 2D

points. The appearance, shape and expression of a human

face can vary wildly. Thus, these points are a very sparse

2D projection of a very high dimensional space. We encode

these into eNSRM matrices [51] that represent the pairwise

2D joint relations. Depending on visibility, we feed the data

to encoder ensembles that directly regress BVH [40] motion

channel output (see Figure 2). Each trained encoder handles

a specific degree of freedom (DoF) of the BVH frame. The

first three encoder outputs are a positional component of the

X , Y , Z location of the head. The rest are rotational com-

ponents that describe the complete kinematic chain from the

neck and upwards. Thin client applications at this point do

not need to do any more inverse kinematics calculations and

can consume this output directly. Just by concatenating the

BVH channel outputs, for example a Raspberry Pi 4 gaze

detector application, can perform forward kinematics and

via a 3D ray/triangle intersection test, produce a “gaze at-

tention” event. Each configuration angle for the skeleton is

in relation to its parent and, thus, position/rotation invari-

ant with respect to the global pose of the head. To produce

“higher fidelity” output we can animate a skinned model as

seen in parts 4, 5 of Figure 1 and in Figure 5. BVH is na-

tively compatible with most 3D graphics engines and 3D

editors like Blender [8] which we used for the illustrations

of this paper. The total body capture system involves condi-

tionally running our encoder ensemble along with the other

MocapNETs [49, 50, 51, 48] depending on facial visibility

and overwriting the observed facial BVH motion channels.

2D Joint Estimator: Our method is oriented towards in-

the-wild, real-time operation using cheap off-the-shelf we-

bcam grade RGB sources. We experimented using two

different real-time RGB to 2D facial landmark estimators,

OpenPose [11] and Mediapipe [6, 25]. The OpenPose [11]

pose estimator produces 68 2D facial keypoints following

the Multi-Pie/IBUG [28] configuration, appended by the

two iris center locations. Mediapipe BlazeFace [6] produces

a tessellated FaceMesh with 468 points and eye-gaze data

needs to be extracted separately using MediaPipe Iris [25]

output which also tracks the iris size and eyelids. We man-

ually create 2D joint associations between the two models

in order to work using the sparse Multi-Pie/IBUG [28] stan-

3180



Figure 3. We visualize eNSRM [51] matrices using Blue color for
negative values and Green color for positive values, scaling colors
linearly according to each matrix element magnitude. The illus-
tration showcases the constructed eNSRM matrices for three RGB
inputs on the left showcasing substantial occlusions. Our divide
and conquer approach gracefully handles such cases without af-
fecting visible portions of the image. We use the same ensemble
for L/R Eye by leveraging 2D input / 3D output symmetries.

dard so the two 2D joint sources become interchangeable1.

Skinned Model: BVH skeletons are a very good fit for

the baseline body pose estimation methods [49, 50, 51, 48]

due to a 1:1 correspondence between BVH joints, the actual

human skeleton and 2D joint estimations produced by e.g.

OpenPose [11] using the BODY 25 [14] standard. Although

in our case this holds true for eye gaze vectors which are

common between the BVH armature and actual observed

eyes, unfortunately all other facial landmarks reside on the

skin and thus cannot be directly represented using a purely

BVH representation. To remedy this problem we intro-

duce a skinned model, rig it with our BVH armature, make

sure that skin vertices are correctly weighted and assigned

to skeleton bones, and that facial expressions can be suffi-

ciently represented without rendering artifacts like candy-

wrapping etc. We employ the Makehuman [37] creator util-

ity which creates 3D skinned avatars that can be controlled

using a wide range of controls (gender, race, weight, age)

and internally maintains a 1:1 correspondence to a BVH

skeleton armature. We also create a plugin [3] that uses the

Blender [8] versatile Python SDK and the MakeHuman For

Blender module [38] that allows seamless pose control and

rendering while also being open-source and extendable. We

map the parametric space over the facial controls and are

thus able to control the neck and head pose, eye gaze, mouth

movements, eyelids, eyebrows and nose sniffling. However,

having a model and a way to create training facial render-

ings from BVH parameters requires one more step since our

1For reproducibility we provide the association map between
OpenPose/IBUG/Multi-Pie facial landmarks (1..68) to mediapipe’s
FaceMesh vertices, which is (34, 227, 137, 177, 215, 138, 170, 171, 152,
396, 395, 367, 435, 401, 366, 447, 264, 70, 53, 52, 65, 55, 285, 295, 282,
283, 300, 168, 197, 5, 4, 102, 79, 2, 19, 309, 331, 33, 160, 158, 133, 153,
144, 362, 385, 387, 263, 373, 380, 61, 40, 37, 0, 267, 270, 291, 321, 314,
17, 84, 91, 78, 38, 12, 268, 308, 316, 16, 86).

method relies on 2D Joints and not synthetic RGB render-

ings. To do so, we manually created 2D joint associations

between the skinned MakeHuman models employed and

our OpenPose/IBUG/Multi-Pie facial landmarks. The used

facial model consists of 3 separate mesh geometries, one

for body and face, one for eyebrows and one for the eyes.

Having a 2D IBUG to 3D Makehuman model to BVH pa-

rameters triadic correspondance allows us to generate pixel

perfect samples to train our neural network ensemble.

Model limits: The baseline body pose estimation

method [49] used the BVH conversion [29] of the CMU

MOCAP database [59], recorded using a VICON motion

capture system, thus training on realistic and physically

plausible motions. Its extension to hands [51] was based

on the strict bio-mechanical limits of human hands. Unfor-

tunately, we found no publicly available facial BVH motion

capture data for this work, and due to the loose correspon-

dence between skinned model and BVH skeleton we relied

on manual probing of the model to discover its limits.

2D Input descriptor: The presented method falls into the

2-stage category. The RGB image is first processed through

a convolutional network yielding discrete 2D points with a

detection confidence for each one. Subsequently, 2D points

are converted via our formulation to 3D/IK BVH output.

We receive 68 facial and 2 iris landmarks with normal-

ized coordinates (ax, ay) in the range [0, 1] for each 2D

joint a. Each joint also carries a visibility parameter av
which we threshold against a configurable lower limit mark-

ing and thus eliminating low confidence or occluded joints

with 0, 0. For each pair of visible 2D joints a = (ax, ay),
b = (bx, by) we can define a new point c = (bx, by− |
b − a |) that translated the point b vertically by the length

of vector ab. These three points a, b, c are used to encode

the relation between points a and b as well as their relative

rotation towards a fixed vertical axis as follows [51]:

eNSRM(a, b) =

{
2
π tan

−1( |
�ab×�cb|
�ab·�cb ) a �= b,

| �aR| otherwise,
(1)

with · and × denoting inner and cross products. Each re-

sulting eNSRM(a, b) angle is invariant to 2D point cloud

translation and scale. Scale is encoded in the diagonal with

Euclidean distances from the R root joint, the relative po-

sition of joints using the rotation formed from triangle ab̂c,
while preserving their relative orientation to the world co-

ordinate system (with bc being parallel to the Y axis). In

contrast to the baseline eNSRM [51] formulation we take

into account that tan−1(R) −→ (−π
2 ,

π
2 ) and multiply val-

ues with 2
π to normalize them in the range [-1,1]. A pictorial

visualization of the matrix can be seen in Figure 3.

Sobol Sampling: Facial expressions differ much more sub-

tly in relation to human hands and limbs. A person crossing
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his arms and legs creates a vastly different 3D configuration

and 2D projections compared to a person making a T-Pose

and the same is true about the hands. Furthermore, being

able to observe a person from any orientation ±180◦ pro-

duces a much bigger variety of training samples compared

to faces. Thus, the face capture problem raises the unique

requirement of having to have very fine tuned output on a

relatively limited number of views. As already mentioned,

the large magnitude of 2D changes and the presence of ex-

isting MOCAP data [49] give the original method the option

to bypass this problem. For hands [51] the strict mechani-

cal limits and randomization manage to achieve a similar

effect. In the case of faces though we need a way to ac-

quire 2D samples in the high dimensional 3D BVH para-

metric space that finely cover the multi-dimensional space

in a homogeneous fashion. To this end we used Sobol se-

quences [57] that ensure a perfect quasi-random sampling

distribution when the number of samples N = 2x was ini-

tially for x up to 51 and in recent implementations up to

1111 dimensions. Due to the exponential number of sam-

ples and limited available GPU NN training resources, pick-

ing a correct value for x is an important decision. Assum-

ing a 3D armature of dimensionality D, in order for exam-

ple to be able to sample 2 distinct configurations for each

dimension, we would assume that we need N = D2 sam-

ples. Thus, the “alloted” number of samples per dimension

Ndim, assuming perfectly equidistant samples acquired us-

ing Sobol sequences [57] should be Ndim = N (1/D). Tak-

ing into consideration our ensemble facial partitions for

N = 220 = 1M samples for the R/L eye which has 12

output dimensions we get Ndim = 3.17 unique samples per

dimension which roughly means that partitioning their mo-

tion range in three non overlapping regions their min/max

and mean areas should be covered. Mouth controls occupy

18 DoFs and thus for N = 1M , Ndim = 2.16 which gives

less resolution, however still adequately covers our training

space. We should keep in mind that using Sobol Sequences

samples always uniformly cover the whole range of values

for each dimension so the Ndim metric is not a hard-limit

but rather used as a tool to conceptualize and quantify the

effective number of unique samples per dimension.

Dimensionality, Occlusions and Symmetries: We de-

scribed the basic building blocks that were used to facilitate

the NN learning task. These components can be combined

in many ways. A naı̈ve approach would be to just create a

single eNSRM descriptor describing the whole face in an

attempt to tackle the full problem at once. However, trying

this approach led to a number of unattractive properties.

First of all, as already mentioned, the number of samples

needed to adequately cover a multi dimensional space scale

exponentially to the number of dimensions. In more practi-

cal terms, required GPU VRAM to facilitate the combined

problem was also a prohibitive factor towards this solution.

A second issue we encountered is joint imbalance in con-

trast to their importance. In a theoretical example where

we would encode all 70 facial points of our IBUG+Iris rep-

resentation using an eNSRM matrix we would have 4900

input elements to our neural network. Out of those, only

two lines and two columns would encode the very impor-

tant information about eye gaze using only 276 elements.

Despite the very large importance of the eye gaze, roughly

95% of the eNSRM matrix would encode the rest of the

face, thus making eye gaze much more challenging for the

Neural Network to learn. The small relative motion of the

eyes compared to the jaw/mouth, or even more pronounced

motion of the whole head further exacerbated this issue.

A third very important cause for our decision to split the

face into three areas is making our method occlusion tol-

erant. As seen in Figure 3, by splitting the problem into

three sub-problems even in the complete absence of a whole

quadrant of the face due to occlusions there is no impact on

the visible regions. Having a single eNSRM for the whole

face would cause a substantial part of it to go missing thus

adversely affecting even the areas being perfectly visible.

A final attractive property that prompted us to break-up

the problem into smaller ones is that the human face ex-

hibits horizontal symmetry. We take advantage of this by

only training an ensemble for the Right Eye and resolving

the Left Eye by mirroring its X coordinates on the X axis

and then multiplying 3D BVH outputs by -1 to mirror them

back. This offers multiple benefits since the runtime re-

quires only 2/3 of the memory it would otherwise require,

there are no biases in handling either the left or right eye

and we where able to conduct training with a 2× speedup.

The mouth eNSRM descriptor uses the chin as its root

joint, chin → nose as matrix alignment and adding 2 joints

for inner and outer mouth, yields a 21×21 matrix. The right

eye eNSRM descriptor uses nose as its root and is aligned

horizontally in the virtual line that connects the edges of the

eyes. This is done to make eNSRM value magnitudes big-

ger. The eNSRM is comprised of these elements plus the

eyebrows, the eyelids, as well as the iris. We also include

the chin and IBUG joint #1 to provide a larger frame of ref-

erence. The points mentioned until now sum up to 15 out of

which the eye gaze is only encoded by a single row/column

with 29 elements out of 225. Although this is better com-

pared to a descriptor featuring the whole face, we proceed to

create 3 more virtual points to better encode the position of

the iris and make its features more prominent during train-

ing. The first virtual point is located halfway between the

nose and iris, while we create two more virtual points by

shifting the iris by (0.015,0.026) units and (-0.015,-0.026).

This brings the REye eNSRM descriptor to a size of 18x18

out of which 4 lines/columns (≈ 39%) encode the iris.

Model Training: We use Keras and Tensorflow 2 for train-

ing. Our ensemble is trained on a per encoder basis using
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the ADAM optimizer, a learning rate of 0.00017, a batch

size of 32 and a maximum of 24 epochs with early stopping

when loss delta is less than 0.01. We use a mean squared

error (MSE) loss function to incur heavier penalties on

outliers. Training each encoder separately combined with

sparse network input and output allows us to accommodate

a very high number of training samples. Training follows

the BVH hierarchical order with each encoder initialized

with its parent in a form of transfer learning which seems to

substantially help training. We use the SWISH [52] activa-

tion function, 32bit floating point precision, and a random-

ization seed set to 0 for reproducible experiments.

In contrast to the baseline [49, 50, 51] we normalize

BVH outputs to [−2, 2] to control our MSE loss maximum

weight updates, since we both want to heavily suppress and

penalize mistakes of the network, but at the same time not

to perform very large weight updates that might destabilize

network convergence. Due to our output normalization dur-

ing training mean average error and other metrics ceasing

to correspond to Euler angles after normalizing the BVH

ground truth, in order to better quantify our training we also

extract the R2 coefficient of determination [62]. Using the

configurations mentioned above we routinely achieve train-

ing R2 > 0.97 for the encoders that deal with the REye and

R2 > 0.90 for the encoders that deal with the mouth. Mo-

capNETs use a λ variable to scale the size of their hidden

layers, this can be used to compress the network for fur-

ther performance benefits, we use λ = 1.8 for the Mouth

ensemble yielding ≈ 3M parameters and λ = 0.6 for the

REye ensemble yielding ≈ 5M parameter ensembles with

encoders with the shape shown in Figure 2. Due to differ-

ent input dimensionalities using the same λ for the mouth

makes each encoder ≈ 1M leading to a very large network.

NN Encoder/Ensemble Outline: After training, individ-

ual encoders are concatenated into two different ensembles

for the Right Eye and Mouth. The Left Eye is handled by

horizontal mirroring as already mentioned and seen in Fig-

ure 3. Our implementation thresholds 2D joints as occluded

if their confidence is < 0.4. Ensembles with more than 15%

missing input are not executed to reduce 3D output noise

and unsettling grimaces by our model. In video streams we

treat missing input with two policies. We remember the last

confident configuration, or revert to a default facial expres-

sion where all BVH outputs for the region are set to 0. An

optional assumption is eyes moving together allowing us to

populate the occluded eye by mirroring the visible eye.

4. Experiments
To assess the performance and accuracy of our method

we use a combination of known benchmarks featuring

realistic samples and high quality ground truth. To

quantitatively assess our method we use the combina-

tion of AFW [73], FRGC [43], LPFW [7], HELEN [71],

Method Gaze Error
Deepwarp [24] 15.3◦

He et al. [30] 8.7◦

Xia et al. [65] 6.3◦

Ours [−30◦..15◦] 14.8◦

Ours [−30◦..30◦] 18.7◦

Table 1. 3D gaze estimation accuracy comparison in degrees.
As also seen in Figure 4, average accuracy is negatively impacted
(≈ +4◦) including camera views diametrically opposed to the eye.

Dataset Median Mean St.Dev.
AFW [73] 0.90% 1.44% 0.02

300W Outdoor [54] 0.95% 1.73% 0.02

300W Indoor [54] 1.46% 2.50% 0.03

IBUG [55] 1.57% 2.69% 0.03

XM2VTS [41] 2.01% 2.52% 0.02

FRGC [43] 2.26% 2.78% 0.09

HELEN [71] 3.42% 4.33% 0.03

LPFW [7] 3.36% 4.13% 0.03

Table 2. Quantitative results converting ground truth 2D data to
BVH output with our method, rendering the skinned model on Fig-
ure 5, getting corresponding 2D joints out of the 3D model and
comparing it to input after Procrustes analysis [26]. Results use
Normalized Mean Error (NME) w.r.t. to input image resolution.

Method m.a.d. Ex. time (sec)
Martinez et al. [39] 0.0514 42.5

Čech et al. [12] 0.1047 4.05

Uřičář et al. [60] 0.0970 3.46

Deng et al. [16] 0.0226 1.97

Fan et al. [20] 0.0309 1.29

Ours 0.1623 0.03

Table 3. Comparison of the mean absolute deviation (m.a.d.) of
2D fitting results for 68 facial landmarks with the associated mean
computational cost required. Our method uses 2D ground truth
which is regressed to a BVH facial configuration and reprojected
back to 2D points and compared to ground truth using procrustes
analysis [26]. Percentages reflect normalized pixel distance w.r.t.
to the doutter metric defined in Figure 6 of paper [54].

IBUG [55] and XM2VTS [41] dataset 68 point annota-

tions [10]. We use the Columbia Gaze Dataset [56] to assess

3D gaze and 3D head pose accuracy. For Qualitative results

we use 300 Faces in the Wild (300W) dataset [54].

Quantitative Experiments: The proposed ensemble of

neural networks takes as input a list of 68 IBUG-

compliant [55] 2D points, along with 2 iris locations and

generates a 3D BVH frame that represents 3D facial con-

figuration and gaze as relative rotations in a kinematic

chain. While this design simplifies measuring gaze and

head pose direction for benchmarking purposes, it also in-

troduces challenges in studying the quality of 3D facial cap-
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Figure 4. Left: Error accumulation graph for 68 joint 2D reprojections of our 3D output compared to ground truth using Procrustes
analysis [26]. X-Axis uses normalized coordinates w.r.t the input image dimensions. Middle: Quantitative 3D eye gaze accuracy results
measured against the Columbia Gaze Dataset [56]. The dataset contains RGB images from 56 subjects with gazes fixed at specific intervals.
We regress and plot the angular error of the right eye using color, plotting all subjects adjacent one to the other. Each 3D line depicts results
for all subjects. X , Y and Z axes depict horizontal/vertical gaze angle and head pose angle in relation to the camera. Right: Quantitative
3D neck/head pose accuracy seems uniformly good across all subjects with slightly elevated errors around the −30◦ limit.

ture. For head pose and gaze, we utilize the Columbia

Gaze Dataset [56], which provides high-quality images

(5184×3456 resolution) of 55 subjects. The subjects rest

their heads on a calibrated height-adjustable metallic chin-

rest, with their eyes stabilized 70cm above the floor. The

dataset captures a large range of horizontal and vertical

gazes using a 5-camera system positioned 2m away from

the subject. This yields 105 different gaze/pose combina-

tions per subject. The ground truth for the dataset is given

in terms of head pose and the relative angle of the person

with respect to a wall located 2.5m away, featuring a grid

with the various recorded focus points. Our method gener-

ates individual 3D vectors for each eye and the entire head.

The ground truth vector can be easily converted to each indi-

vidual eye by considering the inter-pupillary distance (IPD)

measurement. The average IPD for human males is 0.064m

and 0.0617m for females. We use an IPD of 0.06285 for our

calculations slightly penalizing our measurements but mak-

ing them gender neutral. We extract 2D landmarks from the

RGB frames using OpenPose [11] + iris data supplied by

Mediapipe Iris [25]. The results for gaze and head pose,

shown in Figure 4 and Table 1, indicate satisfactory accu-

racy across subjects. However, accuracy degrades when the

camera view is diametrically opposite to the eye. Since our

method relies on 2D data, occlusions in the 2D space ad-

versely affect our 3D BVH output, as expected. In contrast,

head pose estimation appears to be more consistent across

all subjects/views, which can be attributed to the availability

of more 2D joints that enable better regression results.

Quantitatively assessing facial capture is more challeng-

ing since our method regresses all facial controls as 3D vec-

tors rather than 2D or 3D points. Additionally, our method

is not trained on any samples from the datasets, and employs

a constant BVH kinematic skeleton for any input 2D face.

While this guarantees consistent output adhering to strict

limits and predictable facial configurations, it makes accu-

racy measurement more difficult. Direct output to ground

truth comparisons are heavily influenced by the discrepancy

between our constant model and each specific head.

Another challenge arises from image aspect ratios. Our

proposed method assumes the commonly used 1920x1080

video resolution (aspect ratio 1.777) to accommodate a full

view of the body for total capture and be compatible with

off-the-shelf cameras. Head pose estimation methods on

the other hand use rectangular patches centered around the

head with an aspect ratio of 1. Since we receive 2D infor-

mation in normalized coordinates, we need to pad 2D input

to maintain consistency, but this shifts the 3D position of

the output, requiring careful consideration in experiments.

To address these intricacies, we leverage multiple fa-

cial datasets, employ 2D comparison and use Procrustes

analysis [26] to mitigate model discrepancies, aspect ra-

tio differences, and positional offsets. Similar complex-

ities might explain why most other total capture meth-

ods [47, 66, 53, 23] forego facial accuracy assessment. The

two 3D total capture faces that don’t , use MTC-Face [67].

Zhou et al. [72] reports landmark/photometric pixel error,

while [70] tests on 750 frames of [67]. The body [49, 50]

and hand [51] aspects of our baseline have been thoroughly

investigated, so we focus on specialized head, gaze and face

experiments establishing a comparative context within the

broader landscape of standalone methodologies in the field.

We use OpenPose [11] and MediaPipe Iris [25] to ac-

quire 2D landmarks from RGB images. We remove them

as variability factors for accuracy measurements by directly

using provided 2D ground truth as our input. After regress-

ing the 3D BVH facial frame from ground truth 2D, we

reproject 3D results back to 2D and study the error intro-

duced by our NN. To remove positional, aspect ratio and

model appearance error from the measurement, we perform
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Figure 5. Qualitative illustrations with RGB input images (left) and retrieved renderings (right) from 300W [54] 2D landmarks and iris
data extracted with MediaPipe Iris [25]. The BVH output acquired by our NN ensemble is rendered via MakeHuman [37] and Blender [8].

Procrustes analysis [26]. Results in Figure 4 and Table 2

show that overall errors are relatively small. Although intro-

duced error is larger than some other methods (Table 3), our

method’s computational cost is orders of magnitude lower.

Running 3 NN ensembles (REye/LEye/Mouth) in series, us-

ing TF-Lite, fp32 precision and no NN pruning or other op-

timizations on a Raspberry PI4 computer yields an inter-

active throughput of 4.43Hz. Running the same ensemble

converted to Open Neural Network Exchange (ONNX) on

a 10 year old Intel(R) Core(TM) i7-4790 CPU yields a real-

time 30.87Hz using only CPU resources.

Qualitative Experiments: Figure 5 provides an illustra-

tion of our BVH results rendered in Blender using a Make-

Human generated model. Our method accurately translates

head pose and gaze, but facial expressions have lower fi-

delity since the 3D model lacks the intricate wrinkled de-

formations seen in the RGB image. Nonetheless, expres-

sions such as wonder, smiles, anger, fear, and talking are

discernible, which was initially surprising given the limited

number of bones used. Failure cases arise when extreme

mouth deformations are not properly covered by the range

of motion of the mouth bones. To understand why this hap-

pens, we can examine the middle of Figure 1 and imagine

the mouth being made of soft fabric and being bent using

five toothpicks. Although basic expressions like opening,

closing, and smiling are possible, the range of motion re-

mains limited due to the sparsity of the bones. Importantly,

this limitation is not a drawback of the method or the BVH

container itself. A BVH skeleton can have an arbitrary num-

ber of joints, so a more detailed 3D model, accompanied by

additional BVH controls and, of course, 2D input points,

could facilitate a wider range of expressions.

5. Summary

We proposed a novel approach for head pose, gaze esti-

mation and 3D facial capture, by extending the MocapNET

deep learning motion capture framework. The proposed

method leverages RGB/2D joint estimators and converts

2D facial keypoints into a Bio-Vision Hierarchy (BVH)

3D skeleton in real-time via an ensemble of NN encoders.

The approach is computationally very efficient and achieves

good results on benchmarks, while architecturally excelling

in challenging scenarios with significant facial occlusions.

Its real-time capabilities and high level open-standard out-

put make it a robust solution for applications requiring low-

latency understanding of facial expressions and visual fo-

cus, with potential applications in human computer interac-

tion and VR/AR. Furthermore, our research is a significant

advancement for MocapNETs positioning them among a se-

lect few [47, 66, 72, 53, 68, 23] of state-of-the-art architec-

tures that can perform holistic 3D total human pose capture.
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