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Abstract

In a variety of maritime applications, the task of ac-
curately detecting ships from remote sensing images is
of significant importance. Various object detection algo-
rithms localize objects by identifying either their Horizon-
tal Bounding Boxes (HBBs) or their Oriented Bounding
Boxes (OBBs). OBBs provide a far more accurate/tighter
localization of object regions as well as their orientation.
Several ship detection datasets provide annotations that in-
clude both HBBs and OBBs. However, many of them do
not include OBB annotations. In this work, we propose
a method which takes the ships’ HBB annotations as in-
put, and automatically calculates the corresponding OBBs.
The proposed method consists of three main parts, (a) ob-
Jject segmentation that is built upon the Segment-Anything
Model (SAM) to calculate object masks based on the infor-
mation provided by the HBBs, (b) morphological filtering
which eliminates possible artifacts stemming from the seg-
mentation process, and (c) contour detection applied to the
post-processed masks that are used to compute the optimal
OBBs of the target objects. By automating the process of
OBB annotation, the proposed method permits the exploita-
tion of existing HBB-annotated datasets to train ship de-
tectors of improved performance. We support this finding
by reporting the results of several experiments that involve
standard datasets, as well as state of the art object detec-
tors.

1. Introduction

The detection of ships in remote sensing satellite images
is a task that is both challenging and important for differ-
ent types of applications. Existing datasets that focus on
ship detection, provide annotations that include Horizon-
tal Bounding Boxes (HBBs), which describe the horizontal
rectangular region where objects lie, and Oriented Bound-

ing Boxes (OBBs), which tightly enclose the object in
the image and provide information about its center, width,
height, and orientation. Because of their characteristics,
OBBs are a better choice for the task of ship detection and
localization. Moreover, in cases where ships are moored
close to each other and their orientations is neither hori-
zontal or vertical, HBB object detectors like YOLO [19],
Faster-RCNN [20] or SSD [13], fail to correctly detect all
ships within the image [15,25].

1.1. Need for more training data

OBB detectors need to be trained on datasets where ori-
ented bounding boxes ground truth is available. However,
not all datasets provide OBB annotations (e.g., [ 1], [2]). To
enrich the training potential of existing datasets and to come
up with OBB ship detectors of improved performance, in
this work, we propose a method which can automatically
create OBBs for ship detection datasets, using only the pro-
vided HBB annotations as input. The proposed method is
based on the Segment-Anything Model (SAM) [9], which
is used to segment objects, given input prompts that can
be obtained from the HBB ground truth. These segmented
objects are in the form of masks that determine the image
pixels where the objects are located. However, a large num-
ber of the generated masks exhibit artifacts such as object
fragmentation in several connected components. This is
resolved with morphological filtering, that connects possi-
bly disconnected object regions, leading to more compact
and accurate object masks [1]. In order to obtain OBBs
that correspond to the segmented objects, we capitalize on
the fact that the target OBB is the bounding box of mini-
mum area. Therefore, we compute the boundaries of the
post-processed object masks which are fed into a Minimum
Area Rectangle calculation method which returns the target
OBB.

The aforementioned process creates reliable OBBs for
ship detection datasets, making exclusive use of the ob-
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jects” HBB annotations. This is validated through exten-
sive experiments on two benchmark datasets for ship de-
tection, HRSC2016 [16] and ShipRSImageNet [26], where
we make use of the HBBs of their training sets to calcu-
late OBBs with the described method. Then, using these
OBBs we train a wide range of OBB object detectors (i.e.,
[4,6,7,12,22,24]), and compare their performance on the
test set to that which would have been obtained if the ground
truth OBBs had been used.

1.2. Need for removing dataset biases

In addition to creating more training data automatically,
the proposed automated OBB annotation can lead to the re-
duction of spatial, scale or orientation imbalance in an ex-
isting dataset. Specifically, orientation or aspect ratio bias
among the objects in the dataset, may lead to less accurate
detections if they are used for training. Data augmentation
methods have shown that they can lead to increased perfor-
mance both in image classification [10, 17,21] and object
detection [27,30] tasks. When it comes to object detec-
tion, geometric transformations (i.e. rotation, scaling) are
the most effective ways to resolve these imbalances, since if
they are applied correctly to both the images and the annota-
tions, more orientations and sizes will be visible to an object
detector during training. This can be done by rotating exist-
ing samples in order to cover the orientation space, and thus
balance the number of samples per orientation. In our work,
we demonstrate that data augmentation performed based on
the proposed method leads to improved performance of ex-
isting OBB object detectors.

In summary, the main contributions of this paper are the
following:

* We provide an automated method which creates OBBs
in ship detection datasets, built upon the SAM model
and morphological filtering operations, using only the
HBB ground truth as prior information.

* We develop a data augmentation technique, using the
generated OBB annotations, to reduce orientation im-
balance. We prove that by using augmentation we can
increase the baseline performance of existing object
detectors in ship detection datasets.

2. Related Work
2.1. Ship Detection

Ship detection in satellite images has been trending in
the research community for a long time. The first works in
that field mainly focused on separating ships from the back-
ground by implementing shape and texture analysis. For
instance, Zhu et al. [29] propose a method which separates
possible candidate regions from the sea using edge filters,

Method Number of stages | Box type
YOLO [19] one-stage HBB
SSD [13] one-stage HBB
Fast-RCNN [5] two-stage HBB
Faster-RCNN [20] two-stage HBB
R3Det [24] one-stage OBB
Rotated-RetinaNet [12] one-stage OBB
ReDet [7] two-stage OBB
Oriented-RCNN [22] two-stage OBB
Rol-Transformer [4] two-stage OBB
S2A-Net [6] two-stage OBB

Table 1. List of popular object detectors, with their number of
stages and bounding box type.

and then removing false detections using spatial object fea-
tures like the length-to-width ratio which is considered to be
different for ships compared to other types of objects. Yang
et al. [23] focus instead on a sea surface analysis, which
makes use of image intensity frequencies to segment-out ab-
normalities in sea regions. By using a ratio of background
pixels to random noise pixels, the regions with candidate
ships are detected. Proia et al. [18] assume a Gaussian dis-
tribution that describes the sea regions, and use a Bayesian
decision method to identify the regions corresponding to
ships.

All these methods have a common limitation which is the
need for the manual selection of thresholds, which is also
highly dataset-dependent. Also, these methods can be used
mostly in datasets where the ships are in open sea where the
texture differences between ships and background, includ-
ing clouds, is more apparent.

Modern ship detection methods make use of Deep Learn-
ing algorithms that are based on Convolutional Neural Net-
works (CNNs), to extract image features. One of the prop-
erties that discriminates object detectors is their prediction
outputs, which can be either HBBs or OBBs. Another dif-
ference is the number of stages used for the object detection
process. Two-stage object detectors firstly generate candi-
date object locations, and then the model evaluates whether
these locations contain an object and if they do it determines
the class in which it belongs. One-stage object detectors on
the other hand, do the entire process in one go, using anchor
boxes that slide over the entire image, and for each location
a class probability and bounding box estimations are calcu-
lated. Table I provides a list of popular object detectors,
specifying their architecture and the type of the bounding
box they deliver as an output.

Liu et al. [14], built on the basis of the Fast-RCNN ob-
ject detector [5] and proposed a Rotated Region CNN (RR-
CNN) consisting of a Rotated Region of Interest pooling
layer (RRol) and a Rotated Bounding Box regression model
(OBB), to allow the detector to extract features from rotated
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Figure 1. Overview of our proposed method. The images, together with their HBB annotations, are fed as prompts to the SAM model,
and the calculated object masks pass through a morphological closing operation and a contour detection function that finally provide the

corresponding OBBs.

regions and predict the OBBs more accurately. Zhang et
al. [25], builds upon the Faster-RCNN object detector [20]
and proposed a Rotated Region Proposal Network (R?PN),
which expands the degrees of freedom of the anchor gen-
eration mechanism in order to include not only different
sizes and aspect ratios but also different orientations, thus
enabling it to generate arbitrary-oriented region proposals.
Work that was done on improving single-stage oriented ob-
ject detectors by Yang et al. [24], focused on fixing the fea-
ture misalignment problem by proposing R3Det, which im-
plements a feature refinement module to match refined co-
ordinates with the respective feature points. Other oriented
object detectors like ReDet [7], Rol Transformer [4] and
Oriented-RCNN [22], are two-stage and focus on improv-
ing the alignment of the RRols, mostly through extraction
of rotation invariant features, and on the generation of more
accurate proposals with better proposal representations.

2.2. Data augmentation

It has been shown that the strategy of tweaking the data
in given datasets in order to widen the range of the cur-
rent data properties (e.g. illumination, scale, rotation), can
lead to performance improvements in several computer vi-
sion tasks. Krizhevsky et al. [10] and Simonyan et al. [21]
show that performing data augmentation using translation
and intensity changes leads to reduced image classification
errors. Zoph et al. [30], show that in object detection prob-
lems, a combination of color and geometric transformations
which, in turn, also affects the Bounding Boxes, leads to
improvements of the detection performance of several ob-
ject detectors in different benchmark datasets. A different
approach for data augmentation is proposed by Zhong et
al. [27], who implement random removal of patches within
either the entire image or within object regions. The result
of this strategy was an increase of accuracy in both image
classification and object detection tasks.

3. Method

The proposed method (see also Figure 1) can be summa-
rized as follows. The input images, as well as their annota-
tions, are given as input to the SAM predictor. The output
is in the form of masks that specify the segmented object
regions and are used to calculate the OBBs of each object,
via morphological filtering and contour detection. The fi-
nal masks are then passed through the ground truth overlap
calculator, which calculates the IoU between the HBBs of
the predicted masks and those of the respective ground truth
objects. We manually define a threshold for the IoU, above
which we consider the detection as valid. In this case, the
OBBs of the accepted objects are then represented as the
2D coordinates of their four corners and constitute the final
output of the model.

3.1. SAM

The Segment-Anything Model (SAM) [9], is a novel im-
age segmentation method which enables a zero-shot gen-
eralization, namely it can segment objects even in images
that are in a significantly different domain than the one on
which the model was trained. The implementation is based
on an encoder-decoder architecture. Two different encoders
are implemented, each taking a different type of input. The
first takes the image as input and maps it into an embed-
ding space. The second takes prompts as input, which can
be dense (mask) or sparse (points, boxes). The purpose of
these prompts is to determine the areas where the segmen-
tation has to focus on. The outputs from both encoders are
then passed through a mask decoder which returns differ-
ent sets of segmentation masks that define the segmented
regions of an image, each with a confidence score.

The most important factor that determines the quality of
the detection, is the accuracy with which we determine the
region corresponding to an object. To achieve this, we make
use of the SAM predictor and we apply it to all images and
all objects. SAM can segment objects in a specified region

832



Scores: Obj1:0.77, Obj2:0.96

Scores: Obj1:0.96, Obj2:0.76

Figure 2. Segmentation results for an image with two objects.
Green and red stars correspond to foreground and background
points respectively. The green boxes that surround the objects, are
their HBBs. In the top figure, foreground points lie on the diagonal
directed from bottom left to top right, and vice versa in the bottom
figure. Each setting yields a different score for the segmentation
of each object.

given a set of m 2D points which are specified to belong to
the image foreground or background.

The main assumption upon which our implementation is
based, is that the objects at hand are elongated, meaning that
their length is considerably larger than their width. Since
the objects we are interested in are ships, we expect that
this is a valid assumption. An important feature that elon-
gated objects present however, is that their orientation will
lie upon one of the two diagonals of the surrounding HBB.
Due to the fact that we don’t have any prior knowledge re-
garding which diagonal that is, we adopt the following strat-
egy. We take the center of the object’s HBB as a foreground
point because we are sure that it belongs to the object. The
remaining m — 1 points are equally distributed across the
two diagonals so that each diagonal has (m — 1)/2 points,
symmetrically placed with accordance to the center point.
Then, we run the segmentation for two cases as shown in
Figure 2. In the first case, the input points of one diagonal
are treated as foreground points and the rest as background,
and in the second case the opposite. Both segmentations
yield a score that quantifies SAM’s confidence about the

accuracy of the segmentation and we assume that the one
with the highest score has correctly segmented the object at
hand. The output of the segmentation for one image, is a set
of binary masks, each corresponding to one object. Each
mask has the same size as the input image, with 1s in the
pixels that belong to the object and Os otherwise.

3.2. Morphological filtering

The segmentation masks specify which pixels belong to
a certain object. However, a problem that arises is that the
pixels belonging to the mask do not necessarily form a sin-
gle connected component. In several cases there are gaps
in the interior and the border regions of the mask. This is
resolved through a morphological closing operation:

AeB=(A®B)o B. ey

In Equation (1), A is the binary mask resulting from SAM
and B is the structuring element used for morphological fil-
tering. Symbols & and & denote dilation and erosion oper-
ations, respectively.

Essentially, the closing operation firstly expands the
mask according to the structuring element, which leads to
the filling of any gaps within the mask, and then reduces it
by the same element, which removes the expanded regions
at the edges of the object area. We select an ellipse-shaped
structuring element B whose size is adaptable to the length
of the object at hand. The ellipse however, due to its eccen-
tricity, has to be directed in the same angle as the object. To
achieve that we find the diagonal of the HBB upon which
the object lies, via the SAM segmentation score, and then
we calculate the inverse tangent of the angle formed be-
tween the object’s direction and the horizontal x-axis. This
gives the orientation the ellipse should have, and we also
specify the minor and major axes.

3.3. Contour detection

After the closing operation, the resulting masks are used
for the calculation of the object region boundaries. This is
done by implementing a contour detection method which
initially detects changes in the intensity of the binary im-
age, and then after implementing a connected component
analysis, it returns one or more sets of points, that enclose
the regions containing the object pixels. The reason why
there may be more than one contours, is that even after the
closing operation, it is possible that some isolated blobs,
signified as object regions, are not included within the main
object region. To resolve this, we assume that the contour
corresponding to the object region, is the one encompassing
the largest area in terms of pixel numbers.

After computing the contour surrounding the object
mask we obtain the optimal OBB surrounding it, by calcu-
lating the minimum bounding rectangle that encompasses
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(a) Object mask (b) Closing operation

(c) Contour calculation (d) OBB calculation

Figure 3. Process of obtaining an object’s OBB. (a) The initial
object’s mask. The gap between its two components is apparent.
(b) Shows the mask after the closing operation which unites the
two components. (c) Calculation of the contour surrounding the
mask (red). (d) Calculation of the OBB (green).

the contour. This is done via a Principal Component Analy-
sis (PCA) that is run on the points belonging to the object’s
contour. The resulting eigenvectors that correspond to the
two largest eigenvalues are the ones with the largest vari-
ance and in our case they define the length and width of the
object mask. The center of the OBB is obtained from the
centroid of the contour points, and the angle of the object’s
orientation is obtained from the orientation of the eigenvec-
tor which corresponds to the axis with the largest variance,
namely the one related to the object’s length. The center,
width, height and orientation of the object are all the pa-
rameters needed to define an OBB. An example of the men-
tioned steps is shown in Figure 3.

A way to prove that the segmentation has been done cor-
rectly, is to compare the ground truth HBB of each object
with the HBB that would be computed, given the segmenta-
tion mask of the respective object. The predicted HBB of an
object is computed in the following way. The edge points
of an object’s segmentation mask are considered to be the
same as the ones that would define the HBB surrounding
it. We then calculate the IoU between the ground truth and
predicted HBB of each object, and define a hyperparame-
ter that corresponds to the IoU threshold above which we
consider the segmentation as correct. The masks of the cor-
rectly segmented objects, will subsequently be used for the
calculation of their respective OBBs.

3.4. Dataset Augmentation

Ship datasets contain images of ships in various orienta-
tions. However, there might be significant imbalance in the

number of ship samples per orientation. Given the proposed
method, we can correct such imbalances. Specifically, by
having access to the OBBs of the ships, we can augment the
given imbalanced dataset so as to cover the space of ship
orientations more uniformly. This can be done in several
ways; in this work we explore two such techniques.

Same Size Object-wise (SSO) augmentation: We create
an augmented dataset, with the same number of samples as
the original dataset but with images rotated in such a way
so that ships are as equally distributed among orientations as
possible. To do that, we firstly create an empty histogram,
hereby referred to as SSO-Histogram, with as many bins as
the number of quantized ship orientations. Then, we sort
the images according to the number of included objects, in
descending order. Starting with a random image from those
with the highest number of objects, we calculate their ori-
entation histogram and add it to the SSO-Histogram. The
remainder of the process is the following. We iteratively
select random images, calculate the orientation histogram
of the included objects, and then rotate the image in such
a way so that the newly updated SSO-Histogram has the
minimum variance. Each time an image is selected, it gets
removed from the selection pool, so that the random selec-
tion begins with images with the most objects and gradually
with images with fewer ones. The iterations terminate when
the total number of objects in the SSO-Histogram reaches
the total number of objects in the dataset.

Increased Size Object-wise (ISO) augmentation: The
second way for performing augmentation is to increase the
number of objects in under-represented orientations so that
each orientation has twice as many samples as the most
prevalent orientation in the pre-augmented dataset. To do
this we use the dataset’s orientation distribution with the
same quantization as before, and we assign it to an ISO-
Histogram. We select the orientation with the most objects
and define the upper bound of all the orientation bins as the
double of that number of objects. If for example, the dataset
has 80 objects pointing at 70 degrees, the upper bound for
all bins is set to 160. The next step is to constantly select
random images, and rotate them in such a way that at least
one of the objects is brought to the most prevalent orien-
tation, while simultaneously adding the orientation distri-
bution of the rotated image, to the ISO-Histogram. This is
done until the number of objects in that orientation, reaches
the upper limit. Then, we iteratively select random images
from the dataset, we calculate their objects’ orientation dis-
tribution, and rotate the image by the angle at which the up-
dated ISO-Histogram will have the minimum variance. This
is done while constantly checking if at any orientation the
number of objects exceeds the upper bound, and if it does
we select another image. The iterations terminate when the
total number of objects in the ISO-Histogram reaches the
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upper bound per orientation times the number of orienta-
tion bins.

The calculation of the rotated OBB coordinates is done
by applying the rotation matrix on the OBB center, and be-
cause the image orientation increases the image size, the
center points are adjusted to the new image size, as shown
in Equations 2, 3,

w/
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!/
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3)
where 6 is the difference between the object’s orientation
and the orientation to which we want to bring it, w and h
are the width and height of the original image, and w’ and b’
are the width and height of the rotated image, respectively.
The height and width of the OBB remain the same since
the number of pixels corresponding to each of the object’s
sides, is rotation invariant and also invariant with respect to
the image size.

4. Experiments
4.1. Datasets

In order to validate the effectiveness of the developed
method, we run experiments on two benchmark datasets for
ship detection, HRSC2016 [16] and ShipRSImageNet [26].
Both are remote sensing ship detection datasets, that consist
of high resolution images containing ships of several types.
They provide extensive annotation files that include both
HBBs and OBBs for the image objects, and implement a 4-
level hierarchical classification scheme regarding the object
type. The first level simply describes whether an object is
a ship or not, and the remaining levels classify the ships in
ever increasing category detail.

HRSC2016 is split into training, validation and test sets,
that consist of 436, 181 and 453 images, respectively. The
HBBs are in the form of (Xmin, Ymin, Xmax> Ymax) and the
OBBs in the form of (cg, ¢y, w, h, ). The object orienta-
tion 6 ranges between —m /2 to 7r/2. It is important to note
that for this dataset, annotation files are provided for all sets
including the test set.

ShipRSImageNet is also split accordingly but there are
2198 images in the training set, 550 in the validation set, and
687 in the test set. The HBBs are again in the form of (Xpip,
VYmins> Xmaxs Ymax ), but the OBBs are provided in two forms.
The firstis (¢, ¢y, w, h, §) where 6 is the angle between the
object’s orientation and the horizontal axis. The second is
(X1, Y1, X2, Y2, X3, V3, X4, Y4), Which contains the coordi-
nates of the bounding box edge points, and is the form we
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Figure 4. Histogram of objects’ IoU, between predicted and
ground truth HBBs, in the HRSC2016 dataset [16]

use for the experiments with this dataset. The bounding box
annotations in this case, are provided only for the training
and validation sets, and the first level object classification
includes the “ship” and “dock” classes.

4.2. Implementation details and experimental setup

In order to ensure the fairness of the provided results, we
discard the OBB ground truth from the training sets of both
datasets, keeping only the HBBs as input to the model. The
expected form of the HBBs is (Ximin, Ymins Xmax> Ymax)-

During the segmentation process (see section 3.1), we
use m = 5 points. One of them is the center of the HBB,
and the others are placed halfway between the center of the
box and the respective box edge. For instance, the points
belonging to the 1st diagonal are the center, the one in the
middle between the top left edge and the center, and the
one in the middle between the bottom right edge and the
center. Similarly, for the 2nd diagonal, the points are the
center, the middle between the top right edge and the center,
and the middle between the bottom left edge and the center.
Additionally, the respective objects” HBBs are also used as
input prompts to SAM.

For the closing operation, we use an ellipse shaped struc-
turing element with minor axis equal to v/2 times 3% that of
the HBB diagonal. Regarding the true and predicted HBB
overlap calculation, we set the IoU threshold to be 0.7 in
order to consider it as a valid segmentation. Objects with
invalid segmentation are not considered parts of the newly
generated dataset. After the calculation of the OBBs, we
create new annotation files that include the HBBs and OBBs
of the objects whose segmentation from SAM was deemed
valid. For the augmentation part, we set the discretization of
the orientations to be equal to an angle range of 10 degrees
for all three methods.

The most decisive factor which determines the perfor-
mance of the proposed method, is its ability to generate
OBB annotations that are accurately aligned with the ac-
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tual objects in the images. To validate this, we make use of
several oriented object detectors by training them using the
generated annotations from our method, and testing their
performance on the test sets that were left intact during the
entire process. However, a fair evaluation should take into
consideration that any object detector would itself have a
certain performance on the original datasets. Therefore, in
order to estimate the relative effectiveness of our proposed
method, we also need to train the object detectors that are
to be used, on the training sets of the original datasets, and
then compare their respective performances on the test sets.
The oriented object detectors that we use, are obtained from
the OpenMMLab project [28], and they are all implemented
with ResNet-50 [8] backbone, pretrained on ImageNet [3].
The optimizer used is SGD with momentum, where the mo-
mentum is 0.9 and the weight decay is le-4. These object
detectors are either single-stage (e.g. R®Det [24]), or two-
stage (e.g. ReDet [7], Oriented-RCNN [22]). The learning
rate for the ReDet detector is 0.01, and 0.0025 for all the
other detectors used. We used one NVIDIA GeForce GTX
1080 Ti GPU with 11GB RAM.

4.3. Evaluation metrics

The evaluation metric used for the detection performance
is the mean average precision (mAP) as it is used in PAS-
CAL 2007, and the training lasts for 36 epochs, since it
has been found that for most object detection tasks, it is
a reasonable limit before convergence is reached. In the
case of the HRSC2016 dataset, we make use of the training
set only and not the validation set. Therefore, the results
obtained from the training of selected object detectors will
not be the same as the ones presented in the original papers
(i.e. [4,6,7,12,22,24]), but since the purpose of this work is
to provide a comparative assessment between original and
generated OBBs, our main focus is not on the performance
metric values of the detection, but on the relative differences
between the detection performances yielded from training
on the different sets.

4.4. Parameter setting and ablation studies

For the implementation of the proposed method, it was
important to carefully tune three main parameters. These
were, the number of points given as prompts to SAM, the
shape and size of the structuring element used for the clos-
ing operation, and the IoU threshold between predicted and
ground truth HBBs. The prompt points were set to 5,
which was the minimum possible, because qualitative as-
sessments of the created segmentation masks, indicated that
more points lead to segmentation of the background, which
is more uniform, and therefore yielding higher segmenta-
tion scores than the object. For the same reason, it is very
important to also include the HBB annotations as prompt in-
puts, since failure to do so, results in even more background

Type Size IoU threshold
0% | 80% | 70% | 60%

circle | v2%3% | 76.22 | 96.52 | 98.67 | 99.50
V2%6% | 75.97 | 96.93 | 99.25 | 99.83
V2%9% | 74.81 | 96.77 | 99.34 | 99.92
V2%12% | 73.82 | 96.35 | 99.34 | 99.83
V2¥15% | 73.65 | 96.27 | 99.34 | 99.83

ellipse | v2%3% | 78.62 | 97.27 | 99.17 | 99.67
V2%6% | 77.30 | 97.02 | 99.42 | 99.75
V2%9% | 75.14 | 96.52 | 99.25 | 99.59
V2¥12% | 72.49 | 95.44 | 99.01 | 99.67
V2*¥15% | 69.76 | 94.12 | 98.34 | 99.42

Table 2. Different structuring element settings and percentage
of objects from the HRSC2016 dataset that exceed certain IoU
thresholds. The types of the element are either circular or ellipti-
cal and the sizes correspond to the diameter and minor axis respec-
tively. Their values are in the form of object length percentage.

segmentations, especially in cases of ships in open seas.

For identifying the best configuration of the structur-
ing element, we investigated which setting provided the
maximum percentage of objects of the original HRSC2016
dataset for each IoU threshold between predicted and
ground truth HBBs. The results in Table 2 indicate that
an elliptic structuring element with minor axis equal to /2
times 3% the length of the object, meets this requirement.
The major axis is set equal to twice the minor axis.

Finally, we set the IoU threshold to 70%. The reason for
this comes from information obtained from Figure 4, where
we see that the vast majority of the segmented objects have
an HBB IoU overlap that exceeds the value of 0.7. Specif-
ically, more than 99% of the total objects in the original
training set, satisfy that IoU threshold.

4.5. Experimental results

In order to provide a visible comparison between the
ground truth data, and the data generated from our method,
we train all detectors using the ground truth OBBs, then
using the generated OBBs, all from the training sets, and
validate the performance on the test set which is the same
for both the ground truth and generated data.

4.5.1 Results on the HRSC2016 dataset

In Table 3 we present the performance of our annotation
generation and augmentation methods, for a number of ob-
ject detectors using ground truth and generated data for the
HRSC2016 dataset. We can see that the object detectors’
performance on the test set, when trained using the OBBs
generated from our method, is for the most part slightly
lower but close to that obtained by training them using the
ground truth annotations. This means that the generated
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Figure 5. Orientation distribution of the objects’ OBBs, for
HRSC2016 in the: (a) ground truth data, (b) generated annota-
tions, (c) SSO augmentation dataset and, (d) ISO augmentation
dataset.

Method GT Gen | SSO | ISO
mAP | mAP | mAP | mAP
R3®Det [24] 83.06 | 79.49 | 79.18 | 88.33
ReDet [7] 79.73 | 78.96 | 77.78 | 87.71
Oriented-RCNN [22] 89.93 | 81.13 | 88.91 | 89.77
Rol-Transformer [4] 87.07 | 86.92 | 76.38 | 87.86
Rotated-RetinaNet [12] | 62.26 | 63.01 | 60.42 | 78.43
S2A-Net [6] 89.61 | 80.59 | 86.68 | 89.23

Table 3. mAP scores for object detectors, trained on HRSC2016,
using ground truth annotations (GT), generated annotations (Gen),
and augmented data with the proposed methods (SSO, ISO).

OBBs are, at least in their vast majority, of similar quality
to the ones from the ground truth. Figure 5 shows the dis-
tribution of the objects’ orientations in the ground truth (5a)
and in the generated (5b) samples. It can be verified that
the distribution is almost identical. This means that the pro-
posed method, not only creates data that can lead to similar
detection performances as those from the original dataset,
but also the newly formed dataset maintains the same spa-
tial properties as the original. This is important because if
the method had managed to capture a subset of the original
dataset where the orientations of the included objects were
different than those of the original, then the new dataset
would not be consistent with the original.

Considering the promising results of the annotation
method, we use the generated annotations for the creation of

Method GT Gen SSO 1ISO
mAP | mAP | mAP | mAP
R3Det [24] 42.61 | 36.89 | 33.99 | 44.37
ReDet [7] 59.31 | 46.75 | 41.09 | 52.79
Oriented-RCNN [22] 57.43 | 46.80 | 49.71 | 58.93
Rol-Transformer [4] 44.91 | 36.09 | 34.18 | 43.19
Rotated-RetinaNet [12] | 37.61 | 29.85 | 27.42 | 37.82
S2A-Net [6] 55.61 | 39.79 | 36.95 | 51.25

Table 4. mAP scores for object detectors, trained on ShipRSIma-
geNet, using ground truth annotations (GT), generated annotations
(Gen) and augmented data with the proposed methods (SSO, ISO).

augmented datasets. For both augmentation methods used
(SSO, ISO), the resulting orientation histograms are com-
pletely uniform within the specified orientation quantiza-
tion, which means that the resulting datasets have nearly
zero orientation bias, as can be verified from figures 5c and
5d. The performance of the same object detectors using the
augmented datasets, indicates that the most effective aug-
mentation method is the ISO. SSO yields results that are
similar to the ones obtained from ground truth training, but
it does not exceed them for any of the object detectors used.
Apart from the Oriented-RCNN [22] and S2A-Net [6] ob-
ject detectors, ISO yields improved detection performances
ranging from 5 to 16% increases in the mAP metric.

4.5.2 Results of the ShipRSImageNet dataset

The detection performances obtained for the ShipRSIma-
geNet dataset, are shown in Table 4. We can see that in
this dataset, three out of the six detectors used, yielded
better performance when trained with the ISO augmented
data compared to the one obtained using ground truth data.
Specifically, the improvements range from ~0.2% to ~2%,
which are not as significant as those in the HRSC2016
dataset, but still exhibit that even in more complex datasets,
our method can lead to improved detection performances.

5. Conclusions

We proposed a new method to automatically annotate
objects in ship detection datasets with OBBs, and demon-
strated its effectiveness by showing that the performance of
object detectors when trained on the data with the gener-
ated annotations is similar to that obtained when using the
ground truth annotations for training. We also proposed two
data augmentation techniques aiming to make the dataset
more balanced in terms of orientations which are, object-
wise with same size and object-wise with increased size.
The second method, managed to improve the performance
achieved by benchmark object detectors in the test set, a fact
that proves the importance of the proposed methods in ship
detection tasks.
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