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Abstract—Future multi-core processors will necessitate ex- expressed in terms of native application kernels and pnoble
ploitation of fine-grain, architecture-independent parallelism  sjze, achieves good load balancing, and can utilize margscor
from applications to utilize many cores with relatively small local The goal of this paper is to investigate the performance and

memories. We usec264, an end-to-end H.264 video encoder for . . o) e . .

the Cell processor based orx264, to show that exploiting fine- programming effort associated _W'th fine-grain pargllelma .
grain parallelism remains challenging and requires significant ©Of €264 on heterogeneous multi-core processors with explicit
advancement in runtime support. Our implementation of c264 memory management. Prior work has extensively analyzed the
achieves speedup between 4<7 and 8.6< on six synergistic performance of videalecodingon Cell [7], [8]. Video en-
processing elements (SPEs), compared to the serial versioncqging js significantly more challenging than video decgdin

running on the power processing element (PPE). We find that . . . .
the programming effort associated with efficient parallelization of due to higher memory requirements and dynamic behavior.

c264 at fine granularity is highly non-trivial. Hand optimizations ~ Other prior Wo_rk on the parallelization Of videq encoding on
may improve performance significantly but are limited eventually Cell has considered only the compute-intensive kernels [5]
by the code restructuring they require. We assess the complexity [6]. By contrast, we consider the entire video encoding path
of exploiting fine-grain parallelism in realistic applications, by ~ anq present an end-to-end implementation, based on task
identifying optimizations of c264 and the effort they require. .
parallelism.
Our parallel implementation uses a master-worker exegutio
I. INTRODUCTION model, which maps efficiently to the Cell Control code for

Multi-core processors with many simple cores and smafl€nerating tasks, tracking task dependencies, and sahgdul

explicity managed memories are an important design poiffns ©n the control-efficient PowerPC core (PPE), whereas
for high performance computing architectures [1], [2]. S&e the computatlonqlly-mtenswg .componen.ts are offloaded on
processors present several challenges to software developl® compute-efficient synergistic processing element&&sP
First, software needs to manage efficiently the memory hierd € Small size of the local memories prevents frame-level
chy, with little or no involvement from programmers. Secpnd)arallehzatlor_m We addrc_ass this using fl_ne-graln macriblo
they require fine-grain task parallelism. Third, explagtifine- level parallehzatlon, wh|ch allows eff|_<:|er_1t managemerit o
grain parallelism necessitates efficient runtime support. ~ 10cal memories by privatizing and replicating data struesu
Video encoders are essential components for real-timevide OVerall, this paper makes the following contributions:
processing on portable devices, such as cell phones, Pbds, a e Presentt264 an end-to-end implementation of the
video cameras, as well as on personal computers and servers. H-264 encoder for the Cell processor. We present a
H.264 video encoding is a complex, multi-phase process, th_orough, quant_lta_nve_ analysis of the application, along
with high memory bandwidth requirements, challenging to  With several optimizations. _ ,
parallelize efficiently both at the algorithmic and systevel. We explore the implications of fine-grain task-based par-
H.264 video encoding has been parallelized in the past for &llelism on multi-core processors with small local memo-
shared memory multiprocessors, using coarse-grain, frame €S and explicit communication. We show that the impact

based parallelization strategies [3], [4]. Furthermore264 of TLB misses, the waste of on-chip memory, and task
video encoding has been parallelized on the Cell processor 'mPalance have tremendous impact on the performance.
using pipelining [5] and static partitioning [6]. Theseastgies We compare our fine grain task-based implementation
are either architecture-dependent, therefore not pertadn with the coarse grain running on a x86 mullti-core proces-

limit the amount of parallelism that can be extracted. We SOf- We show that performance of a x86 processor of the
presentc264 a fine-grain task-level parallel implementation ~ S@me technology as the Cell is similar to the processor

of H.264 which is architecture-independent, as paraitelis when the implementations are both well optimized.
We analyze the programming effort associated with par-

TAlso, with the Department of Computer Science, University mt€, P.O. allelizing c264 at a fine granularity. We show that the

Box 2208, Heraklion, GR-71409, Greece. o effort for privatization of data structures is significant.
This work was partially supported by the European Commisdimaugh

the SARC IP (contract no. SARC-27648), the HIPEAC NoE (aarttno. IST- 1€ rest of this paper is organized as follows. Section |l
004408 and IST-217068) and the ENCORE (contract no. 248pejects.  presents the necessary background on H.264 encoding and
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x264video encoding library. Section Ill presents our design fand prediction performance by smoothing sharp edges betwee
€264 Section IV presents our methodology and experimentalacroblocks.
results. Section V presents related work. We discuss futureMacroblocks encoded usimanly macroblocks of the same
directions and draw our conclusions in Section VI. frame are called intra coded (I-type) macroblocks, while
macroblocks that are encoded using macroblocks of other
frames also are called either predicted-type (P-type) or
bidirectionally-predictive (B-type) macroblocks. P-g/frames
H.264 [9] is a video compression standard, also known @se temporal redundancy from past I- or P-frames, whereas B-
MPEG-4 Advanced Video Coding (AVC). Video encoders takgpe macroblocks use both past and future reference frames,
as input a raw, uncompressed video stream and procesan#l consequently achieve the highest degree of compression
frame by frame. For each frame, the encoder identifies €iff@fach P- and B-type frame can contain I-type macroblocks.
ences from one or more previously processed frames, callegrinally, anentropy encodecombines the quantized coef-
reference frames. The resulting output is an encoded vidgglents and motion vectors in a single stream and encodes
stream including the reference frames and the differenGessing either context-based adaptive variable lengthingpd
required to reconstruct all dependent frames. Each frame(@AVLC) or context-based adaptive binary arithmetic cadin
H.264 is divided into non-overlapping macroblocks (MBs) ofCABAC). The video encoder encapsulates the output stream
16x16 pixels. Within each frame, macroblocks are grouped jA packets called Network Abstraction Layer (NAL) units.
slices. The output, encoded stream contains informationtab  x264 [10] is an open source library for encoding H.264

frames, slices, and macroblocks. video streamsx264 supports matching blockings of different
Most MPEG video encoders consist of three main functiongize during motion estimation from ¥@6 down to 4<4.
units: a temporal model, a spatial model, and an entropyalso supports several optimized motion estimation algo-
encoder. Figure 1(a) shows the H.264 video encoder bloghms, such as diamond (DIA), hexagon (HEX), uneven
diagram. The temporal model identifies similarities bewveenum-hexagon (UMH), and exhaustive search. The encoder
macroblocks in a single or multiple neighboring frames gsirperforms mostly integer operations and has been optimized,
motion estimationMotion estimation determines motion vecysing vector instructions, for various architectures Fégl(b)
tors that describe how one macroblock is derived by transfor shows an execution profile for the serk64 using manual
ing one or more reference macroblocks. Motion estimatigihde instrumentation, with one reference frame, X238
algorithms vary both in the way they select motion vectors @gotion estimation search area, UMH search algorithm, and
well as the shape of the region they explore in each referene Power Processing Element (PPE) on Cell. We observe
frame. Motion estimation identifies a region in the refeenahat most of the execution time is spent in the analysis and
frames that minimizes a matching criterion and marks it @s tencoding phases (spatial and temporal model). These nmodule
“best match™. The H.264 standard allows the use of up to ver about 70% and 85% of the serial execution time on
reference frames for motion estimation. the PPE for DIA and UMH motion estimation algorithms,
The encoder, in addition to the temporal model, also emespectively. We also observe that the input video resmiuti
ploys intra-frame analysis and selects intra encoding wheBes not affect significantly the percentage of executiore i
its bitrate cost is lower than that of inter-frame analysis tspent in analysis and encoding for the same motion estimatio
improve the overall coding efficiency. Intra-frame anadysialgorithm. Entropy encoding, accounts for an additional 5—
tries to locate similarities between the current macrdblog59% of the total execution time of the encoder. The deblarkin
and its neighbors within the same frame. The video encodgfer accounts for 3-5% of total execution time. The renvaini
subtracts the selected, best matching region in the refere@xecution time on the PPE is for frame initialization, meynor

frame(s) from the current macroblock to produce a newopy operations between buffers, and control code.
macroblock (hotion compensatignwhich in turn is encoded

and transmitted together with a motion vector describirgy th
position of the best matching region.

The spatial model transforms macroblock differences usingWe parallelizec264 with a task-based programming model
an integer spatial block transformation based on the discrend runtime;Tagged Procedure Calls (TP@)1]. The runtime
cosine transformation and generates a set of coefficieats thims at reducing task management overhead by eliminating
are then quantized. In addition, the spatial model include§—chip memory accesses for task initiation and processin
a complete H.264 decoder. If an encoded frame needscmmpletion notifications. TPC hides all operations assedia
be used as reference for encoding other frames, it is bettéth data transfers behind a simple task abstraction with
to use a version of the frame that is derived by decodirane or more arguments. The runtime system uses only on-
the encoded frame, rather than the original raw input framehip operations when initiating and completing tasks,altih
This approach leads to better quality video streams. Thagsgument data may require off-chip transfers.
the encoder, after the spatial model, decodes and stores th€&he x264 encoder uses coarse grain, frame-based paral-
reconstructed frame in memory to use it as reference fielization, where different threads process differentrfes.
subsequent frames. AMeblocking filteris applied to every When processing a frame, each thread determines the frame
decoded macroblock to reduce blocking distortion, creatéygbe, calculates rate control, and spawns a thread for this
from quantization. This filter aims at improving visual gtial frame. Each thread proceeds to process all macroblocks

Il. BACKGROUND

Ill. DESIGN AND IMPLEMENTATION OF c264
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Fig. 1. (a) Block diagram of H.264 video encoding. (b) Normedi execution time breakdown aR64 for different resolutions and motion estimation
algorithms.

through the encoding process, including entropy encoding.The rest of the application code is mostly control code that
Each thread uses locks to wait for the completion of theannot be parallelized. Parts of this code can run in péaralle
appropriate line of pixels, when it accesses a not-yet comvith other tasks, whereas other parts are dependent orskedl ta
plete part of another frame. The limited size of local storemd need to run between groups of concurrent tasks serially.
on Cell prevents frame-level parallelization. An alteiveast We offload the first type of code to an SPE as a single task
slice-based parallelization [12] is also not appropriabe fthat runs concurrently to other tasks, whereas the secqad ty
the Cell processor due to the limited intra-frame paraleli of code is executed on the PPE.
and the increased memory requirements. A more appropriateWe issue the entropy encoding task after the completion
fine grain approach for processors with small local storesa$ the analyze/encode stage of the current macroblock and
parallelization at the macroblock-level [13]. This apprioae- the entropy encoding stage of the previous macroblock in
duces memory requirements on the SPEs, however it increasesn order. Entropy encoding is offloaded as a single task
communication significantly: the search region is requitgd to an SPE but can run concurrently to other tasks of the
all cores when processing a single macroblock, resulting same frame. Entropy encoding is control-intensive and runs
replication of data in multiple local stores over time. slightly faster on the PPE than the SPE, due to the presence
of dynamic branch prediction on the PPE. We execute the
entropy encoding on the PPE at the end of each frame, when
A. Exploiting parallelism there are no additional parallel tasks to execute.

Exploiting parallelism at the macroblock level requires The third task for each macroblock applies the deblocking
satisfying the data dependencies between macroblocoks. fiéer. In c264 each task applies the deblocking filter in the

a given macrob'ock, the f0||owing operations need data fromacr0b|OCk line of the reconstructed frame to avoid redahda
neighboring macroblocks: data transfers. In addition to the macroblock related tastks

offload concurrent and independeméntopy operations to

Inter-frame prediction requires motion vectors of neighz .
. . : : PEs. For example, we copy the input raw frame from the
boring macroblocks to determine the final motion vector, : :
o ) . .read buffer to memory aligned buffers of the encoder. Figure
Intra-frame prediction uses pixels from neighborin

blocks of the current macroblock. %eplcts the set of dependencies between macroblocks vethin

The deblocking filter, which is applied on the reconframe. Arrows show dependencies of outstanding macroblock

structed frame after the transformation, uses pixel Valute%previously encoded macroblocks in an antidiagonal manne
of neighboring left and upper macroblocks.

The entropy encoding selects one out of four look-uB. Optimizations

tables to use for encoding coefficients. The selected table a) Scheduling:Heuristics in the motion estimation algo-

depends on the number of non-zero coefficients in thghms and non-predictable encoding time may introducel loa
previously encoded macroblock. imbalance. To address the issue we dgeamic scheduling
To take advantage of macroblock-level parallelism we ereanstead of static scheduling using per-macroblock state to
tasks that are related to macroblock processing for theethmeaintain the dependencies. We issue tasks from any antidi-
phases of encoding: analyze and encode, entropy encodigpnal as soon as their individual dependencies are sdtisfie
and deblocking. The simplest way to manage task depen- b) Memory optimizations:The Cell processor requires
dencies is to issue all macroblocks in an antidiagonaldbasattention to several aspects of memory management. We apply
manner and wait before issuing the next antidiagonal. Trasnumber of optimizations to increase the performance of
technique is also know as 2D-wavefront parallelism [14PMA transfers. First, we use data prefetching through multi
Although motion estimation is independenx264 reads the buffering whenever applicable. However, the space availiab
results from neighboring macroblocks and uses them as hitfte local stores for data prefetchingd@64is limited. The SPE
to minimize the overall search time. binary file of the application is about 145 KBytes, which lesv
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limited space for storing both the working set of the activeearch to avoid producing motion vectors out of the refezenc
task and prefetching data. Second, we optimize DMA trassfeegion, which limits search window sizes to »288. Al-
using addresses aligned at 128-bytes boundaries for bttbugh these limitations result in larger video streamstlier
source and destination. In addition, we adjust the strideoof same video quality, we believe that quality can be improwed b
contiguous arguments to avoid memory bank conflicts [15]sing the missing components xi264 such as rate-distortion
Third, c264shows high numbers of TLB misses, due to stridegptimization and small matching blockings. In our work, we
memory access on the uncompressed frame data. To reducepthre only the CAVLC encoder, althougk264 supports both
number of TLB misses we use large page sizes of 16 MBytde CABAC and the CAVLC algorithms.

for the raw, uncompressed frame data via theget | bf s
facility in the Linux kernel. We allocate the aforementidne
large pages in the initialization phase of the encoder, thus
removing the overhead of continuously allocating and frgei A. Experimental Platform and Methodology

pages during the encoding phase. Finally, replication ¢h da \ve present results from experiments on a Playstation3
structures required for parallelization, due to the exiséeof gnsole with one 3.2 GHz Cell processor and 256-MBytes
multiple outstanding macroblocks, increases signifigatitt  of main memory. In this platform, user programs have ac-
memory footprint. To mitigate the impact of the increaseghgs to only six of the eight SPEs. We use several video
memory requirements we use a custom, pre-allocated memeguences from HD-VideoBench [16]: blsky, pedestrian,
pool to recycle application data structures. _ riverbed, and rusthour. Each video stream consists of 100
~ ) SPE code optimizations: x2@#ready provides VEC- frames. In our evaluation we vary three H.264 parameters
torlzedl versions of_ _the kernels for the PPE_ using Altivegat affect application behavior significantly: (a) We us®t
extensions. In addition, we manually vectorize SPE codggo|utionsthat affect the number of tasks: 72676 (small)
eliminate branches, and partially unrpll loops in the emrodgng 19261080 (large). (b) We use tweotion estimation
kernels. We also expand scalar variables to vectors, whejigorithmsthat affect the computational workload of each task:
possible, which reduces the overhead of loads and storesymond (DIA) and uneven multi-hexagon (UMH).
local variables. For example, narrow stores require a read, ror the rest of the encoding parameters, we keep the

IV. EXPERIMENTAL EVALUATION

scalar insert, and a write operation. quantization parameter constant at 26, we use four B-frames
S between |- and P-frames and we do not use B-frames as
C. Limitations ofc264 reference frames. We disable the adaptive selection of B-

Macro-block level parallelization can increase the awdéila frames number, because the code responsible for the decisio
degree of concurrency by exploiting parallelism acrossiés, is computationally intensive and becomes the bottleneak. W
using 3D-wavefront parallelization. Although, intra- aimter- use 12&128 pixels as the search region for the motion
frame macroblock-level parallelization are orthogon#lhvee  estimation process. Finally, we use one reference framB-for
ing tasks across frames to execute concurrently would reguirame encoding and two for B-frame encoding due to the local
postponing (moving) on the next frame the metadata handliatpre size limitation. We always distribute tasks in a round
of issued tasks from the current frame. Furthermore, igsuirobin manner across SPEs, provided that there is a free slot
tasks from different frames to the same SPE would requig&ailable in the SPE task queue; otherwise the SPE is skipped
using quantization tables for different frame types, whigh In our experiments we use one empty task queue slot per SPE,
prohibitive given the small local store size. In our impleme for reasons we explain in Section IV-D.
tation we wait for all outstanding tasks to complete at thé en We show execution time breakdowns from both the PPE and
of each frame before proceeding to the next frame and \B®Es. We break execution time on the PPE in four sections:
leave inter-frame parallelization for future work. PPE issuetime spent in the runtime system for issuing tasks,

Our implementation has less flexibility in encoding opQueue stall:time waiting for an empty queue slot in the task
tions thanx264 due to the limited size of the local storesgueues of SPEsSync wait: time waiting for specific task
€264 supports only 1&16 block size for motion estima- or tasks to complete, anfApplication: time spent running
tion/compensation and only inter-frame encoding in B-feam application code. Similarly, SPE breakdowns consisGBE
We modify the calculation of the limits for motion vectorTask: the compute timeSPE transfer:runtime library and
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Fig. 3. Speedup 0£264 calculated over PPE-only execution time (a), for differenmiers of B-frames for blusky with the large resolution (b), and
scalability computed over the PPE + SPE execution time (c)guia UMH motion estimation algorithm, 12828 search region. Breakdowns 64 PPE
time using six SPEs and different motion estimation algorithesslutions (d).

communication time, an@PE Idletime. Moreover in some grain than the same tasks originating from P-frames, in both
PPE breakdowns we analyze further the application part intmmputation and communication manner. The aforementioned
Metadata:time for the management of motion vectors, numbéasks of B-frames use two reference frames, in contrast with
of coefficients, and calculating pointers to referenceuypes. P-frames that use only one. Thus, the execution time of the
Entropy Parallel: time spent executing entropy tasks on theerial version of P-frames is less than execution time of B-
PPE instead of an SPE, if there are no empty task quefuemes. Figure 3(b) shows that the speedup increases when
slots in any SPEEntropy: time spent at the end of eachusing a higher number of B-type frames.

frame, when there are no additional available parallelgsdsk  Next, we examine the scalability 0264 where we compare
execute.l-frame: time spent encoding one I-framManage: the execution time with the PPE and more than one SPEs to
main loop for dependency checks and proper scheduling tbe execution time with the PPE and one SPE. Figure 3(c)
tasks.Memory allocator:the time to update offsets/pointersshows the speedup for different resolutions and input stsea

for the recycling of data structures. As a reference poim, irhe encoder achieves a speedup between 3.8 and 4.2 on six
include in our results application execution time on the PPEPEs. Moreover, we observe slightly better scalabilityngsi
only. Note that we omit 1/O time spent in reading the inputrge resolution, due to a larger number of outstandingstask
from and writing the output to the disk. SPE code is transfiérrin the middle of the frame, compared to the small resolution.

to each SPE once at application start-up. To understand the task overheads and serial parts, we
N present in Figure 3(d) PPE execution time breakdowns for
B. Overall speedup and scalability different resolution and motion estimation algorithmsniro

First, we compare our implementation with the serial veruns that use six SPEs. Issue time is less than 3% of the
sion ofx264 We slightly modify the native encoder to executd®PE execution time, without any dependence on the motion
the same code path as the parallelized version and we disad@mation algorithm or the video resolution. The average
features of the serial version that are also disabled2®4 issue time is about 600 CPU core cycles per task. Queue
In all cases we use the optimized version of kernels fstall accounts for around 18% and 35% for the DIA and
the PPE and SPE architecture. Figure 3(a) shows overdMH motion estimation algorithm respectively. The resimint
€264 speedups as the execution time of the serial versiof video has minor effect on the normalized stall time, in
running on the PPE only, divided by the execution timeontrast with the selected algorithm. This indicates that t
of the parallel version running on the PPE and a variabtask granularity of the DIA motion estimation algorithm is
number of SPEs. We achieve speedup betweemx and much smaller than that of the UMH algorithm.
8.6x on six SPEs compared to the serial version on theThe serial part of entropy encoding using the DIA motion
PPE. Moreover, our implementation benefits from 20% ugstimation algorithm is 24% and 17% for small and large
to 100% using one SPE. The most interesting case is tt@solutions respectively. In contrast, the serial entrepgod-
riverbed video that achieves super-linear speedup. Theed ing ranges from 6% to 4% for small and large resolution
video sequence fails to perform well using the PPE only. iespectively, when using the UMH algorithm. The encoder
this input set, the temporal model fails to effectively redu executes entropy encoding in scan order form in contrasigo t
redundant information, since there are limited similasti wavefront algorithm. This means that we can not issue tasks
between neighboring video frames. Thus, the encoder u$esm the next line until the previous line is fully analyzedda
mostly intra-frame only encoding, which is expensive due gncoded. In our implementation we give priority to the epyro
accesses on the pixels of neighboring macroblocks. Morgowviasks via proper scheduling.
intra-frame encoding increases significantly the bitrétéhe Metadata management accounts for 8% to 14% of PPE total
output video and creates extra computation overhead at theecution time. Although, the number of memory accesses in
final phase of processing, the entropy encoding. this module is small, the access pattern is irregular andesau

Second, we vary the number of B-frames between |- amdany cache misses. The task management loop (manage)
P-frames This parameter can change the computation anerhead ranges from 20% to 24%. Memory allocation takes
communication characteristics of our implementation. And% and 6% of PPE execution time when using small and
lyze/encode tasks originating from B-frames are more epatarge resolution respectively, for the UMH algorithm. Irghi
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. . TABLE |
resolutions the number of outstanding tasks and metadata archiTECTURE CHARACTERISTICS OF THE TWO PLATFORMS

increases, which in turn increases overall memory utitirat

Queue stall and entropy take significant percentage of PPECPU | CMOS | LS Size L1 L2 Total
time, which indicates that further scalability is possible i (grg) 6(5285% 0 I(liB%Z 5 (;(182) (2K1|:3L)2
Figure 4(a) shows elapsed time in the x-axis and execulti %pteron 90 . i T+ 64D 2% 1024 2176

time of different task types in the y-axis. We use the bhlkgy
video, small resolution, and 6 SPEs in this run. We collect TABLE Il

results from 0n|y one SPE and we separate the file 1/QC264AND X264ACHIEVED FPS USING THE BLUESKY VIDEO AND THE
operations using dotted lines in the graph. SPEs execute a UMH ALGORITHM WITH 128 128 SEARCH REGION

limited number of tasks between two frames. Most of these Resolution | ¢264 | 1 thread x86] 2 threads x86
tasks are memory copies between buffers and initialization 720x576 | 55.2 40.27 60.9
of different structures. About 6% of total execution time 1920x1088| 10.2 7.12 12.5

of PPE is spent in frame initialization and finalization. The

deblocking filter task of the luminance component is the o ) ) )

most computationally intensive task, taking up to 18000@co Memory optimizations improve execution time by 25%
cycles. The deblocking filter is partially vectorized anchcalSind Six SPEs. We observe that memory optimizations reduce
be further improved. Analyze/encode and entropy encodifignificantly communication time, up to 60% on the SPE,
tasks also have significant variation in execution time. tn BVhile they also reduce stall time on the PPE by at least 30.1%
frames the entropy tasks are smaller than in P-frames, beca@"d &t most 42%. Recycling application metadata and buffers

B-frames achieve better compression than P-frames. Thess, #as small impact on performance, but allaw4to run larger
encoded input information for the entropy encoder is snradl a NPut resolutions. The use of large pages has the biggesioimp

the algorithm terminates earlier than the entropy encoding of all memory optimizations and re_duces communication time
P-frames. The variation in execution time of tasks leads gy UP 10 50% compared to offloading. The use of large pages
load imbalance. decreases significantly the number of TLB misses. A side
The analysis of data reveals that there are three fund@dfeCt Of using large pages is that execution time of PPE code
mental bottlenecks: task management overhead, seria, pdft "educed by about 5% in large resolutions. This happens
and architecture limitations. First, the high task managem Pecause the SPE sends an interrupt to the PPE for handling
overhead, up to 40%, is a result of dynamic scheduling aRgch SPE TLB miss. Moreover, we observe a minor impact
dependency checking, memory management, and macrobISE‘kthe execution time of the serial application running ol PP
metadata handling. Second, the 2D-wavefront algorithm h4&ing large pages (PPE HTLB).
some serialization points: frame initialization, frameafin )
ization, and the remaining entropy encoding. Third, thef@ IMpact of task queue size
are some architecture limitations related to the size oéilloc Differences in task execution time and long queue sizes can
stores, that have negative impact in overall performanbe. Tcause significant imbalance and decrease the performance of
performance of SPE code suffers because we can not endb& encoder. We enforce load balancing, using one slot per
some compiler optimizations (loop unrolling) and pradtica SPE queue, although this increases issue and stall time. An
eliminates the prefetching of arguments. Moreover, the SPRRtropy task may be delayed behind other tasks in the SPE
code takes more than half of the available local store memotgsk queues, which are served in FIFO. On the other hand,
In our design we require multiple copies of the same codlee PPE has a two-way SMT architecture. To compensate for

region in the SPEs, that waste memory resources. priorities we spawn another thread for entropy encoding Th
spawned thread is responsible only for entropy encoding.
C. Impact of optimizations Figure 4(c) shows the PPE execution time breakdown with

In this section we evaluate the impact of each group & SPEs and varying queue sizes in three configurations: the
optimizations as described in Section Ill. Figure 4(b) skowPPtimized version with one queue slot on each SPE (left),
the impact of each group of optimizations on execution timgsing a PPE thread for entropy encoding (middle), and using
We group optimizations in three different categoriesSiatic @ PPE thread for entropy encoding together with four tasts slo
scheduling issues all tasks in an antidiagonal and therswai€" SPE (right). The allocator time increases due to logking
for all tasks to complete; (iilpynamicscheduling includes the @s @ result of concurrent accesses to data structures. Matad

selective dependence checking and issue across antidlagodandling time increases because of memory accesses from the

(|||) Memory inc|udes memory Optimizations and dynamiéWO PPE threads on the shared PPE L2 cache. Note that the

scheduling. We use the blusky input with the high resolution, SUM of synchronization, issue, and stall time is larger than

UMH motion estimation, and a 128128 search range. when using one task slot per SPE queue. The serial part of
Dynamic schedulingmproves execution time over staticentropy encoding is lower as expected, due to the additional

scheduling by about 30% and reduces synchronization tiffsead that executes only this task.

by 80% on six SPEs. Furthermore, the optimization decreases

the SPE idle time compared to static scheduling. Dynanfie Comparison with Other Platforms

scheduling issues tasks faster than the traditional 2Defxant To place our results in context, we also prese@64

algorithm and achieves better load balancing between SPHEgsults on a dual-processor system, with two 64-bit DuakCo
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Fig. 4. Timeline with all executed tasks and their respectagk execution time, collected from one SPE when all six SREsaative (a). Impact of
optimizations using the blusky sequence with UMH motion estimation and large resolutijn RPE breakdowns with different queue slots per SPE (c).

. TABLE Il
AMD Opteron Processor .22'16 running at _2-4GHZ- Table | procrAMMING EFFORT EXPRESSED IN LINES OF CODE ADDED TO OR
summarizes the characteristics of our architectures. Vée us MODIFIED FROM THE ORIGINAL X264APPLICATION.

six SPEs when we run264 on the Cell processor. Table Il

shows that the Cell outperforms the x86 processor by 37% angtegory mgdgfsggg 5%:5 ffli/l AR >C<:
43%, for small and large resolutions, respectively using on o o MB Encoding 2170 | 1 M X
thread. Howeverx264 outperformsc264 when two threads | gata Entropy Encode | 1047 | 1 M X
are active, by 10% and 22% for small and large resolutior]s structs Deblocking Filter | 430 | 1 W X
respectively. We observe similar results using differempui Frame memcopy | 15 | 1D X
video sequences. The performance of the AMD processor |is I\'\/fg’ EA:?%?;\S g?g i m ;(( §
similar to the Cell processor, when the implementations ip Offload Entropy Enco%e 1047 | 1W | X X
both platforms are well optimized. to SPE Deblocking Filter | 430 | 1 W | X X
Frame mem copy | 15 1D | X X
F_ Programm|ng eﬂ:ort ISSUe, entl’y code 1206 1D X

. - Task Satisfy deps 40 1D X

Table Il shows the programming effort in line counts and 551 Metadata handle | 250 | 1 W X

estimated amount of time for developing and debugging. We |elism Task schedule 400 | 1 W X
mark column A if the feature or modification is forced by Mem Tune strided args 5 1D | X X
the Cell architecture. We also mark the possible solution to optimi- Eeducle L‘-? mt'ssetf‘ %Zi iw X | X §

avoid the manual coding using a more complex runtime (R)-221" ecycle cala stucts

; . . s SPE Code vectorization| 357 | 1 W | X X
or compiler (Q). We .catggorlze programming effort in five E Branch elimination | ~30 | 1 W | X X
broad areas: (i) privatization of data structures, (ii)azfling Optt_'m" Loop unrolling | ~100 | 1 D X
code to SPEs, (iii) exploiting task parallelism, (iv) memwor | “3"°" Expand variables | ~30 | 1D X

optimizations, and (v) SPE code optimizations.
Privatization of data structures is necessary264because

the code modifies global variables and arrays in many steps of ) i ) )
the encoding process. For the privatization of data strastu ©f dynamic scheduling. We can avoid the aforementioned

most of the time is devoted to restricting global memorjnedifications by using a runtime that supports dependence
accesses and understanding memory accesses in the coaalysis, such as Cell Superscalar [18].
of H.264 video encoding. In terms of memory optimizations, tuning of strided mem-

Offloading code to SPEs requires major effort on the Celiry accesses is straight-forward, because we only need to
The most significant difficulty is the readjustment of poiste insert a few lines of code for stride selection during frame
to point inside the address space of SPEs. Debugging can afstalization. Allocating large pages, using the huge ¢mg
be hard because the SPE does not have memory protectigarface of the kernel, is more complicated than a library
for boundaries checking. A compiler can assist offloadingall and requires special handling. Recycling data strestu
by using static analysis and copying the offloaded code fiequires about one week, because we need to understand the
different files for compilation. use of data structures in the context of tke64 Finally,

We can divide parallelism exploitation into three smalleBPE code optimization includes all code transformations in
categories: preserving dependencies, application mathda- kernels: vectorization, branch elimination, loop unraliand
dling, and task scheduling. Dependence analysis requias a expanding kernel variables. Loop unrolling and expanding
one day effort because dependencies have been extensikelyel variables are straightforward and require mininfal e
analyzed in previous work [17]. Metadata handling requirdsrt. On the other hand, hand tuned vectorization is more
about one week because of the difficulty in understandimgmplicated due to irregular data accesses in some kernels,
global memory accesses in the video encoder context. Taghkereas branch elimination also requires significant effor
scheduling also requires about one week due to the complexanly minor performance improvement.
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V. RELATED WORK

Park and Ha [19] analyze the expected performance6
parallelization at the macroblock-level for the Cell preser.

such as local store size and TLB handling on the PPE. We
g find that the Cell processor is only slightly faster than an
x86 processor of similar technology, when software is well

They offload only the first phase of the encoder, the analy&Btimized on both platforms.

to SPEs, whereas the rest of the encoder remains on the
PPE. Di Wu et al. [6] present a real time encoder of H.264,
however, their effort is focused on kernel optimizatiorheat [1]
than parallelization. They ignore the entropy encoding and
other auxiliary parts of the encoder, such as frame initrati
and rate control. We present an end-to-end implementai@n t [2]
parallelizes or offloads every phase of the encoder and shd#
that the task management can occur significant overheads. If
we ignore the auxiliary parts of the encoder and decrease the
search region we achieve 24 fps on six SPEs, which is closé
to the performance demonstrated in [6].

Xun et al. [5] use a decentralized pipelined parallel enogdi
algorithm to achieve real time encoding for high definition

H.264 streams using eight SPEs. They manage to decrease t!%ke

management overhead using decentralized task creation. Fo
efficient communication they use multi-buffering and origch [©]
communication for data transfers between different maglule
of the encoder. We use a master-worker execution model that
is more general and can be adapted for different architestur [7]
Previous research has also examined video decoding on
Cell. Macroblock-level parallelism can be exploited inr@t [8]
and inter-frame and is extensively analyzed by Meenderatck
al. [7]. They use a master-worker programming model similarg]
to ours. Meenderick et al. also investigate different salind
policies for macroblock-level parallelism, including aatit [10]
scheduling approach to improve locality [8]. In contrasg wj;q
cannot exploit locality in many cases due to local store size
limitations. Although this work is useful and shows the uppe
limits of performance that can be achieved with upcoming
multi-core architectures in general and the Cell procesdog]
in particular, it has two main shortcomings: (a) It ignores
important dynamic behavior which exists in the encoder and
does not exist in the decoder. (b) It does not reveal the teffgr3]
associated with providing a full working encoder or decoder
application on such architectures. Furthermore, our ew@in 14
uses the full H.264 encoding process.

VI. CONCLUSIONS [15]

We presented the design, implementation, and evaluation
a fine-grain task-parallel version of the H.264 video encode
on the Cell processor, the required programming effort, and
performance limitations. Starting from an existing, tlttea
based parallel encodek264 that uses frame-based paralfl7]
lelism, we redesigned the encoder to use master-worket, fine
grained task-based parallelism with appropriate schegduli
Our implementation o€264achieved up to 82 and 16 framed18]
per second for 728576 and 19281080 input resolutions
respectively, while running the full encoding process with
six SPEs. However, our implementation required significali®]
programming effort, some of which could be mitigated with
compiler and runtime support, whole our experimental asigly
revealed several sources of performance bottlenecks: task
management overhead, serial parts, and architecturations
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