
Task-based Parallel H.264 Video Encoding for
Explicit Communication Architectures
Michail Alvanos, George Tzenakis, Dimitrios S. Nikolopoulosy, and Angelos Bilasy

Institute of Computer Science (ICS)
Foundation for Research and Technology - Hellas (FORTH)

100 N. Plastira Av., Vassilika Vouton, Heraklion, GR-70013, Greece
{alvanos,tzenakis,dsn,bilas}@ics.forth.gr

Abstract—Future multi-core processors will necessitate ex-
ploitation of fine-grain, architecture-independent parallelism
from applications to utilize many cores with relatively small local
memories. We usec264, an end-to-end H.264 video encoder for
the Cell processor based onx264, to show that exploiting fine-
grain parallelism remains challenging and requires significant
advancement in runtime support. Our implementation of c264
achieves speedup between 4.7× and 8.6× on six synergistic
processing elements (SPEs), compared to the serial version
running on the power processing element (PPE). We find that
the programming effort associated with efficient parallelization of
c264 at fine granularity is highly non-trivial. Hand optimizations
may improve performance significantly but are limited eventually
by the code restructuring they require. We assess the complexity
of exploiting fine-grain parallelism in realistic applications, by
identifying optimizations of c264 and the effort they require.

I. I NTRODUCTION

Multi-core processors with many simple cores and small,
explicitly managed memories are an important design point
for high performance computing architectures [1], [2]. These
processors present several challenges to software developers:
First, software needs to manage efficiently the memory hierar-
chy, with little or no involvement from programmers. Second,
they require fine-grain task parallelism. Third, exploiting fine-
grain parallelism necessitates efficient runtime support.

Video encoders are essential components for real-time video
processing on portable devices, such as cell phones, PDAs, and
video cameras, as well as on personal computers and servers.
H.264 video encoding is a complex, multi-phase process,
with high memory bandwidth requirements, challenging to
parallelize efficiently both at the algorithmic and system level.
H.264 video encoding has been parallelized in the past for
shared memory multiprocessors, using coarse-grain, frame-
based parallelization strategies [3], [4]. Furthermore, H.264
video encoding has been parallelized on the Cell processor
using pipelining [5] and static partitioning [6]. These strategies
are either architecture-dependent, therefore not portable, or
limit the amount of parallelism that can be extracted. We
presentc264, a fine-grain task-level parallel implementation
of H.264 which is architecture-independent, as parallelism is

†Also, with the Department of Computer Science, University of Crete, P.O.
Box 2208, Heraklion, GR-71409, Greece.

This work was partially supported by the European Commission through
the SARC IP (contract no. SARC-27648), the HiPEAC NoE (contract no. IST-
004408 and IST-217068) and the ENCORE (contract no. 248647)projects.

expressed in terms of native application kernels and problem
size, achieves good load balancing, and can utilize many cores.

The goal of this paper is to investigate the performance and
programming effort associated with fine-grain parallelization
of c264, on heterogeneous multi-core processors with explicit
memory management. Prior work has extensively analyzed the
performance of videodecodingon Cell [7], [8]. Video en-
coding is significantly more challenging than video decoding
due to higher memory requirements and dynamic behavior.
Other prior work on the parallelization of video encoding on
Cell has considered only the compute-intensive kernels [5],
[6]. By contrast, we consider the entire video encoding path,
and present an end-to-end implementation, based on task
parallelism.

Our parallel implementation uses a master-worker execution
model, which maps efficiently to the Cell Control code for
generating tasks, tracking task dependencies, and scheduling
runs on the control-efficient PowerPC core (PPE), whereas
the computationally-intensive components are offloaded on
the compute-efficient synergistic processing elements (SPEs).
The small size of the local memories prevents frame-level
parallelization. We address this using fine-grain macroblock-
level parallelization, which allows efficient management of
local memories by privatizing and replicating data structures.

Overall, this paper makes the following contributions:
� We presentc264, an end-to-end implementation of the

H.264 encoder for the Cell processor. We present a
thorough, quantitative analysis of the application, along
with several optimizations.

� We explore the implications of fine-grain task-based par-
allelism on multi-core processors with small local memo-
ries and explicit communication. We show that the impact
of TLB misses, the waste of on-chip memory, and task
imbalance have tremendous impact on the performance.

� We compare our fine grain task-based implementation
with the coarse grain running on a x86 multi-core proces-
sor. We show that performance of a x86 processor of the
same technology as the Cell is similar to the processor
when the implementations are both well optimized.

� We analyze the programming effort associated with par-
allelizing c264 at a fine granularity. We show that the
effort for privatization of data structures is significant.

The rest of this paper is organized as follows. Section II
presents the necessary background on H.264 encoding and

© IEEE Proc. Int. Conf. on Embedded Comp. Systems: Architectures,Modeling, Simulation – IC-SAMOS, Greece, July 2011; pp. 217-224



218

x264video encoding library. Section III presents our design for
c264. Section IV presents our methodology and experimental
results. Section V presents related work. We discuss future
directions and draw our conclusions in Section VI.

II. BACKGROUND

H.264 [9] is a video compression standard, also known as
MPEG-4 Advanced Video Coding (AVC). Video encoders take
as input a raw, uncompressed video stream and process it
frame by frame. For each frame, the encoder identifies differ-
ences from one or more previously processed frames, called
reference frames. The resulting output is an encoded video
stream including the reference frames and the differences
required to reconstruct all dependent frames. Each frame in
H.264 is divided into non-overlapping macroblocks (MBs) of
16×16 pixels. Within each frame, macroblocks are grouped in
slices. The output, encoded stream contains information about
frames, slices, and macroblocks.

Most MPEG video encoders consist of three main functional
units: a temporal model, a spatial model, and an entropy
encoder. Figure 1(a) shows the H.264 video encoder block
diagram. The temporal model identifies similarities between
macroblocks in a single or multiple neighboring frames using
motion estimation. Motion estimation determines motion vec-
tors that describe how one macroblock is derived by transform-
ing one or more reference macroblocks. Motion estimation
algorithms vary both in the way they select motion vectors as
well as the shape of the region they explore in each reference
frame. Motion estimation identifies a region in the reference
frames that minimizes a matching criterion and marks it as the
“best match”. The H.264 standard allows the use of up to 16
reference frames for motion estimation.

The encoder, in addition to the temporal model, also em-
ploys intra-frame analysis and selects intra encoding when
its bitrate cost is lower than that of inter-frame analysis to
improve the overall coding efficiency. Intra-frame analysis
tries to locate similarities between the current macroblock
and its neighbors within the same frame. The video encoder
subtracts the selected, best matching region in the reference
frame(s) from the current macroblock to produce a new
macroblock (motion compensation), which in turn is encoded
and transmitted together with a motion vector describing the
position of the best matching region.

The spatial model transforms macroblock differences using
an integer spatial block transformation based on the discrete
cosine transformation and generates a set of coefficients that
are then quantized. In addition, the spatial model includes
a complete H.264 decoder. If an encoded frame needs to
be used as reference for encoding other frames, it is better
to use a version of the frame that is derived by decoding
the encoded frame, rather than the original raw input frame.
This approach leads to better quality video streams. Thus,
the encoder, after the spatial model, decodes and stores the
reconstructed frame in memory to use it as reference for
subsequent frames. Adeblocking filter is applied to every
decoded macroblock to reduce blocking distortion, created
from quantization. This filter aims at improving visual quality

and prediction performance by smoothing sharp edges between
macroblocks.

Macroblocks encoded usingonly macroblocks of the same
frame are called intra coded (I-type) macroblocks, while
macroblocks that are encoded using macroblocks of other
frames also are called either predicted-type (P-type) or
bidirectionally-predictive (B-type) macroblocks. P-type frames
use temporal redundancy from past I- or P-frames, whereas B-
type macroblocks use both past and future reference frames,
and consequently achieve the highest degree of compression.
Each P- and B-type frame can contain I-type macroblocks.

Finally, an entropy encodercombines the quantized coef-
ficients and motion vectors in a single stream and encodes
it using either context-based adaptive variable length coding
(CAVLC) or context-based adaptive binary arithmetic coding
(CABAC). The video encoder encapsulates the output stream
in packets called Network Abstraction Layer (NAL) units.

x264 [10] is an open source library for encoding H.264
video streams.x264supports matching blockings of different
size during motion estimation from 16×16 down to 4×4.
It also supports several optimized motion estimation algo-
rithms, such as diamond (DIA), hexagon (HEX), uneven
multi-hexagon (UMH), and exhaustive search. The encoder
performs mostly integer operations and has been optimized,
using vector instructions, for various architectures. Figure 1(b)
shows an execution profile for the serialx264 using manual
code instrumentation, with one reference frame, 128×128
motion estimation search area, UMH search algorithm, and
the Power Processing Element (PPE) on Cell. We observe
that most of the execution time is spent in the analysis and
encoding phases (spatial and temporal model). These modules
cover about 70% and 85% of the serial execution time on
the PPE for DIA and UMH motion estimation algorithms,
respectively. We also observe that the input video resolution
does not affect significantly the percentage of execution time
spent in analysis and encoding for the same motion estimation
algorithm. Entropy encoding, accounts for an additional 5–
15% of the total execution time of the encoder. The deblocking
filter accounts for 3–5% of total execution time. The remaining
execution time on the PPE is for frame initialization, memory
copy operations between buffers, and control code.

III. D ESIGN AND IMPLEMENTATION OF c264

We parallelizec264with a task-based programming model
and runtime,Tagged Procedure Calls (TPC)[11]. The runtime
aims at reducing task management overhead by eliminating
off–chip memory accesses for task initiation and processing of
completion notifications. TPC hides all operations associated
with data transfers behind a simple task abstraction with
one or more arguments. The runtime system uses only on–
chip operations when initiating and completing tasks, although
argument data may require off–chip transfers.

The x264 encoder uses coarse grain, frame-based paral-
lelization, where different threads process different frames.
When processing a frame, each thread determines the frame
type, calculates rate control, and spawns a thread for this
frame. Each thread proceeds to process all macroblocks

© IEEE Proc. Int. Conf. on Embedded Comp. Systems: Architectures,Modeling, Simulation – IC-SAMOS, Greece, July 2011; pp. 217-224



219

(a)

720x576 
DIA

1920x1088 
DIA

720x576 
UMH

1920x1088 
UMH

0

20

40

60

80

100

 %
 T

im
e

Metadata
Analyse
Encode
Entropy
Deblocking
Other

(b)

Fig. 1. (a) Block diagram of H.264 video encoding. (b) Normalized execution time breakdown ofx264 for different resolutions and motion estimation
algorithms.

through the encoding process, including entropy encoding.
Each thread uses locks to wait for the completion of the
appropriate line of pixels, when it accesses a not-yet com-
plete part of another frame. The limited size of local stores
on Cell prevents frame-level parallelization. An alternative,
slice-based parallelization [12] is also not appropriate for
the Cell processor due to the limited intra-frame parallelism
and the increased memory requirements. A more appropriate,
fine grain approach for processors with small local stores is
parallelization at the macroblock-level [13]. This approach re-
duces memory requirements on the SPEs, however it increases
communication significantly: the search region is requiredby
all cores when processing a single macroblock, resulting in
replication of data in multiple local stores over time.

A. Exploiting parallelism

Exploiting parallelism at the macroblock level requires
satisfying the data dependencies between macroblocoks. For
a given macroblock, the following operations need data from
neighboring macroblocks:

� Inter-frame prediction requires motion vectors of neigh-
boring macroblocks to determine the final motion vector.

� Intra-frame prediction uses pixels from neighboring
blocks of the current macroblock.

� The deblocking filter, which is applied on the recon-
structed frame after the transformation, uses pixel values
of neighboring left and upper macroblocks.

� The entropy encoding selects one out of four look-up
tables to use for encoding coefficients. The selected table
depends on the number of non-zero coefficients in the
previously encoded macroblock.

To take advantage of macroblock-level parallelism we create
tasks that are related to macroblock processing for the three
phases of encoding: analyze and encode, entropy encoding,
and deblocking. The simplest way to manage task depen-
dencies is to issue all macroblocks in an antidiagonal-based
manner and wait before issuing the next antidiagonal. This
technique is also know as 2D-wavefront parallelism [14].
Although motion estimation is independent,x264 reads the
results from neighboring macroblocks and uses them as hints
to minimize the overall search time.

The rest of the application code is mostly control code that
cannot be parallelized. Parts of this code can run in parallel
with other tasks, whereas other parts are dependent on all tasks
and need to run between groups of concurrent tasks serially.
We offload the first type of code to an SPE as a single task
that runs concurrently to other tasks, whereas the second type
of code is executed on the PPE.

We issue the entropy encoding task after the completion
of the analyze/encode stage of the current macroblock and
the entropy encoding stage of the previous macroblock in
scan order. Entropy encoding is offloaded as a single task
to an SPE but can run concurrently to other tasks of the
same frame. Entropy encoding is control-intensive and runs
slightly faster on the PPE than the SPE, due to the presence
of dynamic branch prediction on the PPE. We execute the
entropy encoding on the PPE at the end of each frame, when
there are no additional parallel tasks to execute.

The third task for each macroblock applies the deblocking
filter. In c264, each task applies the deblocking filter in the
macroblock line of the reconstructed frame to avoid redundant
data transfers. In addition to the macroblock related tasks, we
offload concurrent and independentmemcopy operations to
SPEs. For example, we copy the input raw frame from the
read buffer to memory aligned buffers of the encoder. Figure2
depicts the set of dependencies between macroblocks withina
frame. Arrows show dependencies of outstanding macroblocks
to previously encoded macroblocks in an antidiagonal manner.

B. Optimizations

a) Scheduling:Heuristics in the motion estimation algo-
rithms and non-predictable encoding time may introduce load
imbalance. To address the issue we usedynamic scheduling
instead ofstatic scheduling, using per-macroblock state to
maintain the dependencies. We issue tasks from any antidi-
agonal as soon as their individual dependencies are satisfied.

b) Memory optimizations:The Cell processor requires
attention to several aspects of memory management. We apply
a number of optimizations to increase the performance of
DMA transfers. First, we use data prefetching through multi-
buffering whenever applicable. However, the space available in
the local stores for data prefetching inc264is limited. The SPE
binary file of the application is about 145 KBytes, which leaves

© IEEE Proc. Int. Conf. on Embedded Comp. Systems: Architectures,Modeling, Simulation – IC-SAMOS, Greece, July 2011; pp. 217-224



220

����
�����

�	
���
�	�

��
�	��
���	����

���	����

����	������
��
���	���

�	����
���	���

State Table��
�	���
���	���

���	��
���
��

�	����
���	��
���
��

����	����
Input Frame Reconstructed Frame

DMA IN DMA OUT

... �����	�����
DMA IN

������������
�����

Fig. 2. Design ofc264, arrows inside frames express the dependencies among different tasks.

limited space for storing both the working set of the active
task and prefetching data. Second, we optimize DMA transfers
using addresses aligned at 128-bytes boundaries for both
source and destination. In addition, we adjust the stride ofnon
contiguous arguments to avoid memory bank conflicts [15].
Third, c264shows high numbers of TLB misses, due to strided
memory access on the uncompressed frame data. To reduce the
number of TLB misses we use large page sizes of 16 MBytes
for the raw, uncompressed frame data via thehugetlbfs
facility in the Linux kernel. We allocate the aforementioned
large pages in the initialization phase of the encoder, thus
removing the overhead of continuously allocating and freeing
pages during the encoding phase. Finally, replication of data
structures required for parallelization, due to the existence of
multiple outstanding macroblocks, increases significantly the
memory footprint. To mitigate the impact of the increased
memory requirements we use a custom, pre-allocated memory
pool to recycle application data structures.

c) SPE code optimizations: x264already provides vec-
torized versions of the kernels for the PPE using Altivec
extensions. In addition, we manually vectorize SPE code,
eliminate branches, and partially unroll loops in the encoder
kernels. We also expand scalar variables to vectors, where
possible, which reduces the overhead of loads and stores of
local variables. For example, narrow stores require a read,a
scalar insert, and a write operation.

C. Limitations ofc264

Macro-block level parallelization can increase the available
degree of concurrency by exploiting parallelism across frames,
using 3D-wavefront parallelization. Although, intra- andinter-
frame macroblock-level parallelization are orthogonal, allow-
ing tasks across frames to execute concurrently would require
postponing (moving) on the next frame the metadata handling
of issued tasks from the current frame. Furthermore, issuing
tasks from different frames to the same SPE would require
using quantization tables for different frame types, whichis
prohibitive given the small local store size. In our implemen-
tation we wait for all outstanding tasks to complete at the end
of each frame before proceeding to the next frame and we
leave inter-frame parallelization for future work.

Our implementation has less flexibility in encoding op-
tions thanx264 due to the limited size of the local stores:
c264 supports only 16×16 block size for motion estima-
tion/compensation and only inter-frame encoding in B-frames.
We modify the calculation of the limits for motion vector

search to avoid producing motion vectors out of the reference
region, which limits search window sizes to 128×128. Al-
though these limitations result in larger video streams forthe
same video quality, we believe that quality can be improved by
using the missing components ofx264, such as rate-distortion
optimization and small matching blockings. In our work, we
port only the CAVLC encoder, althoughx264 supports both
the CABAC and the CAVLC algorithms.

IV. EXPERIMENTAL EVALUATION

A. Experimental Platform and Methodology

We present results from experiments on a Playstation3
console with one 3.2 GHz Cell processor and 256-MBytes
of main memory. In this platform, user programs have ac-
cess to only six of the eight SPEs. We use several video
sequences from HD-VideoBench [16]: bluesky, pedestrian,
riverbed, and rushhour. Each video stream consists of 100
frames. In our evaluation we vary three H.264 parameters
that affect application behavior significantly: (a) We use two
resolutionsthat affect the number of tasks: 720×576 (small)
and 1920×1080 (large). (b) We use twomotion estimation
algorithmsthat affect the computational workload of each task:
diamond (DIA) and uneven multi-hexagon (UMH).

For the rest of the encoding parameters, we keep the
quantization parameter constant at 26, we use four B-frames
between I- and P-frames and we do not use B-frames as
reference frames. We disable the adaptive selection of B-
frames number, because the code responsible for the decision
is computationally intensive and becomes the bottleneck. We
use 128×128 pixels as the search region for the motion
estimation process. Finally, we use one reference frame forP-
frame encoding and two for B-frame encoding due to the local
store size limitation. We always distribute tasks in a round-
robin manner across SPEs, provided that there is a free slot
available in the SPE task queue; otherwise the SPE is skipped.
In our experiments we use one empty task queue slot per SPE,
for reasons we explain in Section IV-D.

We show execution time breakdowns from both the PPE and
SPEs. We break execution time on the PPE in four sections:
PPE issue:time spent in the runtime system for issuing tasks,
Queue stall:time waiting for an empty queue slot in the task
queues of SPEs,Sync wait: time waiting for specific task
or tasks to complete, andApplication: time spent running
application code. Similarly, SPE breakdowns consist ofSPE
Task: the compute time,SPE transfer:runtime library and

© IEEE Proc. Int. Conf. on Embedded Comp. Systems: Architectures,Modeling, Simulation – IC-SAMOS, Greece, July 2011; pp. 217-224



221

1 2 3 4 5 6

SPEs

1

3

5

7

9
S

pe
ed

up
 

small pedestrian
small rush_hour
small riverbed
large pedestrian
large rush_hour
large riverbed

(a)

1 2 3 4 5 6

SPEs

0

2

4

6

S
pe

ed
up

 

8 B-frames
4 B-frames
2 B-frames
0 B-frames

(b)

1 2 3 4 5 6

SPEs

1

2

3

4

S
ca

la
bi

lit
y 

small blue_sky
small rush_hour
small riverbed
large blue_sky
large rush_hour
large riverbed

(c)

576 
DIA

1088 
DIA

576 
UMH

1088 
UMH

0

20

40

60

80

100

 %
 T

im
e

Issue 
Queue Stall 
Sync Wait 
Metadata
Entropy
Entropy Parallel 
I-Frame 
Manage 
Allocator
Other

(d)

Fig. 3. Speedup ofc264 calculated over PPE-only execution time (a), for different numbers of B-frames for bluesky with the large resolution (b), and
scalability computed over the PPE + SPE execution time (c) using the UMH motion estimation algorithm, 128� 128 search region. Breakdowns ofc264PPE
time using six SPEs and different motion estimation algorithms/resolutions (d).

communication time, andSPE Idle time. Moreover in some
PPE breakdowns we analyze further the application part into:
Metadata:time for the management of motion vectors, number
of coefficients, and calculating pointers to reference pictures.
Entropy Parallel: time spent executing entropy tasks on the
PPE instead of an SPE, if there are no empty task queue
slots in any SPE.Entropy: time spent at the end of each
frame, when there are no additional available parallel tasks to
execute.I-frame: time spent encoding one I-frame.Manage:
main loop for dependency checks and proper scheduling of
tasks.Memory allocator: the time to update offsets/pointers
for the recycling of data structures. As a reference point, we
include in our results application execution time on the PPE
only. Note that we omit I/O time spent in reading the input
from and writing the output to the disk. SPE code is transferred
to each SPE once at application start-up.

B. Overall speedup and scalability

First, we compare our implementation with the serial ver-
sion ofx264. We slightly modify the native encoder to execute
the same code path as the parallelized version and we disable
features of the serial version that are also disabled inc264.
In all cases we use the optimized version of kernels for
the PPE and SPE architecture. Figure 3(a) shows overall
c264 speedups as the execution time of the serial version
running on the PPE only, divided by the execution time
of the parallel version running on the PPE and a variable
number of SPEs. We achieve speedup between 4.7× and
8.6× on six SPEs compared to the serial version on the
PPE. Moreover, our implementation benefits from 20% up
to 100% using one SPE. The most interesting case is the
riverbed video that achieves super-linear speedup. The riverbed
video sequence fails to perform well using the PPE only. In
this input set, the temporal model fails to effectively reduce
redundant information, since there are limited similarities
between neighboring video frames. Thus, the encoder uses
mostly intra-frame only encoding, which is expensive due to
accesses on the pixels of neighboring macroblocks. Moreover,
intra-frame encoding increases significantly the bitrate of the
output video and creates extra computation overhead at the
final phase of processing, the entropy encoding.

Second, we vary the number of B-frames between I- and
P-frames This parameter can change the computation and
communication characteristics of our implementation. Ana-
lyze/encode tasks originating from B-frames are more coarse

grain than the same tasks originating from P-frames, in both
computation and communication manner. The aforementioned
tasks of B-frames use two reference frames, in contrast with
P-frames that use only one. Thus, the execution time of the
serial version of P-frames is less than execution time of B-
frames. Figure 3(b) shows that the speedup increases when
using a higher number of B-type frames.

Next, we examine the scalability ofc264, where we compare
the execution time with the PPE and more than one SPEs to
the execution time with the PPE and one SPE. Figure 3(c)
shows the speedup for different resolutions and input streams.
The encoder achieves a speedup between 3.8 and 4.2 on six
SPEs. Moreover, we observe slightly better scalability using
large resolution, due to a larger number of outstanding tasks
in the middle of the frame, compared to the small resolution.

To understand the task overheads and serial parts, we
present in Figure 3(d) PPE execution time breakdowns for
different resolution and motion estimation algorithms from
runs that use six SPEs. Issue time is less than 3% of the
PPE execution time, without any dependence on the motion
estimation algorithm or the video resolution. The average
issue time is about 600 CPU core cycles per task. Queue
stall accounts for around 18% and 35% for the DIA and
UMH motion estimation algorithm respectively. The resolution
of video has minor effect on the normalized stall time, in
contrast with the selected algorithm. This indicates that the
task granularity of the DIA motion estimation algorithm is
much smaller than that of the UMH algorithm.

The serial part of entropy encoding using the DIA motion
estimation algorithm is 24% and 17% for small and large
resolutions respectively. In contrast, the serial entropyencod-
ing ranges from 6% to 4% for small and large resolution
respectively, when using the UMH algorithm. The encoder
executes entropy encoding in scan order form in contrast to the
wavefront algorithm. This means that we can not issue tasks
from the next line until the previous line is fully analyzed and
encoded. In our implementation we give priority to the entropy
tasks via proper scheduling.

Metadata management accounts for 8% to 14% of PPE total
execution time. Although, the number of memory accesses in
this module is small, the access pattern is irregular and causes
many cache misses. The task management loop (manage)
overhead ranges from 20% to 24%. Memory allocation takes
4% and 6% of PPE execution time when using small and
large resolution respectively, for the UMH algorithm. In high

© IEEE Proc. Int. Conf. on Embedded Comp. Systems: Architectures,Modeling, Simulation – IC-SAMOS, Greece, July 2011; pp. 217-224



222

resolutions the number of outstanding tasks and metadata
increases, which in turn increases overall memory utilization.
Queue stall and entropy take significant percentage of PPE
time, which indicates that further scalability is possible.

Figure 4(a) shows elapsed time in the x-axis and execution
time of different task types in the y-axis. We use the bluesky
video, small resolution, and 6 SPEs in this run. We collect
results from only one SPE and we separate the file I/O
operations using dotted lines in the graph. SPEs execute a
limited number of tasks between two frames. Most of these
tasks are memory copies between buffers and initialization
of different structures. About 6% of total execution time
of PPE is spent in frame initialization and finalization. The
deblocking filter task of the luminance component is the
most computationally intensive task, taking up to 180000 core
cycles. The deblocking filter is partially vectorized and can
be further improved. Analyze/encode and entropy encoding
tasks also have significant variation in execution time. In B-
frames the entropy tasks are smaller than in P-frames, because
B-frames achieve better compression than P-frames. Thus, the
encoded input information for the entropy encoder is small and
the algorithm terminates earlier than the entropy encodingof
P-frames. The variation in execution time of tasks leads to
load imbalance.

The analysis of data reveals that there are three funda-
mental bottlenecks: task management overhead, serial parts,
and architecture limitations. First, the high task management
overhead, up to 40%, is a result of dynamic scheduling and
dependency checking, memory management, and macroblock
metadata handling. Second, the 2D-wavefront algorithm has
some serialization points: frame initialization, frame final-
ization, and the remaining entropy encoding. Third, there
are some architecture limitations related to the size of local
stores, that have negative impact in overall performance. The
performance of SPE code suffers because we can not enable
some compiler optimizations (loop unrolling) and practically
eliminates the prefetching of arguments. Moreover, the SPE
code takes more than half of the available local store memory.
In our design we require multiple copies of the same code
region in the SPEs, that waste memory resources.

C. Impact of optimizations

In this section we evaluate the impact of each group of
optimizations as described in Section III. Figure 4(b) shows
the impact of each group of optimizations on execution time.
We group optimizations in three different categories: (i)Static
scheduling issues all tasks in an antidiagonal and then waits
for all tasks to complete; (ii)Dynamicscheduling includes the
selective dependence checking and issue across antidiagonals;
(iii) Memory includes memory optimizations and dynamic
scheduling. We use the bluesky input with the high resolution,
UMH motion estimation, and a 128×128 search range.

Dynamic schedulingimproves execution time over static
scheduling by about 30% and reduces synchronization time
by 80% on six SPEs. Furthermore, the optimization decreases
the SPE idle time compared to static scheduling. Dynamic
scheduling issues tasks faster than the traditional 2D-wavefront
algorithm and achieves better load balancing between SPEs.

TABLE I
ARCHITECTURE CHARACTERISTICS OF THE TWO PLATFORMS.

CPU CMOS LS Size L1 L2 Total
(nm) (KB) (KB) (KB) (KB)

Cell 90 6×256 32 I + 32 D 512 2112
Opteron 90 - 64 I + 64 D 2 × 1024 2176

TABLE II
c264AND x264ACHIEVED FPS USING THE BLUE SKY VIDEO AND THE

UMH ALGORITHM WITH 128� 128 SEARCH REGION.

Resolution c264 1 thread x86 2 threads x86
720x576 55.2 40.27 60.9

1920x1088 10.2 7.12 12.5

Memory optimizations improve execution time by 25%
using six SPEs. We observe that memory optimizations reduce
significantly communication time, up to 60% on the SPE,
while they also reduce stall time on the PPE by at least 30.1%
and at most 42%. Recycling application metadata and buffers
has small impact on performance, but allowsc264to run larger
input resolutions. The use of large pages has the biggest impact
of all memory optimizations and reduces communication time
by up to 50% compared to offloading. The use of large pages
decreases significantly the number of TLB misses. A side
effect of using large pages is that execution time of PPE code
is reduced by about 5% in large resolutions. This happens
because the SPE sends an interrupt to the PPE for handling
each SPE TLB miss. Moreover, we observe a minor impact
on the execution time of the serial application running on PPE
using large pages (PPE HTLB).

D. Impact of task queue size

Differences in task execution time and long queue sizes can
cause significant imbalance and decrease the performance of
the encoder. We enforce load balancing, using one slot per
SPE queue, although this increases issue and stall time. An
entropy task may be delayed behind other tasks in the SPE
task queues, which are served in FIFO. On the other hand,
the PPE has a two-way SMT architecture. To compensate for
priorities we spawn another thread for entropy encoding. The
spawned thread is responsible only for entropy encoding.

Figure 4(c) shows the PPE execution time breakdown with
six SPEs and varying queue sizes in three configurations: the
optimized version with one queue slot on each SPE (left),
using a PPE thread for entropy encoding (middle), and using
a PPE thread for entropy encoding together with four task slots
per SPE (right). The allocator time increases due to locking,
as a result of concurrent accesses to data structures. Metadata
handling time increases because of memory accesses from the
two PPE threads on the shared PPE L2 cache. Note that the
sum of synchronization, issue, and stall time is larger than
when using one task slot per SPE queue. The serial part of
entropy encoding is lower as expected, due to the additional
thread that executes only this task.

E. Comparison with Other Platforms

To place our results in context, we also presentx264
results on a dual-processor system, with two 64-bit Dual-Core

© IEEE Proc. Int. Conf. on Embedded Comp. Systems: Architectures,Modeling, Simulation – IC-SAMOS, Greece, July 2011; pp. 217-224



223

300000000 350000000 400000000 450000000

Aplication Time (Core cycles) 

0

50000

100000

150000

200000

S
P

U
 ta

sk
 ti

m
e 

(C
or

e 
C

yc
le

s)

Encode
Entropy
Deblock
Other

P-Frame B-Frame B-Frame

(a)

P
P

E
P

P
E

 H
TL

B

st
at

ic
dy

na
m

ic
m

em
or

y
st

at
ic

dy
na

m
ic

m
em

or
y

st
at

ic
sy

na
m

ic
m

em
or

y
st

at
ic

dy
na

m
ic

m
em

or
y

0

20

40

60

S
ec

on
ds

single PPE
PPE issue
Queue stall
Sync Wait
Application

SPE Idle
SPE Lib
SPE Task

1 SPE

6 SPEs

(b)

Q
 =

 1
Q

 =
 1

 +
T

hr
ea

d 
Q

 =
 4

 +
T

hr
ea

d

15000

12000

9000

6000

3000

 T
im

e 
(m

s)

Issue 
Queue Stall 
Sync Wait 
Metadata
Entropy
Entropy Parallel 
I-Frame 
Manage 
Allocator
Other

(c)

Fig. 4. Timeline with all executed tasks and their respectivetask execution time, collected from one SPE when all six SPEs are active (a). Impact of
optimizations using the bluesky sequence with UMH motion estimation and large resolution (b). PPE breakdowns with different queue slots per SPE (c).

AMD Opteron Processor 2216 running at 2.4GHz. Table I
summarizes the characteristics of our architectures. We use
six SPEs when we runc264 on the Cell processor. Table II
shows that the Cell outperforms the x86 processor by 37% and
43%, for small and large resolutions, respectively using one
thread. However,x264 outperformsc264 when two threads
are active, by 10% and 22% for small and large resolutions
respectively. We observe similar results using different input
video sequences. The performance of the AMD processor is
similar to the Cell processor, when the implementations in
both platforms are well optimized.

F. Programming effort

Table III shows the programming effort in line counts and
estimated amount of time for developing and debugging. We
mark column A if the feature or modification is forced by
the Cell architecture. We also mark the possible solution to
avoid the manual coding using a more complex runtime (R)
or compiler (C). We categorize programming effort in five
broad areas: (i) privatization of data structures, (ii) offloading
code to SPEs, (iii) exploiting task parallelism, (iv) memory
optimizations, and (v) SPE code optimizations.

Privatization of data structures is necessary inx264because
the code modifies global variables and arrays in many steps of
the encoding process. For the privatization of data structures,
most of the time is devoted to restricting global memory
accesses and understanding memory accesses in the context
of H.264 video encoding.

Offloading code to SPEs requires major effort on the Cell.
The most significant difficulty is the readjustment of pointers
to point inside the address space of SPEs. Debugging can also
be hard because the SPE does not have memory protection
for boundaries checking. A compiler can assist offloading,
by using static analysis and copying the offloaded code in
different files for compilation.

We can divide parallelism exploitation into three smaller
categories: preserving dependencies, application metadata han-
dling, and task scheduling. Dependence analysis requires about
one day effort because dependencies have been extensively
analyzed in previous work [17]. Metadata handling requires
about one week because of the difficulty in understanding
global memory accesses in the video encoder context. Task
scheduling also requires about one week due to the complexity

TABLE III
PROGRAMMING EFFORT EXPRESSED IN LINES OF CODE ADDED TO OR

MODIFIED FROM THE ORIGINAL x264APPLICATION.

Category Modification LOC Eff. A R C

Privatize
data
structs

MB Analysis 2735 1 M X
MB Encoding 2170 1 M X

Entropy Encode 1047 1 M X
Deblocking Filter 430 1 W X
Frame mem copy 15 1 D X

Offload
to SPE

MB Analysis 2735 1 M X X
MB Encoding 2170 1 M X X

Entropy Encode 1047 1 W X X
Deblocking Filter 430 1 W X X
Frame mem copy 15 1 D X X
Issue, entry code 1206 1 D X

Task
paral-
lelism

Satisfy deps 40 1 D X
Metadata handle 250 1 W X
Task schedule 400 1 W X

Mem
optimi-
zation

Tune strided args 5 1 D X X
Reduce TLB misses 135 1 W X X X
Recycle data structs 244 1 W X X

SPE
optimi-
zation

Code vectorization 357 1 W X X
Branch elimination ~30 1 W X X

Loop unrolling ~100 1 D X
Expand variables ~30 1 D X

of dynamic scheduling. We can avoid the aforementioned
modifications by using a runtime that supports dependence
analysis, such as Cell Superscalar [18].

In terms of memory optimizations, tuning of strided mem-
ory accesses is straight-forward, because we only need to
insert a few lines of code for stride selection during frame
initialization. Allocating large pages, using the huge pages
interface of the kernel, is more complicated than a library
call and requires special handling. Recycling data structures
requires about one week, because we need to understand the
use of data structures in the context of thex264. Finally,
SPE code optimization includes all code transformations in
kernels: vectorization, branch elimination, loop unrolling and
expanding kernel variables. Loop unrolling and expanding
kernel variables are straightforward and require minimal ef-
fort. On the other hand, hand tuned vectorization is more
complicated due to irregular data accesses in some kernels,
whereas branch elimination also requires significant effort for
only minor performance improvement.

© IEEE Proc. Int. Conf. on Embedded Comp. Systems: Architectures,Modeling, Simulation – IC-SAMOS, Greece, July 2011; pp. 217-224



224

V. RELATED WORK

Park and Ha [19] analyze the expected performance ofx264
parallelization at the macroblock-level for the Cell processor.
They offload only the first phase of the encoder, the analysis
to SPEs, whereas the rest of the encoder remains on the
PPE. Di Wu et al. [6] present a real time encoder of H.264,
however, their effort is focused on kernel optimization rather
than parallelization. They ignore the entropy encoding and
other auxiliary parts of the encoder, such as frame initiation
and rate control. We present an end-to-end implementation that
parallelizes or offloads every phase of the encoder and show
that the task management can occur significant overheads. If
we ignore the auxiliary parts of the encoder and decrease the
search region we achieve 24 fps on six SPEs, which is close
to the performance demonstrated in [6].

Xun et al. [5] use a decentralized pipelined parallel encoding
algorithm to achieve real time encoding for high definition
H.264 streams using eight SPEs. They manage to decrease task
management overhead using decentralized task creation. For
efficient communication they use multi-buffering and on–chip
communication for data transfers between different modules
of the encoder. We use a master-worker execution model that
is more general and can be adapted for different architectures.

Previous research has also examined video decoding on
Cell. Macroblock-level parallelism can be exploited in intra-
and inter-frame and is extensively analyzed by Meenderincket
al. [7]. They use a master-worker programming model similar
to ours. Meenderick et al. also investigate different scheduling
policies for macroblock-level parallelism, including a static
scheduling approach to improve locality [8]. In contrast, we
cannot exploit locality in many cases due to local store size
limitations. Although this work is useful and shows the upper
limits of performance that can be achieved with upcoming
multi-core architectures in general and the Cell processor
in particular, it has two main shortcomings: (a) It ignores
important dynamic behavior which exists in the encoder and
does not exist in the decoder. (b) It does not reveal the effort
associated with providing a full working encoder or decoder
application on such architectures. Furthermore, our evaluation
uses the full H.264 encoding process.

VI. CONCLUSIONS

We presented the design, implementation, and evaluation of
a fine-grain task-parallel version of the H.264 video encoder
on the Cell processor, the required programming effort, and
performance limitations. Starting from an existing, thread-
based parallel encoder,x264, that uses frame-based paral-
lelism, we redesigned the encoder to use master-worker, fine-
grained task-based parallelism with appropriate scheduling.
Our implementation ofc264achieved up to 82 and 16 frames
per second for 720×576 and 1920×1080 input resolutions
respectively, while running the full encoding process with
six SPEs. However, our implementation required significant
programming effort, some of which could be mitigated with
compiler and runtime support, whole our experimental analysis
revealed several sources of performance bottlenecks: task
management overhead, serial parts, and architecture limitations

such as local store size and TLB handling on the PPE. We
find that the Cell processor is only slightly faster than an
x86 processor of similar technology, when software is well
optimized on both platforms.

REFERENCES

[1] H. P. Hofstee, “Power Efficient Processor Architecture and The Cell
Processor,” in11th International Conference on High-Performance Com-
puter Architecture (HPCA ’05), 12-16 February 2005, San Francisco,
CA, USA, pp. 258–262, 2005.

[2] NVIDIA Corporation, “Fermi Architecture White Paper,” 2009.
[3] A. Rodriguez, A. Gonzalez, and M. P. Malumbres, “Hierarchical Par-

allelization of an H.264/AVC Video Encoder,” inProceedings of the
international symposium on Parallel Computing in Electrical Engineer-
ing (PARELEC ’06), (Washington, DC, USA), pp. 363–368, 2006.

[4] Yen-Kuang Chen and Xinmin Tian and Steven Ge and Milind Girkar,
“Towards Efficient Multi-Level Threading of H.264 Encoder on Intel
Hyper-Threading Architectures,” in18th International Parallel and
Distributed Processing Symposium (IPDPS ’04), 26-30 April, Santa Fe,
New Mexico, USA, p. 63, 2004.

[5] Xun He, Xiangzhong Fang, Ci Wang, and Satoshi Goto, “Parallel HD
encoding on cell,” inInternational Symposium on Circuits and Systems
(ISCAS ’09), pp. 1065–1068, 2009.

[6] Di Wu, Boonshyang Lim, Johan Eilert and Dake Liu, “Parallelization of
High-Performance Video Encoding on a Single-Chip Multiprocessor,” in
IEEE International Conference on Signal Processing and Communica-
tions, 2008.

[7] C. Meenderinck, A. Azevedo, B. Juurlink, M. Alvarez, andA. Ramirez,
“Parallel Scalability of Video Decoders.,”Signal Processing Systems,
vol. 57, no. 2, pp. 173–194, 2009.

[8] Chi Ching Chi, Ben Juurlink, Cor Meenderinck, “Evaluation of Parallel
H.264 Decoding Strategies for the Cell Broadband Engine,” in Proceed-
ings International Conference on Supercomputing (ICS ’10), June 2010.

[9] “ITU-T H.264: Advanced video coding for generic audiovisual services,”
November 2009.

[10] Videolan. x264: A free H.264/AVC encoder,
http://www.videolan.org/developers/x264.html.

[11] G. Tzenakis, K. Kapelonis, M. Alvanos, K. Koukos, D. S. Nikolopoulos,
and A. Bilas, “Tagged Procedure Calls (TPC): Efficient runtime support
for task-based parallelism on the Cell Processor,” inThe 2010 Inter-
national Conference on High-Performance Embedded Architectures and
Compilers (HiPEAC ’10), Jan. 2010.

[12] S.M. Akramullah, I. Ahmad, M.L. Liou, “Performance of a software-
based MPEG-2 video encoder on parallel and distributed systems,” in
IEEE Transactions on Circuits and Systems for Video Technology (TCSV
’97), vol. 7, pp. 687–695, 1997.

[13] S. M. Akramullah, I. Ahmad, and M. L. Liou, “A data-parallel ap-
proach for real-time MPEG-2 video encoding,”Journal of Parallel and
Distributed Computing, vol. 30, no. 2, pp. 129–146, 1995.

[14] Erik B. Van Der Tol, Egbert G. T. Jaspers, Rob H. Gelderblom
E.B. van der Tol, E.G.T. Jaspers and R.H. Gelderblom, “Mapping of
H.264 decoding on a multiprocessor architecture,” inImage and Video
Communications and Processing, pp. 707–718, 2003.

[15] Redbooks, IBM,Programming the Cell Broadband Engine Architecture:
Examples and Best Practices, ch. 4, p. 325. 2008.

[16] M. Alvarez, E. Salami, A. Ramirez, and M. Valero, “HD-VideoBench. A
Benchmark for Evaluating High Definition Digital Video Applications,”
in Proceedings of the 10th International Symposium on Workload
Characterization (IISWC ’07), (Washington, DC, USA), pp. 120–125,
2007.

[17] Zhuo Zhao and Ping Liang, “A Highly Efficient Parallel Algorithm for
H.264 Video Encoder,” inInternational Conference on Acoustics, Speech
and Signal Processing, 2006, vol. 5 of Acoustics, Speech and Signal
Processing, pp. 489–492, May 2006.

[18] P. Bellens, J. M. Ṕerez, R. M. Badia, and J. Labarta, “Memory - CellSs:
a programming model for the cell BE architecture,” inProceedings of
the ACM/IEEE SC2006 Conference on High Performance Networking
and Computing, 2006, Tampa, FL, USA, 2006.

[19] J. Park and S. Ha, “Performance Analysis of Parallel Execution of H.264
Encoder on the Cell Processor,” inWorkshop on Embedded Systems for
Real-Time Multimedia (ESTIMedia ’07), pp. 27–32, 2007.

© IEEE Proc. Int. Conf. on Embedded Comp. Systems: Architectures,Modeling, Simulation – IC-SAMOS, Greece, July 2011; pp. 217-224


