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Abstract.

As the workstation market moves form single processor to small-scale shared memory multiprocessors, it is very attractive to
construct larger-scale multiprocessors by connecting symmetric multiprocessors (SMPs) with e�cient commodity network interfaces
such as Myrinet. With hardware-supported cache-coherent shared memory within the SMPs, the question is what programming model
to support across SMPs. A coherent shared address space has been found to be attractive for a wide range of applications, and shared
virtual memory (SVM) protocols have been developed to provide this model in software at page granularity across uniprocessor nodes.
It is therefore attractive to extend SVM protocols to e�ciently incorporate SMP nodes, instead of using a hybrid programming model
with a shared address space within SMP nodes and explicit message passing across them. The protocols should be optimized to exploit
the e�cient hardware sharing within an SMP as much as possible, and invoke the less e�cient software protocol across nodes as
infrequently as possible.

We present a home-based SVM protocol that was designed with these goals in mind. We then use detailed, application-driven
simulations to understand how successful such a protocol might be and particularly whether and to what extent the use of SMP nodes
improves performance over the traditional method of using SVM across uniprocessor nodes. We examine cases where the home-based
SVM protocol across nodes is supported entirely in software, and where the propagation of modi�cations to the home is supported at
�ne grain in hardware. We analyze how the characteristics of our ten applications and their algorithms interact with the use of SMP
nodes, to see what classes of applications do and do not bene�t from SMP nodes, and determine the major bottlenecks that stand in
the way of improved performance.

1. Introduction. Small-scale, shared-memory SMPs (symmetric multiprocessors) have become increasingly
widespread. Inexpensive SMPs based on Intel PC processors are on the market, and SMPs from other vendors
are increasingly popular. Given this development, it is very attractive to build larger multiprocessors by putting
together SMP nodes rather than uniprocessor nodes. Commodity network interfaces and networks have progressed
to the point where relatively low latency and high bandwidth are achievable, making such clusters of SMPs all the
more attractive.

The question is what programming model to use across nodes. The choices are to extend the coherent shared
address space abstraction that is available within the nodes, or to use a shared address space within nodes and
explicit message passing between nodes, or to use explicit message passing everywhere by using the hardware-
supported shared memory within a node only to accelerate message passing, not to share data among processors.
A coherent shared address space has been found to be an attractive programming model: It o�ers substantial
ease of programming advantages over message passing for a wide range of applications|especially as applications
become increasingly complex and irregular as we try to solve more realistic problems|and it has also been shown
to deliver very good performance when supported in hardware in tightly coupled multiprocessors, at least up to
the 64-128 processor scale where experiments have been performed. It is also the programming model of choice
for small-scale multiprocessors (especially the SMP nodes), so provides a graceful migration path. The last of the
programming model possibilities (message passing everywhere) does not take full advantage of hardware coherence
within the SMP, and the second one provides an awkward hybrid model that is unattractive to programmers.

Unfortunately, commodity SMP nodes and networks do not provide hardware support for a coherent shared
address space across nodes. However, shared virtual memory (SVM) protocols have been developed that provide
a shared address space model in software at page granularity across uniprocessor nodes by leveraging the support
provided in microprocessors for virtual memory management. Relaxed memory consistency models are used to
reduce the frequency of invocation of the expensive software protocol operations [20]. Much research has been done
in this area, and many good protocols developed. One way to provide the programming model of choice in clusters,
then, is to extend these SVM protocols to use multiprocessor (SMP) rather than uniprocessor nodes. Another view
of this approach is that the less e�cient SVM is used not as the basic mechanism with which to build multiprocessors
out of uniprocessors, but as a mechanism to extend available small-scale machines to build larger machines while
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preserving the same desirable programming abstraction. The key is to use the hardware coherence support available
within the SMP nodes as much as possible, and resort to the more costly SVM protocol across nodes only when
necessary. If successful, this approach can make a coherent shared address space a viable programming model for
both tightly-coupled multiprocessors (using hardware cache coherence) and loosely coupled clusters.

A recent and particularly promising form of SVM protocols is the class of so-called home-based protocols. This
paper describes a protocol for home-based SVM across SMP nodes that accomplishes the goal above, and that
we have implemented both in simulation and on a set of eight Pentium Pro Quad SMPs connected by a Myrinet
network. The SVM protocol can operate completely in software, or can exploit hardware support for automatic
update propagation of writes to remote memories as supported in the SHRIMP multicomputer [4] (and in a di�erent
way in the DEC Memory Channel [13]). Having described the protocol, we use detailed simulation to examine how
using k, c-processor SMPs connected this way compares in performance to using SVM across k � c uniprocessor
nodes, and whether the performance characteristics look promising overall. Clustering processors together using
a faster and �ner-grained communication mechanism has some obvious advantages; namely prefetching, cache-to-
cache sharing, and overlapping working sets [11]. The hope is that for many applications a signi�cant fraction of
the interprocessor communication may be contained within each SMP node. This reduces the amount of expensive
(high latency and overhead) cross-node SVM communication needed during the application's execution. However,
it unfortunately increases the bandwidth (i.e. communication per unit time) demands on the node-to-network
interface. This is because the combined computation power within the SMP node typically increases much faster
with cluster size c (linearly) than the degree to which the per processor cross-node communication volume is
reduced. This means that depending on the constants, the node-to-network bandwidth may become a bottleneck
if it is not increased considerably when going from a uniprocessor to an SMP node.

We explore these issues with both the all-software and automatic update hardware-supported home-based
protocols. Our study is application driven. In particular, we examine how the algorithms and data structures
of ten very di�erent types of applications interact with the clustering and the page-based SVM nature of the
protocol, to see what classes of applications do and do not bene�t from SMP nodes. We �nd the performance
of both protocols improves substantially with the use of SMP rather than uniprocessor nodes in �ve of the ten
applications. In three applications there is a smaller improvement (or they perform the same as in the uniprocessor
node case) and for the other two results di�er across all-software and automatic update protocols, with the latter
performing worse with SMPs than with uniprocessors.

The major advantages and disadvantages of a shared address space programming abstraction compared to
explicit message passing are described in [8] (Chapter 3) and [25] and will not be covered here . Section 2 introduces
the uniprocessor home-based protocols and describes the extensions to use SMP nodes. It identi�es many of the
tradeo�s that arise in designing such a protocol, and the positions that our protocol takes along them. Section 4
describes the detailed architectural simulator we use, and Section 5 measures the basic performance characteristics
of the simulated system using a set of microbenchmarks. The next two sections are focused on methodological
issues. Section 6 briey describes the most relevant characteristics of the applications and algorithms used, and
Section 7 provides an overview of the metrics we use and the way in which we present performance results. Section 8
provides for both SMP and uniprocessor nodes for the all-software and hardware-supported protocols. Detailed
breakdowns of execution time are used to understand the results in light of application characteristics. Finally,
Section 9 describes some related work, and Section 10 summarizes the main conclusions of the paper.

2. SVM Protocols. Shared virtual memory is a method of providing coherent replication in a shared address
space across uniprocessor nodes without specialized hardware support beyond that already available in uniproces-
sors. The idea is to provide the replication and coherence in main memory through the virtual memory system,
so main memory is managed as a cache at page granularity. The coherence protocol runs in software, and is
invoked on a page fault, just as a hardware cache coherence protocol is invoked on a cache miss. The problem with
page-level coherence is that it causes a lot of false sharing when two unrelated items that are accessed by di�erent
processors (and written by at least one of them) happen to fall on the same page. Since protocol operations and
communication are expensive, this false sharing is particularly harmful to performance. To alleviate the e�ects of
false sharing, protocols based on relaxed memory consistency models have been developed, which allow coherence
information to be propagated only at synchronization points rather than whenever shared data are modi�ed. This
means that if one processor is repeatedly writing a word on a page and another processor is repeatedly reading
another unrelated word on the same page, they can keep doing this independently until they reach synchronization
points, at which time the pages are made consistent. To allow multiple writers to the same page to write their
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Fig. 1. Updates are sent to the home node with a protocol speci�c mechanism: Di�s for HLRC and AU for AURC. Whole pages
are fetched from the home on demand.

separate copies independently until a synchronization point, so called multiple-writer protocols have been devel-
oped. These greatly alleviate the e�ects of false sharing, but communication and the propagation of coherence
information are still expensive when they do occur.

The home-based protocols we examine are based on a lazy implementation of the release consistency model,
called lazy release consistency (LRC). The all-software protocol is called home-based lazy release consistency
(HLRC), and the protocol that exploits hardware automatic update support is called automatic update release
consistency(AURC) 1. Both protocols use timestamps to maintain ordering of events. The rest of this section �rst
briey discusses lazy release consistency, HLRC and AURC for uniprocessor nodes. More detailed descriptions can
be found in the literature [15, 20, 30]. Then, we discuss the major design choices for extending the protocols to
use SMP nodes e�ciently, and the the speci�c choices made in our implementation.

2.1. Lazy Release Consistency. Lazy Release Consistency is a particular implementation of release con-
sistency (RC). RC is a memory consistency model that guarantees memory consistency only at synchronization
points. These are marked as acquire or release operations. In implementations of an eager variation of release
consistency the updates to shared data are performed globally at each release operation. Lazy Release Consistency
(LRC) [20] is a relaxed implementation of RC which further reduces the read-write false sharing by postponing
the coherence actions from the release to the next related acquire operation. To implement this relaxation, the
LRC protocol uses time-stamps to identify the time intervals delimited by synchronization operations and establish
the happened-before ordering between causally-related events. To reduce the impact of write-write false sharing
LRC has most commonly been used with a software or hardware supported multiple-writer scheme. The �rst
software-based multiple writer scheme was used in the TreadMarks system from Rice University [19, 20]. In this
scheme, every writer records any changes it makes to a shared page during each time interval. When a processor
�rst writes a page during a new interval it saves a copy of the page, called a twin, before writing to it. When a
release synchronization operation ends the interval, the processor compares the current (dirty) copy of the page
with the (clean) twin to detect modi�cations and consequently records these in a structure called a di�. The LRC
protocol may create di�s either eagerly at the end of each interval or on demand in a lazy manner.

On an acquire operation, the requesting processor invalidates all pages by consulting the information about
updated pages received in conjunction with the lock. Consequently, the next access to an invalidated page causes
a page fault. In the style of protocol used in TreadMarks, the page fault handler collects all the di�s for the page
from either one or multiple writers and applies them locally in the proper causal order to reconstitute the page
coherently.

2.2. Home-based LRC Protocols. Home-based LRC protocols are much like the protocol described above,
except in how they manage the propagation of updates (writes). Instead of writers retaining their di�s and the
faulting processor obtaining the di�s from all the writers upon a fault, the idea here is for writers to propagate their
changes to a designated home copy of the page before a release operation. The writes from di�erent processors are
merged into the home copy, which is therefore always up to date according to the consistency model. On a page

1Although these are versions of the same basic home-based protocol, we will refer to them as separate protocols to ease the
discussion.
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fault, the faulting processor simply obtains a copy of the page from the home. As a result of fetching the whole
page rather than di�s, this protocol may end up fetching a greater amount of data in some cases, but it will reduce
the number of messages sent since the data have to be fetched from only one node.

The all-software implementation of home-based LRC, called the HLRC protocol, also uses software write
detection and a di�-based write propagation scheme. Di�s are computed at the end of each time interval for all
pages updated in that interval. Once created, di�s are eagerly transferred to the home nodes of the pages, where
they are immediately applied. Therefore, di�s are transient, both at the writer nodes and at the home nodes.
Writers can discard their di�s as soon as they are dispatched, greatly reducing the memory requirements of the
protocol. Home nodes apply arriving di�s to the relevant pages as soon as they arrive, and immediately discard
them too. Later, during a page fault, following a coherence invalidation, the faulting node fetches the correct
version of a whole page from the home node.

Some recent network interfaces also provide hardware support for the propagation of writes at �ne granularity
(a word or a cache line, say) to a remotely mapped page of memory [4, 13]. This facility can be used to accelerate
home-based protocols by eliminating the need for di�s, leading to a protocol called automatic update release
consistency or AURC [16]. Now, when a processor writes to pages that are remotely mapped (i.e. writes to a page
whose home memory is remote), these writes are automatically propagated in hardware and merged into the home
page, which is thus always kept up to date. At a release, a processor simply needs to ensure that it's updates so
far have been ushed to the home. At a page fault, a processor simply fetches the page from the home as before.

While the disadvantage of home-based protocols is that they may fetch more data by fetching whole pages
rather than di�s on a fault, the advantages can be summarized as follows: accesses to pages on their home nodes
cause no page faults even if the pages have been written to by other processors, non-home nodes can always bring
their shared pages up-to-date with a single round-trip message, and protocol data and messages are much smaller
than under standard LRC. Studies on di�erent platforms have indicated that home-based protocols outperform
outperform traditional LRC implementations, at least on the platform and applications tested, and also incur much
smaller memory overhead [16, 30].

Having understood the basic protocol ideas, let us proceed to the main goal of this paper, to examine how and
how well the protocols can be used to extend a coherent shared address space in software across SMP nodes.

3. Extending Home-based Protocols to SMP Nodes.

3.1. Protocol Design. Consider the HLRC protocol for simplicity. Implementing the HLRC protocol on
SMPs requires several non-trivial changes due to the interactions of hardware-coherent intra-node shared memory
with the software-coherent inter-node sharing. In this section we discuss some of the critical issues related to the
e�ciency of an SVM implementation for SMPs. Even simple operations such as a full page fetch from the home
present complications. For instance, if there are other processes on this node writing to the page being fetched
then this full page fetch will overwrite their updates, causing them to be lost forever. Details such as this one will
not be discussed were but were challenging issues during the implementation.

3.1.1. Shared-nothing model. The uniprocessor implementations can be ported to work with SMP nodes
with virtually no modi�cations, if the protocol treats each processor as if it were a separate node. The processors
do not share any application or protocol data and the hardware shared memory in a node is used merely as a fast
communication layer. However, such a model does not leverage the cache-coherent shared memory provided within
the SMP.

3.1.2. Shared-everything model. At the other extreme we consider a model where all the processors within
a given node share both the application data and all the data structures used by the SVM system. In such a model
the node would appear to contain a single processor to the outside world. When coherence actions are performed
they apply to all the processors within the node. For example when a processor acquires a lock from a remote node
the page invalidations are performed for all the processors in this node. This is of course conservative, since the
other processors in the node do not need to see these invalidations yet according to the consistency model. However,
acquires within a node (local acquires) will require almost no protocol overhead, since the updates performed locally
will be made available by the intra-node hardware cache-coherence. Since all the processes within a node always
have the same state for any given page, we can use a single page table for all the processes. This is akin to the
thread model of computation within the node. The propagation of di�s occurs at barrier synchronization and
remote lock acquires. They also occur during a lock release if there is an outstanding remote request for this lock.
As a result, lock releases are very cheap, except when there is a remote lock request waiting for this lock.
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Unlike the previous model, this one does utilize the hardware cache-coherence to share application data within
the SMP and also to share a number of data structures required by the SVM system itself. However, propagating
invalidations unnecessarily to all processors in an SMP node can degrade performance signi�cantly. In particular,
the e�ects of page-level false sharing can be large in this eager invalidation scheme resulting in a large number of
page faults and page fetches.

3.1.3. A hybrid model: Lazy invalidations. The shared-everything model utilizes the SMP hardware
as much as possible, but it is the shared-nothing model in which coherence information is propagated only when
absolutely necessary (i.e. as lazily as possible). To provide both these desirable features, we propose and implement
a scheme with lazy invalidations. In this scheme all processors within a node share all the application data and a
number of data structures used by the system. However, each process has its own page-table, and a given page in
the system may have di�erent states for di�erent processes. Now, during a remote lock acquire, invalidations are
performed only for the acquiring process (this will help to make the acquire faster). However a local lock acquire
will now require invalidations to be performed (hence, it will be more expensive than the shared-everything scheme,
but we must design it to be much less expensive than the shared-nothing scheme). We can see how the coherence
actions are performed at di�erent times by comparing Figures 2 and 3. The �gures assume that all the processors
in the node will acquire the lock; when this is not the case, the eager invalidation scheme will prove to be more
expensive.
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Fig. 2. Eager invalidation scheme
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Fig. 3. Lazy invalidation scheme

Similarly to the previous scheme, we perform di�s during barriers and remote lock requests, as well as lock
releases when there is an outstanding remote request for this lock. Barrier operations are almost identical in this
and the shared-everything schemes.

3.1.4. Translation{Lookaside Bu�er (TLB) Coherence. Previous studies have discussed TLB synchro-
nization as a major obstacle for an SVM implementation to achieve good performance on a cluster of SMPs. TLB
synchronization or TLB shootdown are terms used for the global operation (within an SMP) of ushing the TLB
of all the processors of the same SMP.

In the eager invalidation scheme, all the processes share one page table. When one processor performs a
change to the page table, all others in this node should see this change, hence we need to ush all their TLBs to
ensure consistency. However, in the lazy invalidation scheme, each process has it's own page table and hence such
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synchronization is not necessary. Of course, the TLB for this processor needs to be ushed. Another relevant issue
is process migration. Since the Pentium family of processors does not support entries of multiple processes in the
same TLB, TLBs are ushed on every context-switch. Hence, process migration does not pose a problem on this
architecture.

3.1.5. Synchronization. Barrier synchronization in SVM systems is usually implemented (in the absence of
hardware support) with messages that are sent by each processor to a barrier master The barrier master, gathers
the control information and distributes it to all the nodes after they have reached the barrier. The number of
messages exchanged depends on the algorithm used. Barriers may create hot spots in the network if they are not
implemented carefully. In an SMP con�guration, two{level hierarchical barriers not only reduce hot spots, but
reduce the number of messages exchanged as well. The lower level is concerned with intra-node synchronization
that does not involve any messages at all, and the higher level with inter-node synchronization, which is achieved
by exchanging messages. Hierarchical barriers in an SMP con�guration match the underlying architecture well.

An important tradeo� in barrier implementation is the amount of processing needed at the barrier master.
The gathered control information (invalidations and time stamps) can either be processed locally in the barrier
master �rst and then sent to each node only if necessary, or it can be sent to all nodes and then the appropriate
information is extracted in each node. The �rst approach reduces the size of messages that are sent but turns the
barrier master into a serialization point. The second approach uses bigger messages but exhibits higher parallelism.

Similarly, locks within an SMP node need not exchange messages. This makes local lock acquires very cheap.
Depending on the invalidation scheme used (as discussed above) local lock acquires can be as cheap as a few
memory references.

3.1.6. Protocol handling. In all SVM implementations remote requests sent over a network need to be
serviced. On a uniprocessor node there is little choice in this regard; the processor must be interrupted or it must
somehow poll periodically. However, with SMP nodes there are a number of choices. The two basic ideas are
either to dedicate a processor within the SMP to handle network requests exclusively (by polling) or to handle the
requests by interrupting one of the computation processors.

A dedicated processor implementation helps to avoid interrupts, which are a performance bottleneck in most
systems. However, this choice wastes a valuable compute resource. In our experiments we notice that this dedicated
processor has low occupancy, since actual protocol processing overhead even with SMP nodes, is still not very high.

If we use the compute processors to handle requests then we could either statically assign one compute processor
for this purpose or we could perform a round-robin assignment as the requests arrive. To reduce interrupts we can
instruct idle compute processors to poll for requests and interrupt a random compute processor only when there
are no idle processors [18].

It is interesting to note that each solution presented for protocol handling is expected to perform better but is
more complex than the previous one. On a real system some choices may be di�cult or too expensive to perform
due to architectural and operating system limitations. For instance, Linux 2.0.x (the OS we use) sends interrupts
only to processor 0, and it is not possible to distribute interrupts among processors within an SMP. We therefore
use the method of a statically assigned compute processor for protocol handling.

3.1.7. Protocol optimizations. Another important issue is how each protocol interacts with the system on
which it is implemented. Several system aspects can inuence performance substantially and change the tradeo�s
in protocol design. These include various architectural and operating system costs, e.g., interrupts, network latency
and bandwidth, etc. When a protocol is designed for a speci�c system, these issues need be taken into account.

3.2. Protocol Implementation. This section presents the speci�c choices made in our implementation of
HLRC across SMP nodes. The data structures that allow us to implement these choices easily, and the exact
mechanisms used will also be described. Readers not interested in implementation issues may skip the details in
this section.

3.2.1. Operations and Data structures. To illustrate the data structures, we �rst need to de�ne some
key terms. The time during the actual execution of a parallel program is broken into intervals. With uniprocessor
nodes, intervals are maintained on a per-process basis. An interval is the time between two consecutive releases
by the process. These intervals are numbered in a monotonically increasing sequence. Each process maintains a
vector called the update-list, which records all the pages that have been modi�ed (by this process) in the current
interval. Intervals are ended when locks are released.
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When we end an interval, this update-list is placed in a data structure called the bins (see Figure 4). This is the
key data structure used by the SMP protocol. In our SMP protocol we use a single column for each node and not for
each processor. Intervals are therefore maintained per node rather than per process. Thus, the bins data structure
scales with the number of nodes and not the number of processors in the system, providing better scalability (by
increasing both cluster size and number of nodes) than schemes whose data structures are proportional in size to
the number of processors. This would be even more important if the nodes were large, e.g., if we were using SVM
to connect several DSM machines.

To provide laziness within a node, we need a per-process data structure. We refer to it as the view vector.
Essentially this is the \view of the world" that a process has. This vector maintains the information on what
portion of the bins has been seen (i.e., the invalidations corresponding to those intervals from di�erent nodes have
been performed) by this particular process. Thus, when one process fetches new bin information from another
node, the new information is available to all processes in its SMP node, if they want to access it (this makes later
acquires by them cheap). The other processors however, will not act on this information (e.g. invalidate the pages)
unless their individual view vectors say they should. Figure 5 shows how this works.

Bins for Node 0 Bins for Node 1

for process 1

Vew vector

Vew vector

for process 0

After the lock acquire

Before the lock acquire

Fig. 5. A remote lock acquire

During a remote lock acquire operation (when the requested lock is available at a remote node), the requester
sends over its view vector and a vector that indicates what bins are currently present at this node. Any portions
of the bins that are not available at the requester are sent back in the form of write notices along with the view
vector of the releaser of the lock. The requester then matches its view vector with the lock releaser's view vector
(at the time of the lock release operation), and invalidates, for itself only, all the pages indicated in the bins that
are \seen" by one view vector but not the other. This operation is illustrated in Figure 5. In this example process 1
on node 1 is acquiring a lock which was previously released by process 1 on node 0.

The scheme we use for locking allows a local lock acquire operation to be completely local with no external
or internal messages. All that is required is the matching of the requester's view vector with the releaser's, hence
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there is a tiny amount of protocol processing with only necessary invalidations taking place. As we can see in
Figure 6, this operation requires its own bins, and no data transfers across nodes are involved.

For a barrier operation all the bins that have been generated at this node and not have been propagated
yet are sent to the barrier manager. The barrier manager then disperses this information to all the nodes (not
processors) in the system. At this time all processes in each node match their view vectors to one that includes all
the available bins, invalidating all the necessary pages.

Finally, we should mention how data are fetched when a more recent version of a page is needed. Since this
is a home-based scheme, the home node of a page always has the most current version of the page. However, it
is desirable when requesting a page to specify the version that is absolutely necessary and not any later one. To
achieve this we use a system of lock time-stamps and ush time-stamps. Each page at the home has associated
with it a ush time-stamp that indicates what is the latest interval for which the updates are currently available
at the home. One may think of this as a \version" of the page. The lock time-stamp sent by the requester to the
home indicates what the ush time-stamp of the page should be in order to ensure that all relevant changes to the
page by other processors are in place. The lock time-stamp speci�es the version of the page we should have. This
time-stamp is sent to the home when we request a page, so that the appropriate decision is made.

3.2.2. Other Issues. At page fetches, the page tables of all processors in the node are invalidated to make
sure that more recent data will not be overwritten by the fetched page, whereas at locks only the pages of the
processor acquiring the lock are invalidated (and TLB shootdown is not needed). The former problem can be
avoided by computing and applying di�s of the page at the requester rather than overwriting the whole page
(essentially, the requester di�s the page that is fetched from the home with its current \twin" copy and applies
only the di�s to the current local page; if the program is release-consistent, there can be no conicts between these
words and those being written by other processors in the local node). However, this adds complexity, and whether
the di�ng cost in the critical path is worthwhile is another tradeo� that we plan to investigate. For now, we do
not implement it.

Synchronization within nodes does not use interrupts, which are needed only to service remote page fetch and
synchronization requests. These protocol requests are handled by a statically assigned processor in each node, as
discussed earlier. One di�erence between the protocol in the simulator and our real implementation is the treatment
of barriers. In the simulator the barrier owner sends all write notices to all nodes, and they decide which ones are
relevant.

4. Simulated Platforms. The simulation environment we use is built on top of augmint [24], an execution
driven simulator using the x86 instruction set runs on x86 systems.

The simulated architecture (Figure 7) assumes a cluster of c{processor SMPs connected with a commodity
interconnect like Myrinet [5]. Contention is modeled at all levels except the network links. The processor is P6-like,
but is assumed to be a 1 intstruction per cycle (IPC) processor. The data cache hierarchy consists of a 8 KBytes
�rst-level direct mapped write-through cache and a 512 KBytes second-level two-way set associative cache, each
with a line size of 32B. The write bu�er [27] has 26 entries, 1 cache line wide each, and a retire-at-4 policy. Write
bu�er stalls are simulated. The read hit cost is one cycle in the write bu�er and �rst level cache and 10 cycles in
the second-level cache. The memory subsystem is fully pipelined.

The memory bus is split-transaction, 64 bits wide, with a clock cycle 4x slower than the processor clock.
Arbitration takes one bus cycle, and the priorities are, in decreasing order: second level cache, write bu�er,
memory, incoming path of the network interface, outgoing path of network interface. The I/O bus is 32 bits wide
and has a clock speed half that of the memory bus. The relative bus bandwidths and processor speed match modern
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systems. If we assume that the processor has a clock of 200MHz, the memory and I/O buses are 400 MBytes/s
and 100 MBytes/s respectively.

Each network interface (NI) has two 1 MByte memory queues for incoming and outgoing packets. Network
links operate at processor speed and are 16 bits wide. We assume a fast messaging system [9, 10, 22] that supports
explicit messages. Initiating a message takes on the order of tens of I/O bus cycles. If the network queues �ll, the
NI interrupts the main processor and delays it to allow queues to drain.

In the AURC protocol simulations, a snooping device on the memory bus forwards automatic update tra�c
to the NI. The NI sets up network packets using its programmable core, which incurs a cost per packet. This cost
must be paid in these commodity NIs proposed for use in next-generation systems.

Issuing an Interprocessor Interrupt (IPI) costs 500 processor cycles, and invoking the handler is another
500 cycles. This is very aggressive compared to what current operating systems provide, but is implementable
and prevents interrupt cost from swamping out the e�ects of other system parameters. Protocol handlers cost a
variable amount of cycles. The page size is 4 KBytes, and the cost to access the TLB from a handler running in
the kernel is 50 processor cycles. In accordance to simple experiments, the cost of creating and applying a di� in
HLRC is computed by adding 10 cycles for every word that needs to be compared and 10 additional cycles for each
word actually included in the di�.

In setting the simulation parameters we tried to be as close as possible to an actual con�guration. Our main
goal was not so much to use the exact absolute values of the parameters but to maintain the important relations
among them. Since the processor is less aggressive than the latest generation of processors (1 IPC at 200MHz
versus 2-3 IPC at 200-400 MHz), we scaled down the values that a�ect the performance of the memory subsystem
and the NI as well. Thus we use somewhat smaller caches and slower memory and I/O buses.

The simulator provides detailed statistics about all events in hardware, as well as statistics that help identify
contention in the various components of the system. Unfortunately, protocol handlers cannot be simulated since
the simulator itself is not multi-threaded. Handlers are ascribed a cost depending on the number of instructions
they execute.

The programming model provided by the simulator is threads and the ANL macros. The simulator performs
�rst touch allocation. To avoid allocating all the pages to the thread that initializes the pages, we do not simulate
the initialization phase. Statistics are reset in accordance with SPLASH-2 guidelines.

5. Micro-benchmark Analysis. To understand the costs of the basic protocol and synchronization opera-
tions in this complex system, and to gain con�dence in the simulator, we use a set of micro-benchmarks. These
measure:

� The time to fetch a page, including the request message, the page transfer itself, and the handlers at both
ends.
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the barrier cost for various numbers of processors and write notices.

� The cost to acquire a lock for di�erent numbers of competing processors, page fetches (misses) in the
critical section, and write notices created in the critical section.

� The cost of a barrier for di�erent numbers of processors, write notices, and di� sizes.

The unloaded cost of a page fetch is about 15000 processor cycles, or 75�s with a 200 MHz processor and
the default network con�guration. The one{way latency for a one-word message is about 10�s, and the time to
deliver interrupts and run handlers is similar. This results in an uncontended network bandwidth of about 70-75
MBytes/s for a one-way page transfer, out of the theoretical 100 MBytes/s of the NI. The latency and bandwidth
numbers are in agreement with the reported performance numbers for a real implementation [9].

Uncontended lock acquisition from a remote node costs 5800 processor cycles or 29�s with no write notices
or page fetches in the critical section, and from the local node it is about 2100 cycles. As page fetches inside the
critical section are increased, lock wait time increases dramatically in SVM systems due to serialization, (Figure 8).

The cost of barrier synchronization can be seen to go up sharply with the number of write notices produced
in the previous interval, since these are communicated to the barrier master and from there to all nodes.

6. Applications. In our evaluation we use the SPLASH-2 [28] application suite. We will now briey describe
the basic characteristics of each application. A more detailed classi�cation and description of the application
behavior for SVM systems with uniprocessor nodes is provided in the context of AURC and LRC in [16]. The
applications can be divided in two groups, regular and irregular.

6.1. Regular Applications. The applications in this category are FFT, LU and Ocean. Their common
characteristic is that they are optimized to be single-writer applications; a given word of data is written only by
the processor to which it is assigned. Given appropriate data structures they are single-writer at page granularity
as well, and pages can be allocated among nodes such that writes to shared data are mostly local. In AURC we
do not need to use a write through cache policy, and in HLRC we do not need to compute di�s. Protocol action is
required only to fetch pages. The applications have di�erent inherent and induced communication patterns [16, 28],
which a�ect their performance and the impact on SMP nodes.

FFT: The FFT kernel is a complex 1-D version of the radix-
p
n six-step FFT algorithm described in [1], which

is optimized to minimize interprocessor communication. The data set consists of the n complex data points to be
transformed and another n complex data points referred to as the roots of unity. Both sets of data are organized as
matrices, which are partitioned so that every processor is assigned a contiguous set of

p
n=p rows that are allocated

in its local memory. Communication occurs in three matrix transpose steps, which require all-to-all interprocessor
communication. Every processor transposes a contiguous submatrix of

p
n=p-by-

p
n=p elements from every other

processor to itself|thus reading remote data and writing local data|and transposes one submatrix locally. The
transposes are blocked to exploit cache line reuse. To avoid memory hot-spotting, submatrices are communicated
in a staggered fashion, with processor i �rst transposing a submatrix from processor i+1; then one from processor
i + 2; etc. More details can be found in [29]. We use two problem sizes, 256K(512x512) and 1M(1024x1024)
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elements.

LU: The LU kernel factors a dense matrix into the product of a lower triangular and an upper triangular
matrix. The dense n-by-n matrix A is divided into an N -by-N array of B-by-B blocks (n = NB) to exploit
temporal locality on submatrix elements. To reduce communication, block ownership is assigned using a 2-D
scatter decomposition, with blocks being updated by the processors that own them. The block size B should be
large enough to keep the cache miss rate low, and small enough to maintain good load balance. Fairly small block
sizes (B=8 or B=16) strike a good balance in practice. Elements within a block are allocated contiguously to
improve spatial locality bene�ts, and blocks are allocated locally to processors that own them. See [29] for more
details. We use two versions of LU that di�er in their organization of the matrix data structure. The contiguous
version of LU uses a four-dimensional array to represent the two-dimensional matrix, so that a block is contiguous in
the virtual address space. It then allocates on each page the data of only one processor. The non-contigous version
uses a two-dimensional array to represent the matrix, so that successive subrows of a block are not contiguous with
one another in the address space. In this version, data written by multiple processors span a page. LU exhibits a
very small communication to computation ratio but is inherently imbalanced. We used a 512x512 matrix.

Ocean: The Ocean application studies large-scale ocean movements based on eddy and boundary currents.
It partitions the grids into square-like subgrids rather than groups of columns to improve the communication to
computation ratio. Each 2-D grid is represented as a 4-D array in the \contiguous" version, with all subgrids
allocated contiguously and locally in the nodes that own them. The equation solver used is a red-black, W-cycle
multigrid solver. The communication pattern in the Ocean simulation application is largely nearest-neighbor and
iterative on a regular grid. We run both the contiguous (4-D array) and non-contiguous (2-D array) versions of
Ocean on two problem sizes, 258x258 and 514x514, with an error tolerance of 0.001.

6.2. Irregular Applications. The irregular applications in our suite are Barnes, a hierarchical N-body
simulation; Radix, an integer sorting program; Raytrace, a ray tracing application from computer graphics; Volrend,
a volume rendering application; and Water, a molecular dynamics simulation of water molecules in liquid state.

Barnes: The Barnes application simulates the interaction of a system of bodies (galaxies or particles, for
example) in three dimensions over a number of time-steps, using the Barnes-Hut hierarchical N-body method. It
represents the computational domain as an octree with leaves containing information about the bodies and internal
nodes representing space cells. Most of the time is spent in partial traversals of the octree (one traversal per body)
to compute the forces on individual bodies. The communication patterns are dependent on the particle distribution
and are quite unstructured. No attempt is made at intelligent distribution of body data in main memory, since
this is di�cult at page granularity and not very important to performance. We ran experiments for di�erent data
set sizes, but present results for 8K and 16K particles. Access patterns are irregular and �ne-grained. We use two
versions of Barnes, which di�er in how the shared octree is built and managed across time-steps. The �rst version
(Barnes-rebuild) builds the tree from scratch after each computation phase. The second version, Barnes(space) [17],
is optimized for SVM implementations|in which synchronization is expensive|and it avoids locking as much as
possible. It uses a di�erent tree-building algorithm, where each processor �rst builds its own partial tree, and all
partial trees are merged to the global tree after each computation phase.

Radix: The integer radix sort kernel is based on the method described in [3]. The algorithm is iterative,
performing one iteration for each radix r digit of the keys. In each iteration, a processor passes over its assigned keys
and generates a local histogram. The local histograms are then accumulated into a global histogram. Finally, each
processor uses the global histogram to permute its keys into a new array for the next iteration. This permutation
step requires all-to-all, irregular communication. The permutation is inherently a sender-determined one, so keys
are communicated through scattered, irregular writes to remotely allocated data. See [6, 29] for details.

Raytrace: This application renders a three-dimensional scene using ray tracing. A hierarchical uniform grid
(similar to an octree) is used to represent the scene, and early ray termination and antialiasing are implemented,
although antialiasing is not used in this study. A ray is traced through each pixel in the image plane, and reects
in unpredictable ways o� the objects it strikes. Each contact generates multiple rays, and the recursion results in
a ray tree per pixel. The image plane is partitioned among processors in contiguous blocks of pixel groups, and
distributed task queues are used with task stealing for load balancing. The major data structures represent rays,
ray trees, the hierarchical uniform grid, task queues, and the primitives that describe the scene. The data access
patterns are highly unpredictable in this application. See [26] for more information. The version we use is modi�ed
from the SPLASH-2 version [28] to run more e�ciently on SVM systems. A global lock that was not necessary
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Application Page Faults Page Fetches Local Locks Remote Locks Barriers
1 4 8 1 4 8 1 4 8 1 4 8 1

FFT (20) 397.12 251.89 270.32 393.31 167.17 91.59 0.00 0.00 0.00 0.00 0.00 0.00 1.14
LU(contiguous) (512) 81.36 56.61 48.07 71.78 34.94 11.86 0.02 0.22 0.25 0.27 0.07 0.04 19.24
Ocean(contiguous) (514) 647.61 117.34 103.17 646.97 24.92 7.20 0.00 0.76 1.31 2.17 1.41 0.86 13.05
Water(nsquared) (512) 69.19 22.06 8.04 68.26 19.01 7.29 0.01 120.36 158.14 203.20 82.85 45.06 3.30
Water(spatial) (512) 97.86 21.42 9.23 93.81 17.73 6.04 0.01 1.83 2.60 3.94 2.16 1.39 4.19
Radix (1K) 208.82 82.73 98.40 203.69 44.92 13.41 0.10 0.44 3.30 4.52 4.11 1.33 1.04
Volrend (head) 105.09 44.06 34.49 104.78 29.35 6.53 0.00 29.34 43.80 44.34 17.64 3.97 1.61
Raytrace (car) 89.80 25.64 6.83 89.79 25.57 6.76 0.03 2.21 3.96 4.89 3.26 1.34 0.10
Barnes(rebuild) (8K) 211.22 103.02 55.47 207.72 90.90 40.31 0.07 33.92 71.76 127.74 93.81 55.18 1.44
Barnes(space) (8K) 48.06 10.43 7.67 46.20 9.92 3.48 0.00 0.16 0.21 0.24 0.07 0.03 1.79

Table 1

Normalized number of page faults, page fetches, local and remote lock acquires and barriers per 107 cycles per processor for each
application for 1,4 and 8 processors per node.

was removed, and task queues are implemented better for SVM and SMPs. Inherent communication is small. We
present results only for the SMP protocols due to simulation cycle limitations.

Volrend: This application renders a three-dimensional volume using a ray casting technique. The volume is
represented as a cube of voxels (volume elements), and an octree data structure is used to traverse the volume
quickly. The program renders several frames from changing viewpoints, and early ray termination and adaptive pixel
sampling are implemented, although adaptive pixel sampling is not used in this study. A ray is shot through each
pixel in every frame, but rays do not reect. Instead, rays are sampled along their linear paths using interpolation
to compute a color for the corresponding pixel. The partitioning and task queues are similar to those in Raytrace.
The main data structures are the voxels, octree, and pixels. Data accesses are input-dependent and irregular, and
no attempt is made at intelligent data distribution. See [21] for details. The version we use is also slightly modi�ed
from the SPLASH-2 version [28], to provide a better initial assignment of tasks to processes before stealing. This
improves SVM performance greatly. Inherent communication volume is small.

Water: This application evaluates forces and potentials that occur over time in a system of water molecules.
The forces and potentials are computed every time-step, and a predictor-corrector method is used to integrate the
motion of the water molecules over time. We use two versions of Water, Water-nsquared and Water-spatial. The
�rst uses an O(n2) algorithm to compute the forces, while the second computes the forces approximately using a
�xed cuto� radius, resulting in an O(n) algorithm. Water-nsquared can be categorized as a regular application,
but we put it here to ease the comparison with Water-spatial. In both versions, updates are accumulated locally
between iterations and performed at once at the end of each iteration. The inherent communication to computation
ratio is small. We use a data set size of 512 molecules.
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processor spends initiating page and message transfers and waiting for the network interface queues to drain. The
last component, Handler Compute Time, is the time spent in protocol handlers. Some of this cost is also included
in other costs, for instance Thread Data Wait Time.

Tables 4-5 in Appendix A give more analytical statistics about each application. These can be consulted while
reading the analysis of each application. Important statistics are highlighted in the analysis of each application as
well.

To simplify the discussion, we now clarify a couple of issues up front. Thread Data Wait Time can be large
either because many pages need to be fetched (frequency) or because the cost per page fetch is high due to
contention. Imbalances in data wait time also stem from imbalances in either of these factors, and we will indicate
which dominates. Lock and barrier synchronization times also have two components: the time spent waiting (for
another processor to release the lock or for all processors to reach the barrier) and the time spent exchanging
messages and doing protocol work (e.g., after the last processor arrives at the barrier). We will separate these
out, calling the former wait time and the latter protocol cost. As we saw in Section 5, wait time for locks is often
increased greatly in SVM systems due to page misses occurring frequently inside critical sections and increasing
serialization [16], as well as to increased protocol activity at locks, which has the same e�ect. This makes locks
much more expensive for SVM systems than for hardware-coherent systems.

Finally, we adopt a naming convention in which (for example) AURC-1 is AURC on a system with one processor
per node and HLRC-4 is HLRC on a system with 4 processors per node.

Application Problem
Size

Speedups

AURC-1 AURC-4 HLRC-1 HLRC-4

FFT
18 5.24 6.20 4.43 5.74

20 8.53 8.29 7.73 8.28

LU (contiguous) 512 10.78 12.42 10.16 12.25

Ocean (contiguous)
258 6.10 16.86 5.43 15.23

514 6.52 12.83 6.12 12.80

Barnes (rebuild) 16K 5.30 6.24 2.45 3.82

Barnes (no-locks)
8K 12.94 12.81 11.69 12.19

16K 13.30 12.95 10.94 11.52

Radix 1024 2.82 1.25 0.63 3.41

Raytrace car 6.38 11.82 14.06 14.79

Volrend head 9.14 11.95 7.86 8.81

Water (nsquared) 512 9.09 9.71 8.56 8.84

Water (spatial) 512 7.89 8.52 7.41 10.05

Table 2

Speedups for the uniprocessor and the SMP node con�gurations.

8. System Comparison. In this section we discuss how the protocols behave when moving from uniprocessor
to SMP nodes. Tables 2 and 3 present these results.

From Table 2 we can divide the applications into di�erent classes in terms of their behavior in going from
uniprocessor to SMP nodes. The �rst class is applications for which both protocols improve with SMPs. These
applications are LU, Ocean-contiguous, Barnes-rebuild, Volrend and Water-spatial. We di�erentiate the behavior
of these applications into three subgroups.

The �rst group consists of Ocean (Figure 12), which improves dramatically because of the localized, near-
neighbor pattern of communication and the high amount of barrier synchronization.

Ocean (Figure 12): In both AURC-4 and HLRC-4 data wait times are reduced signi�cantly, compared to the
uniprocessor con�guration. The page fetch cost however, is increased by about 100% and 30% in AURC-4 and
HLRC-4, respectively, because of the larger contention in the memory bus and network interface. The reduction
in data wait time comes from the sharing pattern in Ocean. The communication pattern is nearest neighbor, so if
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Application Problem
Size

Efficiency Factors

AURC-1 AURC-4 HLRC-1 HLRC-4

FFT
18 36% 42% 26% 40%

20 57% 65% 45% 59%

LU (contiguous) 512 58% 68% 53% 66%

Ocean (contiguous)
258 21% 51% 19% 47%

514 33% 82% 29% 79%

Barnes(rebuild) 16K 33% 39% 15% 24%

Barnes (no-locks)
8K 86% 83% 74% 80%

16K 89% 84% 70% 76%

Radix 1024 17% 8% 4% 21%

Raytrace car 39% 72% 86% 90%

Volrend head 58% 76% 50% 56%

Water(nsquared) 512 58% 62% 55% 57%

Water(spatial) 512 51% 55% 46% 63%

Table 3

E�ciency factors (as %) for the uniprocessor and the SMP con�gurations.
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Fig. 11. Cost breakdown for the 1M FFT for AURC and HLRC.

the processes assigned to an SMP node are adjacent in the grid then much of the sharing will be contained locally.
The number of page fetches is greatly reduced, and performance improves even though the cost per page fetch goes
up by 50% due to contention at the bus and the node-to-network interfaces. Also, in Ocean-contiguous the data
accessed by each processor are mostly allocated in the local SMP node. The lower data wait time results in lower
synchronization time.

We see that AURC improves signi�cantly lot by using SMPs. If we look at the e�ciency factor of AURC for
Ocean-contiguous, we see that it is very low for the uniprocessor node case, and much better for the SMP case.
This is because the relatively good speedup in Ocean-contiguous in the uniprocessor case comes mainly from cache
e�ects. The application, in terms of the protocol overheads, performs very poorly, which gives a low e�ciency
factor. In the SMP case, the protocol overheads reduce dramatically, and this is captured by the e�ciency factors.

AURC-4 gives a speedup of around 16. As was mentioned before, the super-linear speedup is due to cache
e�ects. More precisely, the sequential run su�ers from very high local stall time (2-3 times the compute time). The
parallel application takes advantage of the smaller working set size in each processor, and the stall time is reduced
substantially.

Cache e�ects are noticeable in the parallel execution for the larger problem size as well. The working set does
not �t in the cache of each processor, and the stall time is increased substantially. Since multiple processors share
the same memory bus, there is a great deal of contention in the system. The application spends most of the time
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Fig. 12. Cost breakdown for Ocean-contiguous (514x514) for AURC and HLRC.
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Fig. 13. Cost breakdown for Barnes-rebuild for AURC and HLRC.

in waiting for memory operations, with a CPU stall time of (268%, 261%, 296%). Thus, speedups are much lower
for the SMP node case. Protocol e�ciencies increase however. The main reason is that relative protocol overheads
are reduced in the larger problem size and poorer performance comes from cache e�ects.

In the second group are LU and Barnes-rebuild (Figure 13), where the improvement comes again from sharing
of data and lower synchronization costs as well, but at a much smaller degree than Ocean. These are applications
for which clustering helps in data sharing and prefetching, without the inherent communication pattern of the
applications to match the two-level hierarchy as in Ocean. Cheaper synchronization also makes a noticeable
di�erence.

LU: The improvement in performance compared to the uniprocessor con�guration comes from cheaper syn-
chronization, namely hierarchical barriers, and sharing of data in each node, which results in lower data wait times.
For instance, the barrier cost is reduced by 33% in AURC-4 and by 39% in HLRC-4. Similarly, the reduction in
data wait time is 6% and 14% respectively.

Barnes-rebuild (Figure 13): Barnes-rebuild performs quite poorly under both protocols due to extremely high
lock costs. In the SMP case improvements in data wait time due to sharing and prefetching, and in lock times
due to local acquires, are relatively small. Overall performance improves, but not by much. In HLRC-4 with SMP
nodes, data wait time is smaller and more balanced, but lock acquire costs, which dominate performance, remain
expensive (163%, 261%, 312%), and imbalanced. The reduction in the number of remotely acquired locks due to
the use of SMP nodes is not very large.

The third group in this class contains applications where there is an improvement but of a di�erent degree for
AURC-4 and HLRC-4. These are Volrend (Figure 16), and Water-spatial (Figure 17).

Volrend (Figure 16): Volrend uses a task stealing mechanism to achieve load balancing. This mechanism uses
locks to perform atomic operations on the task queue. Using SMPs results in an improvement in all protocol
costs without introducing additional problems. In AURC-4 page fetches are reduced by about 60% due to sharing
and prefetching. Moreover, lock time is reduced by about 50% and computation is not as imbalanced, since the
task stealing method takes advantage of the multiple nodes per SMP (it tries to steal from local processors �rst,



17

0 1 2 3 4 5 6 7 8 9 101112131415

AURC-1

0

1e+08

2e+08

3e+08

 

Handler Compute Time 
CPU-I/O Stall Time 
Thread Barrier-WN Wait Time 

Thread Lock-WN Wait Time 
Thread Data Wait Time 

Total CPU-Cache Stall Time 
Thread Compute Time 

0 1 2 3 4 5 6 7 8 91011 12131415

AURC

0 1 2 3 4 5 6 7 8 9 101112131415

HLRC-1

0 1 2 3 4 5 6 7 8 91011 12131415

HLRC

Fig. 14. Cost breakdown for Barnes-nolocks for AURC and HLRC.
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Fig. 15. Cost breakdown for Raytrace for AURC and HLRC.

converting remote locks and communication to inexpensive local locks and communication). HLRC-4 improves
somewhat but not as much as AURC-4. The main reason is that lock imbalances are still present because remote
locks are more expensive in HLRC, and the distribution of local versus remote locks in each processor is somewhat
more uneven in HLRC, which leads to higher imbalances.

Water-spatial (Figure 17): In AURC-4 performance improves slightly compared to AURC-1. Total data wait
time is reduced, but it is not balanced among processors. The reason for the imbalance turns out to be contention
in the outgoing queue in some network interfaces because of automatic update tra�c, which slows the progress of
outgoing requests. The net improvement in performance is small.

In HLRC-4 the picture changes. HLRC-4 performs considerably better than HLRC-1. Data wait time decreases
considerably because of sharing and prefetching. Also synchronization costs are much lower. Unlike AURC-4,
though, protocol overheads remain balanced and the improvement in performance is larger. There is practically
no contention in the outgoing queue, and request messages are sent out immediately for all the processors.

The second class of applications consists of FFT (Figure 11), Barnes-nolocks (Figure 14), and Water-nsquared.
These applications do not bene�t (or bene�t little) from the use of SMP nodes with either protocol.

FFT (Figure 11): Since communication is all-to-all rather than localized in the matrix transpose in FFT, the
clustering accomplished by using SMP nodes reduces the amount of inherent remote communication by roughly
a factor of k=p, where k is the number of processors in an SMP node, and n is the total number of processors.
However, in the SMP con�guration we �nd that page fetches are reduced dramatically for the small problem
size compared to the uniprocessor node case. This is because the problem size is such that the data that need
to be fetched by di�erent processors lie on the same page. Using multiple processors in each node thus results
in substantial prefetching and in a reduction in data wait time. However, data wait time is imbalanced among
processors within a node because the number of page fetches di�ers among them, so the overall reduction does not
translate to a large improvement in performance. Barrier synchronization time is high due to this imbalance, and
protocol e�ciency low.

For the larger problem size, speedups and e�ciency factors are somewhat better in all cases because less
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Fig. 16. Cost breakdown for Volrend for AURC and HLRC.
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Fig. 17. Cost breakdown for Water-spatial for AURC and HLRC.

of the data that are fetched on a page are wasted. In both AURC-4 and HLRC-4 data wait time once again
improves because of sharing and prefetching, but imbalances in the data wait time limit the e�ect on performance.
Moreover, with the larger working sets, local memory stall time is considerably higher than in the uniprocessor
node con�guration due to contention on the memory bus. For instance, in AURC-4 stall time is (112%, 115%,
129%) as opposed to (87%, 84%, 93%) in AURC-1. (i.e., 112% minimum across processors, 115% average, and
129% maximum, and so on).

Barnes-nolocks (Figure 14): As in the uniprocessor con�guration, Barnes-nolocks performs very well under all
protocols in the SMP case as well. Clustering does not help much. The reason is that while the barriers that
this application uses often in tree building (instead of locks) are cheaper, data wait time is still imbalanced due to
di�erent number of page fetches among processors. This shows up as synchronization time, and the bene�ts from
clustering are negligible.

Water-nsquared: Here there is a large overall reduction in inter-node communication in the SMP con�guration
due to prefetching, but as in FFT imbalances are created in the numbers of page fetches among processors within
an SMP. The same is true for lock accesses. Thus, despite the large overall reduction in communication, the
improvement in performance is small.

In the applications in this second class, using SMP nodes does reduce aggregate communication and syn-
chronization costs substantially due to sharing and prefetching, but the increases often do not translate to large
performance increases because the reductions are imbalanced on a per-processor basis within the nodes.

In the third class of applications are Radix and Raytrace (Figure 15). These exhibit di�erent relative behavior
under di�erent protocols.

Radix: All protocols perform very poorly with Radix. Among the AURC protocols, AURC-4 performs worse
than AURC-1. The amount of data sent as replies to page requests decreases to about one fourth in the SMP
con�guration, as with FFT, yet performance is much worse because AU tra�c per processor is about the same as
in AURC-1, while bus and network interface bandwidth are now shared. This creates contention in all components
of the path between the sender and the receiver, delaying both AU and request/control messages. Consequently,
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all forms of communication and synchronization are slowed down. For instance the average page fetch cost is huge,
(466935, 1312487, 1942957) cycles. Protocol e�ciency is very low for AURC-4.

HLRC-4 performs much better than HLRC-1. HLRC-4 does not su�er from increased tra�c as much as
AURC-4, since there is no automatic update tra�c. Messages are delivered faster, and fetch time, lock time and
barrier costs are much smaller, so performance improves. However, SVM protocols do not seem to be able to handle
the bursty, scattered, remote-write communication of Radix, and do not do well overall.

Raytrace (Figure 15): In Raytrace, AURC bene�ts greatly from sharing, whereas the improvement for HLRC
is very small. The reason for the improvement in AURC is the small automatic update messages that are used to
update data. When SMP nodes are used, the number of messages is reduced substantially (the amount of data
is reduced by a factor of 4 with 4-way SMPs), and as a result the contention problem is much less severe than
the uniprocessor node case. In HLRC the number of messages is not a problem since coalesced, large messages
(di�s) are used to update the home nodes. Thus the performance of HLRC-1 is much better than AURC-1 and
the bene�t of using SMP nodes is much smaller.

9. Related Work. Our study on uniprocessor systems is consistent with the results obtained in [16] for their
slow bus case, although we compare AURC against HLRC instead of LRC. HLRC and LRC have been compared
for some applications on the Intel Paragon in [30].

Holt et al. in [14] present a metric similar to protocol e�ciency. They use it to characterize the performance
of applications on a hardware cache coherent machine.

Several papers have discussed the design and performance of shared virtual memory for SMPs [7, 12, 18, 23] for
di�erent protocols. Erlichson et al. [12] conclude that the transition from uniprocessor to multiprocessor nodes is
nontrivial, and performance can be seriously a�ected unless great care is taken. However, the protocol and system
they assume is very di�erent from ours.

[2] is a preliminary version of this work. For this work, we use a much more detailed simulation environment
and improved implementations of the the protocols.

10. Summary and Conclusions. The proliferation of small-scale, bus-based shared memory multiprocessors
has made it very attractive to use clusters of these as scalable multiprocessors. Communication between SMPs in
these clusters is performed primarily by software. An important question for these systems is whether the coherent
shared address space communication abstraction provided within the SMP node can be extended e�ectively in
software across nodes as well. Since shared virtual memory systems have been developed to provide this abstraction
across uniprocessors in software, it is attractive, though non-trivial, to extend them to exploit SMP nodes e�ectively.
If successful, this approach can make a coherent shared address space a viable programming model for both tightly-
coupled multiprocessors (using hardware cache coherence) and loosely coupled clusters.

This paper has described such an SVM system for SMP nodes, which attempts to use the hardware sharing
within the SMP as much as possible and reduce the frequency of software protocol involvement, and we have tried
to understand its performance, particularly in comparison with the baseline SVM protocol across uniprocessors.

We �nd that for the same total processor count, using SMP nodes improves performance for both the all-
software HLRC protocol and the AURC protocol that uses hardware remote write support, particularly when
the protocols and applications are designed and used properly. This is despite the fact that the tra�c pressure
on the memory and I/O buses tends to increase. In some cases imbalances are introduced because of increased
contention, and overall bene�ts are reduced. However, the reduction in the number of remote page fetches and
in synchronization cost tends to overshadow the increased contention, resulting in a small improvement in some
applications and a substantial improvement in others. Preliminary experiments show that even when performance
degrades due to contention on the I/O bus (which interfaces to the network), it can be alleviated by increasing I/O
bus bandwidth with the number of processors in an SMP node.

We �nd that out of ten applications, both protocols improve substantially with the use of SMPs in �ve of
them, in three there is a smaller improvement (or they perform the same as in the uniprocessor node case), and for
the other two results di�er for each protocol with AURC-4 performing worse than AURC-1 for one application.

For two out of the three regular applications performance improves signi�cantly for both protocols. An ex-
ception to this is FFT, with its all-to-all communication, which exhibits no signi�cant improvement. Among the
irregular applications, Barnes-rebuild, Volrend, and Water-spatial bene�t in both protocols, Barnes-nolocks and
Water-nsquared do not exhibit any signi�cant improvement, and the last two applications, Radix and Raytrace,
behave di�erently under each protocol. Radix improves with HLRC-4 but performs worse with AURC-4, and Ray-
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trace improves with AURC-4 and exhibits no improvement with HLRC-4. In many cases there is a large reduction
in the number of remote (cross-node) page fetches due to the use of SMP nodes, even larger than expected from
inherent interprocess communication patterns, due to the interactions with page granularity. However, performance
does not increase as much as expected even in these cases, because the reduction is uneven across processors so
there is signi�cant load imbalance in communication costs.

In doing this research, we found that modifying and restructuring applications a little|sometimes trivially and
sometimes algorithmically|can go a long way toward improving the performance of SVM systems, with or without
automatic update support. The tree-building in Barnes, the elimination of a lock and management of task queues in
Raytrace, and the change in initial assignment of tasks in Volrend are examples. The performance impact is much
greater than the tradeo� among these protocols. Finally, while overall parallel performance appears promising at
this scale, for some applications such as Radix we are still not able to achieve good parallel performance from
shared virtual memory systems.
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Appendix A: Detailed Performance Data. Table 4 compares AURC-1 and AURC-4, and Table 5 compares
HLRC-1 and HLRC-4 in more detail. For each application there are two columns. The �rst column presents the average
percentage cost of each component of the execution time with respect to the thread compute time for the base case. The
second column presents the change from the base case for the other protocol. In these tables Barriers refers to the total barrier
cost, whereas Barrier Wait refers to the component of this cost until all processors reach the barrier (due to imbalances).
Similarly Locks refers to the total lock cost and Lock Wait to the component up the point where the lock is released and
can be granted to the next processor. Finally PFetch Time is the average cost of a page fault.

Cost
Breakdown FFT LU-contiguous Ocean-contiguous Barnes-rebuilt Radix Volrend Water-nsquared Water-spatial

Protocol 9% -2% 1% 0% 12% -11% 8% -3% 4% -2% 7% -4% 5% -3% 2% -1%

I/O Wait 12% -8% 2% -1% 16% -16% 6% -2% 6% -4% 6% -4% 6% -4% 2% -2%

Barriers 29% 2% 91% -33% 441% -373% 28% -11% 171% 296% 2% -1% 24% -3% 67% -10%

Locks 0% 0% 0% 0% 1% 1% 162% -26% 20% 243% 61% -35% 41% 1% 15% 3%

Data Wait 109% -26% 17% -6% 139% -131% 32% -11% 336% 279% 36% -25% 16% -11% 29% -9%

CPU Stall 89% 34% 42% 3% 203% 75% 12% 0% 10% 1% 17% -1% 15% 0% 17% -1%

Compute 100% 0% 114% 0% 100% 0% 100% 0% 100% 0% 133% -8% 104% 0% 103% 0%

Barrier Wait 24% 4% 60% -5% 344% -304% 26% -10% 164% 282% 1% -1% 18% 2% 57% -9%

Lock Wait 0% 0% 0% 0% 0% 1% 150% -24% 14% 75% 53% -31% 17% 11% 14% 3%

PFetch time 21625 28443 20695 9417 20069 20156 20850 8232 172213 1140274 24025 4480 23765 11311 28062 59742

# PFetches 2705 -1793 258 -135 4591 -4434 3243 -1740 2082 -1565 1136 -808 394 -298 511 -399

# Local Locks 0 0 0 0 0 5 1 511 1 7 0 223 0 748 0 6

# Remote Locks 0 0 0 0 15 -6 2226 -514 47 -7 430 -200 1170 -748 19 -5

Table 4

Changes in Protocol Costs from AURC-1 to AURC-4.

Cost
Breakdown FFT LU-contiguous Ocean-

contiguous Barnes-rebuilt Radix Volrend Water-nsquared Water-spatial

Protocol 57% -31% 11% -6% 82% -79% 8% 4% 5% 2% 7% 2% 5% 0% 13% -9%

I/O Wait 11% -7% 2% -1% 16% -16% 8% -3% 1233% -1231% 9% -4% 8% -4% 3% -3%

Barriers 42% -10% 100% -39% 426% -355% 235% -169% 2142% -1849% 2% -1% 23% 3% 66% -32%

Locks 0% 0% 1% -1% 2% 0% 337% -76% 9% -7% 118% -15% 57% -2% 30% -9%

Data Wait 153% -49% 29% -14% 231% -222% 50% -21% 588% -469% 30% -12% 13% -7% 36% -26%

CPU Stall 63% 39% 37% 4% 181% 94% 13% -1% 10% 1% 18% 1% 15% 0% 10% 3%

Compute 100% 0% 114% 0% 100% 0% 100% 0% 100% 0% 143% 6% 104% 0% 103% 0%

Barrier Wait 28% 1% 70% -12% 364% -319% 181% -116% 2012% -1741% 1% 0% 20% 5% 57% -25%

Lock Wait 0% 0% 1% -1% 1% 1% 289% -62% 2% -1% 79% -4% 18% 7% 26% -7%

PFetch time 32395 27367 31978 6890 33270 10448 28459 11698 298878 -38977 20077 17310 19687 18655 34089 5742

# PFetches 2541 -1569 285 -162 4647 -4492 3298 -1778 2056 -1584 1033 -699 382 -282 543 -408

# Local Locks 0 0 0 0 0 5 1 528 1 6 0 192 0 725 0 7

# Remote Locks 0 0 0 0 15 -6 2228 -531 47 -6 438 -188 1170 -725 17 -4

Table 5

Changes in Protocol Costs from HLRC-1 to HLRC-4.


