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Abstract

In this paper we investigate how shared memory clusters
can take advantage of replication to tolerate single system
failures. We start from a shared virtual memory protocol
(GeNIMA) that has been optimized for low-latency, high-
bandwidth system area networks. We propose a set of ex-
tensions that maintain shared data consistent in the pres-
ence of failures and support SMP nodes. Our scheme uses
dynamic data replication to guarantee that no shared data
is lost when a failure occurs. A failing node is removed
from the system and the rest of the nodes recover dynami-
cally and can continue with application execution. We deal
both with data consistency and lock synchronization issues.
Our approach leverages the low initiation overhead oper-
ations provided by modern system area networks as well
as the availability of network bandwidth to guarantee data
consistency in the presence of failures, and the low-latency
operations for dealing with lock synchronization issues.

We have implemented the proposed scheme on a clus-
ter of 32, Intel-based dual-processor systems interconnected
with a Myrinet network. We are currently evaluating the
performance implications of our protocol extensions.

1 Introduction

Clusters of high-end workstations and PCs have a number
of advantages over more traditional multiprocessor systems.
They follow technology curves well since they are composed
of commodity components. They exhibit shorter design cy-
cles and lower costs than tightly-coupled multiprocessors
and they can benefit from heterogeneity. However, one of
the most important aspects of modern clusters, especially in
the context of commercial applications, is the potential for
providing highly-available systems since component replica-
tion (e.g. memory, processors, network bandwidth) is not as
costly as in other architectures. Moreover, due to the suc-
cess of the shared address space (SAS) abstraction, many
new applications are being developed for this abstraction.
The majority of low-end servers are symmetric multiproces-
sor (SMP) systems and most vendors are designing larger
scale hardware cache-coherent machines, targeting both sci-
entific and commercial applications. These trends make
shared memory clusters an attractive approach to provid-
ing availability for many classes of applications.

Our work addresses the problem of introducing fault-
tolerance in modern shared virtual memory (SVM) clus-
ters of symmetric multiprocessors (SMPs) used for parallel
computation. In particular, it investigates how an existing
all-software SVM protocol can be extended to tolerate ef-
ficiently single, fail-stop, node failures. In this paper, we
specify the memory consistency guarantees provided by our
protocol extensions and we present how these remain valid
in the event of single node failures.

Our goal is to tolerate failures without introducing pro-
hibitive overheads to the failure–free execution of applica-
tions. For this purpose, at this stage, we provide to appli-
cations semantics that guarantee that no global data is lost
in the presence of failures. Extending our work for local
thread data (stack) is the subject of our future work that
will explore the tradeoff between the additional cost and the
stronger semantics.

We employ existing protocol and communication layer
mechanisms to replicate shared application and protocol
data and to maintain their consistency in the presence of
failures. Our scheme tolerates single node failures by taking
advantage of the architectural features of modern clusters
and the ability of SVM to provide transparent control over
application shared data.

In particular, the main implementation axes of our work
are: (i) We use low overhead communication operations to
maintain replicas of global application and protocol data
structures. These operations for the most part involve only
low host–initiation overheads, whereas there is no host–
processor intervention on the remote node. (ii) Our exten-
sions support SMP nodes. (iii) We extend an existing SVM
protocol to provide data replication without requiring spe-
cialized hardware support, non-volatile memory, disk stor-
age, or other forms of stable storage. (iv) All system nodes
are used for application processing and there is no separa-
tion of nodes to application and backup systems. (v) The
semantics of our API in the presence of failures are provided
to applications transparently, without requiring application
modifications. (vi) The overheads incurred by our approach
are the additional memory needed for maintaining replicas
of shared data and the additional messages required to main-
tain their consistency. (vii) We eliminate extensive logs by
essentially using short independent checkpoints at release
operations, enhancing system scalability.

Our approach is novel in that it manages data replica-
tion dynamically throughout application execution. Unlike



our work, most research efforts that address the problem of
fault-tolerance in this context, use logging to stable stor-
age, shared disks, or non-volatile and persistent memory. In
our approach, reliability is achieved by exploiting the re-
dundancy that is inherent in a distributed system due to
the presence of multiple processing elements and multiple
copies of shared data. In particular, we employ data replica-
tion to dynamically maintain duplicates of shared memory
and critical protocol information in the volatile memories of
distinct machines that in case of failure, are used to maintain
memory consistency. To tolerate single failures at any point
in time, it suffices to maintain at least two copies for each
shared page and for the global SVM protocol data struc-
tures.

In our design and implementation we use a state-of-
the-art cluster interconnected with a high–bandwidth, low–
latency system area network (SAN). Previous research in
system area networks has led to the development of a num-
ber of user-space communication systems that can achieve
performance close to the hardware limit [7, 16, 23, 24, 18, 3].
The base communication layer in our system is such a user–
level communication system, Virtual Memory Mapped Com-
munication (VMMC) [7]. VMMC is of particular interest be-
cause it provides direct communication between the sender’s
and receiver’s virtual address spaces. Thus, data can be
replicated with minimum communication cost and minimum
interference with the rest of the computation. As a result,
not only does VMMC provide a high-performance commu-
nication model that matches well our replication strategy,
but also enhances scalability because it enables computing
nodes to be used as backup nodes while performing useful
computation.

We use as our starting point the GeNIMA shared virtual
memory system [4], that has been optimized for this type of
interconnects. GeNIMA is a home-based protocol [26, 19]
that was shown to provide scalable performance to the 64–
processor level [9]. We extend GeNIMA by introducing ad-
ditional operations to guarantee consistency in the presence
of failures. GeNIMA, as well as our extensions use low–
overhead direct remote operations (read, write) provided by
VMMC.

The rest of this paper is organized as follows. Section 2
introduces the guarantees we provide, describes the archi-
tecture of our system and specifies our assumptions. It also
discusses briefly the potential of our proposed solution. Sec-
tion 3 gives a concise overview of the original SVM protocol
that is our starting point. Sections 4 and 5 present our pro-
tocol extensions and modifications. Section 6 covers most
related research work. Finally, section 7 concludes with a
summary of our proposed scheme.

2 System Model and Discussion

In this section we describe in more detail the guarantees we
provide, the system we use and our assumptions, and we
discuss various aspects of the proposed solution.

Guaranteed Semantics: As in the original SVM protocol,
in a failure-free execution, the extended SVM protocol guar-
antees memory consistency at synchronization points. In the
case of failure, it guarantees that, if a node F fails, then after
all necessary recovery actions are complete:

1. Shared memory is release consistent.

2. All shared writes executed by some thread in F before
the last release of F , have been performed (i.e. have
become visible) at the corresponding home nodes in the
system.

3. No shared write executed by a thread in F after its last
release has been performed at a node other than F .

4. Any locks acquired by the failing node will be released.

The first three rules are related to shared memory con-
sistency, whereas the last one is related to lock synchroniza-
tion. These rules imply that, although after recovery the
non-failed nodes are able to continue execution, the failed-
node may not be present. In fact, our current implementa-
tion does not deal with recovering the failed node. It just
excludes it from any further activity.

The motivation for our current approach is two-fold.
First, it incurs lower overhead by not requiring to worry
about local data. More importantly, many applications are
written in a way that is very easy to adjust for this model.
For instance, applications that employ work queues to dy-
namically assign tasks to threads will just assign uncom-
puted tasks to available threads.

It is part of future work to evaluate the overhead of using
replication to also save local thread stacks and to guarantee
the recovery of the failed process as well.

System architecture: The system architecture we use is a
shared virtual memory cluster of symmetric multiprocessors
(SMPs) that are connected by a high–speed system area net-
work (SAN) with low bit error rates. Modern SANs provide
very low latency for small messages (less than 10 µs) and
bandwidth in the order of 100’s of MBytes/s, limited by
PCI bus implementations [8, 1, 5]. Cross-node SVM com-
munication is usually based on user–level communication
subsystems, that deliver to applications near–hardware per-
formance.

In particular, our cluster is composed of 32 Intel–based,
dual–processor systems, interconnected with a Myrinet
SAN [5]. The communication layer we use is Virtual Mem-
ory Mapped Communication (VMMC) [7]. VMMC provides
direct data transfer between the sender’s and receiver’s vir-
tual address spaces, it tolerates transient network fabric er-
rors by using packet retransmission, and guarantees FIFO
message delivery between any two processes in the system.

VMMC operations return an error if a remote node is
unreachable. When an error is returned, it is guaranteed
that any subsequent communication with the same node will
not be performed and it will return with error. However, it is
not guaranteed that all previous operations have completed
successfully, unless a response is received by the remote host.
For instance, the reply of a successful remote fetch operation
would guarantee that all previous operations have succeeded
as well. These send/receive semantics are similar to TCP
sockets.

Failure model: We assume that nodes are subject to fail-
ures and fail-stop, that is, they fail only by stopping and
do not exhibit any incorrect behavior while operating. We
consider single–node failures only. We assume that individ-
ual process or other software failures exhibit themselves as
failures of their corresponding node. We do not deal with
permanent network failures (in cables, switches). Transient
error failures are resolved by VMMC as mentioned above.



Failure detection: We exploit the VMMC semantics to pro-
vide a reliable failure detection mechanism. As mentioned,
VMMC operations that transfer data return an error when
the destination node is unreachable. Since we assume the
absence of permanent network failures, this is equivalent to
a remote node failure. Thus, a node failure is detected when
a VMMC read/write operation to that node fails which is
indicated by a specific negative value returned by the re-
spective VMMC call.

When nodes do not communicate and need to wait for
a remote response, they send heart–beats (plain VMMC
read operations) to detect possible failures. Heart–beats
are separated by a timeout period during which a process
that is waiting for the response spins before attempting the
next heart–beat. This timeout mechanism ensures that fail-
ure detection happens sufficiently soon to prevent processes
from long delays but also, from suspecting nodes too early
which could incur unnecessary communication overhead.

Our scheme performs on demand failure detection and
recovery and does not require global communication or syn-
chronization for failure detection and recovery. Nodes detect
failures independently as a result of failing to establish com-
munication with the failed node.

Discussion: The most advanced fault-tolerant techniques
based on rollback recovery in home-based DSM systems are
log-based. To ensure deterministic execution replay after
a failure, they maintain logs of protocol data exchanged
(preferably in the volatile memory of peer processes), as
well as checkpoints (preferably independent) of shared pages
and protocol data to stable storage. The main drawbacks
of these methods are that their efficiency is highly depen-
dent on the checkpointing policy used and that they require
additional techniques for controlling the size of the volatile
logs and for garbage collecting the checkpoints kept in stable
storage.

In our scheme, the memory consistency guarantees make
possible the recovery of a failed process without protocol
data logging, checkpointing of shared data, global coordi-
nation or stable storage support. Essentially our design
replaces logs with independent short checkpoints at each
release operation.

The basic idea in our scheme works as follows: Suppose
that node F fails. For a process in F to recover, two things
are required: first, the state of shared memory and second,
the state of the process’ execution, both at the point when
execution is resumed after the failure. As far as the shared
memory state is concerned, our extended protocol guaran-
tees that the memory remains consistent after the failure
and that no shared memory write executed in F since its
last release has been performed at any node other than F .
This memory consistency guarantee makes clear that the
most suitable point to resume execution after a failure is
the point after the last release performed by node F . The
fact that at that point the memory is already consistent
eliminates the need to restore a coherent memory state af-
ter a failure and frees processes from checkpointing shared
pages during failure-free execution.

In our system, although after recovery the non-failed
nodes are able to continue execution, the failed-node is not
present. As already mentioned, recovery of the failed pro-
cess by saving local thread stacks is part of our future work.
However, we briefly discuss next how this can be achieved.

In order to restart the failed process from the point of

last release, processes need to take checkpoints of their lo-
cal execution state before a release. However, these check-
points are completely independent and have minimal mem-
ory requirements (the stack is usually a few KBytes). They
can be saved to the volatile memory of remote nodes, using
a primary-backup data replication scheme. Alternatively,
since their space requirements are minimal, process execu-
tion state may even be saved to persistent memory.

Under these circumstances, recovery is straightforward.
First, the shared memory is restored: remote shared pages
can be fetched from their home nodes, while the home pages
of the failed node F itself can be retrieved from a backup
home. Next, execution is resumed. For lock acquires during
execution replay, locks can be re-acquired from their last
releasers. As for the timestamp of each such lock, it can
be retrieved from its last releaser: at the releaser’s side, the
timestamp of the lock is saved and has not been changed in
the meanwhile. Moreover, all read accesses and writes until
the point of failure, can be re-executed safely given that
the execution replay starts after the last release performed
locally and there has been no other release until the point
of failure.

3 Original SVM Protocol

The original shared virtual memory protocol, GeNIMA [4] is
based on home–based lazy release consistency (HLRC) [26]
and is designed to take advantage of a number of architec-
tural features in modern clusters and system area networks.

In order to comply with the partial order requirements of
LRC for shared memory accesses [10], the application execu-
tion of each processor on each node is partitioned into time
intervals that are delimited by consecutive release opera-
tions executed by threads on the same SMP. During a time
interval, all local page updates are recorded into a common
update-list.

Shared pages in GeNIMA are assigned a home node, ac-
cording to HLRC [26], to which writers of the page send
their updates for that page eagerly, upon a release. Nodes
propagate page updates in the form of diffs, which consist of
the updates performed by the releasing node to the version
of the page before its first write (also called the twin). Diffs
successfully address the problem of false sharing and allow
multiple writers to write to different parts of the same page
without intervening synchronization.

Lock synchronization in GeNIMA, as in many shared vir-
tual memory systems, is based on a queuing lock algorithm.
In order to manage locks among distinct SMP nodes, each
shared lock is assigned a home node which handles requests
for that lock by maintaining a virtual queue of the lock’s
requesters. In practice, the home node needs only record
the tail of the queue: when a lock request is sent to the
lock’s home, the home forwards the request to the last re-
quester (i.e. the node recorded in the tail of the queue), and
updates the tail accordingly. The current owner of a lock
does not release it unless it receives a remote request and
provided that there is no pending local request for the same
lock. Exchange of locks within an SMP requires no external
or internal message exchange.

In SVM systems, processors cycle through acquire–
compute–release cycles. During an acquire operation, the
acquiring processor must ensure that all shared accesses that
precede the acquire according to the partial order defined by
LRC, have also been performed locally. For this reason, the



processor fetches from each remote node the list of updates
which are needed for this synchronization step and invali-
dates the corresponding pages. The way the acquirer de-
termines the pending updates is through comparison of its
own and the releaser’s lock timestamp, a per-node vector in-
dicating the portion of every node’s updates that have been
performed locally.

A subsequent access to an invalidated page triggers a
page fault that results in remote fetching the latest version
of the page from its home node. In this context, we consider
that a page version is a vector timestamp indicating which
modifications applied by each node on that page are included
in the currently available copy of the page. Also, pages are
fetched in their entirety.

When a thread performs a lock release, it ends the cur-
rent time interval by placing (committing) all updated pages
in a protocol data structure, indexed by the interval number.
After committing its update intervals, the releasing process
computes and sends the diffs of the updated pages to their
home nodes. This scheme enables multiple releases to be
performed in parallel by different threads on the same SMP
node.

4 Maintaining Shared Memory Consistency

Data structure extensions: In consideration of a single-
failure tolerant system, we extend the original home-based
SVM protocol to assign to each shared page two distinct
homes, namely the primary and secondary home. Duplicate
home pages should be up-to-date and consistent at the end
of each release operation, so that if one home fails, subse-
quent home page requests will be serviced by the second
home.

Control flow extensions: Before a processor can continue
execution past a lock acquire, all preceding updates (accord-
ing to the partial order defined by LRC) must be performed
locally, or equivalently, all modified pages must be invali-
dated. Which are the specific update intervals required to
be invalidated is determined by the lock timestamp sent to
the acquirer of the lock by the releasing process. Next, these
intervals must be acquired. In GeNIMA, two alternative
mechanisms are provided for transferring update intervals
among nodes. With the first mechanism, upon a lock ac-
quire, a node fetches from remote nodes the update intervals
it requires. Alternatively, the releasing node can broadcast
its update intervals before a release. In the extended SVM
protocol, update intervals are broadcast before the diff prop-
agation stage.

As mentioned in section 3, GeNIMA also permits con-
current releases by multiple threads on the same SMP node.
This makes possible the eager propagation of page updates
that do not belong in the view of the releasing thread be-
cause they were performed after the thread committed its
updates. In case of failure, it is clear that this eager up-
date propagation scheme can violate the third consistency
guarantee.

In the extended SVM protocol we prevent this scenario
by: a) locking (i.e.disabling access to) pages while invali-
dating their update intervals and b) by blocking any write
page fault handling for locked pages until they are unlocked.
Pages are unlocked after their diffs are sent. It is thus guar-
anteed that new writes to pages that belong to the intervals
committed by an outstanding release will not be executed

and thus, will not be recorded in the update list until that
release operation has been complete. With page locking,
concurrent releases are still possible provided that the inter-
vals diffed by distinct threads are disjoint.

Given that diffs may be performed concurrently by mul-
tiple threads, before releasing a lock, a thread must verify
that all of the diffs for its updates since the last release
have been propagated, especially these diffs that were being
performed concurrently by other threads on the same SMP.
This verification works as a safeguard against releasing a
lock before the diff propagation is actually complete.

Home page replication implies that upon a release, page
diffs must be propagated to both homes nodes. Thus, in
contrast to the original SVM protocol where home nodes
do not create diffs for their own pages, diffs for a modified
page must now be computed and propagated even when the
writer is a home for that page.

To tolerate single failures during diff propagation, we
employ the following two-phase diff propagation scheme. In
the first phase, for all updated pages, diffs are computed and
sent to their primary homes, while in the second phase the
same diffs are sent to the secondary homes. At the sender’s
side, diffs are saved locally temporarily so that they need not
be recomputed in the second phase, and they are discarded
at the end of the second phase.

Before the diffs of a page are propagated to either of
its homes, a special flag is written to the remote page’s
timestamp, indicating that the page is invalid because it
is currently being updated. After the corresponding phase
is complete, the remote page’s timestamp is updated with
the value of the writer’s timestamp. As a special case, for
pages whose primary (secondary) home is the diffing node
itself, diffs still need to be written twice, but both times at
the same node, the secondary (primary) home of each page.

For each process to take appropriate actions in case of
failure, it is necessary to be able to determine at which point
in execution, and if applicable, in which phase of the diff
propagation, the failure occurs. For this reason, each time a
thread on a node P completes both phases of diff propaga-
tion, it records its last diffed interval in a variable, namely
lastRelease, at some remote node. Also, each time a thread
on P completes the first phase of diff propagation, it records
its last diffed interval in a variable, namely nextRelease, at
the same backup node. Since releases performed by any
thread on the same SMP are recognized as node releases,
there is no need to backup separate information for each
different thread.

Recovery actions: At any point in time, lastRelease in-
dicates which page diffs have been applied by P to both
the primary and secondary copies, while nextRelease in-
dicates which page diffs have been applied to the primary
copies only. If lastRelease < nextRelease then the diffs for
pages between intervals lastRelease and nextRelease have
been sent to the primary homes, while the update of the
secondary homes is still pending.

If a failure occurs within the first phase of diff propaga-
tion and in particular, after diffs have been propagated to
all primary copies but before all timestamps are updated,
invalid timestamps can be restored. Given that the update
intervals are broadcast by the lock releasers before diff prop-
agation, each node can determine the timestamp of each
updated page based on the order number of the update in-
terval it belongs to.



Correctness: The three memory consistency guarantees are
valid at all times. In a failure-free execution this is achieved
by the semantics of the LRC protocol which are also pre-
served in the extended protocol. In the presence of failures,
we distinguish two cases: either the failure occurs during
a release operation, that is, at some point during the diff
propagation stage and the final lock release, or at any other
point in execution. In the latter case, it is clear that all
shared writes executed by some thread on the failed node
before its last lock release, have already been performed at
the corresponding home nodes according to the semantics of
LRC. In the former case, consistency is maintained by en-
suring that, either all updates executed in the current time
interval (i.e. the interval ended by the ongoing release oper-
ation) are performed, or none is. In other words, either all
corresponding diffs are propagated, or none is.

This requirement is satisfied by the two-phase diff prop-
agation scheme. There are three different cases when the
diffing node may fail: 1) when application of diffs to the pri-
mary home copies of the modified pages is still in progress,
2) when diffs have been sent to all of the primary copies,
but their timestamps’ update is still in progress, 3) after the
first phase is complete. If the failure occurs in step 1, then
any updates sent by the failed node so far are ignored, and
the previous version of the shared pages is used, as if the
failed node had not acquired the lock. On the other hand, if
failure occurs in either step 2 or 3, the release is considered
valid since all updates have been propagated.

In particular, let A be a node performing its diffs and R
be a remote node attempting to fetch a home page. First, R
checks the timestamp of the home page, ts. If the value of
ts is valid and the version of the page is at least equal to the
requested one, then the page is fetched. Otherwise, if ts is
invalid, the requesting node checks whether A is still alive.
If this is so, then R waits until the correct page version is
sent to the home, else A has failed in either step 1 or 2.
This is decidable, based on the values of lastRelease and
nextRelease, as explained above. If the failure occurred in
step 1, R fetches the page from its secondary home that still
keeps the previous version of the page. The same holds if the
acquirer is the primary home node of the page. If the failure
occurred in step 2, R may safely fetch the primary copy since
diffs have been sent to all of the primary homes and hence,
the release is considered complete. R also restores the home
page’s timestamp.

The two-phase diff propagation ensures that no partial
but only complete diffs are propagated during a release. The
additional restriction imposed concerning page locking dur-
ing diff propagation, ensures that upon a release operation,
no updates are propagated other than those that were per-
formed and committed within the time interval of that re-
lease. Thus, the third guarantee is also satisfied.

As a result, the shared memory remains consistent and
available at all times, and active processes can continue ex-
ecuting past a failure.

Performance implications: To implement the above exten-
sions we use mostly asynchronous remote deposit operations
in VMMC. These operations incur very low host-processor
overhead (in the order of 2µs) and do not require inter-
rupts or other remote host-processor intervention. Thus,
the additional overhead in most cases is the host overhead
in initiating the direct remote operations.

A more important issue is the computation of diffs for

home pages, which was not present in the original SVM
protocol. Evaluating the exact impact of this operation on
performance is part of the next step in our work. Finally, it
is interesting to see to what extent the restriction imposed
on eager diff propagation limits concurrency in practice.

5 Lock synchronization

Another consideration when nodes are subject to failures is
how, in case of failure, the locks being held at the failed node
are managed after the failure. We decided to use a primary-
backup home scheme where the primary home handles lock
requests similarly to the base queuing lock algorithm, while
the secondary home is used as a backup node that takes over
the primary in case of failure.

The queue-based lock algorithm remains the algorithm
of choice because of its advantages: it is potentially scalable
to large numbers of processors, it minimizes the memory
contention and network load due to lock requests, it provides
low latency and a reasonable degree of fairness, it prevents
starvation, it fits well in multithread environments, and it
incurs low storage overhead.

In this work we extend the queue-based lock algorithm
to tolerate single–node failures as follows.

Data structure extensions: Each lock is assigned two dis-
tinct homes, namely the primary and the secondary home.
Except for the tail of the queue of requesters, the primary
home now also records the second to last node in the queue.
This information is replicated at the secondary home.

prev(T,T’,l)req(l)

enqueue(R,l)

ack(R,l)

next(R,l)

second to last T’

secondary home Sprimary home P

requestor R tail T

(release)

Figure 1: Extended queuing lock algorithm

Control flow extensions: In order to acquire a lock l, a
requester node R sends a request message to the lock’s pri-
mary home, P (Figure 1). When the primary home receives
the lock request, it atomically updates its record of the last
and second to last node in the queue and subsequently sends
three messages: a) a message to the requester R, containing
the node id’s of the two nodes that precede R in the queue,
b) a message to the (former) tail of the queue containing
the id of the new requester (to which the lock should be
forwarded), and c) a message to the lock’s secondary home
containing the id of the new requester. As a result of this
third message, the queue information at the backup node is
updated and an acknowledgement message is sent by the sec-
ondary home to the (former) tail of the queue. The knowl-
edge of the id’s of the two preceding nodes in the queue is
necessary for resolving failures.



In order to guarantee memory consistency, a node is free
to forward a lock to the next node only if it has received both
the forward message from the primary node and the ack mes-
sage from the secondary home. This restriction ensures that
the queue information at the two homes is consistent when-
ever a lock is transferred between nodes. Figure 1 depicts
the exchange of messages under a failure-free execution.

Recovery actions: The update of the secondary home’s
queue ensures that, in case of failure of the primary home,
lock requests can be handled directly by the lock’s secondary
home without any violation of the semantics of the lock al-
gorithm, and with no additional complexity.

A node that timeouts waiting for a lock, may verify
whether the delay is due to its preceding node’s failure since
it is aware of its id. If this is indeed the case, and since the
waiting node cannot tell whether the failed node was still
holding the lock when the failure occurred, the same node
can send a notification message to the second to last node
in the queue. The latter will then forward the lock to the
new destination, either immediately (if it has released the
lock already), or upon releasing the lock (if it is still wait-
ing for or using the lock). If the failed node was the first
one to acquire the lock, the next requester grabs the lock
immediately.

Correctness: We show now that the extended lock algo-
rithm tolerates any case of failure. The failure of a lock’s
primary home node is detected by any node that requests
that lock and timeouts while waiting for the home node to
reply. In that case, the lock request is simply resent to and
serviced by the secondary home. Even if the primary home
fails after forwarding the lock request to the last node in
the queue, but before updating the secondary home, the ex-
tended algorithm avoids inconsistencies between the actual
distribution of locks and the queue information kept at the
secondary home: since no acknowledgement is sent in regard
to the new request, the lock will be blocked at the last owner
of the lock. Finally, a node failure does not affect the lock
synchronization as far as its use as a backup node is con-
cerned. After a secondary home’s failure, lock requests are
serviced by the primary home exclusively, and lock holders
release the locks without waiting for an acknowledgement.

As already mentioned, the failure of a node that fails
while waiting for, or holding a lock, can be detected by the
next node in the queue of requesters, which as a result, sends
a notification to the second to last node in the queue if that
one exists, otherwise it simply acquires the lock. In any
case, eventually, all locks held by the failed process will be
released. For the release consistency constraints to be sat-
isfied in case the current holder of a lock fails, it is impor-
tant for the next acquirer to use the lock time vector that
was recorded by the last releaser. To address this, before a
release, the releasing node saves its lock time vector at a re-
mote node from which its lock time vector can be retrieved
in the event of failure. The remote node used to backup this
information is the primary home of the lock provided that
this one is different from the releasing node; otherwise, it is
the lock’s secondary home.

Performance implications: In our scheme, as shown in Fig-
ure 1, the critical path to acquire a lock in the failure free
case is still 2 hops as in the original protocol. However, the
home of the lock needs to forward two messages (to the tail

and the secondary home) and thus generate two interrupts,
one on each node. Finally, the requester needs to wait for
two replies as opposed to one in the original scheme. The
overhead at the home (to send the second message) consists
simply of a send initiation. The overhead at the secondary
home is also low in terms of communication. However, the
extra interrupt may have a more significant impact, which
we are currently evaluating.

6 Related Work

There is a large body of work in fault tolerance in a number
of research areas. In the next few paragraphs we summarize
the most recent research that is most relevant to our work.

Sultan et al. [22], [21] follow a log-based approach to tol-
erate single node failures in a home-based, lazy release con-
sistent SVM cluster of PCs. In particular, they use volatile
logging of protocol data combined with independent check-
pointing to stable storage for replaying execution in case of
failure. Because their proposed scheme is log-based, their
work focuses on how to dynamically optimize log trimming
and checkpoint garbage collection in order to control effi-
ciently the size of the logs and the number of checkpoints
kept. In contrast to our approach, their proposed scheme
does not address the problem of storage support, while its
effectiveness is dependent on the application running on the
SVM system, and specifically on the checkpointing behavior
of the individual processes. This introduces the additional
problems of balancing the amount of recovery state held
across the system, and of implementing specific, application-
driven checkpoint policies.

In [6], Costa et al. have extended Treadmarks [11], a lazy
release consistent, distributed shared memory (DSM) sys-
tem, to introduce single fault-tolerance support in a cluster
of uniprocessors. Their algorithm is based on logging the
data dependencies (due to remote synchronization opera-
tions) in the volatile memory of peer processes and uses in-
dependent checkpointing to stable storage to reduce recovery
time. Similarly to the previous scheme, this algorithm also
faces the problem of bounding the size of checkpoints and
logs. This is handled by exploiting the global garbage collec-
tion operation already performed by Treadmarks, however
at the cost of efficiency, since this operation requires global
synchronization. Our approach is clearly different from the
log-based ones in that we eliminate extensive logs by essen-
tially using short independent checkpoints at release oper-
ations, thus avoiding the problems of checkpoint garbage
collection and log trimming, and enhancing system scalabil-
ity. Also, our system supports SMP nodes and requires no
global synchronization and no stable storage support.

Zhou et al. [25] have investigated how virtual memory-
mapped communication can be used effectively to reduce
the failover time of single nodes on clusters used for run-
ning time–critical applications, like transaction-based ap-
plications. They have implemented two failover protocols
based on a primary-backup node approach: using VMMC,
the primary process transfers directly to the backup process’
volatile memory the modifications of its application data, as
well as periodic checkpoints of its execution environment in
order to enable rollback recovery in the case of failure. Al-
though this work targets different application domains to
ours, the experimental results provide evidence that volatile
logging using the VMMC model can be used on clusters to
achieve reliability while maintaining efficiency, as opposed



to traditional techniques based on stable storage support.
Kermarrec et al. [12] have demonstrated that the nat-

ural replication that comes with a DSM system can be ex-
ploited to provide efficiency and scalability with the number
of processors in the system. In particular, they have used
data replication to extend a standard sequential consistency
protocol, used by DSM on an Intel Paragon, with a recov-
ery scheme that avoids stable storage support. For each
shared page, their scheme maintains at least two recovery
copies that contain the version of the page since the last
global checkpoint and are kept on distinct node memories.
Each shared page is assigned a manager node that is re-
sponsible for maintaining coherence information and copy-
set data about that particular page. The manager node
forwards page requests to the current owner of the page and
performs all invalidations necessary to maintain coherence
of the page’s copies. Also, global checkpoints are taken to
establish recovery points using a globally coordinated, two-
phase commit protocol. In case of failure and after the fail-
ure is broadcast, all nodes in the system rollback and take
actions to restore the latest recovery point and to reconfig-
ure the system. This involves heavy communication and use
of broadcasting especially when a manager node fails, since
there is no use of a backup manager node during failure-
free execution. The basic extended coherence protocol de-
scribed in [12] has also been implemented on a SVM cluster
of PCs interconnected with an ATM local area network [14].
In our system, in terms of data replication overhead, the
home-based variation of lazy release consistency, alleviates
the communication cost due to the management of repli-
cated shared pages by reducing both the number of mes-
sages and the amount of data exchanged. Also, our scheme
avoids global checkpointing overall. Upon a failure, active
processes do not rollback and continue with application exe-
cution. Shared pages hosted at the failed node are retrieved
on demand from the backup home with no need of further
recovery actions or coordination since it is ensured that both
homes are kept up-to-date during failure-free execution.

Plank et al. [17] have investigated the benefits of elim-
inating stable storage support in the context of fault-
tolerance techniques by introducing diskless checkpointing,
a checkpointing technique used for rollback recovery on net-
works of workstations that communicate by message pass-
ing. Diskless checkpointing avoids stable storage support,
and exploits memory and processor redundancy to toler-
ate single processor failures. Although this scheme makes
use of dedicated backup processors that do not participate
actively in the computation and is based on coordinated
checkpointing, diskless checkpointing algorithms when com-
pared with their disk-based counterparts, achieve compa-
rable checkpoint overhead and significant improvement in
checkpointing latency and recovery time. Hence, the exper-
imental results verify the fact that stable storage is indeed a
major cause for performance degradation, and thus its elim-
ination is a promising optimization technique for improving
performance.

[2, 13, 20] have investigated various aspects of fault tol-
erance in contexts that differ from our work either in the
underlying technology (such as older generation intercon-
nection networks), the goals (such as to compute amount
of replication needed to achieve fault tolerance), or their
methodology (theoretical analysis and simulation without
actual system implementation). Finally, a survey of recover-
able distributed shared virtual memory systems is presented
in [15].

7 Conclusions

This paper presents how a lazy release consistent SVM pro-
tocol on a commodity cluster may be extended efficiently to
guarantee memory consistency in the event of single failures.
In contrast to past techniques, the proposed scheme targets
efficient execution in the absence of failures by eliminat-
ing the traditional bottleneck of stable storage support and
by using the efficient virtual memory-mapped communica-
tion model. Reliability is achieved through shared memory
data replication in the volatile memory of at least two nodes
across the system. In case of failure, no memory copying or
reloading data from disks is needed to recover the memory
state of the failed node, and as a result, the failover delay
is potentially reduced. Also, the system overhead relative
to the total execution time of applications is kept minimal
by tightly integrating the fault-tolerant extensions with the
original SVM protocol.

We have implemented our extended protocol and we
are currently evaluating its performance by conducting ex-
periments on a local area cluster of 32 Intel-based, dual-
processor systems interconnected by a Myrinet SAN. We are
mostly interested in measuring the execution time overhead
of our protocol extensions during failure-free executions and
the failover time in the case of failures.

Based on the performance results we are planning to ap-
ply additional protocol optimizations to cover a wider spec-
trum of failure scenarios, including multiple failures. Finally,
we would like to investigate the issue of replicating thread
stacks to achieve transparent failure recovery for applica-
tions that do not follow the semantics provided by our mod-
ified protocol and maybe willing to incur additional over-
heads.
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