
Azor: Using Two-level Block Selection
to Improve SSD-based I/O caches

Yannis Klonatos∗†, Thanos Makatos∗, Manolis Marazakis∗, Michail D. Flouris∗, and Angelos Bilas∗†

∗Foundation for Research and Technology - Hellas (FORTH), Institute of Computer Science (ICS)
100 N. Plastira Ave., Vassilika Vouton, Heraklion, GR-70013, Greece

†Department of Computer Science, University of Crete, P.O. Box 2208, Heraklion, GR 71409, Greece.
{klonatos, mcatos, maraz, flouris, bilas}@ics.forth.gr

Abstract—Flash-based solid state drives (SSDs) exhibit poten-
tial for solving I/O bottlenecks by offering superior performance
over hard disks for several workloads. In this work we design
Azor, an SSD-based I/O cache that operates at the block-level and
is transparent to existing applications, such as databases. Our
design provides various choices for associativity, write policies
and cache line size, while maintaining a high degree of I/O
concurrency. Our main contribution is that we explore differ-
entiation of HDD blocks according to their expected importance
on system performance. We design and analyze a two-level block
selection scheme that dynamically differentiates HDD blocks, and
selectively places them in the limited space of the SSD cache.

We implement Azor in the Linux kernel and evaluate its
effectiveness experimentally using a server-type platform and
large problem sizes with three I/O intensive workloads: TPC-H,
SPECsfs2008, and Hammerora. Our results show that as the
cache size increases,Azor enhances I/O performance by up to
14.02×, 1.63×, and 1.55× for each workload respectively. Addi-
tionally, our two-level block selection scheme further enhances
I/O performance compared to a typical SSD cache by up to 95%,
16%, and 34% for each workload, respectively.

I. I NTRODUCTION

The cost and performance characteristics of current genera-
tion NAND-Flash solid-state drives (SSDs), shown in Table I,
make them attractive for accelerating demanding server work-
loads, such as file and mail servers, business and scientific
data analysis, as well as OLTP databases. SSDs have potential
to mitigate I/O penalties, by offering superior performance to
common hard-disk devices (HDDs), albeit at a higher cost per
GB [1]. In addition, SSDs bear complexity caveats, related
to their internal organization and operational properties. A
promising mixed-device system architecture is to deploy SSDs
as a caching layer on top of HDDs, where the cost of the SSDs
is expected to be amortized over increased I/O performance,
both in terms of throughput (MB/sec) and access rate (IOPS).

Recently, there has been work on how to improve I/O
performance using SSD caches. FlashCache [2] uses flash
memory as a secondary file cache for web servers. Lee
et al. [3] analyze the impact of using SSDs in transaction
processing, while [4] examines how SSDs can improve check-
pointing performance. Finally, [5] examines how SSDs can be
used as a large cache on top of RAID to conserve energy. In all
cases SSDs demonstrate potential for improved performance.

In this work we designAzor, a system that uses SSDs
as caches in the I/O path. In contrast to all aforementioned

approaches that are application-specific and require application
knowledge, intervention, and tuning,Azor transparentlyand
dynamicallyplaces data blocks in the SSD cache as they flow
in the I/O path between main memory and HDDs. In this work,
we investigate the following problems:

TABLE I
HDD AND SSDPERFORMANCE METRICS.

SSD HDD
Price/capacity ($/GB) $3 $0.3
Response time (ms) 0.17 12.6
Throughput (R/W) (MB/s) 277/202 100/90
IOPS (R/W) 30,000/3,500 150/150

1) Differentiation of blocks:based on their expected im-
portance to system performance.Azor uses a two-level block
selection scheme and dynamically differentiates HDD blocks
before admitting them in the SSD cache. First, we distin-
guish blocks that contain filesystem metadata from blocks
that merely contain application data. This is important, since
filesystem studies have shown that metadata handling is critical
to application performance. In addition, recent trends show
that the impact of filesystem metadata accesses is expected
to become even more pronounced [6]. Second, for all HDD
blocks we maintain a running estimate of the number of
accesses over a sliding time window. We then use this infor-
mation to prevent infrequently accessed blocks from evicting
more frequently accessed ones. Our scheme does not require
application instrumentation or static a-priori workload analysis
and adds negligible CPU and I/O overhead.

2) Metadata footprint:for representing the state of the SSD
cache blocks in DRAM. In our approach, metadata size grows
proportionally to the SSD capacity available, rather than the
much larger HDD space; still, compacting metadata to fit in
DRAM is an important concern. We consider this experimental
study important, since metadata footprint in DRAM will keep
increasing with SSD device capacity, thereby making high-
associativity organizations less cost-effective. There are two
aspects of the cache design that determine the DRAM required
for metadata:cache-associativityandcache line size.

First, we explore two alternatives for cache associativity:
a) a direct-mapped organization, which minimizes the required
amount of DRAM for metadata, andb) a fully-set-associative
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Fig. 1. Azor system architecture, I/O, and admission control paths.

organization that allows more informed block replacement
decisions at the cost of consuming more DRAM space for its
metadata. We quantify the performance benefits and potential
caveats from employing the simpler-to-implement and more
space-efficient cache design, under I/O-intensive workloads.

Then, we examine the performance impact from increasing
the cache line size; although larger cache lines decrease the
required metadata space in DRAM, doing so causes perfor-
mance degradation in most cases.

3) Write-handling policies:for which we explore the fol-
lowing dimensions:i) write-through vs. write-back; this di-
mension affects not only performance, but also system reliabil-
ity, ii ) write-invalidation vs. write-update in case of cache write
hits, and, finally,iii ) write-allocation, for cache write misses.
We experimentally find that the choice of the write policy can
make up to a 50% difference in performance. Our results show
that the best policy is as follows: write-through, write-update
on write hits, and write-no-allocate on write misses.

4) Maintaining a high degree of concurrent I/O accesses:
Any cache design needs to allow multiple pending I/O requests
to be in progress at any time.Azorproperly handleshit-under-
missandout-of-order completions, by tracking the dependen-
cies between in-flight I/O requests. Our design minimizes the
overhead of accessing the additional state required for this
purpose, as this is required for all I/O operations that pass
through the cache. We also compact this data structure enough
so that it fits the limited DRAM space.

This is the first work that thoroughly and systematically
examines the design space of SSD-based I/O caches. We
implementAzor as a virtual block device in the Linux kernel
and evaluate our design with three realistic and long-running
workloads: TPC-H, SPECsfs2008, and Hammerora. We focus
our evaluation on I/O-intensive operating conditions werethe
I/O system has to sustain high request rates. Our results
show thatAzor’s cache design leads to significant performance
improvements. More specifically, as the available cache size
increases, SSD-caching can enhance I/O performance from
2.91× to 14.02× and from 1.11× to 1.63× for TPC-H and
SPECsfs2008, respectively. Furthermore, we show that when
there is a significant number of conflict misses, our two-
level scheme is able to enhance performance by up to 95%
and 16% for these two workloads, respectively. We conclude
our evaluation by examining the effectiveness of our design
on Hammerora, a TPC-C type workload, and treating the

application as a black box. For this workload, the base design
of Azor improves performance up to 55%, compared to the
HDD-only configuration, while with the use of our block
selection scheme,Azor improves performance up to 89%.

The rest of this paper is organized as follows. Section II
presents our design for resolving the aforementioned chal-
lenges without affecting access latency and I/O concurrency.
Section III presents our experimental platform, representative
of a current generation server for I/O intensive workloads.
Section IV presents a detailed evaluation of our approach.
Section V discusses some further considerations forAzorwhile
Section VI provides a comparison with related work. Finally,
Section VII summarizes our main findings.

II. SYSTEM DESIGN

Although SSD caches bear similarities to traditional
DRAM-based caches, there are significant differences as well.
First, the impact of the block mapping policy, e.g. direct-
mapped vs. fully-set-associative, is not as clear as in DRAM
caches. In addition, SSD caches are significantly larger, re-
sulting in a considerably larger metadata footprint. This fact
must be taken into account, considering the increasing size
of SSDs. Finally, unlike DRAM caches, SSD caches can be
made persistent, thus avoiding warm-up overheads.

The use of SSDs as I/O caches in our architecture is shown
in Figure 1(a).Azorprovides a virtual block device abstraction,
by intercepting requests in the I/O path and transparently
caching HDD blocks to dedicated SSD partitions. The address
space of SSDs is not visible to higher system layers, such
as filesystems and databases.Azor is placed in the I/O path
below the system buffer cache. Although our approach can be
extended to use the capacity of SSDs as storage rather than
cache, more in the spirit of tiering, we do not explore this
direction further in this work.

Figure 1(b) shows how we handle I/O requests. Each HDD
block is first mapped to an SSD cache block, according to
cache associativity. For reads,Azorchecks if the cached block
is valid and if so, it forwards the request to the SSD (read hit).
Otherwise, data are fetched from the HDD (read miss) and an
asynchronous SSD write I/O (cache fill) is scheduled.

For writes (hits or misses),Azor implements awrite-through
mechanism. We opt against using awrite-back cache; such
a cache design would result in the HDD not always having
the most up-to-date blocks, therefore requiring synchronous



metadata updates with significant implications for latency-
sensitive workloads. Furthermore, a write-back cache reduces
system resilience to failures, because a failing SSD drive
could result in data loss. Ourwrite-through design avoids
these issues.Azor provides write policies for forwarding the
write request either to both the HDD and the SSD (write-
hdd-ssd), or only to the HDD. In the second policy, during
a write hit, our system can either update (write-hdd-upd) or
invalidate (write-hdd-inv) the corresponding cache block. The
choice of write policy has significant implications for write-
intensive workloads, as we show in our evaluation.

A. Admission Control Mechanism

Azor differentiates HDD blocks based on their expected
importance to system performance. For this purpose,Azoruses
a two-level block selection scheme that controls whether or
not a specific cache block should be admitted to the SSD
cache, according to its importance. Our design distinguishes
two classes of HDD blocks:filesystem metadataandfilesystem
data blocks. However, we believe that an arbitrary number
of other classes can be supported, if needed. The priorities
between the two classes are explained in detail below.

To begin with, filesystem metadata I/Os should be given
priority over plain data I/Os for two reasons. First, metadata
operations represent between 50% and 80% of all the requests
in a typical system [7]. Hence, their impact on performance
is substantial. Second, there has been a marked increase in
filesystem capacities in recent years, with the average file
size remaining small [6]. This means more files and, thus,
more metadata. The filesystem metadata footprint is further
increased by the need for checksums at the filesystem level
to achieve higher data protection [8], an approach already
adopted by state-of-the-art filesystems, such as ZFS and
BTRFS. Therefore, it is increasingly difficult to rely solely on
DRAM for metadata caching and it makes sence to dedicate
faster devices for storing filesystem metadata ([9], [10]).

In our design, differentiation between filesystem metadata
and filesystem data is a straight-forward task. We modify
the XFS filesystem to tag metadata requests by setting a
dedicated bit in the I/O request descriptor. Then,Azoruses this
information at the block level to categorize each HDD block.
Our modification does not affect filesystem performance, can
easily be implemented in other filesystems as well and only
requires an additionalclassbit per SSD cache block.

Next, for the second level of our selection scheme, not all
data blocks are treated as equal. For instance, in database
environments indices improve query performance, by allowing
fast access to specific records according to search criteria.
Index requests produce frequent, small-size, and random HDD
accesses, a pattern that stresses HDD performance. Moreover,
given a set of queries to a database, the data tables are
not usually accessed with the same intensity. In web-server
environments, web pages usually exhibit temporal locality.
Thus, we expect less benefit from caching web pages that
have recently been accessed only sporadically. Finally, the
same principle applies to mail-servers: more recent emails

are more likely to be accessed again soon than older ones.
Based on these observations, we cache data blocks on SSDs
by differentiating them according to their access frequency.

At our second level of selection, we keep in-memory a
running estimate of the accesses to each HDD block that is
referenced at least once. Between any two HDD blocks, the
one with the higher access count is more likely to remain in
the SSD cache. This differentiation of HDD blocks overrides
the selection of the “victim block” for eviction as determined
by the LRU replacement policy in the fully-set-associative
cache. Although workloads like TPC-C tend to have repetitive
references, a good match for LRU, other workloads, such as
TPC-H, rely on extensive one-time sequential scans which
fill-up the cache with blocks that are not expected to be re-
used any time soon. Such blocks evict others that may be
accessed again soon. If we allow LRU replacement to evict
blocks indiscriminately, the cache will not be effective until
it is re-populated with the more commonly used blocks. This
insight is also the motivation behind the ARC replacement
policy [11], which keeps track of both frequently used and
recently used pages and continuously adapts to the prevailing
pattern in the reference stream. In our design, these per-block
reference counters form an array in DRAM indexed by the
HDD block number. The DRAM required for these counters
increases along with the file-set size, not with the underlying
HDD space. Our evaluation shows that this memory space is
worth it, since differentiation improves performance overall.

Figure 1(c) shows our scheme. The control path of read hits
and writes to HDD remains unaffected. On the other hand,
cache fills and write hits to the SSD cache now pass through
the scheme, which decides whether the write operation should
actually be performed or not. If an incoming request is a
metadata request, it is immediately written to the cache, since
we prioritize filesystem metadata I/Os over plain data I/Os.
Otherwise, the incoming request contains filesystem data and
Azor checks whether the corresponding cache block contains
filesystem metadata. If so, the cache fill is aborted, else both
the incoming and the existing cache block contains data. In
this caseAzor checks which block is accessed more times,
and the cache fill is performed (or aborted) accordingly.

B. Cache Associativity

The choice of associativity is mainly a tradeoff between
performance and metadata footprint. Traditionally, DRAM
caches use a fully-set-associative policy since their small size
requires reducing capacity conflicts. SSD caches, however,are
significantly larger and, thus, they may use a simpler mapping
policy, without significantly increasing capacity conflicts. In
this work we consider two alternatives for cache associativity:
a direct-mappedand afully-set-associativecache design.

On the one hand, a direct-mapped cache requires less meta-
data, hence a lower memory footprint, compared to a fully-
set-associative cache. This is very important, since metadata
are required for representing the state of the SSD blocks in
DRAM, and DRAM space is limited. Specifically, our direct-
mapped cache requires 1.28 MB of metadata per GB of SSD,



needed for the address tag along with the valid and dirty bits,
for each cache block. Furthermore, this cache design does
not impose significant mapping overheads on the critical path
and is fairly simple to implement. All these advantages are
particularly important when considering offloading caching
to storage controllers. However, modern filesystems employ
elaborate space allocation techniques for various purposes.
For instance, XFS tends to spread out space allocation over
the entire free space in order to “enable utilization of all the
disks backing the filesystem” [12]. Such techniques result in
unnecessary conflict misses due to data placement.

On the other hand, a fully-set-associative cache requires
a significantly larger metadata footprint to allow a more
elaborate block replacement decision through the LRU re-
placement policy. However, such a design fully resolves the
data placement issue, thus reducing conflict misses. Our fully-
set-associative cache requires 6.04 MB of metadata per GB of
SSD, 4.7× more than the direct-mapped counterpart. Metadata
requirements for this design include, apart from the tag and
the valid/dirty bits, pointers to the next and previous elements
of the LRU list, as well as additional pointers for another data
structure, explained shortly. Designing a fully-set-associative
cache appears to be deceptively simple. However, our experi-
ence shows that implementing such a cache is far from trivial
and it requires dealing with the following two challenges.

First, it requires an efficient mechanism that quickly deter-
mines the state of a cache block, without increasing latencyin
the I/O path. This is necessary since it is impossible to check
all cache blocks in parallel for a specific tag, as a hardware
implementation would do.Azor arranges cache blocks into a
hash table-like data structure. For each HDD block processed,
a bucket is selected by hashing the HDD block number using
Robert Jenkins’ 32-bit integer hash function. The list of cache
blocks is then traversed, looking for a match. This arrangement
minimizes the number of cache blocks that must be examined
for each incoming I/O request.

Second, there is a large variety of replacement algorithms
typically used in CPU and DRAM caches, as well as in
some SSD buffer management schemes [14], all of them
prohibitively expensive for SSD caches in terms of metadata
size. Moreover, some of these algorithms assume knowledge
of the I/O patterns the workload exhibits, whereasAzor aims
to be transparent. We have experimentally found that simpler
replacement algorithms, such as random replacement, result
in unpredictable performance. We opt for the LRU policy,
since it provides a reasonable reference point for other more
sophisticated policies, and we design our two-level selection
scheme as a complement to the LRU replacement decision.

C. Cache Line Size

Metadata requirements for both cache associativities can be
reduced by using larger cache lines. This is a result of reducing
the need of per-block tag, as many blocks are now represented
with the same tag. By doing so, metadata footprint can be
reduced by up to 1.90× and 6.87×, for the direct-mapped
and the fully-set-associative cache, respectively. In addition,

larger cache lines can benefit workloads that exhibit good
spatial locality while smaller cache lines benefit more random
workloads. A less obvious implication is that larger cache
lines also benefit the flash translation layers (FTL) of SSDs.
A large number of small data requests can quickly overwhelm
most FTLs, since finding a relatively empty page to write to
is becoming increasingly difficult. Finally, using larger cache
lines has latency implications, as discussed next.

D. I/O Concurrency

Modern storage systems exhibit a high degree of I/O
concurrency, having multiple outstanding I/O requests. This
allows overlapping I/O with computation, effectively hiding
the I/O latency. To sustain a high degree of asynchrony,Azor
uses callback handlers instead of blocking, waiting for I/O
completion. In addition,Azor allows concurrent accesses on
the same cache line by using a form of reader-writer locks,
similar to the buffer-cache mechanism. Since using a lock
for each cache line prohibitively increases metadata memory
footprint, Azor only trackspendingI/O requests.

Caching HDD blocks to SSDs has another implication for
I/O response time: Read misses incur anadditional write I/O
to the SSD when performing a cache fill. Once the missing
cache line is read from the HDD into DRAM, the buffers of
the initial request are filled andAzor can perform the cache
fill by either (a) re-using the initial application I/O buffers for
the write I/O, or (b) by creating a new request and copying
the filled buffers from the initial request.

Although the first approach is simpler to implement, it
increases the effective I/O latency because the issuer mustwait
for the SSD write to complete. On the other hand, the second
approach completely removes the overhead of the additional
cache fill I/O, as the initial request is completed after the buffer
copy and then the cache fill write request is asynchronously
issued to the SSD. However, this introduces amemory copyin
the I/O path, and requires maintaining state for each pending
cache write. In our design, we adopt the second approach, as
the memory throughput in our setup is an order of magnitude
higher than the sustained I/O throughput. However, other SSD
caching implementations, such as in storage controllers, may
decide differently, based on their available hardware resources.

Handling write misses is complicated in the case of larger
cache lines when only part of the cache line is modified:
the missing part of the cache line must first be read from
the HDD in memory, merged with the new part, andthen
written to the SSD. We have experimentally found that this
approach disproportionally increases the write miss latency
without providing significant hit ratio benefits. Therefore, we
supportpartially valid cache lines by maintaining valid and
dirty bits for each block inside the cache line.

For write requests forwarded to both HDDs and SSDs, the
issuer is notified of completion when the HDDs finish with the
I/O. Although this increases latency, it is unavoidable since
Azor starts with a cold cache in case of failures. Therefore,
the up-to-date blocks mustalwaysbe located on the HDDs,
to protect against data corruption.



III. E XPERIMENTAL METHODOLOGY

We perform our evaluation on a server-type x86-based
system, equipped with a Tyan S5397 motherboard, two quad-
core Intel Xeon 5400 64-bit processors running at 2 GHz,
32 GB of DDR-II DRAM, twelve 500-GB Western Digital
WD5001AALS-00L3B2 SATA-II disks connected on an Areca
ARC-1680D-IX-12 SAS/SATA storage controller, and four
32-GB enterprise-grade Intel X25-E (SLC NAND Flash),
connected on the motherboard’s SATA-II controller. The OS
installed is CentOS 5.5, with the 64-bit 2.6.18-194.32.1.el5
kernel version. The storage controller’s cache is set to write-
through mode. Both HDDs and SSDs are arranged in a RAID-
0 configurations, the first using the Areca hardware RAID, and
the latter using theMD Linux driver with a chunk-size of 64
KB. We use the XFS filesystem with a block-size of 4KB,
mounted using theinode64, nobarrier options. We do not use
flash-specific filesystems like jffs2 since they assume direct
access to the flash memory, and our SSDs export a SATA-
II interface. Moreover, the SSD device controller implements
in firmware a significant portion of the functionality of these
filesystems. The database server used is MySQL 5.0.77.

We focus our evaluation on I/O-bound operating conditions,
where the I/O system has to sustain high request rates. In
some cases, we limit the available DRAM memory, in order
to put more pressure on the I/O subsystem. For our evaluation,
we use three I/O-intensive benchmarks: TPC-H, SPECsfs2008,
and Hammerora, the parameters of which are discussed next.

1) TPC-H [15]: is a data-warehousing benchmark that
issues business analytics queries to a database with sales
information. We execute queries Q1 to Q12, Q14 to Q16,
Q19, and Q22 back to back and in this order. We use a 28
GB database, of which 13 GB are data files, and vary the
size of the SSD cache to hold 100% (28 GB), 50% (14 GB),
and 25% (7 GB) of the database, respectively. TPC-H does a
negligible amount of writes, mostly consisting of updates to
file-access timestamps. Thus, the choice of the write policy
is not important for TPC-H, considering we start execution of
the queries with a cold cache.We set the DRAM size to 4 GB,
and examine how the SSD cache size affects performance.

2) SPECsfs2008 [16]: emulates the operation of an
NFSv3/CIFS file server; our experiments use the CIFS proto-
col. In SPECsfs2008, a set of increasingperformance targets
is set, each one expressed in CIFS operations-per-second. The
file set size is proportional to the performance target (≈120
MB per operation/sec). SPECsfs2008 reports the number of
CIFS operations-per-second actually achieved, as well as av-
erage response time per operation. For our experiments, we
set the first performance target at 500 CIFS ops/sec, and then
increase the load up to 15,000 CIFS ops/sec. The DRAM size
is set to 32 GB. Contrary to TPC-H, SPECsfs2008 produces
a significant amount of write requests, so we examine, along
with associativity, the impact of the write policy on perfor-
mance. We use two cache sizes, of 64 and 32 GB, respectively.

3) TPC-C [17]: is an OLTP benchmark, simulating order
processing for a wholesale parts supplier and its customers.

This workload issues a mix of several concurrent short trans-
actions, both read-only and update-intensive. The performance
number reported by this benchmark is New Order Transactions
Per Minute (NOTPM). We use the Hammerora [18] load
generator on a 155-GB database that corresponds to a TPC-C
configuration with 3,000 warehouses. We run experiments with
512 virtual users, each executing 1,000 transactions. As with
TPC-H, we limit system memory to 4 GB.

IV. EXPERIMENTAL RESULTS

In this section we first examine how the Two-Level Block
Selection Mechanism (2LBS) improves the performance of our
SSD cache. Then, we analyze how four design parameters:
1) cache associativity, 2) cache size3) write policy, and
4) cache line sizeaffect the performance of our system.

A. Block Selection Scheme

For this case study we select cases that exhibit a fair amount
of conflict misses, since that is when we expect our two-level
block selection scheme to benefit performance. Thus, we do
not explore trivial cases, such as having the whole workload
fitting in the SSD cache, for which no additional performance
benefit can be acquired. We analyze how each level of our
proposed scheme separately improves performance, as well
as the additional performance gains by combining them. We
compare the performance of an SSD cache that uses the block
selection scheme with: i) native HDDs runs, and ii) an LRU
base cache. The base cache does not use neither levels of the
2LBS scheme and employs thewrite-hdd-updwrite policy (the
best choice as we show in Section IV-B). For the two designs
(2LBS and base), we analyze the performance of both the
direct-mapped and LRU-based fully-set-associative caches.

1) TPC-H: Since this benchmark performs a negligible
amount of writes. both the file-set size and the number of files
do not grow during workload execution. Thus,Azor receives
a minimal amount of filesystem metadata I/Os. Consequently,
pinning filesystem metadata on the SSD cache provides no
performance benefit for workloads like TPC-H.

Figure 2 shows our results when usingAzor’s 2LBS scheme
for TPC-H. In all these experiments,Azor starts with a cold
cache, using 4 GB of DRAM. Since TPC-H is very sensitive
to DRAM, for our 2LBS scheme we allocate extra DRAM, as
much as required. We use the medium size (14 GB) direct-
mapped (DM) and fully-set-associative (FA) caches as a test
case. As shown in Figure 2(a) the use of the block selection
mechanism improves the performance of the direct-mapped
and the fully-set-associative caches by 1.95× and 1.53×,
respectively. More interesting is the fact that the medium size
(14 GB) direct-mapped 2LBS cache performs better than the
large size (28 GB) base cache counterpart. This is because the
medium-size 2LBS design caches more important data than
the large size cache, for a lower hit ratio (Figure 2(b)), and
for 1.9% less disk utilization (Figure 2(c)). However, the same
behavior is not reproduced for the fully-set-associative cache,
since this cache design employes the LRU replacement policy,
which provides better performance for the larger cache.
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Fig. 2. Impact of block selection scheme on TPC-H, for both the direct-
mapped (DM) and fully-set-associative (FA) caches.

2) SPECsfs2008: Contrary to TPC-H, SPECsfs2008
equally accesses filesystem data blocks and thus, using run-
ning estimates of blocks accesses can not further improve
performance. On the other hand, the file-set produced by
SPECsfs2008 continuously increases during workload execu-
tion and thus, the metadata footprint continuously increases
as well. Consequently, we argue that system performance
is affected by the filesystem metadata DRAM hit ratio. To
validate this assumption, we run SPECsfs2008 on the native
12 HDDs setup, while varying the available DRAM size.
Figure 3(a) shows that, as the DRAM size increases, the num-
ber of metadata I/Os that reachAzor significantly decreases,
providing substantial performance gains. This is evident when
moving from 4 GB to 8 GB of DRAM; a 186% reduction
in metadata requests results in 71% better performance. Thus,
we expect to gain significant performance improvements for
SPECsfs2008 by pinning filesystem metadata on SSDs.

For our experiments, we choose the worst-case scenario
with 4 GB DRAM, using the best write policy (write-hdd-upd),
and starting with an 128 GB cold cache. Since SPECsfs2008
is less sensitive to DRAM for filesystem data caching, we
do not allocate further memory for the 2LBS scheme. Fig-
ure 3(b) shows that even the base version ofAzor significantly
improves performance, achieving a speedup of 1.71× and
1.85× for the direct-mapped and fully-set-associative caches,

respectively. Furthremore, by pinning filesystem metadataon
SSDs, performance further improves by 16% and 7% for
the two associativities, respectively. These improvents are
accompanied by a significant decrease in latency. Figure 3(c)
shows thatAzor supports roughly 3,000 more operations per
second for the same latency, compared to the native 12 HDDs
run. In addition, there is a 21% and 26% decrease in latency
for the direct-mapped and fully-set-associative cache designs,
respectively, when comparing the base with the 2LBS version
of Azorat the last sustainable target load (7000 ops/sec). This,
however, is not a result of an increase in hit ratio (not shown),
but only of pinning filesystem metadata on SSDs.

3) Hammerora: Finally, we examine how our two-level
block selection scheme performs when faced with a black-
box workload. For this purpose, we use Hammerora, 4 GB
of DRAM, and a cold cache, large enough to hold half the
TPC-C database (77.5 GB). Since Hammerora is an OLTP
workload, we expectAzor to receive a significant amount of
write requests, hence we choose our best write policy (write-
hdd-upd) for our experiments. Our results show that even the
base version ofAzor improves performance by 20% and 55%,
for the direct-mapped and fully-set-associative cache designs,
respectively. In addition, with the 2LBS scheme performance
further improves by 31% and 34% for the two associativities,
respectively. Not both levels of the 2LBS scheme equally
benefit Hammerora: when the two levels are applied individ-
ually on the fully-set-associative cache, there is 9% and 24%
performance improvement respectively, compared to the base
version. As with SPECsfs2008, although there is no change in
the hit ratio between the base and the 2LBS versions for both
associativities, the performance benefits are a result of which
HDD blocks are cached. For this workload, disk utilization
is at least 97%, while cache utilization remains under 7%
for all configurations. These results reveal that SSD caches
can greatly improve OLTP workloads, especially when a large
percentage of the database fits in the cache.

B. System Design Parameters

In this section we analyze howcache associativity, cache
size,and thewrite policyaffect the performance ofAzor. Then,
we present our observations on usinglarger cache lines. We
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Fig. 5. Impact of associativity and write policy on SPECsfs2008 with 128 GB cache size.
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Fig. 4. Impact of different associativities and cache sizeson TPC-H.

perform these experiments without the 2LBS scheme, so that
the impact of these parameters becomes more evident.

1) TPC-H: Figure 4 shows the performance gains ofAzor,
compared to the native HDDs. In all experiments,Azor starts
with a cold cache and uses 4 GB of DRAM. Figure 4(a) shows
that performance improves along with larger cache sizes, both
for the direct-mapped and the fully-set-associative cache. The
maximum performance benefit gained is 14.02×, when all the
workload fits in the SSD cache, compared to the HDDs.

Cache associativity greatly affects performance; when the
workload does not fit entirely in the SSD cache, a medium size
(14 GB) fully-set-associative cache performs better than all of
the direct-mapped counterparts (7, 14, and 28 GB), by giving
a 2.71×, 2.16× and 1.33× higher performance, respectively.
Generally, the fully-set-associative cache performs better due
to higher hit ratio, shown in Figure 4(b). This is because the
fully-set-associative cache has significantly less conflict misses
that the direct mapped counter-part, due to the spread-out
mapping the latter exhibits. This benefit, however, diminishes
as the cache size decreases, evident by the fact that for the
smallest cache size (7 GB) the two associativities perform
roughly equally. In this case, the 3.54% difference at hit ratio
results in 3% better performance, because the significantly
increased number of conflict misses has absorbed a large
percentage of potential benefits from using an SSD cache.

Furthermore, Figure 4(c) shows that even the slightest

decrease in HDD utilization results in significant performance
benefits. For instance, the fully-set-associative medium size
cache (14 GB) has 11.89% less HDD utilization than the small
size (7 GB) counterpart, resulting in a 4.23× better speedup.
Generally, HDD utilization is reduced, as the percentage of
workload that fits in the cache increases. SSD utilization
remains under 7% in all configurations. Moreover, we must
mention that the native SSD run achieves a 38.81× speedup,
compared to HDDs. Finally, TPC-H is very sensitive to the
DRAM size. Performance is exponentially improved, as the
percentage of the workload that fits in DRAM is increased.
For instance, in case the whole workload fits in DRAM, the
achieved speedup is 168.8×. By combining all the above ob-
servations, we conclude that the choice of a proper DRAM size
along with enough SSD space can lead to optimal performance
gains for archival database benchmarks, such as TPC-H.

2) SPECsfs2008:For this workload we compare the per-
formance ofAzor with the native 12 HDD run, using 32 GB
DRAM, and performing all experiments starting with a cold
cache. We expect the choice of write policy to significantly
affect performance, since this workload produces a fair amount
of write requests. Furthermore, since SPECsfs2008 produces
a very large number of small files during its execution, we
expect the effect of the spread-out mapping the direct-mapped
cache exhibits to be more evident in this workload.

Figure 5(a) presents our results using 128 GB of SSD cache.
We notice that, depending on the write policy chosen, the
speedup gained byAzor varies from 11% to 33% and from
10% to 63%, for the direct-mapped and fully-set-associative
cache designs, respectively. The performance gains are directly
dependent on the hit ratio, shown in Figure 5(b), achieved by
each write policy. Thewrite-hdd-ssdwrite policy achieves the
lowest hit ratio, hence the lowest performance improvement.
This is because SPECsfs2008 produces a huge file-set but
only access 30% of it. Thus, useful data blocks are evicted,
overwritten by blocks that are never be read. Furthermore, be-
cause SPECsfs2008 exhibits a modify-read access pattern, the
write-hdd-updwrite policy exhibits better hit ratio thanwrite-
hdd-inv, since the first will update the corresponding blocks
present in the SSD cache, while the latter will essentially
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Fig. 6. Impact of associativity and write policy on SPECsfs2008 with 64 GB cache size.

evict them. Cache associativity also affects performance:the
best write policy (write-hdd-upd) for the fully-set-associative
cache performs 25% better than its direct-mapped counterpart,
a result of the increased hit ratio.

Figure 5(c) shows that the response time per operation also
improves with higher hit ratios: the better the hit ratio, the
longer it takes for the storage system to get overwhelmed
and, thus, it can satisfy greater target loads. Furthermore, CPU
utilization (not shown) always remains below 25%, showing
that the small random writes that SPECsfs2008 exhibits make
HDDs the main performance bottleneck. HDD utilization is al-
ways 100%, while cache utilization remains below 25% for all
configurations. Based on these observations, we conclude that
even for write-intensive benchmarks, such as SPECsfs2008,
that produce huge file sets the addition of SSDs as HDD caches
holds great performance potential.

Finally, we examine how reducing the cache size affects
performance. We run again our experiments, this time using
64 GB of SSD cache. We notice that, although the behavior
of the write-policies remain the same (Figure 6(a)),Azor now
becomes saturated earlier in the execution of the workload.
This is due to the increased latencies (Figure 6(c)) observed,
and the fact that the hit ratio (Figure 6(b)) starts to drop in
earlier target loads. Still, there is a 22% and 38% performance
improvement, compared to the native HDD run, for the direct-
mapped and the fully-set-associative caches, respectively.

3) Impact of Cache Line Size on Performance:Our I/O
workloads generally exhibit poor spatial locality, hence cache
lines larger than one block (4 KB) result in lower hit ratio.
Thus, the benefits described in II-C are not enough to amortize
the impact on performance of this lost hit ratio, hence perfor-
mancealwaysdegrades. However, we believe that larger cache
lines may eventually compensate the lost performance in the
long term due to better interaction with the SSD’s metadata
management techniques in their flash translation layers (FTL).

V. D ISCUSSION

A. Metadata memory footprint

The DRAM space required byAzor in each case is shown in
Table II. Thebase cachedesign is the LRU-based fully-set-

TABLE II
TRADING OFF DRAM SPACE FOR PERFORMANCE INAzor.

TPC-H SPECsfs2008 Hammerora
Base Cache 1.28 (DM) / 6.03 (FSA)

Metadata Footprint MB / GB of SSD
Base Cache Max. 14.02× 63% 55%
Performance Gain
Additional Total

28 MB No overhead 56 MBMetadata for 2LBS
Max. Performance 95% (DM) 16% (DM) 34% (FSA)
Gain with 2LBS

associative cache. The 2LBS scheme offers additional gains
to the base cache, and the best associativity in this case is
shown in parenthesis. We see that, at the cost of consuming
a considerable amount of DRAM in some cases,Azor pro-
vides significant performance improvement. Furthermore, the
DRAM space required scales with the size of the SSD cache
size, not with the capacity of the underlying HDDs. Thus, we
expect the DRAM space requirements for metadata to remain
moderate. However, if DRAM requirements are an issue for
some systems,Azorcan trade DRAM space with performance,
by using larger cache lines as described in Section IV-B3.

Finally, we argue that the cost/benefit trade-off between
DRAM size and SSD capacity, only affects workloads sensi-
tive to DRAM, such as TPC-H. On the contrary, for workloads
like TPC-C, additional DRAM has less impact as we observed
in experiments not reported in this paper. These experiments
show that DRAM hit ratio remains below 4.7%, even if DRAM
size is quadrupled to 16 GB. Similarly, for SPECsfs2008,
additional DRAM serves only to improve the hit ratio for
filesystem metadata, as shown in Figure 3(a).

B. UsingAzor within disk controllers and storage protocols

Azor’s 2LBS scheme is feasible within disk controllers
by embeddingAzor’s metadata flag within the (network)
storage protocol (e.g. SCSI) command packets transmitted
from storage initiators to storage targets. Storage protocols
have unused fields/commands that can carry this information.
Then, Azor will be implemented in the storage controller
(target in a networked environment) by using per-block access



counters. The main issue in this case is standardization of
storage protocols, and whether it makes sense to push hints
from higher layers to lower. As our work shows, there is merit
to such an approach ([19], [20]).

C. UsingAzor 2LBS scheme with other filesystems

Our 2LBS scheme requires modifying the filesystem imple-
mentation. We have modifed XFS to mark metadata elements.
However, transparent detection of metadata is needed is some
setups, e.g. in virtual machines where the hypervisor cannot
have access to block identity information. We have developed
a mechanism for automatically detecting filesystem metadata
without any modifications to the filesystem itself, using the
metadata magic numbers for this purpose. Preliminary results
with the benchmarks used in this paper show that this mech-
anism adds negligible overheads to the common I/O path.

D. SSD cache persistence

Azor makes extensive use of metadata to keep track of
block placement. Our system, like most traditional block-level
systems, does not update metadata in the common I/O path,
thus avoiding the necessary additional synchronous I/O.Azor
does not guarantees metadata consistency after a failure: in this
caseAzor starts with a cold cache. This is possible because
our write-throughpolicy ensures that all data have their latest
copy in the HDD. If the SSD cache has to survive failures, this
would require trading-off higher performance with consistency
to execute the required synchronous I/O in the common path.
However, we choose to optimize the common path at the
expense of starting with a cold cache after a failure.

E. FTL and wear-leveling

Given that SSD controllers currently do not expose any
block state information, we rely on the flash translation
layer (FTL) implementation within the SSD for wear-leveling.
Designing block-level drivers and file-systems in a manner
cooperative to SSD FTLs which improves wear-leveling and
reduces FTL overhead is an important direction, especially
while raw access to SSDs is not provided by vendors to system
software. Our write policies may significantly affect wear-
leveling, however, we leave such an analysis for future work.

VI. RELATED WORK

The authors in [1] examine whether SSDs can fully replace
HDDs in data-center environments. They conclude that SSDs
are not a cost-effective technology for this purpose, yet.
Given current tradeoffs, mixed SSD and HDD environments
are more attractive. A similar recommendation, from a more
performance-oriented point of view, is given in [21]. Although
studies of SSD internals and their performance properties [22],
[23] show promise for improved SSDs, we still expect mixed-
device storage environments to become increasingly common.
FlaZ [24] transparently compresses cached blocks in a

direct-mapped SSD-cache, presenting techniques for hiding
the CPU overhead from compression. In this work, we take
the view that mixed-device storage environments will become

common. However, we argue that, beyond any benefits from
increasing the effective cache size, the admission and replace-
ment policies will have a critical impact on application perfor-
mance. Furthermore, we believe that such policies will become
even more prominent when dealing with mixed workloads
running on the same server.

A recent development in the Linux kernel is thebcache
block-caching subsystem. Similar to our work,bcache is
transparent to applications, operating below the filesystem.
However, it does not enforce any admission control, which
is the main focus of this paper. TheReadyBoost fea-
ture [25] aims to optimize application-perceived performance
with prefetching (Superfetch feature) and static file pre-
loading. In contrast,Azordynamically and transparently adapts
to the workload, by tracking the block access frequency.

In addition, there are several flash-specific filesystem im-
plementations available for the Linux kernel (JFFS, LogFS,
YAFFS) that are mostly oriented to embedded systems. Server
workloads require much larger device sizes and therefore a
mixed-device (SSDs and HDDs) storage environment is more
appropriate. In addition, it is important to address resource
consumption issues, such as in-memory metadata footprint,
and to sustain much higher degrees of I/O concurrency. These
issues point towards tuning filesystem design to the properties
of high-performance SSDs, such as PCI-Express devices [26],
with a careful division of labor between systems and SSDs,
an approach discussed in ([27], [28]).

Flash-based caching has started to appear in enterprise-
grade storage arrays. HotZone [29], and MaxIQ [30] are
two recent examples. EMC’s FAST-Cache [31] utilizes SSD
devices as a transparent caching layer. As with our work,
FAST-Cache is a LRU cache that serves both reads and writes.
However, contrary toAzor, writes are not directly written
to the cache, while policies are system-defined and cannot
be changed by the user. L2ARC [21] is a SSD-based cache
for the ZFS filesystem, operating below the DRAM-based
cache. L2ARC amortizes the cost of SSD write over large
I/O, by speculatively pushing out blocks from the DRAM-
cache. Similarly toAzor, L2ARC takes into account the
requirement for in-memory book-keeping metadata. Next, the
differentiation between filesystem data and metadata blocks
is present in NetApp’s Performance Acceleration Module
(PAM) [32]. Like Azor, PAM aims to accelerate reads, and can
be configured to accept only filesystem metadata (as marked
by NetApp’s proprietary WAFL filesystem). However, PAM
requires specialized hardware, whileAzor is a software layer.

Finally, there has been extensive work on cache replacement
policies for storage systems [14], more recently focusing on
SSD-specific complications. BPLRU [33] attempts to establish
a desirable write pattern for SSDs, via RAM buffering. The
LRU list is dynamically adjusted for this purpose, taking
into consideration the erase-block size. CFLRU [34] keeps a
certain amount of dirty pages in the page cache to reduce the
number of flash write operations. BPLRU and CFLRU show
the benefit from adjusting LRU-based eviction decisions based
on run-time conditions. However, they do not explicitly track



properties of the reference stream. LRU-k [35] discriminates
between frequently referenced and infrequently referenced
pages, by keeping page access history even after page eviction.
This is a key insight, allowing adaptation to the prevailing
patterns in the reference stream, but comes at the cost of
potentially unbound memory space consumption. In this work,
we consider how to augment the LRU replacement policy
with a two-level selection scheme which rewards or penalizes
blocks based on the expected benefit from their continued
residence in the SSD-cache. This is a notion similar to that of
marginal gainused in database buffer allocation in [36].

VII. C ONCLUSIONS

In this work we examine how SSDs can be used in the I/O
path to increase storage performance. We present the design
and implementation ofAzor, a system that transparently caches
data in dedicated SSD partitions, as they flow between DRAM
and HDDs. Our base design provides various choices for
associativity, write and cache line policies, while maintaining
a high degree of I/O concurrency. Our main contribution
concerns exploring differentiation of HDD blocks according
to their expected importance on system performance. For this
purpose, we design and analyze a two-level block selection
scheme that dynamically differentiates HDD blocks before
placing them in the SSD cache.

We evaluateAzor using three I/O intensive benchmarks:
TPC-H, SPECsfs2008, and Hammerora. We show that at the
cost of additional metadata footprint, performance of SSD
caching improves when moving to higher way associativities,
while the proper choice of the write policy can make up
to 50% difference in performance. Furthermore, when there
is a significant number of conflict misses, our scheme can
significantly improve workload performance, up to 95%. Our
mechanism may consume more DRAM in some cases, but
results in significant performance benefits. Not both levels
of this scheme benefit all workloads. However, they never
degrade performance, when used together or in isolation.
Overall, our work shows that differentiation of blocks is a
promising technique for improving SSD-based I/O caches.
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