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~ Abstract—Flash-based solid state drives (SSDs) exhibit poten- approaches that are application-specific and requirecggjan
tial for solving 1/O bottlenecks by offering superior performance  knowledge, intervention, and tuningyzor transparentlyand
over hard disks for several workloads. In this work we design dynamicallyplaces data blocks in the SSD cache as they flow

Azor, an SSD-based I/O cache that operates at the block-level and. . .
is transparent to existing applications, such as databases. Our in the 1/0 path between main memory and HDDs. In this work,

design provides various choices for associativity, write @icies We investigate the following problems:
and cache line size, while maintaining a high degree of 1/O

concurrency. Our main contribution is that we explore differ- TABLE |

entiation of HDD blocks according to their expected importance HDD AND SSDPERFORMANCE METRICS

on system performance. We design and analyze a two-level lolo

selection scheme that dynamically differentiates HDD bldcs, and | I SSD| HDD |

selectively places them in the limited space of the SSD cache Price/capacity ($/GB) $3 $0.3
We implement Azor in the Linux kernel and evaluate its Response time (ms) 0.17 12.6

effectiveness experimentally using a server-type platfon and Throughput (R/W) (MB/s) 277/202| 100/90

large problem sizes with three 1/O intensive workloads: TPGH, IOPS (R/W) 30,000/3,500] 150/150

SPECsfs2008, and Hammerora. Our results show that as the
cache size increasesizor enhances 1/0O performance by up to ) . ] . .
14.02x, 1.63x, and 1.55¢< for each workload respectively. Addi- 1) Differentiation of blocks:based on their expected im-

tionally, our two-level block selection scheme further enlinces portance to system performandeor uses a two-level block
I/0 performance compared to a typical SSD cache by up to 95%, selection scheme and dynamically differentiates HDD tdock

16%, and 34% for each workload, respectively. before admitting them in the SSD cache. First, we distin-
guish blocks that contain filesystem metadata from blocks
|. INTRODUCTION that merely contain application data. This is importartcsi

The cost and performance characteristics of current gendiitesystem studies have shown that metadata handling isatrit
tion NAND-Flash solid-state drives (SSDs), shown in Tahle to application performance. In addition, recent trendswsho
make them attractive for accelerating demanding servekwothat the impact of filesystem metadata accesses is expected
loads, such as file and mail servers, business and scientifiddecome even more pronounced [6]. Second, for all HDD
data analysis, as well as OLTP databases. SSDs have pbtehtizcks we maintain a running estimate of the number of
to mitigate 1/0 penalties, by offering superior performane accesses over a sliding time window. We then use this infor-
common hard-disk devices (HDDs), albeit at a higher cost peation to prevent infrequently accessed blocks from ewicti
GB [1]. In addition, SSDs bear complexity caveats, relatedore frequently accessed ones. Our scheme does not require
to their internal organization and operational propertids application instrumentation or static a-priori workloathysis
promising mixed-device system architecture is to deplop$S and adds negligible CPU and 1/O overhead.
as a caching layer on top of HDDs, where the cost of the SSD2) Metadata footprint:for representing the state of the SSD
is expected to be amortized over increased 1/0O performancache blocks in DRAM. In our approach, metadata size grows
both in terms of throughput (MB/sec) and access rate (IOP®yoportionally to the SSD capacity available, rather thiam t

Recently, there has been work on how to improve l/@uch larger HDD space; still, compacting metadata to fit in
performance using SSD caches. FlashCache [2] uses fladRAM is an important concern. We consider this experimental
memory as a secondary file cache for web servers. Lsdy important, since metadata footprint in DRAM will keep
et al. [3] analyze the impact of using SSDs in transactidncreasing with SSD device capacity, thereby making high-
processing, while [4] examines how SSDs can improve chegkssociativity organizations less cost-effective. Theare tao
pointing performance. Finally, [5] examines how SSDs can laspects of the cache design that determine the DRAM required
used as a large cache on top of RAID to conserve energy. Infalt metadatacache-associativitand cache line size
cases SSDs demonstrate potential for improved performanceFirst, we explore two alternatives for cache associativity

In this work we designAzor, a system that uses SSDs) a direct-mapped organization, which minimizes the rezplir
as caches in the I/O path. In contrast to all aforementionathount of DRAM for metadata, artg) a fully-set-associative



Block read Yes let d hit isti isti
&‘ In cache? }——[Read block from SSD]M> E)gllitgﬂg N—°> m?:t;:engl;:tkly
No,

’ complete read miss metadata? accessed?
(Jioonsso Réad BlocK frof HBD s . — .
(/110 on HoD ) S
asynchronous cache fill Write block to SSD o

I Tt I
| ‘
‘ ‘
. i
°>’,i | write hit in write-hdd-upd, L> L oot .CaChe
=i Admission control i write in write-hdd-ssd request? write
S| | Write block to SSD -
=4 % ; Block writ. complete write Yes
""" T locK write A Perform
———» Ma| rite’block to'HD
(a) System architecture (b) Read and write paths (c) Admission control path

Fig. 1. Azor system architecture, 1/0, and admission control paths.

organization that allows more informed block replacemeapplication as a black box. For this workload, the base desig
decisions at the cost of consuming more DRAM space for itd Azor improves performance up to 55%, compared to the
metadata. We quantify the performance benefits and potent#DD-only configuration, while with the use of our block
caveats from employing the simpler-to-implement and moselection schemeizor improves performance up to 89%.
space-efficient cache design, under 1/0-intensive woddoa  The rest of this paper is organized as follows. Section |l
Then, we examine the performance impact from increasipgesents our design for resolving the aforementioned chal-
the cache line size; although larger cache lines decrease ldnges without affecting access latency and I/O concuyenc
required metadata space in DRAM, doing so causes perf@ection Ill presents our experimental platform, represire
mance degradation in most cases. of a current generation server for I/O intensive workloads.
3) Write-handling policies:for which we explore the fol- Section IV presents a detailed evaluation of our approach.
lowing dimensionsi) write-through vs. write-back; this di- Section V discusses some further considerationAfmrwhile
mension affects not only performance, but also systemhiglia Section VI provides a comparison with related work. Finally
ity, i) write-invalidation vs. write-update in case of cache @ritSection VII summarizes our main findings.
hits, and, finally,iii) write-allocation, for cache write misses.
We experimentally find that the choice of the write policy can Il. SYSTEM DESIGN
make up to a 50% difference in performance. Our results showAlthough SSD caches bear similarities to traditional
that the best policy is as follows: write-through, writedape DRAM-based caches, there are significant differences ds wel
on write hits, and write-no-allocate on write misses. First, the impact of the block mapping policy, e.g. direct-
4) Maintaining a high degree of concurrent I/O accessesmapped vs. fully-set-associative, is not as clear as in DRAM
Any cache design needs to allow multiple pending I/O requestaches. In addition, SSD caches are significantly larger, re
to be in progress at any timAzor properly handlegit-under- sulting in a considerably larger metadata footprint. Tlaist f
missand out-of-order completionsy tracking the dependen-must be taken into account, considering the increasing size
cies between in-flight I/O requests. Our design minimizes tlof SSDs. Finally, unlike DRAM caches, SSD caches can be
overhead of accessing the additional state required for thnade persistent, thus avoiding warm-up overheads.
purpose, as this is required for all 1/0 operations that passThe use of SSDs as I/O caches in our architecture is shown
through the cache. We also compact this data structure énougFigure 1(a)Azorprovides a virtual block device abstraction,
so that it fits the limited DRAM space. by intercepting requests in the I/O path and transparently
This is the first work that thoroughly and systematicallgaching HDD blocks to dedicated SSD partitions. The address
examines the design space of SSD-based I/O caches. $ace of SSDs is not visible to higher system layers, such
implementAzor as a virtual block device in the Linux kernelas filesystems and databasé@gor is placed in the 1/O path
and evaluate our design with three realistic and long-mmnibelow the system buffer cache. Although our approach can be
workloads: TPC-H, SPECsfs2008, and Hammerora. We fooeistended to use the capacity of SSDs as storage rather than
our evaluation on I/O-intensive operating conditions wiire@ cache, more in the spirit of tiering, we do not explore this
I/O system has to sustain high request rates. Our resudisection further in this work.
show thatAzor's cache design leads to significant performance Figure 1(b) shows how we handle 1/O requests. Each HDD
improvements. More specifically, as the available cache silzlock is first mapped to an SSD cache block, according to
increases, SSD-caching can enhance I/0O performance froathe associativity. For readszor checks if the cached block
2.91x to 14.02 and from 1.1k to 1.63x for TPC-H and is valid and if so, it forwards the request to the S$&afl hif).
SPECsfs2008, respectively. Furthermore, we show that wh@therwise, data are fetched from the HDiBgd mis3$ and an
there is a significant number of conflict misses, our twasynchronous SSD write I/Qdche fil) is scheduled.
level scheme is able to enhance performance by up to 95%-or writes (hits or missesfpzorimplements avrite-through
and 16% for these two workloads, respectively. We concludeechanism. We opt against usingwaite-back cache; such
our evaluation by examining the effectiveness of our designcache design would result in the HDD not always having
on Hammerora, a TPC-C type workload, and treating thke most up-to-date blocks, therefore requiring synchusno



metadata updates with significant implications for latencyre more likely to be accessed again soon than older ones.
sensitive workloads. Furthermore, a write-back cacheaeslu Based on these observations, we cache data blocks on SSDs
system resilience to failures, because a failing SSD driby differentiating them according to their access freqyenc
could result in data loss. Ouwrite-through design avoids At our second level of selection, we keep in-memory a
these issuesAzor provides write policies for forwarding the running estimate of the accesses to each HDD block that is
write request either to both the HDD and the SShrite- referenced at least once. Between any two HDD blocks, the
hdd-ssd, or only to the HDD. In the second policy, duringone with the higher access count is more likely to remain in
a write hit, our system can either updaterie-hdd-upd or the SSD cache. This differentiation of HDD blocks overrides
invalidate (vrite-hdd-iny the corresponding cache block. Thehe selection of the “victim block” for eviction as deterraih
choice of write policy has significant implications for vedit by the LRU replacement policy in the fully-set-associative
intensive workloads, as we show in our evaluation. cache. Although workloads like TPC-C tend to have repetitiv
. ) references, a good match for LRU, other workloads, such as
A. Admission Control Mechanism TPC-H, rely on extensive one-time sequential scans which
Azor differentiates HDD blocks based on their expectefill-up the cache with blocks that are not expected to be re-
importance to system performance. For this purpdgeruses used any time soon. Such blocks evict others that may be
a two-level block selection scheme that controls whether accessed again soon. If we allow LRU replacement to evict
not a specific cache block should be admitted to the SSilbcks indiscriminately, the cache will not be effectivetilin
cache, according to its importance. Our design distingasisht is re-populated with the more commonly used blocks. This
two classes of HDD blocksilesystem metadatndfilesystem insight is also the motivation behind the ARC replacement
data blocks. However, we believe that an arbitrary numbeyolicy [11], which keeps track of both frequently used and
of other classes can be supported, if needed. The prioritregently used pages and continuously adapts to the prayaili
between the two classes are explained in detail below. pattern in the reference stream. In our design, these pekbl
To begin with, filesystem metadata I/Os should be givaeference counters form an array in DRAM indexed by the
priority over plain data I/Os for two reasons. First, metadaHDD block number. The DRAM required for these counters
operations represent between 50% and 80% of all the requéstseases along with the file-set size, not with the undeglyi
in a typical system [7]. Hence, their impact on performand8DD space. Our evaluation shows that this memory space is
is substantial. Second, there has been a marked increasevanth it, since differentiation improves performance aler
filesystem capacities in recent years, with the average fileFigure 1(c) shows our scheme. The control path of read hits
size remaining small [6]. This means more files and, thuand writes to HDD remains unaffected. On the other hand,
more metadata. The filesystem metadata footprint is furthesiche fills and write hits to the SSD cache now pass through
increased by the need for checksums at the filesystem letred scheme, which decides whether the write operation dhoul
to achieve higher data protection [8], an approach alreadygtually be performed or not. If an incoming request is a
adopted by state-of-the-art filesystems, such as ZFS andtadata request, it is immediately written to the cacheesi
BTRFS. Therefore, it is increasingly difficult to rely soledn  we prioritize filesystem metadata 1/0Os over plain data 1/Os.
DRAM for metadata caching and it makes sence to dedicadherwise, the incoming request contains filesystem dafa an
faster devices for storing filesystem metadata ([9], [10]). Azor checks whether the corresponding cache block contains
In our design, differentiation between filesystem metadafifesystem metadata. If so, the cache fill is aborted, elsh bot
and filesystem data is a straight-forward task. We modifiie incoming and the existing cache block contains data. In
the XFS filesystem to tag metadata requests by settingthds caseAzor checks which block is accessed more times,
dedicated bit in the 1/0 request descriptor. Th&moruses this and the cache fill is performed (or aborted) accordingly.
information at the block level to categorize each HDD block. o
Our modification does not affect filesystem performance, ckh Cache Associativity
easily be implemented in other filesystems as well and onlyThe choice of associativity is mainly a tradeoff between
requires an additionallassbit per SSD cache block. performance and metadata footprint. Traditionally, DRAM
Next, for the second level of our selection scheme, not aaches use a fully-set-associative policy since their lsaizg
data blocks are treated as equal. For instance, in databasgiires reducing capacity conflicts. SSD caches, howaver,
environments indices improve query performance, by atigwi significantly larger and, thus, they may use a simpler mappin
fast access to specific records according to search critepalicy, without significantly increasing capacity confiictin
Index requests produce frequent, small-size, and randoi Hihis work we consider two alternatives for cache assodigtiv
accesses, a pattern that stresses HDD performance. Moreavdirect-mappedand afully-set-associativeache design.
given a set of queries to a database, the data tables ar®n the one hand, a direct-mapped cache requires less meta-
not usually accessed with the same intensity. In web-sendata, hence a lower memory footprint, compared to a fully-
environments, web pages usually exhibit temporal localityet-associative cache. This is very important, since na¢tad
Thus, we expect less benefit from caching web pages tlaaé required for representing the state of the SSD blocks in
have recently been accessed only sporadically. Finally, tBRAM, and DRAM space is limited. Specifically, our direct-
same principle applies to mail-servers: more recent emaiteapped cache requires 1.28 MB of metadata per GB of SSD,



needed for the address tag along with the valid and dirty bitarger cache lines can benefit workloads that exhibit good
for each cache block. Furthermore, this cache design dagstial locality while smaller cache lines benefit more mand
not impose significant mapping overheads on the criticdt paworkloads. A less obvious implication is that larger cache
and is fairly simple to implement. All these advantages aflimes also benefit the flash translation layers (FTL) of SSDs.
particularly important when considering offloading cachinA large number of small data requests can quickly overwhelm
to storage controllers. However, modern filesystems employst FTLs, since finding a relatively empty page to write to
elaborate space allocation techniques for various pugiose becoming increasingly difficult. Finally, using largeaahe
For instance, XFS tends to spread out space allocation olires has latency implications, as discussed next.

the entire free space in order to “enable utilization of h# t
disks backing the filesystem” [12]. Such techniques result p-
unnecessary conflict misses due to data placement. Modern storage systems exhibit a high degree of 1/0

On the other hand, a fully-set-associative cache requiresncurrency, having multiple outstanding I/O requestsis Th
a significantly larger metadata footprint to allow a morallows overlapping I/O with computation, effectively hidj
elaborate block replacement decision through the LRU rthe I/O latency. To sustain a high degree of asynchréagr
placement policy. However, such a design fully resolves thises callback handlers instead of blocking, waiting for I/O
data placement issue, thus reducing conflict misses. Olyr fulcompletion. In additionAzor allows concurrent accesses on
set-associative cache requires 6.04 MB of metadata per GBilog same cache line by using a form of reader-writer locks,
SSD, 4.% more than the direct-mapped counterpart. Metadagémilar to the buffer-cache mechanism. Since using a lock
requirements for this design include, apart from the tag afeF each cache line prohibitively increases metadata mgmor
the valid/dirty bits, pointers to the next and previous edets footprint, Azor only trackspendingl/O requests.
of the LRU list, as well as additional pointers for anothetada Caching HDD blocks to SSDs has another implication for
structure, explained shortly. Designing a fully-set-asstive /O response time: Read misses incuraditional write 1/0
cache appears to be deceptively simple. However, our expéoi the SSD when performing a cache fill. Once the missing
ence shows that implementing such a cache is far from trivigdche line is read from the HDD into DRAM, the buffers of
and it requires dealing with the following two challenges. the initial request are filled andzor can perform the cache

First, it requires an efficient mechanism that quickly detefill by either (a) re-using the initial application 1/O buftefor
mines the state of a cache block, without increasing latémcythe write 1/0, or (b) by creating a new request and copying
the 1/0 path. This is necessary since it is impossible to khethe filled buffers from the initial request.
all cache blocks in parallel for a specific tag, as a hardwareAlthough the first approach is simpler to implement, it
implementation would doAzor arranges cache blocks into aincreases the effective I/O latency because the issuerwaitst
hash table-like data structure. For each HDD block procksséor the SSD write to complete. On the other hand, the second
a bucket is selected by hashing the HDD block number usiagproach completely removes the overhead of the additional
Robert Jenkins’ 32-bit integer hash function. The list aflem cache fill I/O, as the initial request is completed after thtfdy
blocks is then traversed, looking for a match. This arrareygm copy and then the cache fill write request is asynchronously
minimizes the number of cache blocks that must be examinisdued to the SSD. However, this introduces@mory copyn
for each incoming I/O request. the I/O path, and requires maintaining state for each pendin

Second, there is a large variety of replacement algorithragche write. In our design, we adopt the second approach, as
typically used in CPU and DRAM caches, as well as ithe memory throughput in our setup is an order of magnitude
some SSD buffer management schemes [14], all of theémgher than the sustained I/O throughput. However, oth& SS
prohibitively expensive for SSD caches in terms of metadataching implementations, such as in storage controlleay, m
size. Moreover, some of these algorithms assume knowledigeide differently, based on their available hardwareusszs.
of the 1/O patterns the workload exhibits, wheréesor aims Handling write misses is complicated in the case of larger
to be transparent. We have experimentally found that simplgache lines when only part of the cache line is modified:
replacement algorithms, such as random replacement; reffi¢ missing part of the cache line must first be read from
in unpredictable performance. We opt for the LRU policgthe HDD in memory, merged with the new part, atiten
since it provides a reasonable reference point for otheemavritten to the SSD. We have experimentally found that this
sophisticated policies, and we design our two-level sielact approach disproportionally increases the write miss taten
scheme as a complement to the LRU replacement decisionwithout providing significant hit ratio benefits. Therefpree

) . supportpartially valid cache lines by maintaining valid and
C. Cache Line Size dirty bits for each block inside the cache line.

Metadata requirements for both cache associativities ean b For write requests forwarded to both HDDs and SSDs, the
reduced by using larger cache lines. This is a result of rieduc issuer is notified of completion when the HDDs finish with the
the need of per-block tag, as many blocks are now represenii€l Although this increases latency, it is unavoidablecsin
with the same tag. By doing so, metadata footprint can Beor starts with a cold cache in case of failures. Therefore,
reduced by up to 1.90 and 6.8%, for the direct-mapped the up-to-date blocks mustiwaysbe located on the HDDs,
and the fully-set-associative cache, respectively. Initanohd to protect against data corruption.

I/O Concurrency



I1l. EXPERIMENTAL METHODOLOGY This workload issues a mix of several concurrent short trans
) actions, both read-only and update-intensive. The pedoga
We perform our evaluation on a server-type x86-basefmper reported by this benchmark is New Order Transactions
system, equipped with a Tyan S5397 motherboard, two quasls. \jinyte (NOTPM). We use the Hammerora [18] load
core Intel Xeon 5400 64-bit processors running at 2 GHgenerator on a 155-GB database that corresponds to a TPC-C

32 GB of DDR-Il DRAM, twelve_ 500-GB Western Digital configuration with 3,000 warehouses. We run experiments wit
WDS5001AALS-00L3B2 SATA-Il disks connected on an Arecay 5 \jryal users, each executing 1,000 transactions. Als wi

ARC-1680D-IX-12 SAS/SATA storage controller, and fourpc_H we limit system memory to 4 GB.

32-GB enterprise-grade Intel X25-E (SLC NAND Flash), '

connected on the motherboard’s SATA-II controller. The OS IV. EXPERIMENTAL RESULTS

installed is CentOS 5.5, with the 64-bit 2.6.18-194.3251.e In this section we first examine how the Two-Level Block

kernel version. The storage controller’'s cache is se_t toeWri gajaction Mechanism (2LBS) improves the performance of our
through mode. Both HDDs and SSDs are arranged in @ RAIRgh cache. Then, we analyze how four design parameters:

0 configurations, the first using the Areca hardware RAID, ari(j cache associativity2) cache size3) write policy, and
the latter using thévD Linux driver with a chunk-size of 64 4) cache line sizaffect the performance of our system.

KB. We use the XFS filesystem with a block-size of 4KB,
mounted using thanode64 nobarrier options. We do not use A. Block Selection Scheme

flash-specific filesystems like jffs2 since they assume direC o this case study we select cases that exhibit a fair amount

access to the flash memory, and our SSDs export a SATArconflict misses, since that is when we expect our two-level
Il interface. Moreover, the SSD device controller implesenp ook selection scheme to benefit performance. Thus, we do
in firmware a significant portion of the functionality of thees t explore trivial cases, such as having the whole workload
filesystems. The database server used is MySQL 5.0.77. fitting in the SSD cache, for which no additional performance

We focus our evaluation on 1/0-bound operating conditiongenefit can be acquired. We analyze how each level of our
where the I/O system has to sustain high request rates.pinosed scheme separately improves performance, as well
some cases, we limit the available DRAM memory, in ordgjs the additional performance gains by combining them. We
to put more pressure on the I/O subsystem. For our evalyatigmpare the performance of an SSD cache that uses the block
we use three I/O-intensive benchmarks: TPC-H, SPECsf$20@8|ection scheme with: i) native HDDs runs, and i) an LRU
and Hammerora, the parameters of which are discussed ngxle cache. The base cache does not use neither levels of the

1) TPC-H [15]: is a data-warehousing benchmark thag| BS scheme and employs thwite-hdd-updwrite policy (the
issues business analytics queries to a database with s@ales choice as we show in Section IV-B). For the two designs
information. We execute queries Q1 to Q12, Q14 to Q1f2| BS and base), we analyze the performance of both the
Q19, and Q22 back to back and in this order. We use a dffect-mapped and LRU-based fully-set-associative cache
GB database, of which 13 GB are data files, and vary the1) TPC-H: Since this benchmark performs a negligible
size of the SSD cache to hold 100% (28 GB), 50% (14 GBymount of writes. both the file-set size and the number of files
and 25% (7 GB) of the database, respectively. TPC-H doegi@ not grow during workload execution. Thuszor receives
negligible amount of writes, mostly consisting of updates ta minimal amount of filesystem metadata 1/Os. Consequently,
file-access timestamps. Thus, the choice of the write poligihning filesystem metadata on the SSD cache provides no
is not important for TPC-H, considering we start executibn erformance benefit for workloads like TPC-H.
the queries with a cold cache.We set the DRAM size to 4 GB, Figure 2 shows our results when usifgors 2LBS scheme
and examine how the SSD cache size affects performancefor TPC-H. In all these experimentdzor starts with a cold

2) SPECsfs2008 [16]: emulates the operation of ancache, using 4 GB of DRAM. Since TPC-H is very sensitive
NFSv3/CIFS file server; our experiments use the CIFS prote DRAM, for our 2LBS scheme we allocate extra DRAM, as
col. In SPECsfs2008, a set of increasipgrformance targets much as required. We use the medium size (14 GB) direct-
is set, each one expressed in CIFS operations-per-sectied. rhapped (DM) and fully-set-associative (FA) caches as a test
file set size is proportional to the performance targetZ0 case. As shown in Figure 2(a) the use of the block selection
MB per operation/sec). SPECsfs2008 reports the numberméchanism improves the performance of the direct-mapped
CIFS operations-per-second actually achieved, as welvas and the fully-set-associative caches by k9and 1.5,
erage response time per operation. For our experiments, ngpectively. More interesting is the fact that the mediize s
set the first performance target at 500 CIFS ops/sec, and tiiga GB) direct-mapped 2LBS cache performs better than the
increase the load up to 15,000 CIFS ops/sec. The DRAM sikgge size (28 GB) base cache counterpart. This is becaase th
is set to 32 GB. Contrary to TPC-H, SPECsfs2008 producgsedium-size 2LBS design caches more important data than
a significant amount of write requests, so we examine, alotig: large size cache, for a lower hit ratio (Figure 2(b)), and
with associativity, the impact of the write policy on perorfor 1.9% less disk utilization (Figure 2(c)). However, tlzarse
mance. We use two cache sizes, of 64 and 32 GB, respectivelhavior is not reproduced for the fully-set-associatizehe,

3) TPC-C [17]: is an OLTP benchmark, simulating ordessince this cache design employes the LRU replacement policy
processing for a wholesale parts supplier and its customesich provides better performance for the larger cache.
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, , _ but only of pinning filesystem metadata on SSDs.
Fig. 2. Impact of block selection scheme on TPC-H, for both direct- 3) Hammerora: Finally, we examine how our two-level

mapped (DM) and fully-set-associative (FA) caches. . .
block selection scheme performs when faced with a black-

box workload. For this purpose, we use Hammerora, 4 GB

) of DRAM, and a cold cache, large enough to hold half the
2) SPECsis2008: Contrary t0 TPC-H, SIDECS]CSZOOE;TPC—C database (77.5 GB). Since Hammerora is an OLTP

equally accesses filesystem data blocks and thus, using \Warkload, we expechAzor to receive a significant amount of
ning estimates of blocks accesses can not further impr '

i fite requests, hence we choose our best write poliayt€-
performance. On the other hand, the file-set produced Xd-upd for our experiments. Our results show that even the

S.PECSfSZOOS continuously increas_es during worklogd EXCdse version ofAzorimproves performance by 20% and 55%,
tion and thus, the metadata footprint continuously iN@8as . e direct-mapped and fully-set-associative cachégdes
as well. Consequently, we argue that system performar}%%pectively. In addition, with the 2LBS scheme perfornganc

l/salijﬁaetgt?gisb)a/\stsrlljemfrl)l;?r:St\?vreT] rrl?r?tgg?gs?g'g% T)'rt_] ;ﬁte'oh;%%her improves by 31% and 34% for the two associativities,
Lo . _ tively. Not both levels of the 2LBS sch Il
12 HDDs setup, while varying the available DRAM size pectively. Vol both Teve's ot the seneme equally

! o benefit Hammerora: when the two levels are applied individ-
Figure 3(a) shows that, as the DRAM SIz€ Increases, the nuﬂé'lly on the fully-set-associative cache, there is 9% arfh 24
ber c_)f.metadata I/Q s that readzor sgmﬁcaptly de(_:reases, performance improvement respectively, compared to the bas
providing substantial performance gains. This is evideimerv

. . version. As with SPECsfs2008, although there is no change in
- 0

moving from 4 GB 10 8 GB _Of DfAM’ a 186% reductlonthe hit ratio between the base and the 2LBS versions for both
in metadata requ_estg “'TS_“"S in 71% better I?erformamce'r”Thfk;ssociativities, the performance benefits are a result aéhwh
we expect to gain ?'gﬁ'f'c"?‘“‘ performance improvements fp(DD blocks are cached. For this workload, disk utilization
SPECsfs2008 by_ pinning filesystem metadata on SSDs. is at least 97%, while cache utilization remains under 7%

[For our experiments, we choose the worst-case sCenap 5| configurations. These results reveal that SSD caches
with 4 GB DRAM, using the best write policyfite-hdd-upd,  can greatly improve OLTP workloads, especially when a large
and starting with an 128 GB cold cache. Since SPECsstO,Q@rcentage of the database fits in the cache.

is less sensitive to DRAM for filesystem data caching, we )

do not allocate further memory for the 2LBS scheme. Fig- System Design Parameters

ure 3(b) shows that even the base versioAndr significantly In this section we analyze hoeache associativitycache
improves performance, achieving a speedup of £.7nd size,and thewrite policyaffect the performance @&zor. Then,
1.85x for the direct-mapped and fully-set-associative cachese present our observations on usiagger cache linesWe
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== 7GB cache ==28GBcache Native-12HDD . e e g
= 14GB cache e D?:VE o decrease in HDD utilization results in significant perforroa
51 FA 1000y FA 10007 oo benefits. For instance, the fully-set-associative mediiza s
131 grsy OM 8751 cache (14 GB) has 11.89% less HDD utilization than the small
1 Y g ™ size (7 GB) counterpart, resulting in a 4.2detter speedup.
2 S o2 g =% Generally, HDD utilization is reduced, as the percentage of
GJ k=1 .0 N .0+ . . B . .
g7 o g E workload that fits in the cache increases. SSD utilization
i T e 8 Lo remains under 7% in all configurations. Moreover, we must
3 125] 125] mention that the native SSD run achieves a 38.8peedup,
o ool ool compared to HDDs. Finally, TPC-H is very sensitive to the
71428 7 1428 71428 7 1428 71428 7 1428 . . . .
Cache size (GB) Cache size (GB) Cache size (GB) DRAM size. Performance is exponentially improved, as the
(a) Speedup (b) Hit Ratio (c) HDD Utilization percentage of the workload that fits in DRAM is increased.

Fig. 4.

perform these experiments without the 2LBS scheme, so t
the impact of these parameters becomes more evident.

Impact of different associativities and cache simesTPC-H.

For instance, in case the whole workload fits in DRAM, the

achieved speedup is 16&8By combining all the above ob-

servations, we conclude that the choice of a proper DRAM size

1) TPC-H: Figure 4 shows the performance gainsAabor,
compared to the native HDDs. In all experimemgor starts formance ofAzor with the native 12 HDD run, using 32 GB
with a cold cache and uses 4 GB of DRAM. Figure 4(a) shoidRAM, and performing all experiments starting with a cold
that performance improves along with larger cache sizeth, b§ache. We expect the choice of write policy to significantly
for the direct-mapped and the fully-set-associative cathe affect performance, since this workload produces a fairiarho
maximum performance benefit gained is 14<Q2vhen all the of write requests. Furthermore, since SPECsfs2008 praduce

workload fits in the SSD cache, compared to the HDDs.

ﬁ(JRng with enough SSD space can lead to optimal performance
gains for archival database benchmarks, such as TPC-H.

2) SPECsfs2008for this workload we compare the per-

a very large number of small files during its execution, we

Cache associativity greatly affects performance; when te¥pect the effect of the spread-out mapping the direct-rdpp
workload does not fit entirely in the SSD cache, a medium sigache exhibits to be more evident in this workload.
(14 GB) fully-set-associative cache performs better tHhafa
the direct-mapped counterparts (7, 14, and 28 GB), by giviWge notice that, depending on the write policy chosen, the
a 2.71x, 2.16x and 1.3% higher performance, respectivelyspeedup gained bgzor varies from 11% to 33% and from
Generally, the fully-set-associative cache performsebettie 10% to 63%, for the direct-mapped and fully-set-asso@ativ
to higher hit ratio, shown in Figure 4(b). This is because thmche designs, respectively. The performance gains aetigir

Figure 5(a) presents our results using 128 GB of SSD cache.

fully-set-associative cache has significantly less canflisses dependent on the hit ratio, shown in Figure 5(b), achieved by
that the direct mapped counter-part, due to the spread-eath write policy. Thevrite-hdd-ssdwrite policy achieves the
mapping the latter exhibits. This benefit, however, dinfinis lowest hit ratio, hence the lowest performance improvement
as the cache size decreases, evident by the fact that for Tiés is because SPECsfs2008 produces a huge file-set but
smallest cache size (7 GB) the two associativities perforomly access 30% of it. Thus, useful data blocks are evicted,
roughly equally. In this case, the 3.54% difference at Hibra overwritten by blocks that are never be read. Furthermaze, b
results in 3% better performance, because the significantiguse SPECsfs2008 exhibits a modify-read access pattern, t
increased number of conflict misses has absorbed a lavgée-hdd-updwrite policy exhibits better hit ratio thawrite-
percentage of potential benefits from using an SSD cache.hdd-iny since the first will update the corresponding blocks
Furthermore, Figure 4(c) shows that even the slightgstesent in the SSD cache, while the latter will essentially
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Fig. 6. Impact of associativity and write policy on SPEC8B2 with 64 GB cache size.
. L TABLE Il
evict them. Cache associativity also affects performatioe: TRADING OFF DRAM SPACE FOR PERFORMANCE IMZOT.

best write policy write-hdd-upd for the fully-set-associative
cache performs 25% better than its direct-mapped counterpa | TPC-H [ SPECsfs200§ Hammerora]
a result of the increased hit ratio. Base Cache 1.28 (DM) / 6.03 (FSA)
Figure 5(c) shows that the response time per operation als¥etadata Footpring MB / GB of SSD
improves with higher hit ratios: the better the hit ratioe th Fgrsfi rgz%@z '\ég)l(n 14.02< 63% 55%
longer it takes for the storage system to get overwhelmet zqqiional Total
and, thus, it can satisfy greater target loads. Furthern@P& | Metadata for 2LBS
utilization (not shown) always remains below 25%, showingMax. Performance
that the small random writes that SPECsfs2008 exhibits makeGain with 2Bs || %% (DM) | 16% OM) | 34% (FSA)
HDDs the main performance bottleneck. HDD utilization is al
ways 100%, while cache utilization remains below 25% for all
configurations. Based on these observations, we conclade @#ssociative cache. The 2LBS scheme offers additional gains
even for write-intensive benchmarks, such as SPECsfs2088 the base cache, and the best associativity in this case is
that produce huge file sets the addition of SSDs as HDD cacl$8§Wn in parenthesis. We see that, at the cost of consuming
holds great performance potential. a considerable amount of DRAM in some casAgpr pro-
Finally, we examine how reducing the cache size affecyides significant performance improvement. Furthermdre, t
performance. We run again our experiments, this time usifitAM space required scales with the size of the SSD cache
64 GB of SSD cache. We notice that, although the behavigj¢€: not with the capacity of the underlying HDDs. Thus, we
of the write-policies remain the same (Figure 6(&30r now expect the DRAM space reqwreme_nts for metadata _to remain
becomes saturated earlier in the execution of the worklodgoderate. However, if DRAM requirements are an issue for
This is due to the increased latencies (Figure 6(c)) observé®me systemgyzorcan trade DRAM space with performance,
and the fact that the hit ratio (Figure 6(b)) starts to drop Y Using larger cache lines as described in Section IV-B3.
earlier target loads. Still, there is a 22% and 38% perforaan  Finally, we argue that the cost/benefit trade-off between
improvement, compared to the native HDD run, for the direcRRAM size and SSD capacity, only affects workloads sensi-

mapped and the fully-set-associative caches, respectivel 1iveé 0 DRAM, such as TPC-H. On the contrary, for workloads
3) Impact of Cache Line Size on Performand®ur 1/O like TPC-C, additional DRAM has less impact as we observed

workloads generally exhibit poor spatial locality, heneele N €xperiments not reported in this paper. These expertnent
lines larger than one block (4 KB) result in lower hit ratioShow that DRAM hit ratio remains below 4.7%, even if DRAM
Thus, the benefits described in 11-C are not enough to aneort®Zz€ is quadrupled to 16 GB. Similarly, for SPECsfs2008,
the impact on performance of this lost hit ratio, hence gerfc@dditional DRAM serves only to improve the hit ratio for
mancealwaysdegrades. However, we believe that larger caciesystem metadata, as shown in Figure 3(a).
lines may eventually compensate the lost performance in t§€ ysingAzor within disk controllers and storage protocols
long term due to better interaction with the SSD’s metadata . . L
management techniques in their flash translation layers)(FT Azors 2LBS scheme is feasible within disk controllers
by embeddingAzors metadata flag within the (network)
storage protocol (e.g. SCSI) command packets transmitted
, from storage initiators to storage targets. Storage patsoc
A. Metadata memory footprint have unused fields/commands that can carry this information
The DRAM space required b&zorin each case is shown inThen, Azor will be implemented in the storage controller
Table Il. Thebase cachalesign is the LRU-based fully-set-(target in a networked environment) by using per-block asce

28 MB No overhead 56 MB

V. DISCUSSION



counters. The main issue in this case is standardization c@immon. However, we argue that, beyond any benefits from
storage protocols, and whether it makes sense to push hintgeasing the effective cache size, the admission andaepl
from higher layers to lower. As our work shows, there is menihent policies will have a critical impact on application foer

to such an approach ([19], [20]). mance. Furthermore, we believe that such policies will bezo
even more prominent when dealing with mixed workloads
running on the same server.

Our 2LBS scheme requires modifying the filesystem imple- A recent development in the Linux kernel is tbeache
mentation. We have modifed XFS to mark metadata elemerti#ock-caching subsystem. Similar to our wotk¢ache is
However, transparent detection of metadata is needed is samansparent to applications, operating below the filesgste
setups, e.g. in virtual machines where the hypervisor danittowever, it does not enforce any admission control, which
have access to block identity information. We have developes the main focus of this paper. ThReadyBoost fea-

a mechanism for automatically detecting filesystem megadatire [25] aims to optimize application-perceived perfonoea
without any modifications to the filesystem itself, using theith prefetching Super f et ch feature) and static file pre-
metadata magic numbers for this purpose. Preliminary teesubading. In contrastAzordynamically and transparently adapts
with the benchmarks used in this paper show that this mecb-the workload, by tracking the block access frequency.
anism adds negligible overheads to the common I/O path. In addition, there are several flash-specific filesystem im-
plementations available for the Linux kernel (JFFS, LogFS,
YAFFS) that are mostly oriented to embedded systems. Server

Azor makes extensive use of metadata to keep track wbrkloads require much larger device sizes and therefore a
block placement. Our system, like most traditional bloekel mixed-device (SSDs and HDDs) storage environment is more
systems, does not update metadata in the common I/O patppropriate. In addition, it is important to address reseur
thus avoiding the necessary additional synchronousAifdr consumption issues, such as in-memory metadata footprint,
does not guarantees metadata consistency after a faiiutgsi and to sustain much higher degrees of 1/0 concurrency. These
caseAzor starts with a cold cache. This is possible becausssues point towards tuning filesystem design to the prigzert
our write-throughpolicy ensures that all data have their latesif high-performance SSDs, such as PCI-Express devices [26]
copy in the HDD. If the SSD cache has to survive failures, thisith a careful division of labor between systems and SSDs,
would require trading-off higher performance with consigtly an approach discussed in ([27], [28]).
to execute the required synchronous I/O in the common pathFlash-based caching has started to appear in enterprise-
However, we choose to optimize the common path at tlygade storage arrays. HotZone [29], and MaxIQ [30] are
expense of starting with a cold cache after a failure. two recent examples. EMC’s FAST-Cache [31] utilizes SSD
devices as a transparent caching layer. As with our work,
FAST-Cache is a LRU cache that serves both reads and writes.

Given that SSD controllers currently do not expose ariyowever, contrary toAzor, writes are not directly written
block state information, we rely on the flash translatioto the cache, while policies are system-defined and cannot
layer (FTL) implementation within the SSD for wear-levglin be changed by the user. L2ARC [21] is a SSD-based cache
Designing block-level drivers and file-systems in a mannésr the ZFS filesystem, operating below the DRAM-based
cooperative to SSD FTLs which improves wear-leveling anchche. L2ARC amortizes the cost of SSD write over large
reduces FTL overhead is an important direction, especialfD, by speculatively pushing out blocks from the DRAM-
while raw access to SSDs is not provided by vendors to systeache. Similarly toAzor, L2ARC takes into account the
software. Our write policies may significantly affect wearrequirement for in-memory book-keeping metadata. Nex, th
leveling, however, we leave such an analysis for future wordlifferentiation between filesystem data and metadata block

is present in NetApp's Performance Acceleration Module
VI. RELATED WORK (PAM) [32]. Like Azor, PAM aims to accelerate reads, and can

The authors in [1] examine whether SSDs can fully replade configured to accept only filesystem metadata (as marked
HDDs in data-center environments. They conclude that SSBg NetApp’s proprietary WAFL filesystem). However, PAM
are not a cost-effective technology for this purpose, yeaequires specialized hardware, whileor is a software layer.
Given current tradeoffs, mixed SSD and HDD environments Finally, there has been extensive work on cache replacement
are more attractive. A similar recommendation, from a mogpmlicies for storage systems [14], more recently focusing o
performance-oriented point of view, is given in [21]. Altgh SSD-specific complications. BPLRU [33] attempts to estibli
studies of SSD internals and their performance proper2ik [ a desirable write pattern for SSDs, via RAM buffering. The
[23] show promise for improved SSDs, we still expect mixed-RU list is dynamically adjusted for this purpose, taking
device storage environments to become increasingly commanio consideration the erase-block size. CFLRU [34] keeps a

Fl aZz [24] transparently compresses cached blocks incartain amount of dirty pages in the page cache to reduce the
direct-mapped SSD-cache, presenting techniques for diidimumber of flash write operations. BPLRU and CFLRU show
the CPU overhead from compression. In this work, we taltee benefit from adjusting LRU-based eviction decisiongtas
the view that mixed-device storage environments will beeonon run-time conditions. However, they do not explicitlydka

C. UsingAzor 2LBS scheme with other filesystems

D. SSD cache persistence

E. FTL and wear-leveling



properties of the reference stream. LRU-k [35] discrimisat [6]
between frequently referenced and infrequently referténcem
pages, by keeping page access history even after pageoavicti

This is a key insight, allowing adaptation to the prevailing[s]
patterns in the reference stream, but comes at the cost @f
potentially unbound memory space consumption. In this Worﬂio
we consider how to augment the LRU replacement policy
with a two-level selection scheme which rewards or penslizg-1l
blocks based on the expected benefit from their continugd
residence in the SSD-cache. This is a notion similar to that o

marginal gainused in database buffer allocation in [36].  [13]

VIl. CONCLUSIONS [14]

In this work we examine how SSDs can be used in the I/O
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study of file-system metadatalransactions on Storageol. 3, 2007.
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in ATC '00. USENIX Association, pp. 41-54.

V. Prabhakaran et al., “IRON file systems,” 80SP '05 ACM.

I. H. Doh et al., “Impact of NVRAM write cache for file systemetadata
on I/O performance in embedded systems,SIAC '09 ACM.

] J. Piernas, T. Cortes, and J. M. Garcia, “DualFS: a rmwniling file

system without meta-data duplication,” i@S '02 ACM, pp. 137-146.
N. Megiddo and D. Modha, “ARC: A Self-Tuning, Low Ovesdu
Replacement Cache,” iFAST'03 USENIX Association, pp. 115-130.
D. Chinner, “Details of space allocation in the XFS fjlsem (private
communication),” June 2010.
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.net/"Ttwang/tech/inthash.htm, 2007.

R. B. Gramacy, M. K. Warmuth, S. A. Brandt, and I. Ari, “Agtive
Caching by Refetching,” ifn Advances in Neural Information Process-
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path to increase storage performance We present the deélr@h Transaction Processing Performance Council, “TPGitad-hoc, deci-

and implementation oAzor, a system that transparently cachegg
data in dedicated SSD patrtitions, as they flow between DRAM
and HDDs. Our base design provides various choices f3f)
associativity, write and cache line policies, while maiimitag |1
a high degree of I/O concurrency. Our main contribution
concerns exploring differentiation of HDD blocks accogjin[lg]
to their expected importance on system performance. Fer thi
purpose, we design and analyze a two-level block selectifn]
scheme that dynamically differentiates HDD blocks befor[gl]
placing them in the SSD cache.

We evaluateAzor using three I/O intensive benchmarks22]
TPC-H, SPECsfs2008, and Hammerora. We show that at the
cost of additional metadata footprint, performance of SSpy;
caching improves when moving to higher way associativities
while the proper choice of the write policy can make u 4]
to 50% difference in performance. Furthermore, when there
is a significant number of conflict misses, our scheme can
significantly improve workload performance, up to 95%. Ouf®!
mechanism may consume more DRAM in some cases, k¥
results in significant performance benefits. Not both levels
of this scheme benefit all workloads. However, they nev )
degrade performance, when used together or in isolation.
Overall, our work shows that differentiation of blocks is 28]

promising technique for improving SSD-based 1/O caches. [29]
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