
Parallelization and Performance of Interactive Multiplayer Game Servers

Ahmed Abdelkhalek
Dept. of Elec. and Computer Engineering

University of Toronto
10 King’s College Road

Toronto, Ontario M5S 3G4, Canada
Email: abdel@eecg.toronto.edu

Angelos Bilas1

Institute of Computer Science (ICS)
Foundation for Research and Technology (FORTH)

P.O. Box 1385
Heraklion, GR 71110, Greece

Email: bilas@ics.forth.gr

Abstract

An important application domain for online services is in-
teractive, multiplayer games. An essential component for re-
alizing these services is game servers that can support large
numbers of simultaneous users in a single game world. In this
work, we use a popular, 3D, interactive, multiplayer game
server, Quake, to study this important class of applications.
We present the design and implementation of a multithreaded
version of the server. We examine the challenges in scaling
this class of applications to large numbers of users, mainly
task decomposition and synchronization. We present prelimi-
nary performance results for a server with up to eight proces-
sors. We find that: (i) Scaling interactive, multiplayer games
that exhibit fine-grain interactions in a detailed 3D world to
large numbers of players is a challenging task. (ii) The main
bottlenecks are lock synchronization during request process-
ing and high wait times due to fine grain workload imbalances
at global synchronization points. (iii) Significant future im-
provements are possible using techniques that take advantage
of game-specific knowledge.

1 Introduction

Recent improvements in end-user connectivity with the In-
ternet have renewed the interest in providing online services
to large numbers of users. The increasing availability of
broadband wired and wireless connections and powerful thin
clients, such as cell phones, game consoles, and PDAs, allows
us to consider offering online services to large numbers of
non-expert users [12]. One application that is lately attracting
particular attention in the entertainment industry is interac-
tive, multiplayer games. This class of applications has gained
a lot of attention due to the potential for providing customiz-
able entertainment and interaction amongst real players [10].
As a result, many modern game titles today include an online,
multiplayer mode.

An important component in offering such services is cost-
effective scalable servers that can support large numbers of

1Also with the Department of Computer Science, University
of Crete, P.O. Box 2208, Heraklion, GR 71409, Greece, Email:
bilas@csd.uoc.gr.

users. In virtually all cases, multiplayer games are enabled
today by a central server. Clients connect to this server which
is responsible for interpreting their actions, maintaining con-
sistency, and passing information among them. A variety of
multiplayer games exist with different characteristics and de-
mands varying from simple card games, up to role–playing
environments with many users. Being able to support hun-
dreds and eventually thousands of users opens up additional
opportunities for interaction and may enable new games or
online multiperson experiences (e.g., a virtual world where
hundreds of players interact simulating real–life–scale expe-
riences) [10].

Understanding the scalability requirements of such ser-
vices and how their demands change with the number of users
is essential for designing cost-effective service and server ar-
chitectures. In contrast to the scalability of scientific work-
loads, little is known today about the behavior and require-
ments of interactive multiplayer game servers. Most of the
work related to game services has focused on the client side
and in particular in graphics–related issues [18, 14].

In this work we study the scalability of a specific class of
games; first–person action games. This game architecture is
one of the prime candidates for evolving into highly interac-
tive real–life simulators. First–person action games support
fine grain, close to instantaneous control of player actions,
and a high degree of interaction among the players in a de-
tailed, 3D virtual world. While other types of multiplayer
games exist, such as third–person action games, the level of
interaction is typically coarser. From now on, we will use the
term server to refer to game servers for first–person action
games.

Our previous work [1] has examined basic issues in bench-
marking this class of game servers and understanding the be-
havior and requirements of a sequential game server. This
work showed that current servers support only a few tens of
users and that server CPU processing is the bottleneck for
scaling to larger player counts. Server network bandwidth
and memory requirements are currently not important issues.

In this work we study how this class of applications can
benefit from additional CPU resources in modern, multipro-
cessor systems. We design and implement a parallel version
of a popular multiplayer game server, Quake [9]. Quake is a



commercial, publicly available [8] game server that has been
used extensively and exhibits many of the required charac-
teristics. We design and implement a parallel version of the
server and present the main challenges. We discuss how the
workload is distributed among server threads to exploit par-
allelism in the server and we describe what synchronization
is necessary for correct execution. In this early stage of our
work we divide server execution in phases separated by global
synchronization and deal with each phase separately. We use
static task assignment techniques to distribute the load among
threads. We use region–based lock synchronization in the re-
quest processing phase to guarantee correct user request pro-
cessing. Finally, we evaluate the parallel version of the server
on a modern, hyper–threaded, x86-based quad system and
present preliminary results and detailed analysis of system
bottlenecks.

We find that: (i) Scaling this class of applications to large
numbers of users is a challenging task. Although the server
workload increases superlinearly with the number of play-
ers, our parallel version, using all eight hardware threads, in-
creases the number of players that can be supported by about
25% over the sequential version. (ii) The most significant
bottlenecks in the parallel version are high wait and lock syn-
chronization times. Although the load is distributed evenly
at a macro scale, we find that there are significant fine grain
imbalances due to global synchronization that lead to high
wait times, up to 40% of the total execution time. Synchro-
nization due to interacting players amounts for up to 20% of
total execution time. (iii) Our analysis shows that there is
significant room for improvements by using dynamic task as-
signment and request batching techniques, based on game–
specific knowledge.

The rest of this paper is organized as follows. In Section 2
we provide the necessary background for typical multiplayer
setups and the basic operations that take place on both the
client and the server side. Section 3 presents at a high–level
the parallel version of the server and discusses issues related
to task assignment and synchronization. Section 4 presents
our preliminary scalability results. Section 5 presents the re-
maining system bottlenecks and discusses methods for future
improvements. Section 6 discusses related work. Finally, in
Section 7 we draw our conclusions.

2 Background

In this section we present an overview of the multiplayer
mode of Quake, QuakeWorld (version 2.40), henceforth re-
ferred to as Quake. We discuss in more detail the aspects rel-
evant to our work. Quake [9] is a sequential (single–threaded)
application, advertised to support up to a few tens of simulta-
neous users.

In a typical client–server setup [1], servers usually main-
tain consistency of the game world and handle coordina-
tion among clients, whereas clients perform all graphics and
user–interface operations. More specifically: a set of play-
ers (clients) connect to a centralized game server, they join
a game session, and participate in the game plot until they

leave the session, their connection is terminated, or the ses-
sion is ended. Clients communicate only with the server.
The server executes client actions and notifies other clients
accordingly. Players can locate available servers via well–
known directory servers where servers publicize their net-
work address and other game related information. In this
work, we are interested in server behavior after a game ses-
sion has been initiated. Game servers are usually stand–alone
PCs or workstations. Client systems are, today, either home–
level desktop systems or game consoles. For all practical pur-
poses clients need to render at least 24–30 frames per second
(fps). This frequency defines the duration for each iteration
or client frame, resulting in 30 to 40ms frames.

Next we discuss in more detail the structure of the game
server and the data structures that are important for our work.

2.1 Server structure

Figure 1 shows the three main stages in server execution. The
main server task, computing a new frame, starts when a re-
quest from any client arrives, which causes the server thread
to exit the select system call (S in figure). The server frame
execution can then be broken down into three distinct stages:
(i) updating the world physics (P), (ii) receiving and process-
ing requests until no more requests are available (Rx/E), and
(iii) forming and sending replies to all players that sent a re-
quest during this server frame (T/Tx). At this point the server
frame ends and the process is repeated.

Rx

Tx

S

P

E

?

T

2

3

N

Y

1

Figure 1. Sequential server stages.

The server spins in a tight loop waiting for client requests
that carry player intentions. Upon receiving client input, the
server determines how this interacts with the rest of the vir-
tual world. The server replies only to explicit client requests,
assuming that clients are always active sending frequent re-
quests with user actions (i.e. if the client does not send a re-
quest, it will generally not receive an update from the server).
All replies are sent after all requests in the server request
queue have been processed. Ideally, the server replies with
updates to a client’s request before the client sends the next
request (in the next client frame). However, in practice, as the
number of players increases the server may take more than a
few client frames to respond with updates, which leads to the
perceived lag at the client side and unpleasant lack of smooth-
ness to the real–time experience.

A game world or map consists of a polygonal representa-
tion of the 3D maze in which the players move about. In the
maze there are several entities that clients interact with (e.g.,



pickup or activate). Each entity has its own characteristics and
actions that it can perform. Moreover, to minimize bandwidth
requirements and to support low bandwidth connections (e.g.
modems), the server determines which entities are of interest
to each client and sends out information only for those, i.e. it
will notify a client only of entities that are visible to it or that
may soon become visible and sounds that are audible.

Thus, server processing is a complex, compute intensive
task that increases superlinearly with the number of play-
ers [1]. Finally, network bandwidth and latency are not im-
portant issues for the server, since a single 100 MBit Ether-
net, commodity network interface can support large numbers
of players [1].

Figure 2. Left: object lists. Right: areanode tree building.

2.2 Data structures

The Quake virtual world that the server maintains consists of
the game session 3D map [9] and all the players. A Quake
map is a 3D volume in a 3D coordinate space. The map is
represented as a BSP file, implementing a binary space par-
tition [17] representation of a 3D world. The origin and size
of space the map occupies in the coordinate space is defined
by the BSP file for the given world. Each coordinate in the
space is a pixel. The BSP tree is a structure maintained by the
server to contain detailed information about the whereabouts
of different objects in the game world and is used, for exam-
ple, when simulating interactions of objects. However, this
structure is fine grain and therefore inefficient to use if the
server wants to generate a quick list of objects that an object
at a particular location may interact with, for example, dur-
ing move command execution. For this purpose, the server
maintains a second binary–tree structure, called the areanode
tree.

To form the areanode tree, the entire volume of the map
is represented by areanode 1 at depth 0. This volume is then
divided into two equally sized volumes by splitting it in half
along a flat vertical plane in either the x or y–axis dimension,
that define the base (ground) of the world. The resulting two
3D rectangles, areanodes 2 and 3, are said to occupy depth 1
of the areanode tree. Division of the 3D volume into smaller
areanodes continues recursively. At each depth a different di-
vision axis is used (alternating). Figure 2(right) demonstrates
the areanode tree building process.

Currently, the maximum depth is defined to be four in the
server code, leading to a total of 31 areanodes, 16 of which
are leafs. This can be modified with no effect on the client–
side. Note that this division occurs only along the x- or y–
axis and, therefore, this is a 2D structure, with all areanodes

having the same height (z coordinate), which is the height of
the entire world. Thus, the areanodes form a balanced binary
tree. Areanodes in the same level represent distinct volumes
and may only share the division planes. Each level of the tree
represents the full 3D volume of the map, at progressively
finer grain divisions.

The creation of these areanodes is not related to the struc-
ture of the map; the volume each areanode occupies has no
correlation with rooms and each areanode’s side planes have
no correlation with walls or ceilings. However, each 3D point
in the map must either be in an areanode that is a leaf or in
a division plane. Moreover, a 3D object in the map, such as
a player figure, may lie completely inside a leaf or may in-
tersect more than one leaf. As the depth of the areanode tree
increases an object is more and more likely to cross the divi-
sion planes.

Areanodes maintain within their structures a list of game
objects, such as player objects, that are associated with them.
Objects not crossing any division planes in the map are asso-
ciated with the leaf they reside in (solid circle in Figure 2).
Otherwise, they are associated with a unique parent of the
leafs they cross. For example, objects crossing the plane that
was used to divide areanode 1 (the root of the tree) into its
children are associated with areanode 1 (empty circles in Fig-
ure 2). When an object is moved during gameplay, it is neces-
sary to update the areanode tree so that it reflects the possibly
different areanode the object is associated with.

2.3 Move execution

The server receives a number of different types of request
messages from clients. The most important type of request
which causes the player to interact with the game world is the
move request. All other requests are associated with the con-
nection or disconnection protocols used when the client wants
to join or leave the server game session, or other facilities that
do not affect gameplay, so we do not discuss them any fur-
ther. The move command is what directly affects gameplay.
We now focus our discussion on move command processing.

The move command specifies: (i) angles of the player’s
view, (ii) forward, sideways, and upwards motion indicators,
(iii) flags for other actions the player may be able to initiate
(e.g. jumping), and (iv) the amount of time the command is to
be applied in milliseconds. For 30 fps clients, this is typically
around 30 ms for each move command. The move command
execution can be broken down into two general components:
(i) player figure motion, and (ii) other interactions the player
may initiate as indicated by the flags in the move command.
Note that this is a functional breakdown of move execution
as opposed to a temporal one. While, processing interactions
that a player initiates with the world, player figure motion
processing may also occur, and vice versa.

In the player motion component, the server uses the motion
indicators in the move command to simulate the motion of the
player’s figure in the game world in the direction and for the
duration specified. This includes determining what game ob-
jects are close to the player in the game world that the player



may interact with during its motion. After this simulation is
complete, the server removes the player’s object from its old
position in the game world and links it to the new one. In
Quake, this is typically in the vicinity of the old position but
may sometimes be in far locations in the game world, e.g. if
the player interacts with certain world objects (such as a tele-
porter).

The other general component of the move execution in-
volves actions the client might initiate in the move command.
In Quake this may be causing the player to switch items from
its backpack for example, or it might be other actions that
may affect objects relatively distant from the player in the
game world, such as throwing an item at a target far from the
player. In this component, these actions also cause the server
to simulate their effect on the state of the world.

For each move command, the server creates a list of all
objects the player may interact with during its motion. The
server does this in two steps:

1. The server uses the starting location of the player and the
maximum possible distance a player can travel in a sin-
gle move to determine the bounding box of the player’s
motion in this move. Thus, the bounding box for a move
is the region of the world that it may affect.

2. The server traverses the areanode tree and for every are-
anode it intersects it performs the following operations:
(i) The server checks the list of objects associated with
the areanode to see if any object intersects the motion’s
bounding box. (ii) Intersecting objects are added to the
list of objects associated with the move. (iii) The server
repeats this process for the areanode’s children if the are-
anode is not a leaf and if the areanode intersects the move
trajectory.

Thus, for all move executions, the server traverses the list
of objects associated with areanode 1, since all moves inter-
sect with the entire world. Objects associated with areanode
1 intersect the plane that divides the entire world into two
equally sized volumes. Thus, the association of objects with
areanodes is not the same as associating objects with different
regions of the world, where objects that are next to each other
are always associated with the same region. This is revisited
in the next section when we discuss the synchronization nec-
essary for correct execution in the parallel server.

3 Parallel server design

In this section we describe the basic issues in building a par-
allel version of the Quake server. As mentioned, server exe-
cution can be divided into three phases: (i) world processing
phase, (ii) request processing phase, and (iii) reply process-
ing phase. Each of the three phases in server execution con-
tributes to frame processing time. Each phase uses global data
structures that are updated during the previous phase.

To simplify parallel server design, we impose two invari-
ants: (i) Each server phase is distinct and should not overlap
with other phases; and, (ii) each phase should execute in the
original order: world processing, request processing, and fi-
nally reply processing. These two invariants allow us to avoid

semantic and correctness complications that could arise from
reordering the frame computation stages or overlapping them.
Future optimization efforts may relax these constraints and
change the general server structure to achieve greater scala-
bility after concurrency issues in game servers are better un-
derstood.

Since we would like to start from the sequential version
and not rewrite the server, we choose to use the shared mem-
ory model [5] which is closer to writing sequential programs.
Furthermore, we use pthreads [13] as the programming
interface.

3.1 Task decomposition

First, we notice that world processing takes less than 5% of
the total execution time of the sequential server, regardless
of the player count [1]. Thus, we exclude this section from
parallelization during this first attempt. The remaining two
stages contribute significantly to the sequential execution time
breakdown and it is important to target both phases.

Since we desire to scale the server to several hundred or
thousands of players, we choose to multiplex threads to play-
ers and use each thread to handle multiple players. This
scheme allows us to adapt the number of threads to various
system characteristics, e.g. number of processors. In our im-
plementation, each thread uses a different UDP port for com-
munication with its clients. Thus, a server appears to clients
as one IP address and a range of UDP ports.

Currently, we use throughout execution a fixed number of
threads that matches the number of processors in the server
and we create all threads at initialization time. We assign
players to threads in a block fashion. Moreover, all work re-
lated to a specific player is performed by one thread. Other,
dynamic policies are possible as well, especially policies that
take into account locality information, however, these may
require more intrusive changes to the server and are left for
future work.

Figure 3. Parallel server stages.



3.2 Frame orchestration

Figure 3 shows a flow chart displaying the high level struc-
ture of the parallel server. In this figure, S=select, P=world
physics update, Rx=receive, E=execute requests, T/Tx=form
and send replies. The three phases of server execution are
separated by global synchronization. Global synchronization
is implemented with wait/signal primitives [13]. Lock
synchronization is implemented with pthread library calls.

The first stage of server frame execution, which mainly
involves updating the world, is performed sequentially by a
single thread. The first thread that detects an arriving request
from a client, through the select system call, is designated
as the master thread for the new frame and is responsible for
performing the world update. While it performs the update,
other threads may exit select. These threads wait at the
global synchronization point between the world and request
processing phases.

After the master thread finishes updating the world, all
threads that have requests to process will proceed to the next
phase. Other threads that exit select after this point will
have to wait until the next server frame to process their re-
quests. However, they are guaranteed to be part of the execu-
tion of the next server frame. During the request processing
stage, each thread enters a loop receiving and processing its
client requests until its request queue becomes empty.

In the reply stage, each thread forms and sends replies to
every player they received a request from during this frame
and then re–enters the select call. The master thread uses a
frame end signal to wake up any threads that missed the last
frame. We note that not all threads will necessarily participate
in each server frame.

3.3 Synchronization

Given that server execution phases are separated by global
synchronization we only need to worry about intra-phase syn-
chronization when accessing shared data structures. Although
during world processing the server updates global state, this
phase is executed by the master thread only. Thus, there is no
need for intra–phase synchronization in the first stage.

Reply processing does not exhibit any read–write conflicts
to shared data. Replying to a client request at the end of a
frame, involves reading global state but writing only private
(per–client) reply messages. Thus, sending replies is a read–
only process with respect to global server state.

During request processing the two main tasks of each
server thread are receiving client requests and processing each
request. In our design, each thread receives requests in a pri-
vate UDP port. This is possible because of static player as-
signment to threads. Thus, there is no need for any synchro-
nization when receiving requests. However, similarly to the
world update phase, during request processing each thread
updates global server state. There are three types of global
data structures that may be updated. Per–player reply mes-
sage buffers, a common global state buffer, and game objects.
Per–player reply message buffer updates can be synchronized

with locks (one per buffer) in a straight forward manner.
The global state buffer is updated during the world update

and request processing phases of the server frame. This buffer
is cleared at the end of the server frame to make room for
new updates during the next frame. This buffer is used to
update all clients, regardless of whether or not the server re-
ceived a request from a client during the current frame: each
thread participating in the current frame uses this buffer to up-
date the message buffers of its complete set of clients and the
master thread performs this operation for clients belonging
to threads not participating in the current frame. The master
thread clears this global state buffer before signaling the end
of the current frame. All accesses to the global state buffer
are synchronized with a single lock.

Synchronizing access to game objects is more involved.
Processing of client requests involves accessing and updat-
ing global objects in the world of the specific game session.
To achieve game object synchronization in our work we use
a region–based locking scheme, based on the areanode tree.
Our approach to concurrently executing multiple move com-
mands is to lock the regions of the world that are involved in
command execution. The region of each move is defined by
the bounding box of the move. This translates into two types
of locking:

First, we lock the appropriate areanode leaves in the arean-
ode tree that include all objects that overlap with the bounding
box of the move. This takes care of objects that are linked to
leaf areanodes. To avoid deadlock in locking areanode leaves,
locking is always performed in the same order (no cycles).

Second, objects may also be linked to parent areanodes.
Threads locking different regions may affect objects linked to
the same parent areanode. To synchronize accesses to these
objects we use locks at parent areanodes when accessing their
object lists. For example, if two objects cross the vertical
plane that is used to divide the root areanode both objects are
associated with the root areanode. Thus, two concurrently
executing threads must lock the root areanode when access-
ing its object list to ensure atomic access to this list. How-
ever, each thread will only need to interact with the object
in its own bounding box. Since different threads access dif-
ferent objects in the parent areanode, parent areanodes remain
locked only for the duration of the list read or write operation,
whereas areanode leaves remain locked for the entire move
execution. Essentially, parent areanode locking is an artifact
of the server design and does not correspond to contention
for shared game objects. Since only one parent areanode is
locked at a time, there are no deadlock issues when locking
parent areanodes.

Finally, each set of events can be executed in any one of
a set of valid orders. The parallel version of the server may
perform the various events in a different order compared to
the sequential server. For instance, if two players attempt to
pick up a world object at about the same time, then the parallel
server may execute the events in a different order compared
to the sequential server. Similar issues arise in the sequential
server when considering, e.g. network latency.



4 Results and optimization

We measure the performance of the parallel server on a
quad Pentium III 1.4 GHz system with hyper–threading [11].
Hyper–threading provides two independent hardware threads
on each CPU allowing us to use up to eight hardware threads
in the server. Table 1 shows the configuration of the server.
We dedicate this system as the Quake server and use a number
of dual-processor systems as clients, using the setup described
in [1]. We perform most of our measurements by instrument-
ing the code, and using the Pentium counters directly. We find
that in all cases, a few minutes of execution time is sufficient
to capture the game server behavior. In our runs we exclude
setup and initialization time and we run each experiment for
two minutes and usually multiple times to verify consistency
of our results. To automate the benchmarking procedure we
replace human with automatic players, as specified in [1].

CPUs 4 x Intel Xeon 1.4 GHz, 2–way HT
1LC, 2LC 12 KB L1 execution trace

8 KB L1 data, 256 KB L2 unified
Memory, bus 2 GBytes, 400 MHz system bus
OS Linux Redhat 7.3
C library GNU C Lib. stable release ver. 2.2.5
NIC 100 MBit Ethernet

Table 1. Configuration of the game server system.

In Quake input maps specify the setting where the game
will evolve. The main factors that determine our choice of
maps are the complexity of the map and the induced level
of interaction among players. The complexity of the map is
defined by its layout and the number of objects it includes.
These two aspects usually conflict since player interactions
increase in small maps, whereas only large maps can contain
many objects and employ elaborate layouts. Although we ex-
amine multiple maps we present results for one, large map
that is more appropriate for scaling the number of players to
a larger count.

We use one of the largest maps we could find [3], which
was designed to support 16-32 players. Even with a large
map, the observed level of interaction among players is very
high. We expect that real life situations will exhibit less inter-
action. Hence, our experiments represent extreme situations
and stress the server aggressively. A more comprehensive
study of different maps is performed in [1] for the sequential
server. Although we have performed experiments with differ-
ent maps, due to space limitations we only present results for
a single, representative case. Unless stated otherwise, in all
our experiments we use the default total number of areanodes
of 31 (16 leaves) in our experiments.

To compare server configurations we use two high–level
metrics, server response rate and response time [1]. Response
rate is the rate at which the server can service client requests.
The response rate we report is average response rate through-
out the run (in replies/sec). Response time is the time between
the client sending a request and receiving a reply from the
server. We report the average response time across all clients
for the duration of the full experiment. We also present exe-
cution time breakdowns and various other statistics to better

understand the differences among server configurations and
to clarify specific issues.

Our execution time breakdowns present a division of the
total execution time in the following components: Exec is
the time the server spends processing requests. In the paral-
lel server we present the lock overhead as a separate compo-
nent. In these cases, the actual request processing time is the
sum of the exec and lock portions. Receive is the time spent
in receiving and parsing requests during the request process-
ing phase. Reply is the time spent in forming and sending
replies to clients. This portion of execution time is the full
reply processing phase. Intra–frame wait is the time server
threads spend waiting at a global synchronization point for
other threads to complete processing their request queues, be-
fore all threads proceed with the reply processing phase of
the current frame. Inter–frame wait is the time server threads
spend waiting at a global synchronization point for the world
update phase to complete or for the current frame to end if
they missed a frame. Idle is the time server threads spend in
the select system call waiting for requests to arrive.

In our results we find that the cost of the actual system calls
used (sendto, recvfrom, and pthreads signal) is
less than 5% of total execution time, so we do not examine
this any further. However, we do not measure the contribution
of system calls that may be present elsewhere in the pthreads
library. Moreover, the only significant lock overheads appear
in the request processing phase for protecting global game
objects. All other locking overheads are less than 2% of the
total execution time. For this reason we consider separately
only areanode locking during request processing.

4.1 Single thread

First, we examine the overhead incurred by our benchmarking
instrumentation and parallelization, henceforth referred to as
overheads, compared to the sequential version of the server.
Figure 4 shows our results for the sequential and the single–
thread parallel server for 64, 96, and 128 players. We notice
in Figure 4(a) that the parallel version incurs overheads that
increase with the number of players. Second, although the
overhead is very small at small player counts (less than 5%),
it increases at 128 players (up to 15%). The reason is that
locking is performed in recursive procedures that traverse the
areanode tree and that the server needs to determine which
regions to lock.

The request (receive + exec + lock) and reply (reply) pro-
cessing phases are the two bottlenecks targeted by our parallel
version of the server. We note that the reply processing phase
is over twice as significant as the request processing phase.
In general, in our experiments with several maps, we notice
that the request processing time does not vary considerably,
whereas, the reply processing time may vary between maps
by as much as 15% of total execution time at server satura-
tion. We believe that this is due to different levels of visibility
in different maps, with maps exhibiting higher visibility in-
curring higher reply processing times as well. Finally, we
notice that the impact on sequential server response rate and



64 96 128

Number of Players

0

20

40

60

80

100
Idle
Lock
Exec
Receive
Reply

P
er

ce
n

ta
g

e 
o

f 
E

x
ec

. 
T

im
e 

(%
)

(a) Execution time breakdown (left: sequen-
tial, right: single–thread parallel server).

48 64 96 128

Number of Players

0

1000

2000

3000

4000 ideal
seq
1-thread

R
es

p
o
n

se
 r

a
te

(b) Total server response rate.

48 64 96 128

Number of Players

25

30

35

40

seq
1-thread

R
es

p
o

n
se

T
im

e 
(m

se
cs

)

(c) Average server response time.

Figure 4. Overhead of parallel server.

64 96 128 144 160

Number of Players

0

20

40

60

80

100 Idle
Inter-frame Wait
Intra-frame Wait
Lock
Exec
Receive
ReplyP

e
r
c
e
n

ta
g

e
 o

f 
E

x
e
c
. 

T
im

e
 (

%
)

(a) Average execution time breakdown for
each thread count (left–to–right: 1,2,4,8).

48 64 96 128 144 160

Number of Players

0

1000

2000

3000

4000

5000 ideal
1
2
4
8

R
es

p
o
n

se
 r

a
te

(b) Total server response rate.

64 96 128 144 160

Number of Players

25

30

35

40

45

50

1
2
4
8

R
es

p
on

se
T

im
e 

(m
se

cs
)

(c) Average server response time.

Figure 5. Parallel server performance.

time (Figure 4(b),(c)) is negligible.

4.2 Multiple threads

Figure 5 shows the parallel server performance for each
thread count. With two threads, the server is overloaded at
144 players as seen from the reduction in total response rate
and the increase in the response time. Using four threads in-
creases the number of players to 160, whereas using eight
threads does not improve performance any further.

We note that the receive and reply components scale well
with the number of threads. The reply phase experiences a
slowdown as the server saturates at higher player counts. The
request processing time (exec+lock) only shows speedup for
lower player counts. As the number of players increases the
exec component scales well. However, lock synchronization
time grows from 2% to 35% for all thread counts, as we in-
crease the number of players from 64 to 160. Lock time is due
to the high inherent contention for regions (areanode leaves)
when many players operate in the same part of the virtual
world, as well as induced locking of parent areanodes as dis-
cussed in Section 3.3.

The multi–threaded server exhibits high inter– and intra–
frame wait time for all thread counts. Total wait times in-
crease from 5% to over 40%. The inter–frame wait com-
ponent is in most cases more significant. Finally, from per–
thread execution time breakdowns that are omitted, for space
reasons, we observe that the workload (including all compo-
nents of execution time except for idle and wait times) is quite
balanced among different threads (under 10% variation). This
indicates that the high wait times are due to micro–imbalances
among threads. In our design we do not ensure that threads

will need to process a similar number of requests in each
frame. Since clients send requests in an asynchronous man-
ner, different threads experience peak work bursts at different
times, which leads to high intra– and inter–frame wait times.

Finally, Figure 5 shows that the server starts to saturate at
128, 144, and 160 players with 2, 4, and 8 server threads re-
spectively. Overall, the parallel server with eight threads can
support about 15% more players than the sequential server.
We note that as the number of players increases, the server
load increases superlinearly due to player interactions [1].
Given the dynamic nature of player interactions, character-
izing exactly how the server workload evolves is beyond the
scope of this work and we leave it for future extensions. Fi-
nally, at eight threads, lock and wait times dominate and they
account for up to 70% of total time. Thus, it is important to
understand and improve both lock synchronization as well as
intra- and inter–frame wait times.

4.3 Optimized locking

The request processing phase generally consists of two com-
ponents that simulate short–range and long–range interac-
tions, respectively. The synchronization for each phase is
performed separately. So far we have performed somewhat
conservative synchronization for short–range interactions and
highly conservative for long–range interactions. This means
that we lock a slightly larger region than necessary for short–
range interactions and the entire map (all areanode leaves) for
long–range interactions. To improve locking we use game–
specific knowledge for various objects with which players
perform long–range interactions. There are two main types
of objects in the game.



64 96 128 144 160 176

Number of Players

0

20

40

60

80

100 Idle
Inter-frame Wait
Intra-frame Wait
Lock
Exec
Receive
ReplyP

e
r
c
e
n

ta
g

e
 o

f 
E

x
e
c
. 

T
im

e
 (

%
)

(a) Average execution time breakdowns for
each thread count (left–to–right: 2,4,8).

48 64 96 128 144 160 176

Number of Players

0
1000
2000
3000
4000
5000
6000

ideal
2
4
8

R
es

p
o
n

se
 r

a
te

(b) Total server response rate.

64 96 128 144 160 176

Number of Players

25

30

35

40

45

50

2
4
8

R
es

p
on

se
T

im
e 

(m
se

cs
)

(c) Average server response time.

Figure 6. Performance with optimized locking.

The first type includes objects that are partly simulated
during request processing and then their trajectory or actions
are completed during the world physics processing phase. For
these objects it is possible to perform expanded bounding–
box locking, similar to the short–range phase. This ex-
panded locking accommodates the maximum possible inter-
action range during request processing. With expanded lock-
ing we increase the extent of the region to lock outwards in
every direction by an amount that depends on the object.

The second type includes objects that are fully simulated
during request processing. For these objects we perform di-
rectional bounding–box locking. With directional locking we
extend a bounding–box from the player to the end of the world
in the direction the object is being simulated. This guaran-
tees the executing thread will have exclusive access to any
object/region that may be affected by this move. Directional
locking is particularly useful when the player is near and fac-
ing one of the side planes or corners of the world. In such
situations the region size can be comparable to that of short–
range motion. However, if the player is at one corner of the
world facing another, then directional locking may not be as
effective.

Figure 6(a) shows the average server execution time break-
downs for each thread count using optimized locking. Lock
time is reduced by more than half in all cases, compared to
the non–optimized version (Figure 5(a)). All server configu-
rations benefit from this enhancement. As a result idle time
increases from 1% to 7% with 8 threads and 160 players. Fig-
ure 6 also shows the improved server response rate and time
with optimized locking. Optimized locking allows us to in-
crease the number of supported players by about 25% com-
pared to the sequential server. However, lock time is still sig-
nificant and remains between 1% and 20% of the total time.

For short–range interaction, one can potentially reduce the
locked region by reducing the maximum speed of motion.
However, this may change the game behavior, and thus, we
do not explore this direction any further.

5 Analysis of bottlenecks

In this section we provide detailed analysis about lock and
wait time overheads.

5.1 Lock time

As mentioned above, the most significant source of locking
overhead is object-related locking that happens through the
areanode tree and can be of two types: (i) Leaf locking that
corresponds to getting exclusive access to a region of the map
and the contained objects. (ii) Parent locking that is used to
temporarily lock objects that cross dividing planes and, thus,
are linked to parent nodes as opposed to leaves.

Figure 7(a) presents the relative portion attributed to each
of leaf and parent locking. We see that locking leafs accounts
for most of the overall lock time. This is expected since
locked leafs are not released until the end of the move execu-
tion phase, whereas parent areanodes are locked only during
areanode tree traversal. The relative importance of leaf to par-
ent areanode locking increases with the number of threads and
the number of players. As the number of threads increases,
contention for regions of the map increases. As the number
of players increases, threads are more likely to contend for in-
tersecting regions. Thus, techniques for further reducing lock
overheads related to areanode tree leaves, such as reducing
the size of the required region can have a significant impact
on server performance.

Next, we examine how the size of the areanode tree im-
pacts lock overhead. We vary the total number of areanodes
in the tree from 3 to 63. Increasing the size of the areanode
tree may result in finer grain locking, reduced contention, and
thus, improved performance. Figure 7(b) shows the percent-
age of distinct leaf areanodes locked per request as the size
of the areanode tree increases. The number of leaves locked
is a function of the size of the needed region and the number
of the areanodes, and not the number of players or threads.
Thus, the curve shows the percentage of the world a request
locks on average. As we increase the number of areanodes,
the portion of the world locked per request decreases rapidly.
However, there is little or no change between 31 and 63 are-
anodes. Some leaves may be locked more than once during
request processing. At 31 and 63 areanodes, 40% and 30%
of leaves are relocked, respectively. However, in our experi-
ments we observe that increasing the size of the tree does not
seem to have an impact on the lock overhead. It is foresee-
able, however, that changing game parameters, such as max-
imum player speed, that affect the distance objects can cover
in a single move, may correlate with the number of areanodes



64 96 128 144 160 176

Number of Players

0

20

40

60

80

100

Parent
Leaf

P
er

ce
n

ta
g

e 
o

f 
L

o
ck

. 
T

im
e 

(%
)

(a) Average percentage of lock time due to
parent and leaf areanode locking for each
thread count (left–to–right: 2,4,8).

3 7 15 31 63

Number of areanodes

0

20

40

60

80

100

P
er

c.
 o

f
ar

ea
n

od
e 

le
av

es

(b) Average percentage of distinct leaf
areanodes locked per request, as the to-
tal number of areanodes increases.

64 96 128 144 160 176

Number of Players

0

20

40

60

80

100

2
4
8

P
er

c.
 o

f 
le

a
v
es

(c) Average percentage of leaf arean-
odes locked by at least two threads per
frame.

Figure 7. Locking overhead and contention.

used.
To investigate the amount of activity in each server frame,

we measure the average percentage of leaves locked in each
frame and the average number of lock operations in each
frame. We omit these figures for space reasons. As the num-
ber of players increases, the region of the map accessed per
frame increases as well. At 64 players, around 20-25% of the
map is accessed in all server configurations. At 128 players,
the range is 30-50%, the 2–thread server being highest, and
the 8–thread server lowest. At 160 players, the range is 40-
100% (again 2-threads highest, 8-threads lowest). The num-
ber of lock operations per frame shows that on average each
leaf is locked between zero and 20 times depending on server
saturation, indicating high contention. As Figure 7(c) shows,
the overlap in leaves locked by threads executing in the same
frame increases significantly with the number of players with
a knee between 128 and 144 players for each thread count. In
particular, near saturation, almost 100% of the leaves of the
world are shared by at least two server threads. These results
show high contention between threads for map regions in the
server.

Our analysis suggests that dynamically assigning threads
to players taking into account the region they are located may
reduce contention. Alternatively, restructuring move execu-
tion and areanode partitioning to allow threads to lock regions
once per request could further reduce lock overheads. How-
ever, such techniques are left for future work.

5.2 Wait time

Inter- and intra–frame wait times consume up to 40% of the
server non–idle time at high player counts (Figure 6). Intra–
frame wait time occurs when threads finish processing their
request queues and are waiting for other threads to finish their
queues before they all enter the reply phase. At 128 play-
ers, results we omit show each thread of the server on aver-
age processes the same number of requests per frame (4, 2.5,
and 1.5 requests per thread, for 2-,4-, and 8-thread configu-
rations). For the 2-thread, 128 player configuration, we also
measure the dynamic difference in the number of requests per
thread per frame. We perform the measurement for the first
fifty consecutive multi-threaded frames. We find that on aver-
age one thread services 3.3 more requests than the other. The
standard deviation is 2.5. This high variation in workload for

each thread per frame results in high intra-frame wait times.
Inter–frame wait time is considerably larger than intra–

frame wait time (Figure 6). Figure 6 shows that threads still
have idle time even at higher player counts. Only at saturation
is idle time negligible. This means at saturation threads have
work to do all the time. Note that this may not be the case
in real situations since not all players will be active or send
requests at the same rate, as is the case with our experiments.
Thus, our experiments show worse–case server performance.

Inter–frame wait time accumulates when threads spend
time waiting between frames for (i) the master thread to finish
processing world information or (ii) other threads to complete
the current frame. Results we omit for space reasons show
that although a thread is waiting due to world processing up
to 50% of frames at saturation, on average, only 25% of inter-
frame wait time is due to world processing and 75% is due to
waiting for the previous frame to complete.

Thus, our analysis shows that the most significant problem
seems to be that requests are arriving or being noticed at the
server out of sync and in many cases threads need to wait for
the next frame before they can start processing requests. One
possible approach to reduce wait times is to batch incoming
requests. For instance, the frame master thread can wait for
a period of time before starting the frame. However, such
techniques are beyond the scope of this work and are left for
future extensions.

6 Related work

Our previous work [1] investigates the behavior and perfor-
mance of the sequential game server used in this work. The
main goal is to develop a benchmarking methodology for this
type of application. We use this methodology in this work.

The International Game Developers Association
(IGDA) [10] examines the opportunity presented by on-
line games in terms of market overview, business models,
and existing game technologies.

There are a number of efforts, with significant participa-
tion from the industry, in trying to support thousands of users
on a single server for massively multiplayer online games
(MMOG) [6]. However, these games involve coarse grain
interactions between users. In contrast, first–person action
games such as Quake have a much faster pace that captures
player reflexes [19]. MMOG servers are typically owned by



the game manufacturer and support thousands of users in the
same session. Our goal is to scale first–person action game
servers to this level of scalability.

Recently, there has been a lot of effort in the computer ar-
chitecture and in particular the parallel computer architecture
community to enrich the pool of applications used for system
evaluations with novel, commercially–oriented classes of ap-
plications [2]. This work has mostly examined the behavior of
multimedia applications [15], database systems [16], and web
servers [4]. However, we are not aware of any work that has
studied scalability issues of applications in the area of interac-
tive entertainment and in particular game server applications.

Finally, a lot of work is currently being conducted in both
industry and academia in game client–side issues, such as
improving 3D graphics realism and rendering speed, at both
the hardware and software levels [7]. Such work directly af-
fects the amount of detail 3D game developers can incorpo-
rate into their worlds and many aspects of game design which
must take into account the available hardware/software per-
formance to ensure smooth view transitions.

7 Conclusions

In this work we investigate the parallelization and scalabil-
ity of interactive, multiplayer game servers. We use Quake,
a popular member of this class of applications. We design
and implement a parallel version of the Quake server for
shared memory architectures. The main challenges are task
decomposition and synchronization for correct game process-
ing. We evaluate the parallel server behavior and scalability
on a hyper–threaded quad SMP system.

We find that the reply processing phase and the receive
component of the request processing phase scale well with
the number of threads for all players counts. However, the
game processing component of the request processing phase
incurs high synchronization overheads, mainly due to lock
contention for shared game objects. Locking overhead is up
to 35% of total execution time. Using optimized locking,
based on application specific knowledge, can reduce the lock
time significantly to about 20% of total execution time. More-
over, although the overall load assigned to threads is similar,
per–frame workload distribution is imbalanced, which creates
micro–imbalances and leads to significant wait times at global
synchronization points. The wait time is up to 40% of total
server execution time.

Overall, although server load increases superlinearly with
the player count, the parallel server can support 25% more
players than the sequential server. Finally, scaling game
servers to several hundreds or thousands of players remains
a challenging task that may require rethinking many aspects
of the internal architecture of this class of applications.

8 Acknowledgments

The authors would like to thank id Software [8] for releas-
ing the source code for Quake in the public domain. We also
thank Reza Azimi for useful discussions on various aspects of

this work, Eugenia Distefano, Peter Jamieson, and Carlos Ca-
vanna for helpful hints on setting up and using the experimen-
tal testbed. Finally, we thankfully acknowledge the support of
the University of Toronto Fellowship, Natural Sciences and
Engineering Research Council of Canada, Canada Founda-
tion for Innovation, Ontario Innovation Trust, the Nortel In-
stitute of Technology, and Communications and Information
Technology Ontario.

References
[1] A. Abdelkhalek, A. Bilas, and A. Moshovos. Behavior and

performance of interactive multi-player game servers. In Proc.
of The 2001 International IEEE Symposium on Performance
Analysis of Systems and Software (ISPASS01), Nov. 2001.

[2] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory sys-
tem characterization of commercial workloads. In ISCA, pages
3–14, 1998.

[3] R. Boucher. Filename: dmpak.zip, Map name: gmdm10.bsp.
http://www.fileaholic.com/idgames.d/quake/levels/deathmatch/
compilations/.

[4] E. V. Carrera, S. Rao, L. Iftode, and R. Bianchini. User-level
communication in cluster-based servers. In Proc. of High-
Performance Computer Architecture (HPCA8), 2002.

[5] D. Culler and J. P. Singh. Parallel Computer Architecture. Mor-
gan Kaufmann Publishers, 1998.

[6] Developer.com Staff. 32,000 Game Players on a Sin-
gle Web Game Server. http://www.developer.com/lang/
other/article.php/861381, 2001.

[7] J. Foley. Getting There: The Ten Top Problems Left.
http://www.computer.org/cga/articles/topten.htm, 2002.

[8] id Software. id Software Home Page.
http://www.idsoftware.com.

[9] id Software. Quake Home Page.
http://www.idsoftware.com/quake.

[10] IGDA Online Games Committee. IGDA Online Games White
Paper. http://www.igda.org/online, 2003.

[11] Intel Corp. Hyper–Threading Technology.
http://www.intel.com/technology/hyperthread/.

[12] N. Leavitt. Will wireless gaming be a winner? IEEE Computer,
36(1):24–27, Jan. 2003.

[13] X. Leroy. LinuxThreads: POSIX 1003.1c thread package for
Linux. http://pauillac.inria.fr/ xleroy/linuxthreads/.

[14] Microsoft Corp. DirectX. http://www.microsoft.com/windows/
directx/default.asp.

[15] P. Ranganathan, S. V. Adve, and N. P. Jouppi. Performance
of image and video processing with general-purpose proces-
sors and media ISA extensions. In Proc. of the 26th Annual
Int’l Symp. on Computer Architecture (ISCA’99), pages 124–
135, 1999.

[16] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Bar-
roso. Performance of database workloads on shared-memory
systems with out-of-order processors. In Proc. of The 8th In-
ternational Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS8), pages
307–318, 1998.

[17] C. Shimmer. Binary Space Partition Trees. Course presen-
tation: http://www.cs.wpi.edu/ matt/courses/cs563/talks/bsp/
bsp.html.

[18] Silicon Graphics Inc. OpenGL. http://www.opengl.org.
[19] Sony Online Entertainment. Everquest Online FAQ.

http://eqlive.station.sony.com/library/faqs/faq eqlive.jsp, 2002.


