
Efficient Remote Block-level I/O over an RDMA-capable NIC

Manolis Marazakis, Konstantinos Xinidis, Vassilis Papaefstathiou, and Angelos Bilas
Institute of Computer Science (ICS),

Foundation for Research and Technology-Hellas (FORTH),
Heraklion, Greece GR71110

e-mail:{maraz,xinidis,papaef,bilas}@ics.forth.gr

ABSTRACT
Modern storage systems are required to scale to large storage ca-
pacities and I/O throughput in a cost effective manner. For this
reason, they are increasingly being built out of commodity com-
ponents, mainly PCs equipped with large numbers of disks and in-
terconnected of high-performance system area networks. A main
issue in these efforts is to achieve high I/O throughput over com-
modity, low-cost system area networks and commodity operating
systems.

In this work, we examine in detail the performance of remote
block-level storage I/O over commodity, RDMA-capable network
interfaces and networks. We examine the support that is required
from the network interface for achieving high throughput. We also
examine in detail the overheads associated in kernel-level proto-
cols for networked storage access. We find that base system per-
formance is limited by (a) interrupt cost, (b) request size, and (c)
protocol message size. We examine the impact of techniques to al-
leviate these factors and find that our techniques combined can im-
prove throughput by up to 100% over a simpler unoptimized con-
figuration. Our current prototype is able to achieve a throughput
of about 200 MBytes/s over a network that is capable of delivering
about 500 MBytes/s. We identify major limiting factors, mostly at
the I/O target-side.

Keywords
Networked storage, Block-level I/O, Remote DMA, Performance
evaluation

Categories and Subject Descriptors
C.2 [Computer System Organization]: Performance of Systems;
C.4 [Computer System Organization]: Computer System Im-
plemnetation; D.4.2 [Software]: Operating Systems—Storage Man-
agement

General Terms
Performance, Measurement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS06, June 28-30, Cairns, Queensland, Australia.
Copyright C 2006 ACM 1-59593-282-8/06/0006 ...$5.00.

Keywords
block-level I/O, I/O performance, network interface card, RDMA

1. INTRODUCTION
Currently, storage system architectures are undergoing a transi-

tion from directly- to network-attached. Traditional scalable stor-
age systems employ high-end storage controllers that provide con-
nectivity to large numbers of disks and are able to deliver high
throughput. In addition, such controllers usually perform many (if
not most) storage management functions, such as volume manage-
ment, encryption, fault tolerance, and compression. These storage
controllers have evolved over time to high-end storage area net-
works, such as fibre channel interconnects and systems built around
them.

Although today fibre channel systems offer high scalability to
large numbers of disks and thus, on-line storage capacity, and high-
throughput, they are costly. Furthermore, extending such systems
with new functions is becoming more and more a significant prob-
lem due to (1) the increased needs for tailoring storage systems to
application needs at short cycles, and thus at low cost, and (2) the
effort associated with designing and implementing new features in
custom storage controllers [37].

To deal with these issues, future storage systems will be based
to a large extend on commodity system area networks, such as In-
finiband [1], Myrinet [9], and PCI-Express/AS [30, 38, 26]. Such
interconnects are the subject of research aiming at high scalability
and performance of compute clusters. Being able to use the same
interconnect for providing access to large amounts of online storage
as well as high throughput will result in improved cost-efficiency.

Thus, there are currently efforts underway to examine the fea-
sibility of attaching storage to large systems through system area
networks. The proposed architectures usually attach 4-32 (low-
end) SATA disks to storage controllers that are similar to today’s
PCs through (low-end) disk controllers. These storage nodes are
then attached to a system area network accessible by application
servers (Figure 1). Although variations of this architecture exist,
overall most proposals follow the basic trend of building on com-
modity components.

However, this approach has two fundamental challenges. First,
the architecture of the system changes from a centralized system
where a high-end storage controller has global view of all I/O re-
quests to a distributed architecture, where no single component
has global knowledge. This shift in the architecture presents chal-
lenges: (a) providing scalable shared access to the available stor-
age, and (b) extending the storage subsystem with functionality that
requires maintaining metadata.

Second, the performance of such systems lags significantly be-
hind what is possible in directly attached high-end storage systems.

storage nodes

Client workstations, remote−access clients, ...
LAN / WAN

system−area network

Application
Server

Server

Server Server
Application

Application
Server

Application

Application

Application
Server

Application
Server

Application
Server

Figure 1: Overall System Organization.

Today, most storage systems based on system area networks use 1
GBit/s interconnects and are thus limited in the throughput they
can provide from a single storage node. Besides the maximum ca-
pacity of the network links (and the overall network) used, another
significant limitation is the I/O protocol stack at the edge of the
system, both the application server (initiator) and the storage node
(target). The proposed architectures rely not only on commodity
hardware components to improve cost-efficiency, but on commod-
ity software as well. Thus, the I/O protocol stack at the target and
the initiator usually runs in the context of a commodity operating
system and on the host CPU. Recent work has shown that these
impose limitations in terms of the throughput they can provide [35,
36]. Most of this work has examined TCP/IP-type communication
protocols [11], demonstrating significant limitations in today’s I/O
architectures.

Finally, when designing the I/O protocol stack, a main issue is
the division of features between the network interface and the soft-
ware that runs on the initiator and target. Previous work has re-
sulted in network interfaces that minimize copies by supporting
virtual to physical address translation, minimize latency by allow-
ing direct user access to the network interface, and minimize host
CPU overhead by eliminating user-kernel context switches [15, 6,
39, 29, 34, 13]. However, these approaches have resulted in net-
work interfaces that employ complex state machines and require
large amounts of resources (both memory and CPU). Thus, there
is not yet a clear understanding of the I/O performance that can be
achieved on high-speed interconnects, the level of support required
at the network interface level for storage I/O, and the limitations
that may be imposed by initiator and target architectures on the
performance of the I/O protocol stack as network speed increases.

We examine in detail the performance of the I/O path in com-
modity initiator and target architectures, and show limitations in
achieving throughput similar to directly attached storage. We use
a custom-build system area network that allows us to tune the sup-
port in the network interface. Our network is capable of about 500
MBytes/s throughput, using support for RDMA operations but no
direct, user-level access. We believe that the features used in our
network interface can be provided in most network interfaces at
minimal cost.

We design and implement an I/O protocol stack in the Linux
kernel that makes remote storage nodes appear as local disks. We
analyze the overheads associated with the basic I/O path and iden-
tify system bottlenecks. We examine the effectiveness of three
techniques in alleviating these bottlenecks and improving system

SPACE
CONF

REGS

INITIATORPERFORMANCE
COUNTERS

REQUEST
QUEUE

NETWORK
INTERFACE

RocketIO
2 x 2.5 Gbps

TARGET

Host2Net

Net2Host

PCI Pin Drivers

PCI−X
 100 MHz

Figure 2: NIC architecture.

throughput: interrupt silencing, cooperative batching of requests,
and elimination of small messages. We find that each technique is
able to improve throughput by up to 50% compared to the base sys-
tem. When combined, the throughput is improved by up to 100%
over a simpler configuration. However, we observe high CPU uti-
lization levels, especially at the I/O target node. Moreover, we
identify a further limiting factor, due to the high aggregate inter-
rupt count (both storage controller and NIC related).

The rest of this paper is organized as follows. Sections 2 and 3
present our experimental platform and the design of the I/O path.
Section 4 presents our performance evaluation. Section 5 surveys
related work. Finally, Section 6 concludes the paper, summarizing
the results obtained so far and outlining our plans for further work.

2. EXPERIMENTAL PLATFORM
In our work we rely on a custom, low-latency, high-throughput

NIC that allows us to perform memory-to-memory transfers from
initiators to targets in a SAN environment. The NIC has been devel-
oped in-house to allow both detailed measurements of all aspects of
communication in the I/O path as well as customization of commu-
nication primitives and operations. Next, we provide an overview
of the NIC architecture and implementation [19]. The NIC is im-
plemented as a 64-bit, 100-MHz PCI-X [27] peripheral, within a
Xilinx VirtexII Pro FPGA. The design of the NIC is outlined in
Figure 2. Figure 3 depicts the major structures (hardware as well
as software) that concern us in the experiments presented in this
paper.

At the physical layer, our NIC uses a pair of Rocket I/O se-
rial links [3]. The serial links, each capable of 2.5 GBits/s (3.125
GBauds) full-duplex running at 78.125 MHz, are controlled by an
FPGA-based transceiver controller. The two serial links are bonded
by the NIC to appear as a single network link, as is the case in all
high-end network interfaces today that use multiple physical links.
Each packet is transferred over both links, multiplexing data at the
byte level. The NIC applies a credit-based scheme for network flow
control [22], to prevent overflowing the receiver’s NIC buffer, thus

....

....

Tail

Head

Pages

I/O commands/completions

RDMA completion notifications

PCI−X

net2host FIFO

host2net FIFO

[NIC]

[Host Memory]

to host)(DMA
send−completedRDMA descriptors

(direct PIO)

Rocket I/O serial−link
transceivers

RDMA request queueoutbound
data

(DMA
from host)

(DMA
to host)

inbound
data

Figure 3: NIC-related structures.

preventing loss of data in the event of heavy network load. The
host-NIC DMA engine transfers 64-bit data words in bulk, to and
from the host’s memory. A pair of FIFO queues (1024 entries, of
64-bit words) provides the interface between the DMA engine and
the Rocket I/O transceivers. The NIC adds two 64-bit words to the
payload: a header, containing the destination address, transfer size,
and notification options, and a trailer, containing an error-detection
checksum for the payload.

Host programs access the RDMA request queue, as well as a
set of performance-related counters, via memory mappings (estab-
lished with the cooperation of the NIC kernel module through the
mmap() system call). Our current design does not support pro-
tected user-space access to NIC resources and is intended for use
by the kernel. The main reason for this is that we are interested in
exploring issues related to the I/O protocol stack, which because of
transparency requirements in practice always involves the operat-
ing system kernel. However, user-space programs can still access
the NIC in an unprotected manner for testing and benchmarking.

Currently the NIC supports only RDMA write operations. On
the sender side, each remote write is specified through a transfer
handle. The transfer handle specifies the local and remote physical
addresses, the length of the transfer, and whether the transfer will
generate (a) a local notification in the form of a 64-bit word written
by the NIC into the sender’s memory when the transfer has finished,
and (b) an interrupt at the receiver host when the last word of the
message has been transferred to remote memory. Currently, the
maximum message size is 4 KBytes; longer messages have to be
segmented accordingly in a host library. On the receive path, data
is directly transferred to the specified physical locations in memory,
without any receiver processor intervention.

Posting a write RDMA operation requires posting the transfer
descriptor to the NIC request queue, over the PCI-X target inter-
face. In the current version of the NIC, posting a transfer descrip-
tor requires four 32-bit PCI-X write operations in the NIC’s DMA
queue: Two 32-bit words to specify the source physical address,
one 32-bit word to specify the destination address; and a 32-bit
word to specify the transfer size as a number of 64-bit words, var-
ious transfer flags, such as local and remote notification options,
and the destination node identifier (a 7-bit flow ID). The NIC’s de-
sign is oriented for mostly kernel-space use, and allows for 64-bit
addresses. As a provision for allowing some level of protection, the

data, status

Remote Queues

Buffer regions

RDMA

I/O Target

/dev/sda, /dev/sdb, ...

/dev/ibda, /dev/ibdb, ...

block devices

virtual block devices

read(), write(), ioctl(), ...

Remote Queues

Buffer regions

RDMA

I/O Initiator

RocketI/O
Links

NICNIC

tests/benchmarks
 applications

user−space

Figure 4: Overview of software architecture for remote block-
level storage access.

NIC can treat the 32-bit destination address word as a handle to be
resolved based on pre-established bindings for remote memory re-
gions. However, in the current version of the NIC this feature is not
available; therefore, the destination word is treated as a physical
address in the receiver’s memory.

3. SYSTEM SOFTWARE
The overall architecture of our I/O protocol stack is illustrated

in Figure 4. The initiator and target modules that implement the
remote access protocol initially establish their association over a
TCP/IP socket, on a separate Gigabit Ethernet network. Then, the
initiator is informed via a sequence of RDMA transfers of the ac-
tual device parameters, such as device size, block size, and sector
size, and registers a block driver that mediates access to the remote
device. All applications at the initiator can then access this block
device as if it were a directly-attached physical block device, thus
achieving transparent access to the remote storage available at the
target. As a result, we can for example construct file systems on top
of a remote block device. The initiator’s task is to forward I/O re-
quests to the target, receive I/O completion notifications, and final-
ize the I/O requests by invoking the appropriate call-back function
for each block request.

3.1 Base Protocol
The base remote block I/O protocol makes use of the RDMA op-

erations to forward block read and write requests from the initiator
to the target. To use RDMA operations the initiator and the target
maintain a pair-wise command queue and a pool of data buffers.
The command queue at the target stores I/O commands, produced
by the initiator. The command queue at the initiator stores I/O
completion notifications, forwarded by the target upon completing
I/O commands that it has dequeued from its command queue. The
command queue at both the initiator and the target is managed as
a circular queue. The local host only consumes entries from the
command queue whereas the remote host only adds entries to the
command queue.

To enqueue an entry in a remote command queue, each host uses
two RDMA writes. The first transfers a fixed-size command struc-
ture and the second advances the queue tail pointer. To dequeue an
entry, an RDMA write is issued to update the queue head pointer.
Currently, the size of command queues is determined statically at
initialization time.

3.1.1 Send Path
On the send path, upon completion of each out-bound RDMA

transfer, the issuer needs to deallocate the local handle. Tradition-
ally, NICs notify the host with an interrupt when the local RDMA
operation has finished. However, interrupts incur high overhead.
Instead, we require (and use) NIC support for local notifications:
When a local DMA operation completes, the NIC writes back (via
DMA) a notification (in the form of a 64-bit word) to a specified
location in host memory. The issuer, instead of spinning on this
notification word to eagerly free the transfer handle, checks lazily
for free transfer handles, when more requests are posted later. This
allows the sender to only incur the overhead of posting the transfer
handle during issuing RDMA write operations.

3.1.2 Receive Path
On the receive path, messages are delivered directly to host mem-

ory without any receive processor intervention. However, when a
message is marked with the interrupt flag, the NIC issues an inter-
rupt to the receiving host CPU. The interrupt flag is required for
messages that manipulate queue head/tail values, so that the I/O
target and the I/O initiator consume command structures (I/O re-
quests or completion notifications, respectively) from their respec-
tive queues.

3.1.3 I/O Buffer Management
Data blocks involved in read and write block requests are di-

rectly transferred to remote buffers with RDMA writes, without
going through the command queue. Each command queue is as-
sociated with one or more separate sets of page-sized data buffers.
Since there is a hard limit on the number of contiguous pages that
can be allocated by the OS kernel, we allocate a fixed number of
buffer regions, i.e. sets of contiguous pages. The number and size
of buffer regions are currently fixed throughout the life-time of an
initiator’s association with a target, and, moreover, it is the same
for all initiators regardless of their level of I/O activity. In the case
of remote write I/O operations, the initiator selects one of the avail-
able reserved pages and transfers in that page the data to be written
to block storage. The target uses this page for issuing the requested
I/O operation. Upon completion, the target notifies the initiator of
the outcome and the initiator marks the page as available for use
in subsequent requests. In the case of remote read I/O operations,
the initiator indicates the address of the page, as specified by the
local OS kernel’s block I/O framework, where the data from the
remote block storage should be placed. The target reserves a local
page to issue the requested I/O operation. Upon completion, the
target transfers via remote DMA the data from its local page to the
initiator’s page.

Thus, for each read request our base protocol design uses two
RDMA writes from the initiator to the target to post the read com-
mand (command and tail pointer), two RDMA writes from the tar-
get to the initiator to post the reply (command and tail pointer),
and one RDMA writes from the target to the initiator to return the
actual data. Similarly five RDMA writes are generated for write
requests (three from initiator to target and two from target to ini-
tiator). Each time an I/O request or completion message is de-
queued for processing, an additional RDMA writes is issued to up-
date the remote-queue’s head-pointer. All RDMA writes generate
a sender-side notification, so that the device driver can keep track
of completed transfers and re-use the corresponding descriptor in
the NIC’s request queue (see Section 2 for details). Finally, each
tail-pointer update is marked to generate an interrupt at the receiv-
ing side. This interrupt provides the means for the target to retrieve
and process I/O requests, and for the initiator to retrieve and pro-

[1] Application issues read/write system call
... which blocks

I/O Initiator

(iii) remote−queue tail
(ii) I/O command (request ID, <region, page>)
(i) data (in case of write I/O)

[2] remote enqueue: 3/2 remote writes

[3] RDMA operations, initiated via local PCI−X bus

host memory to NIC DMA Engine
to RocketI/O tranceivers

(iii) remote−queue tail

[5] remote enqueue: 2/3 remote writes
(i) data (in case of read I/O)

(ii) I/O completion (request ID, status)

I/O Target

[7] read/write system call completes
... unblocking the issuing application

[4b] Block device completes I/O access &
calls custom callback routine

[6] PCI−X Interrupt

process I/O completions
dequeue −> remote write of remote−queue head

[4a] PCI−X Interrupt

asynchronous issue of I/O accesses
process I/O commands

dequeue −> remote write of remote−queue head

Figure 5: Actions and messages in the remote I/O protocol.

cess I/O completions. Figure 5 shows the sequences of messages
in our base remote I/O protocol.

3.2 Interrupt silencing
Previous work has shown that interrupt cost can be extremely

high in high-performance networks [35]. Given that the I/O path
in the kernel relies on interrupts for I/O request completion, it is
important to reduce the number of interrupts.

To minimize the number of interrupts asserted at each node we
employ an interrupt silencing technique, as follows. Interrupt han-
dlers are organized in two parts, a non-interruptible part that runs as
soon as the interrupt is delivered and an interruptible one that may
be scheduled for execution through the system scheduler. In the
Linux kernel, these are the top and bottom-half handlers [10]. The
top-half disables interrupt delivery from the NIC and schedules a
bottom-half context (task) for performing the actual interrupt han-
dling. In our design, we use the top-half handler to only schedule an
interruptible bottom-half handler. The bottom-half handler, when
scheduled, will process all requests present in the command queue.
In the meantime, the NIC may deliver additional requests, which
however, will not cause additional interrupts. When the bottom-
half handler has finished processing all requests in the queue, it
enables NIC interrupts. Since the bottom-half handler is interrupt-
ible, we ensure that there is no race condition between enabling in-
terrupts and returning from the bottom-half handler by re-checking
for new requests in the command queue as soon as interrupts are
enabled. In this manner, at high loads no interrupts are delivered as
long as a node is processing other requests.

3.3 Request batching
In many systems, at the kernel level, I/O requests arrive at the

block level, as page-size requests, regardless of the application re-
quest size. These requests are issued to the disk queue; then, a
kernel task queue is scheduled for execution [10], forcing the un-
derlying storage devices to process any pending I/O requests. In
performing remote I/O at the block level, although the application
at the initiator side may have specified a large number of I/Os, e.g.
when using a large request size, the target sees individual small I/O
requests. Thus, the target may either invoke the disk scheduler too
early if it is eager or too late if it waits for more requests to arrive,
affecting disk seek time and efficiency. We use a simple technique
where each I/O request from the initiator carries information about
whether more requests are pending in the initiator and will follow.
The target uses this information to either invoke the disk scheduler
when no additional requests are expected, or delays invocation until

more requests have arrived. In our evaluation we explore the im-
pact of varying the number of pending I/O requests before invoking
the disk scheduler.

3.4 Implementation
We implement our system under RedHat Linux 9, updated to

run with version 2.4.30 of the Linux kernel. We divide the remote
I/O path framework into two major parts, corresponding to the two
sides in an I/O operation, initiator and target. Our protocol is im-
plemented as block-level driver module for the initiator and target,
which is dynamically loaded and linked with the kernel. The Linux
2.4 kernel series [10] forces I/O accesses to be issued as block-sized
transfers, regardless of the request size specified by the user-space
application that is going to consume the data. The block size is
in most cases 1024 bytes. The block I/O framework in the ker-
nel allows for merging of I/O requests that reference contiguous
blocks, up to a limit of one page (4 KBytes). Moreover, the block
I/O framework can group together I/O requests, provided that the
block device has registered a request queue with the kernel’s block
I/O framework. Taking advantage of these kernel features, remote
block-level requests reach our remote I/O framework as chains of
one or more consecutive requests, each at the granularity of a 4-
KBytes page.

The initiator module reserves one major device number, and han-
dles all I/O accesses for this major number, regardless of the minor
number specified by the application. The target module is regis-
tered as a character device at its host, and exports a set of bindings
for block devices. Each binding is defined by a pair of 8-bit inte-
gers (major, minor) that uniquely identify the block device to its
host. The target module reserves one major device number and lis-
tens (on a TCP/IP socket) for bind requests from initiators. Each of
the associated minor numbers (currently up to a limit of 8) can be
mapped to a different physical block device. A bind request from
an initiator includes a minor number to be interpreted by the target,
allowing the initiators to bind to different physical block devices.

4. PERFORMANCE EVALUATION
Next, we present performance measurements from our proto-

type. We first examine base communication performance, and then
look into remote block I/O overheads and optimizations.

4.1 Experimental Setup
The prototype we use in our experiments consists of two Dell

1600SC servers, each with a single Intel Xeon CPU, running at 2.4
GHz, 512 MBytes of main memory, and two 64-bit PCI-X slots
running at 100 MHz. One of the nodes serves as I/O target, with
8 directly-attached SATA Western Digital disks (WD-800), con-
nected to a BroadCom RAIDcore controller. Total capacity is 614.1
GBytes. On the I/O target node, the storage controller and the NIC
occupy slots on the same (only available) 100 MHz PCI-X bus. The
two nodes have a dedicated IDE system disk, and two types of in-
terconnects: a Gigabit Ethernet adapter for system administration
and monitoring, and our custom NIC for all data transfers.

In our block-storage experiments we use a RAID-0 volume for
all disks at the storage node. We build this volume using the Linux
multi-disk (MD) driver with the stripe size set to 128 KBytes. The
initiator binds to the storage node and its single (RAID) volume
through our I/O path. The remote volume appears locally as a reg-
ular block device, indistinguishable from local devices.

In our evaluation we use mostly the xdd benchmark [18] with
the -dio option to bypass the initiator’s buffer cache. We vary the
request size from 4 KBytes up to 1 MBytes for both read and write
accesses. Each experiment transfers a total of 4 GBytes between

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 65K128K256K512K1024K

request size (bytes)

100

200

300

400

500

T
hr

ou
gh

pu
t

(M
B

yt
es

/s
ec

) 1-way
2-way

Figure 6: Base communication performance. Results represent
the average over 10000 transfers.

the initiator and the target. We also present measurements from
filesystem-based experiments.

To examine the impact of our optimizations, we present results
for different system configurations:

• LOCAL: Directly-attached disks

• BASE: Remotely-attached disks, base protocol

• BASE1: + Interrupt silencing

• BASE4: + I/O batch-factor of 4

• BASE16: + I/O batch-factor of 16

• BASEreqsz: + I/O batch-factor of request size

4.2 Base communication
The first set of measurements characterizes the capabilities of the

communication network we use and its basic primitives.
The theoretical maximum throughput of the host-NIC DMA en-

gine is one 64-bit word at every 100-MHz PCI-X clock cycle or
762.9 MBytes/s, assuming zero bus arbitration and protocol over-
heads. The theoretical maximum throughput for the pair of Rocket
I/O links is one 64-bit word at every 78.125-MHz Rocket-I/O clock
cycle or 596 MBytes/s. Therefore, the maximum theoretical end-
to-end throughput is limited to that of the network links. Figure 6
summarizes the results from two simple user-space benchmarks
that measure the maximum achievable throughput. One of the bench-
marks initiates one-way transfers without waiting for a response
from the receiver, whereas the second produces a two-way, ping-
pong traffic pattern. In all cases, all messages sent are of the same
size. As mentioned above, when message size exceeds 4 KBytes
the host library breaks the message to 4-KByte segments.

We use hardware counters at the NIC level to examine the behav-
ior of the host-NIC DMA engine. Each 32-bit CPU-to-NIC write
operation requires on the order of 10 PCI-X cycles. Thus, initiating
a single RDMA write operation requires about 40 PCI-X cycles or
about 400ns. Moreover, it takes on the order of 50 PCI-X cycles
(500 ns) for any DMA operation from the host’s local memory to
begin transferring data (PCI-X read). These delays dominate the
latency for small transfer sizes, as shown in Figure 6. After the ini-
tial delay, the DMA engine is capable of reading one 64-bit word
per PCI-X cycle and placing it in the transceiver’s out-bound FIFO.
If there were no further disruptions, this would result in the max-
imum transfer rate of 762.9 MBytes/s. For a DMA transfer of 4
KBytes (i.e. 512 64-bit words) from a host’s memory, we mea-
sure a delay of 577 PCI-X cycles, of which 512 cycles actually

0

200

400

600

800

1000
ti

m
e

(n
s)

recv-rdma
recv-nic
send-nic
send-dma
send-initiation

Figure 7: Breakdown of end-to-end latency for an 8-byte mes-
sage.

transfer data words (89% utilization of PCI-X cycles). Of the re-
maining 65 cycles, 8 cycles are attributed to bus arbitration and
PCI-X protocol phases and 57 cycles are consumed until we re-
ceive the first data word. This last time interval is the duration for
a PCI-X split transaction to complete and we have found it to be
almost constant, in the range 45-60 cycles, regardless of the DMA
transfer size. Figure 7 shows a breakdown of the one-way latency
for a small, 8-byte message (payload). The overhead is divided in
the following components: send-initiation, send-DMA, send-NIC,
recv-NIC, recv-DMA. The send-initiation component includes the
PCI-X overhead during posting the transfer descriptor. The send-
DMA, recv-DMA components include all PCI-X overhead related
to the data transfer itself. Finally, send-NIC and recv-NIC is the
time spent in the send and receive NICs. We measure these com-
ponents using the corresponding cycle counters on the NIC boards.
We see that the send-path is the most expensive part for this type
of short transfer. The send-initiation component accounts for 40%
of the overall latency, while the send-dma component accounts for
51.6%. Using the on-board cycle counters, we find that approxi-
mately 46 PCI-X cycles out of the send-dma component are PCI-
X related (PCI-X split duration). This initial delay occurs before
transferring any data from the sender host’s memory, and can only
be amortized with larger transfer sizes.

4.3 Remote block I/O
Our second set of measurements focuses on the performance of

remote block I/O accesses. In our setup, each of the 8 SATA disks
attached to our storage node is capable of a sequential I/O rate in
the order of 60 MBytes/s for both read and write accesses. Fig-
ures 8(a,b,c,d) present throughput measurements for four different
access patterns: sequential read, sequential write, sequential access
with 70:30 read-write, and random access with a 70:30 read-write
ratio. Figures 9(a,b,c,d) present latency measurements.

For sequential I/O, the remote I/O configurations achieve a peak
I/O throughput of 162 MBytes/s for read accesses, and 184 MBytes/s
for write accesses, approximately one-third and one-half of the
directly-attached storage configuration, respectively. With directly-
attached storage, the corresponding peak rates are 480 MBytes/s
(reads) and 360 MBytes/s (writes). We observe that the latency per
I/O operation is 2-3 times higher in the remote I/O configurations.

We also examine CPU utilization levels, at both the initiator and
the target. At the initiator, for the peak read I/O throughput, we
observe utilization levels of 20-25%, whereas for the peak write
I/O throughput we find that utilization reaches 50%. At the target,

CPU utilization reaches or exceeds 90%. This suggests that tar-
get CPU utilization may be a significant limitation to remote I/O
performance at even higher network link speeds.

4.4 Interrupt silencing
Interrupt silencing aims to prevent the NIC from asserting an in-

terrupt for each and every incoming message that has been marked
to generate an interrupt at the receiver host. Figure 8 shows that
employing interrupt silencing results in up to three and four times
better throughput for sequential reads and writes respectively, for
large block sizes (BASE vs BASE1 configurations).

4.5 Request batching
Setting the batch-factor parameter to a value greater than

one allows for interleaving I/O request completion messages with
new I/O requests, thus taking better advantage of available NIC
cycles. We observe that by varying the batch-factor from
1 up to 16 the read I/O throughput scales from 95 MBytes/s to
162 MBytes/s, whereas the write I/O throughput scales from 128
MBytes/s to 184 MBytes/s. Latency per I/O operation is not neg-
atively affected, however CPU utilization at the I/O initiator in-
creases by up to 18%.

For the sequential read-write mix, remote I/O configurations achieve
70-80% of the I/O throughput for the directly-attached storage con-
figuration with up to 10% higher latency per I/O operation. Again,
CPU utilization levels are considerably higher (up to 17%), but
the difference is not as pronounced as in the sequential I/O experi-
ments.

For the random read-write mix, the remote configurations achieve
up to 85% of the I/O throughput for the directly-attached storage
configuration, with up to 20% higher latency, and CPU utilization
up to 11%.

In comparing the remote I/O configurations, we find no perfor-
mance advantage in setting the batch-factor parameter to val-
ues higher than 16. For the random read-write mix, increasing the
batch-factor parameter negatively affects I/O throughput and
latency per I/O operation.

4.6 Small Protocol Messages
By using a user-space benchmark that emulates the communica-

tion pattern of our remote block-level I/O protocol, we have come
to the conclusion that a limiting factor for the achievable remote
I/O throughput is the presence of short RDMA transfers, needed in
our protocol for managing queues. Thus, an important direction for
optimization is to examine how these messages can be minimized,
or even eliminated.

Specifically, we adapted the I/O protocol so that queue head and
tail values are not explicitly updated, via RDMA transfers. Instead,
command and completion messages incorporate a pending flag,
so that the recipient can identify the messages that need to be pro-
cessed; effectively, the recipient determines on its own how to up-
date its queue tail. Moreover, each message includes the queue
head value at its originator, so that the initiator and the target keep
track of each other’s progress in processing the messages in their
corresponding queues. A new command or completion will only
be enqueued if the sender can determine that the recipient’s queue
is not full. Table 1 shows representative results from applying this
optimization, for the BASE16 remote I/O configuration under the
four workloads used in the evaluation. The request size is set to
1MB, and the data transfer volume is 4 GB. The impact of this op-
timization is shown as a percentage relative to the throughput and
latency measurements of Figures 8 and 9. For sequential reads and
writes, and with varying request sizes, the improvement in through-

4 8 16 32 64 128 256 512 1024

request size (KB)

100

200

300

400

I/
O

 t
hr

ou
gh

pu
t

(M
B

/s
ec

)

LOCAL
BASE
BASE1
BASE4
BASE16
BASEreqsz

(a) Seq,Read

4 8 16 32 64 128 256 512 1024

request size (KB)

100

200

300

I/
O

 t
hr

ou
gh

pu
t

(M
B

/s
ec

)

LOCAL
BASE
BASE1
BASE4
BASE16
BASEreqsz

(b) Seq,Write

4 8 16 32 64 128 256 512 1024

request size (KB)

20

40

60

80

100

I/
O

 t
hr

ou
gh

pu
t

(M
B

/s
ec

)

LOCAL
BASE
BASE1
BASE4
BASE16
BASEreqsz

(c) Seq,70R-30W

4 8 16 32 64 128 256 512 1024

request size (KB)

10

20

30

40

50

I/
O

 t
hr

ou
gh

pu
t

(M
B

/s
ec

)

LOCAL
BASE
BASE1
BASE4
BASE16
BASEreqsz

(d) Rand,70R-30W

Figure 8: I/O throughput measurements using xdd.

4 8 16 32 64 128 256 512 1024

request size (KB)

5

10

15

20

25

la
te

nc
y

pe
r

I/
O

 (
m

ill
is

ec
on

ds
)

LOCAL
BASE
BASE1
BASE4
BASE16
BASEreqsz

(a) Seq,Read

4 8 16 32 64 128 256 512 1024

request size (KB)

5

10

15

20

25

la
te

nc
y

pe
r

I/
O

 (
m

ill
is

ec
on

ds
)

LOCAL
BASE
BASE1
BASE4
BASE16
BASEreqsz

(b) Seq,Write

4 8 16 32 64 128 256 512 1024

request size (KB)

10

20

30

la
te

nc
y

pe
r

I/
O

 (
m

ill
is

ec
on

ds
)

LOCAL
BASE
BASE1
BASE4
BASE16
BASEreqsz

(c) Seq,70R-30W

4 8 16 32 64 128 256 512 1024

request size (KB)

5

10

15

20

25

30

la
te

nc
y

pe
r

I/
O

 (
m

ill
is

ec
on

ds
)

LOCAL
BASE
BASE1
BASE4
BASE16
BASEreqsz

(d) Rand,70R-30W

Figure 9: I/O response time measurements using xdd.

workload throughput (MB/sec) latency per I/O (msec)
Seq. read 171.6 (8.3%) 6.1 (7.5%)
Seq. write 199.9 (10.1%) 5.3 (8.6%)
Seq.70R-30W 96.2 (1.9%) 10.9 (1.8%)
Rand.70R-30W 48.9 (0.4%) 21.5 (0.0%)

Table 1: I/O throughput and latency measurements using xdd,
after short message elimination.

put is on the order of 10%, with a corresponding improvement in
the latency per I/O operation.

4.7 Aggregate Interrupt Counts
The performance of the I/O target node is directly affected by the

combined count of interrupt handler activations for both the NIC
and the storage controller. Representative data points are shown in
Table 2, for sequential I/O workloads (generated using xdd) and
the request size set to 1 MB, with a total transfer volume of 4 GB.
The counts of interrupt handler activations due to the storage con-
troller were obtained from /proc/interrupts.

In the remote block I/O configuration, the I/O target not only
performs additional work (in response to interrupts from the NIC),
but also suffers from a significant increase in the number of inter-
rupts from the storage controller (+13.2% for reads, +47.6% for
writes). This behaviour implies that the NIC’s interrupts interfere

configuration storage controller NIC Total
LOCAL/READ 24047 - 24047
BASE16/READ 27223 50193 77426
LOCAL/WRITE 33658 - 33658
BASE16/WRITE 49712 193788 243430

Table 2: Interrupt handler activations, at the I/O target node,
for sequential read and write accesses (request size: 1 MB,
transfer volume: 4 GB).

with some form of “batching” optimization applied by the storage
controller, leading to a reduced I/O throughput level. Moreover, the
I/O target node’s CPU utilization reaches or exceeds 90% in these
experiments, placing a hard limit to the achievable I/O throughput.

4.8 Filesystem I/O results
Table 3 presents results from a sequence of filesystem operations.

The filesystem is built on top of a remote block device. The table
shows the overall running time for each step in the following script,
for the LOCAL and BASE16 system configurations. It also shows
(in parentheses) the system time for each step.

• mkfs: Create filesystem on top of the block storage volume,
using the mkfs command-line utility. We build a filesystem
of reiserfs [2], with block-size equal to 4 KBytes.

step LOCAL BASE16
mkfs 20.386 (0.270) 10.971 (0.330)
mount 0.303 (0.050) 16.323 (0.070)
copy 0.612 (0.220) 0.667 (0.260)
extract 29.610 (4.630) 30.950 (5.060)
archive 14.829 (2.550) 94.374 (2.160)
compress 83.710 (0.630) 26.667 (0.370)
remove 2.708 (1.480) 2.708 (1.410)
umount 0.172 (0.110) 0.275 (0.120)

Table 3: Filesystem test results for archive file (containing a
hierarchy of directories and short files). Each column shows
running time and (in parentheses) system time. All times are in
seconds.

• mount: Mount the filesystem using the mount command-
line utility.

• copy: Copy a compressed tar archive file from the ded-
icated IDE system disk to the filesystem. Specifically, we
copy the source tree of the Linux kernel version 2.4.30, a tar
file compressed using bzip2. The file size is 29.7 MBytes.

• extract: Extract the files from the compressed tar file.
This step produces a 184.9 MBytes directory/file tree.

• archive: Create a tar archive file that contains the direc-
tories and files extracted in the previous step.

• compress: Compress the tar archive file produced in the
previous step, using the bzip2 command-line utility.

• remove: Recursively remove all directories and files in the
filesystem.

• umount: Un-mount the filesystem, by executing the umount
command-line utility.

An important difference from the block I/O experiments is that
the filesystem is accessed through the kernel’s VFS layer [10] and
block I/O operations are mediated by the buffer cache. Thus, issu-
ing read/write operations only results in RDMA transfers in cases
of misses in the buffer cache. Moreover, the kernel’s VFS layer
caches metadata for the filesystem, thus helping the I/O initiator
node to avoid RDMA transfers.

We observe that for certain operations the runtime for remote I/O
configuration is actually less than that of the directly-attached stor-
age configuration. The archive operation is particularly expensive
under the remote I/O configuration, as it involves not only reading
and processing data blocks, but also reading filesystem metadata
for all files and directories. Therefore, the subsequent compress
operation is able to retrieve a large number of data blocks from the
buffer cache at the I/O initiator node, rather than having to issue
RDMA transfers.

Table 4 reports results from a sequence of filesystem operations
that manipulate a 515.4-MByte trace-file. Unlike the previous ex-
periment, where we create and manipulate a hierarchy of directo-
ries containing short files, in this experiment the filesystem has to
host a single large file. Another important difference is that in this
experiment we process the trace-file in a sequential scan, resulting
in mostly sequential I/O accesses. The sequence of operations in
this experiment is as follows:

• copy: Copy the compressed trace-file from the dedicated
IDE system disk to the filesystem.

step LOCAL BASE16
copy 0.157 (0.270) 0.163 (0.160)
uncompress 43.932 (3.560) 45.337 (3.370)
scan 81.524 (0.640) 83.784 (2.210)
compress 496.400 (1.160) 501.013 (2.640)

Table 4: Filesystem test results for trace-file (a single large file,
that is processed in a sequential scan). Each column shows run-
ning time and (in parentheses) system time. All times are in
seconds.

LOCAL BASE16
transactions per second 9.0 7.0
read xput (MBy/s) 26.48 22.32
write xput (MBy/s) 37.64 31.71
runtime (system time) 590.89 (189.14) 669.01 (220.30)

Table 5: Results from the Postmark benchmark (1000 files,
5000 transactions). All times are in seconds.

• uncompress: Uncompress the trace-file, using the bun-
zip2 command-line utility.

• scan: Scan the trace-file, one-byte-at-a-time, using the wc
command-line utility. The trace-file is in ASCII format and
contains 2,169,400 lines, each consisting of approximately
250 characters.

• compress: Compress the trace-file produced in the previ-
ous step using the bzip2 command-line utility. This step
produces a file of size 23.16 MBytes.

Table 3 reports the running-time, as well as the system time (in
parentheses), for each operation.

For all steps in this test script, the running time for the remote
I/O configuration is within 1-4% of the directly-attached storage
configuration. This test involves sequential read/write I/O, espe-
cially for the scan step. However, by having to actually consume
(process) the data, the I/O throughput advantage of the directly-
attached configuration does not become as pronounced as in the
previous test.

Finally, Table 5 shows results from a sequence of filesystem op-
erations that result from the execution of the Postmark bench-
mark [20]. PostMark creates a set of files with random sizes within
a configurable range, and then performs a number of transactions.
Each transaction consists of a randomly-chosen pairing of file cre-
ation or deletion with file read or append. We setup Postmark to
perform 5000 transactions over a set of 1000 files, file size varying
from 10 KBytes to 10 MBytes. There is no bias toward read/write
transactions, and the read/write block size is set to 4 KBytes. With
these settings, Postmark reads 15.2 GBytes of data, and writes
21.6 GBytes. Overall running time is higher by 13% for the re-
mote I/O configuration. System time is about 16.5% higher, as the
remote I/O configuration requires significantly more kernel-space
processing than the directly-attached storage configuration. Corre-
spondingly, read and write throughput is approximately 18% lower.

4.9 Summary
We see that I/O performance at the block level, although exceeds

what has been demonstrated over 1 GBit/s interconnects, does not
match the performance potential of the network link. Our results

show that both dealing with interrupts, batching requests, and elim-
inating small messages is important, particularly for block-level I/O
workloads. Finally, we show that I/O performance at the filesystem
level is similar to the local configuration.

5. RELATED WORK
With the advent of clusters and their extensive use as a compu-

tational platform there has been a lot of research on scalable com-
munication subsystems in clusters. For instance, there is a long
history of previous work in improving base communication perfor-
mance by enabling user-level communication, eliminating copies
of data, and reducing host overheads and context switches [15, 6,
39, 29, 34, 13]. Similarly there has been work on network interface
architectures and support for high-performance cluster communi-
cation [8, 7, 9, 17, 16, 1, 32]. Finally, there has been extensive
work in evaluating their performance of low-latency, high-speed in-
terconnects in various contexts [4, 23]. Our work differs from this
efforts and builds on previous work in two important ways: (a) We
are interested in examining the minimum level of hardware support
that can enable high-throughput for networked storage, and (b) We
focus on OS kernel-level communication, as opposed to user-level
communication since storage applications require a high-degree of
transparency and we analyze and optimize the storage I/O path in
the kernel, which has received far less attention.

Regarding (a), previous work has proposed mechanisms for pro-
tected, direct user-level access and virtual memory translation. The
first usually involves per-user virtualized request queues [13, 25]
whereas the second uses a TLB-based address translation tech-
nique [12, 5]. Our work shows that an efficient queue structure
that allows asynchronous posting and completions of requests is
the main mechanism required. In addition, we use the ability to
interrupt a remote node and to send local acks in the form local
memory DMA writes from the NIC to host memory.

Regarding (b), interconnects designed for user-level access may
be used by kernel-level applications as well, the increased com-
plexity is an important consideration for application development.
Moreover, there has been efforts to provide transparent user-level
access to storage [41, 42, 23, 40]. However, to benefit from aggres-
sive NIC features requires extensive changes to either the applica-
tion code itself or the supporting runtime system; In practice, we
believe this is a significant concern for portability and robustness,
both very important in storage applications. In contrast, the user-
kernel interface is well-defined and supporting results in higher
transparency. In our work, we examine in detail overheads asso-
ciated with the kernel-level I/O path.

The authors in [28] use a 2 GBit/s Myrinet network as the trans-
port in an experimental evaluation of a remote disk driver. How-
ever, they evaluate a small-scale setup with a single disk. Moreover,
they do not examine the kernel-level overheads associated with ac-
cessing remote storage over system area networks. The authors
in [21] present remote disk drivers over a 1.28 GBit/s Giganet in-
terconnect [16]. They find that their approach is more efficient that
using TCP/IP as the transport layer and they are able to achieve a
maximum throughput of about 30 MBytes/s. In contrast, our work
targets more aggressive, next-generation architectures and systems.

In terms of the specific techniques we use, RDMA [33, 1, 14]
has become a core capability for low-latency, high-throughput in-
terconnects. The authors in [23] evaluate the performance charac-
teristics of 3 types of RDMA-capable interconnects: Myrinet [9],
Quadrics [32, 31], and Infiniband [1]. The evaluation in [23] also
explores the implications of completion notification and address
translation capabilities in the NIC. The evaluation in [24] shows the
performance advantages of implementing an Infiniband NIC over a

serial, point-to-point interface (as in PCI Express), over the more
common local I/O bus architecture (as in PCI-X). This evaluation
focuses mostly on MPI workloads.

Interrupt silencing has been used in the past in lower speed in-
terconnects [42], where interrupt cost is not as important. In our
work we design and implement this technique on a faster intercon-
nect and also evaluate in detail its impact on system performance.
Request batching has been used in various contexts. Our approach
does not delay messages, but rather notifies the receiver that “more
will follow” so it may wait before taking specific actions. Unlike
previous work, we examine the effectiveness of this technique with
respect to remote disk scheduling. Finally, although previous work
has presented protocols for access to remote storage [42], our work
quantifies the effect of various aspects in modern, serial-link based
interconnects.

6. CONCLUSIONS
Networked storage systems are a main trend in providing scal-

able, cost-effective storage. Such systems rely increasingly on com-
modity nodes equipped with multiple disks and interconnected with
commodity system area networks. As the throughput of system
area network increases, it becomes important to examine the over-
heads associated with remote storage access.

This work investigates the overheads associated with perform-
ing remote I/O over commodity system area networks and oper-
ating system kernels and the type of support required to support
efficient, kernel-level access to remote storage. We design a proto-
col for remote storage access and explore techniques for improving
interrupt cost and disk request size. In our work we use a custom-
built NIC that offers the following core capabilities: RDMA write,
sender-side notification of RDMA write completion, and receiver-
side interrupt generation. We believe that this minimal set of fea-
tures should be able to support high-performance remote storage
access in commodity systems.

Our current results show that while dealing with interrupts and
disk request size are important, remote storage access throughput
is also limited by small protocol messages. Although our network
is capable of delivering about 500 MBytes/s and the disks about
450 MBytes/s, we are currently able to achieve only an end-to-
end throughput of about 200 MBytes/s (best-case results). The I/O
target node exhibits extremely high CPU utilization levels. Our
current understanding of this issue is this is a direct result of the
overwhelming aggregate count of interrupts from both the storage
controller and the NIC. Our work quantifies overheads that are not
as pronounced when using lower speed interconnects, and shows
that future work should aim at reducing transfer initiation costs,
and reducing the aggregate number of interrupts to be processed.

Overall, we believe that presenting performance results from a
real system contributes significantly to understanding the issues in
achieving high throughput in commodity networked storage sys-
tems.

7. ACKNOWLEDGMENTS
We would like to thank the members of the CARV laboratory at

ICS-FORTH and especially the hardware group for the useful dis-
cussions. We are indebted to George Kalokairinos, Aggelos Ioan-
nou, and Prof. Manolis Katevenis for enabling this work by pro-
viding a working newtork interface. We thankfully acknowledge
the support of the European FP6-IST program through the SIVSS
(STREP 002075) and UNIsIX (MC EXT 509595) projects, and the
HiPEAC Network of Excellence (NoE 004408).

8. REFERENCES[1] An infiniband technology overview. Infiniband Trade Association,
http://www.infinibandta.org/ibta.

[2] Reiserfs. Namesys Inc, http://www.namesys.com.
[3] Rocket i/o user guide. Xilinx Inc,

http://www.xilinx.com/bvdocs/userguides/ug024.pdf.
[4] S. Araki, A. Bilas, C. Dubnicki, J. Edler, K. Konishi, and J. Philbin.

User-space communication: A quantitative study. In Proc. of The
1998 Supercomputing Conference on High Performance Networking
and Computing (SC97), Orlando, Florida, Nov. 1998

[5] R. Azimi and A. Bilas. mini: Reducing network interface memory
requirements with dynamic handle lookup. In Proc. of the 17th ACM
International Conference on Supercomputing (ICS03), June 2003

[6] A. Basu, V. Buch, W. Vogels, and T. von Eicken. U-net: A user-level
network interface for parallel and distributed computing. Proc. of the
Fifteenth Symposium on Operating Systems Principles (SOSP15),
December 1995.

[7] M. Blumrich, C. Dubnick, E. Felten, and K. Li. Protected, user-level
dma for the shrimp network interface. In Proc. of The 2nd IEEE
Symposium on High-Performance Computer Architecture (HPCA2),
Feb. 1996.

[8] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten, and
J. Sandberg. A virtual memory mapped network interface for the
shrimp multicomputer. In Proc. of the 21st International Symposium
on Computer Architecture (ISCA21), pages 142–153, Apr. 1994.

[9] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz,
J. Seizovicm, and W. Su. Myrinet: A gigabit-per-second local-area
network. IEEE Micro, 15(1):29–36, 1995.

[10] D. Bovet and D. Cesati. Understanding the Linux Kernel. O’ Reilly
Media, 2002. 2nd Edition.

[11] J. Chase, A. Gallatin, and K. Yocum. End-system optimizations for
high-speed tcp. IEEE Communications, 39(4):68–74, 2001. Special
issue on TCP Performance in Future Networking Environments.

[12] Y. Chen, A. Bilas, S. N. Damianakis, C. Dubnicki, and K. Li. UTLB:
A mechanism for address translation on network interfaces. In Proc.
of The 8th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS8), pages
193–203, San Jose, CA, Oct. 1998

[13] C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis, and K. Li. VMMC-2:
efficient support for reliable, connection-oriented communication. In
Proc. of The 1997 IEEE Symposium on High Performance
Interconnects (HOT Interconnects V). Stanford, CA, USA., Aug. 1997

[14] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert,
F. Berry, A. Merritt, E. Gronke, and C. Dodd. The virtual interface
architecture. IEEE Micro, 18(2):66–76, 1998.

[15] T. Eicken, D. Culler, S. Goldstein, and K. Schauser. Active messages:
A mechanism for integrated communication and computation. In
Proc. of the 19th International Symposium on Computer Architecture
(ISCA19), pages 256–266, May 1992.

[16] Giganet. Giganet cLAN family of products.
http://www.emulex.com/products.html, 2001.

[17] R. Gillett, M. Collins, and D. Pimm. Overview of network memory
channel for PCI. In Proc. of the IEEE Spring COMPCON ’96, Feb.
1996.

[18] I/O Performance Inc. The xdd i/o benchmark.
http://www.ioperformance.com.

[19] G. Kalokairinos, V. Papaefstathiou, A. Ioannou, D. Simos,
M. Papamichail, G. Mihelogiannakis, M. Marazakis,
D. Pnevmatikatos, and M. Katevenis. Design and implementation of
a multi-gigabit nic anda scalable buffered crossbar switch. Technical
Report TR376-04-2006, FORTH-ICS, 2006.

[20] J. Katcher. Postmark: A new file system benchmark. Technical
Report TR3022, Network Applicance Inc., 1997.

[21] K. Kim, J. Kim, and S. Jung. Gnbd/via: A network block device over
virtual interface architecture in linux. In Proceedings of the 16th
Annual IEEE International Parallel and Distributed Processing
Symposium, 2002.

[22] H. T. Kung, T. Blackwell, and A. Chapman. Credit-based flow
control for ATM networks: Credit update protocol, adaptive credit
allocation and statistical multiplexing. In Proceedings of the ACM
SIGCOMM Conference, 1994.

[23] J. Liu, B. Chandrasekaran, W. Yu, J. Wu, D. Buntinas, S. Kini, and

D. Panda. Microbenchmark performance comparison of high-speed
cluster interconnects. IEEE Micro, 24(1):42–51, 2004.

[24] J. Liu, A. Mamidala, A. Vishnu, and D. Panda. Performance
evaluation of infiniband with pci express. IEEE Micro, 25(1):20–29,
2005.

[25] A. M. Mainwaring and D. E. Culler. Design challenges of virtual
networks: Fast, general-purpose communication. In Proc. of The
1999 ACM Symposium on Principles and Practice of Parallel
Programming (PPoPP99), pages 119–130, May 1999.

[26] D. Mayhew and V. Krishnan. Pci express and advanced switching:
Evolutionary path to building next-generation interconnects. In
Proceedings of the 11th IEEE Symposium on High Performance
Interconnects, 2003.

[27] I. Mindshare and T. Shanley. PCI-X System Architecture.
Addison-Wesley Professional, 2001.

[28] V. Olaru and W. Tichy. On the design and performance of remote
disk drivers for clusters of pcs. In Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and
Applications. CSREA Press, 2004.

[29] S. Pakin, V. Karamcheti, and A. Chien. Fast Messages (FM):
efficient, portable communication for workstatin clusters and
massively-parallel processors. IEEE Concurrency, 1997.

[30] PCI-SIG. Pci express. http://www.pcisig.com.
[31] F. Petrini, F. E., and A. Hoisie. Performance evaluation of the

quadrics interconnection network. Journal of Cluster Computing,
6(2):125–142, 2003.

[32] F. Petrini, W. Feng, A. Hoisie, S. Coll, and F. E. The quadrics
network: High-performance clustering technology. IEEE Micro,
22(1):46–57, 2002.

[33] J. Pinkerton. The case for rdma, 2002. RDMA Consortium,
http://www.rdmaconsortium.org/home/The Case for RDMA-
02053.pdf.

[34] L. Prylli and B. Tourancheau. BIP: a new protocol designed for high
performance. In PC-NOW Workshop, held in parallel with
IPPS/SPDP98, Orlando, USA, March 30 – April 3 1998.

[35] G. Regnier, S. Makineni, I. Illikkal, R. Iyer, D. Minturn,
R. Huggahalli, D. Newell, L. Cline, and A. Foong. Tcp onloading for
data center servers. IEEE Computer, 37(11):48–58, 2004.

[36] G. Regnier, D. Minturn, G. McAlpine, V. Saletore, and A. Foong.
Eta: Experience with an intel xeon processor as a packet processing
engine. IEEE Micro, 24(1):24–31, 2004.

[37] Y. Saito, S. Frolund, A. Veitch, A. Merchant, and S. Spence. FAB:
Enterprise storage systems on a shoestring. In Proc. of the ASPLOS
2004, Oct. 2004.

[38] A. S. I. SIG. Asi technical overview. http://www.asi-sig.org.
[39] H. Tezuka, A. Hori, and Y. Ishikawa. PM: a high-performance

communication library for multi-user parallel environments.
Technical Report TR-96015, Real World Computing Partnership,
1996.

[40] J. Wu and D. K. Panda. Mpi/io on dafs over via: Implementation and
performance evaluation. In IPDPS, 2002.

[41] W. Yu, S. Liang, and D. K. Panda. High performance support of
parallel virtual file system (pvfs2) over quadrics. In ICS, pages
323–331, 2005.

[42] Y. Zhou, A. Bilas, S. Jagannathan, C. Dubnicki, J. Philbin, and K. Li.
Experiences with vi communication for database storage. In Proc. of
the 29th International Symposium on Computer Architecture
(ISCA29), May 2002

