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Abstract

To satisfy current and future application needs in a cost
effective manner, storage systems are evolving from mono-
lithic disk arrays to networked storage architectures based
on commodity components. So far, this architectural transi-
tion has mostly been envisioned as a way to scale capacity
and performance. In this work we examine how the block-
level interface exported by such networked storage systems
can be extended to deal with reliability. Our goals are:
(a) At the design level, to examine how strong reliability se-
mantics can be offered at the block level; (b) At the imple-
mentation level, to examine the mechanisms required and
how they may be provided in a modular and configurable
manner.

We first discuss how transactional-type semantics may
be offered at the block level. We present a system design
that uses the concept of atomic update intervals combined
with existing, block-level locking and snapshot mechanisms,
in contrast to the more common journaling techniques. We
discuss in detail the design of the associated mechanisms
and the trade-offs and challenges when dividing the re-
quired functionality between the file-system and the block-
level storage. Our approach is based on a unified and thus,
non-redundant set of mechanisms for providing reliability
both at the block and file level. Our design and imple-
mentation effectively provide a tunable, lightweight trans-
actions mechanism to higher system and application layers.
Finally, we describe how the associated protocols can be
implemented in a modular way in a prototype storage sys-
tem we are currently building. As our system is currently
being implemented, we do not present performance results.
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‡Also, with the Dept. of Computer Science, University of Crete, P.O.
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1 Introduction

Over the past decade, several trends have significantly
shaped the design of storage systems. First, storage area
networks (SANs) [20] that allow many servers to share
a set of disk arrays, have emerged as a popular solution
to improve efficiency and manageability, yet with limited
extensibility and increased costs. Second, there has been
much investigation on the benefits of moving file-system,
database, or even application-level processing closer to the
data store, e.g. offloading some tasks within the storage de-
vices themselves [1, 19]. . Third, to achieve cost efficiency,
storage systems will be increasingly assembled from com-
modity components, such as workstations, SATA disks and
Ethernet networks. Thus, we are in the middle of an evolu-
tion towards a new storage architecture (often referred to as
”storage bricks”) made of many decentralized commodity
components with increased processing and communication
capabilities [9].

This new architecture has potential for scaling both stor-
age capacity and performance. However, its distributed na-
ture and the use of commodity components pose significant
challenges towards the high-level of dependability that ev-
ery storage system must guarantee. Given that it is desirable
for performance and scalability purposes to eliminate all
centralization points and increase I/O request asynchrony, it
becomes difficult to deal with failures and to always main-
tain a consistent state of the system.

Recent networked storage architectures usually depend
on a distributed file-system for providing reliability and
availability (even if the underlying block layer provides
RAID-type fault-tolerance). Thus, the complexity of deter-
mining consistency and ensuring persistence is usually built
in the file-system. The main reason for this is that, tradition-
ally, file-systems have been responsible for providing all the
required mechanisms for sharing large scale storage system
among multiple applications, whereas the block-level sub-



system was limited merely to performing simple read/write
I/O operations.

However, cluster file-systems tend to become (i) scal-
ability bottlenecks and (ii) unmanageable and difficult to
customize. For these reasons, recent efforts [16, 17, 19, 25]
are investigating block-level mechanisms that will lead to
better scalability both regarding capacity and performance.
Thus, we believe that an important problem is to examine
how the re-design of the file-system and block-level sub-
system roles will affect system reliability and availability
and what mechanisms and approaches are required to deal
with system failures.

Shared virtual disks [21, 5, 11] have been proposed to
simplify the design of cluster file-systems. These infras-
tructures handle most of the critical concerns in distributed
storage systems, including fault-tolerance, dynamic addi-
tion or removal of physical resources, and sometimes (con-
sistent) caching. Nonetheless, the existing prototypes are
monolithic and do no provide advanced features such as
(file-system level) snapshots.

Besides, although various modular frameworks have
been proposed for cluster storage systems [10, 14, 4], little
work has investigated how fault-tolerance protocols used at
different levels of the I/O stack (file and object/block inter-
faces) could be integrated in order to achieve simple design
and optimized performance.

In this paper we present our design for a highly-
dependable networked block-level storage system. Our
approach relies on novel mechanisms that essentially
provide distributed consistent storage snapshots using a
transactional-type abstraction at the block-level. The client-
side file-system is only required to use this abstraction with-
out providing any additional support. This approach has
been designed in the context of an extensible storage sys-
tem [17, 18]. For this reason, the design of our mechanisms
is amenable to a modular implementation; The system is
designed as a set of virtual devices (layers) integrated in a
virtual hierarchy distributed over many storage bricks. The
focus of this paper is the detailed discussion of the relia-
bility mechanisms. As the system is currently under im-
plementation, we only briefly discuss performance impli-
cations. However, we expect the system to perform well,
given that the proposed architecture eliminates all central-
ization points between clients and servers and synchroniza-
tion (locking) services are distributed and scale well.

The rest of this paper is organized as follows. Section 2
provides an overview of our assumptions and design. Sec-
tion 3 describes our scheme for achieving reliability. Sec-
tion 4 discusses the recovery process after a failure has oc-
curred. Finally, Section 5 draws our conclusions.
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Figure 1. Structure of the system.

2 Overview

Although the flexibility of our system allows the con-
struction of various kinds of storage systems, we are inter-
ested in networked storage systems that are shared at the
block-level. Such a low-level, generic view of a storage
container gives freedom to the client-side file-systems or
other block-level applications1 regarding the different ab-
stractions that they can use. Next we present an overview
of our block-level storage system.

2.1 System structure

This work is based on a direct storage topology, where
each client has direct access to the set of storage nodes
through a scalable network, such as Gigabit Ethernet or
Myrinet. These storage nodes (also referred to as stor-
age bricks or servers) have processing resources (CPUs and
RAM) that are comparable to those of a workstation and
contain a few tens of disks. This simple setup (Figure 1) is
similar to a SAN. However, instead of custom networking
fabric, such as FiberChannel, it uses a commodity network.
Moreover, there is no central storage controller. Thus, it can
be cost-effective while yielding good performance and scal-
ability. On the other hand, reconfiguration in this setup can-
not be made transparent to the clients because data place-
ment/replication is handled on the client side. Note that our
framework could allow to build other topologies that have
been proposed2 by various brick prototypes [3], but these
developments are outside of our current scope.

1Note that since we present a block-level system, we consider a file-
system running on top of it as an application. Another examples of block-
level applications are raw I/O databases or web caches.

2The other common topologies are based on assigning one or several
coordinators/gateways to each data object. Such a coordination role can ei-
ther be mapped to an intermediate level of nodes or to the back-end storage
bricks themselves.



Increased dependability and performance can be
achieved through replication and striping both within and
across bricks. The degree of replication, i.e. number of
replicas, is configurable and independent of the reliability
protocols we present. For simplification, we assume that
our system uses a simple scheme for distributed redundancy
(mirroring and striping) rather than more complex schemes,
such as erasure coding, which are hard to implement in a
decentralized system [13].

Finally, our design is fully symmetric: it does not re-
quire specific servers for metadata management and locking
[12, 8], which may become a bottleneck. These services
are instead provided in-band by the enhanced block layer.
However, unlike traditional symmetric cluster file-systems
[15, 7], client nodes in our system do not need to monitor
each other to ensure progress despite failures, as in Frangi-
pani [2].

2.2 Fault model

We assume that the networked storage system we are
proposing behaves under the timed asynchronous model [6],
which is among the most realistic ones for the system archi-
tectures we target.

We assume a fail-stop model for all the nodes of the clus-
ter, i.e. clients and servers. Our approach handles any fail-
ure and network partitions. During failures, the availability
of data is limited by their degree of replication. In other
words, all non-faulty components of the system keep oper-
ating in the presence of faults, however data is only avail-
able if at least one copy is accessible through non-faulty
components.

However, we do not deal with data corruption at the
client side and/or incorrect client behavior. We consider
these to be the responsibility of the (client-side) file-system.
Moreover, we assume that the potential Byzantine behavior
of the disks (or the low level device drivers of the OS) that
may lead to data corruption is handled differently: the de-
tection of inconsistencies, and possibly the recovery from
such errors, are addressed with special modules deployed
on each server node.

Finally, we assume clients belong to the same admin-
istrative domain as the storage bricks and do not exhibit
Byzantine behavior. Nonetheless, we do not assume that
clients have access to all data in the system but rather em-
ploy traditional permissions for access control.

Thus, in this work, we ensure that:

• Any transient or permanent (hardware or software)
component failure should not corrupt or destroy stored
information, unless it is the only remaining copy in-
volved in the required operation.

• Any transient or permanent (hardware or software)

component failure should not prevent the rest of the
system from operating, unless it is the only remaining
copy involved in the required operation.

• After any global failure, e.g. a total power failure, the
system should be able to restart quickly from a consis-
tent and recent state.

Overall, our approach deals will all these aspects of a de-
pendable system, with the exclusion of handling Byzantine
failures.

2.3 Application Guarantees

We have extended the traditional block-level API with
new primitive operations. The features that our storage sys-
tem provides to the file-system or applications through the
block-level API can be described according to the common
ACID classification:

Atomicity Using lightweight transactions, our system pro-
vides atomicity guarantees that are stronger than those
provided by a single, local disk. A simple disk only en-
forces that a single sector is written atomically. We ex-
tend this guarantee to discontiguous ranges of sectors
or blocks that may be mapped to multiple (and possi-
bly replicated) servers. This is achieved by buffering
the updates on the client-side until the transaction is
closed.

Consistency A transaction is applied in a consistent way to
all the involved servers. Thus, at any time, the replicas
of a data object impacted by transactions will all be in
the same state. This guarantee is obtained with a two-
phase commit protocol.

Isolation This aspect refers to the serializability of transac-
tions and is not provided directly by our transactional
scheme, but through the use of locks. Our block-level
API provides support for generic locks at the block-
range granularity. Correct usage of locks is the respon-
sibility of the application.

Durability Our basic transactions do not provide guaran-
tees in terms of durability, meaning that updates com-
mitted in a transaction may be lost in case of a global
crash before the transaction is committed in a snap-
shot. Our system, however, offers durability guaran-
tees at the coarser granularity of snapshots (described
in 3.3 and 3.4).

2.4 A new approach for dependable storage
bricks

This originality of this approach lies in three main as-
pects: programming model, end-to-end management of de-



pendability issues and flexibility. First, we intend to pro-
vide simple abstractions for programmers that are develop-
ing dependable applications. Experience from file-systems
and databases has shown that traditional techniques such as
journaling are very complex to implement in a correct (and
efficient) way. Instead, our proposition provides the pro-
grammers with a way to specify a set of atomic updates and
their associated requirements in terms of durability. This
model is simpler because it abstracts the application devel-
opers from low-level details such as journal management
and write dependencies.

Second, we strive to address the inherent issues of a de-
centralized storage system in a unified way. Most layered
systems use disjoint dependability protocols at different lev-
els of interface. Typically, there is a multiple-phase pro-
tocol at the block level to enforce the consistency of dis-
tributed replicas [13, 25] and on top of this, a shared-disk
file-system using another mechanism to ensure the atom-
icity of the updates (at least for metadata). The latter re-
quirement is usually achieved with journaling [15], which
involves synchronous writes and data copying. Unlike this
traditional view, we consider that consistency and atomicity
can be dealt with in a joint fashion, at a single level of the
system. Our optimizations can be summarized as follows :

• It may not be necessary to enforce serializability of the
updates at the level of the raw bricks, i.e. providing
the same guarantees as a central storage controller, be-
cause application-level synchronization is sufficient3.

• Atomicity semantics can be exposed to the application
programmers without necessarily imposing durability.
The loss of recent updates due to the rollback to the lat-
est snapshot is a rare event that can only happen after
a global system crash. In addition to durability, snap-
shots also provide backup versions of the data that can
be used for disaster recovery, auditing, debugging, etc.

We expect this integrated approach to be more efficient
that the traditional architectures described above since it
involves simpler agreement protocols and fewer (less fre-
quent) synchronous writes.

Finally, the few optimized distributed storage systems
(such as GPFS [7]) addressing dependability issues in a sin-
gle layer (usually at the file level), have a monolithic struc-
ture and can hardly be adapted or extended according to
the needs of a given application. In contrast, the protocols
that we propose can be easily added to (or removed from) a
modular software stack for brick-based storage.

3We are interested in (distributed) applications with a pessimistic con-
currency control scheme (typically file-systems with locking) but we think
that this approach is also meaningful for applications relying on an opti-
mistic concurrency control scheme (typically databases with timestamps).

3 Protocol Design

In this section we present in detail our design for ensur-
ing that the system is always able to recover to a consistent
point after a failure.

3.1 Lightweight Transactions

Maintaining data (metadata and user data) consistent in
the presence of failures requires that we are able to:

1. Treat a sequence of operations (e.g. metadata updates
for creating a file and inserting it into a directory) as an
individual operation. That is, we need atomic updates.

2. Keep the distributed replicas consistent, if data is repli-
cated on different storage servers. This is not trivial,
because a client could fail in the middle of an update
process, leaving some servers with a stale version of
the data.

To address these two requirements we use a lightweight
transaction mechanism, where metadata updates are pro-
tected against both kinds of threats. This is needed because
the logical structure of the storage system (such as a file-
system directory tree) must never become corrupted.

Transactions may also be used to guarantee the consis-
tency of (user) data. However, a different trade-off may
be adopted in this regard: sometimes, users are willing
to accept occasional risks of data corruption4 in exchange
of increased performance. In this case, we can get rid
of the first constraint (atomic treatment of multiple oper-
ations) and only enforce the second one (keep distributed
replicas consistent despite failures). This is possible with a
protocol based on voting: when a client reads a data item,
the latter must make sure that a majority of replicas agree
on the current value to be used. We believe that such a
protocol should be faster than the one based on transac-
tions for update-intensive workloads because the updates
to the user data would not require a two-phase protocol 5.
The voting-based approach is nonetheless expected to have
lower performance for read-mostly workloads because mul-
tiple servers must be contacted for every read operation.

The choice of the technique employed to keep the dis-
tributed data consistent only impacts two software layers:
the application (e.g. the file-system) and the replication
(e.g. RAID 1) module. We intend to base our first im-
plementation on transactions for both metadata and user
data. This decision was made both for simplicity (homo-
geneous usage of the same abstraction in the file-system,

4Because they can rely on backups or can easily regenerate the data
(e.g. for a scientific calculation).

5And, as an additional optimization, a write request could be returned
as soon as a majority of servers have acknowledged it (at the cost of de-
creased guarantees on the ability to recover up to the last written data ).



lower development effort) and in oder to evaluate the per-
formance penalty of the two-phase protocol for update-
intensive workloads.

Next, we discuss three important aspects regarding trans-
actions: their programming model, their semantics and their
granularity.

3.1.1 Programming model

Our model of transactions is heavily influenced by the no-
tion of “atomic recovery units” (ARUs) defined in the con-
text of a centralized system, the Logical Disk by Grimm et
al [22]. All the disk operations encapsulated in an ARU are
guaranteed to be treated as a single operation during recov-
ery (i.e. all or none of the operations are persistent after
recovery). ARUs provide atomicity with respect to failures
but not with respect to concurrency, where a complimentary
serialization mechanism must be used for proper synchro-
nization of different client threads.

A transaction is open and closed by the client applica-
tion using explicit block-level API commands. For sim-
plicity, we do not allow nested transactions in our program-
ming model. Along with write operations, unlocks are also
buffered at the client side and committed along with the
transaction. This buffering is necessary, because unlocking
a block range that was locked inside a transaction, before
the transaction is committed, can break serialization seman-
tics, since another client could complete another transaction
dependent on this lock and commit it out-of-order. A trans-
action may contain several writes and lock/unlock opera-
tions.

Another important point is that locks handled by an
application do not have to be systematically aligned with
transactions. In our context, locks are conceptually used
for simple mutual exclusion, i.e. to ensure that two sets of
operations on a given resource do not overlap but are seri-
alized. For instance, a client thread may lock a given file
(i.e. a set of blocks)6 to make sure that its updates will not
be interleaved with updates from another client.

On the other hand, transactions are used for atomic re-
covery, that is to ensure that a given sequence of operations
will be treated as a single operation during recovery (i.e. the
whole set of operations will be considered as persistent or
be cancelled).

It is important to note that while locking can be used
to provide mutual exclusion independently of transactions,
the opposite does not hold. In other words we cannot have

6It may not be necessary to lock the whole range of data blocks to be
updated, but only a few metadata blocks. For instance, a file-system could
use a transaction to update both the metadata (inode) and the actual data
of a given file. In this case, the file-system may be implemented in such
a way that only the metadata blocks are locked (coarse grained locking at
the file level). This is not a problem as long as all the file-system threads
use the same techniques for synchronization.

atomic recovery (consistency) semantics without locks pro-
viding serializability. In this sense, locks used for atomic
recovery can be mapped naturally to transactions but locks
used to provide simple mutual exclusion should not. For
instance, in a file-system:

• i-node locks are used for short updates to the metadata
with critical requirements in terms of reliability. They
should thus be associated with transactions.

• File locks granted to user applications are used for mu-
tual exclusion and can be kept for a long time. As a
consequence, it does not appear suitable to associate
the acquisition (release) of a lock with the start (end)
of a transaction. However, a set of atomic updates
could be encapsulated in a transaction associated with
a file lock. The distinction is that the lock could be
held (much) earlier than the start of the first transac-
tion and released (much) later than the end of the final
transaction.

3.1.2 Granularity

Two levels of granularity can be considered for tagging
transactions: node id or process/thread id. The node-level
approach is easier to implement, requires less metadata for
snapshots (see 3.3) and maps directly to the most com-
mon failure domain (assuming that hardware or OS crashes
are more frequent than application-level crashes). On the
other hand, the thread-level approach is conceptually clearer
(there is no distinction between all the client threads, re-
gardless of their home node), induces less contention on
the client side for tagging the transactions (one counter per
thread) and offers the potential to take snapshots more fre-
quently (because of the finer granularity, more consistent
points can be identified).

In the rest of the paper, we do not make any assumption
regarding the chosen level of granularity and we just use the
generic term “client stream”.

The prototype that we are currently implementing works
at the thread level granularity. This choice only impacts the
client side module in charge of transactions. The rest of the
code is generic in this regard.

3.2 Client-server Transaction Protocol

The transactional protocol involves two entities: the
client-side transaction manager (CTM) deployed on all the
client nodes and the server-side transaction manager (STM),
deployed on all the storage bricks.

Once the end of a transaction has been detected, the
CTM batches the data updates in a single prepare re-
quest, which is propagated to the STM modules through the
hierarchy. At some point, this request is acknowledged and
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Figure 2. Fault-tolerant protocol stack.

the CTM checks its status. If the prepare request was
successful, this means that all the concerned storage nodes
have received the data to be written and agreed about it.
Then, the CTM sends a commit request to all the involved
storage nodes. Note that a commit request can be acknowl-
edged before it has reached the disk. This is done on pur-
pose, in order to lower the cost of the two-phase protocol,
at the expense of weaker guarantees in terms of reliability.

On the STM, the committed write requests are placed in
a queue, whose behavior depends on the current state of the
snapshot protocol. When the snapshot protocol is not run-
ning, the queue is pass-through (it just logs the IDs of the
transactions that are issued and keeps tracks of which ones
have completed). When the snapshot protocol is running,
the queue acts a buffer that allows to enforce a distributed
agreement among the server nodes regarding the transac-
tions that should be included in the next snapshot.

The STM layer only handles transactions and behaves as
a pass-through layer for all other kinds of requests (includ-
ing read, write, lock, unlock). As explained before, some
setups may only use transactions for metadata updates and
use basic write requests to access blocks associated with
user data. Moreover, in both cases, reads are always issued
as simple requests.

3.3 Snapshot Protocol

This protocol involves three main modules: the snapshot
coordinator (SC) and, on the server side, the server transac-
tion manager (STM, introduced in the previous section) and
the version manager (in charge of the local snapshots).

To keep the description simple, we assume that there is
only one snapshot coordinator, i.e. only one client node

in charge of periodically triggering the protocol to create a
new snapshot. However, in a realistic setup, this role may
be attributed to several clients, for better load balancing and
increased fault-tolerance.

The creation of a new snapshot relies on a two-phase
protocol driven by the SC. The first phase aims at deter-
mining a globally consistent point for the snapshot. Upon
reception of the message from the SC, the STM of each
server temporarily queues the newly committed transactions
and replies to the SC with a list specifying, for each client
stream, the ID of the last transaction that was written to disk.
The SC can subsequently examine the replies from all the
servers and compute a globally consistent ”snapshot map”.

The second phase triggers the creation of local snap-
shots on the servers according to the snapshot map. Before
a snapshot is actually taken on a server, transactions that
are included in the snapshot map and not yet committed
to disk are extracted from the queue and flushed to stable
storage. The protocol used for the transactions guarantees
that, for any transaction included in the snapshot map, each
involved server has received the corresponding prepare
request and thus, the required data updates.

The SC is also in charge of a periodic garbage collection
protocol, aimed at reclaiming physical storage space. The
latter essentially detects snapshots that are too old or that
did not (globally) succeed and asks the bricks to destroy the
corresponding version of their local volume.

3.4 Durability semantics

As previously described, the snapshot facility is based on
the consistency intervals delimited by the lightweight trans-
actions coupled with the use of locks. Different durability



semantics can be envisioned for the transactions, depending
on the requirements of the (end user) application. On the
one hand, it is possible to acknowledge a transaction (i.e. an
atomic set of updates) as soon as all the servers have agreed
on its status. In this case, if a global crash of the storage sys-
tem occurs, it is not guaranteed that the recovery point will
include the modifications even though the updates were suc-
cessfully acknowledged to the applications. One could also
envision a variant of the protocol where the storage nodes
would not complete the commit protocol of a transaction
before the related updates have been made persistent (i.e.
after the next snapshot).

Our current prototype is based on the first strategy. How-
ever, the durability semantics could be configured in dif-
ferent ways: exposed as a volume-wide policy (for all the
clients), tuned at fine grain (on a per-client basis), or ex-
posed in the API for a single transaction. In addition, the
API can also be extended so that client applications are
(asynchronously) notified when a transaction is eventually
synchronized to disk.

3.5 Protocol Implementation

We are currently implementing the protocols above
within Locus [18], a low-level software framework aimed
to take advantage of brick-based storage architectures. The
modular nature of Locus allows tailoring the functional-
ity provided by a clustered storage system to the diverse
needs of applications (e.g. encryption, versioning, branch-
ing, caching, replication, duplicate elimination).

In addition, Locus supports sharing at the block level by
providing (optional) locking and allocation facilities. Thus,
such a configurable, block-level framework with an en-
hanced interface can significantly simplify the design and
adaptation of complex software like cluster-file systems.

The fault-tolerance protocols are provided as a set of
building blocks, which can be layered appropriately form-
ing the desired stack of Locus modules. It is therefore
possible to enable/disable them regardless of the ”func-
tional” features of the storage system. However, the ap-
plication must be modified to deal with the specific API
for transactions. These changes will only impact a very re-
stricted set of applications, such as a cluster file-system or a
database management system, which may still export well-
established, unmodified interfaces to end-user applications.

The core protocols are implemented with three Locus
modules, two on the client side (snapshot coordinator and
client transaction manager) and one on the server side
(server transaction manager). The other functionalities,
namely replication, leased locking, and (local) versioning,
are provided by independent modules.

4 System Recovery

In this section we discuss how our approach recovers
from each failure type. We discuss the three main types
of failures: network partitions, client failures and storage
brick (server) failures.

4.1 Network partitions

Temporary or permanent network partitions, although
relatively unlikely, can put the system in a incorrect state
and must be addressed. Several problems can arise because
of a such a fault.

First, assume that we have two clients (C1 and C2) and
two mirrored servers (S1 and S2). Because of a partition,
we can end up with a “split brain” situation where C1 can
only see S1 (and vice-versa) and C2 can only see S2. In
such a configuration, the logical volume will “fork” in two
versions. The same kind of problem can also happen if two
servers disagree on the liveliness of a client that holds locks.

Second, even if all the servers agree on the fact that a
client is dead, the latter may still be alive and believe that
there is no problem. If the communication problem is only
temporary then the client may think that it still holds locks
(and an up-to-date cache), which may lead to corruption of
the data and/or the file-system structure.

Overall, to operate correctly despite network partitions,
the system must respect the two following invariants:
(i) clients agree on the set of alive storage servers and
(ii) storage servers agree on the set of alive clients.

The typical solution to deal with network partitions is
to use a cluster manager. Thanks to heartbeat messages
and voting, a quorum can be established among the clus-
ter nodes7. Once a majority of the nodes agree on the cur-
rent members of the cluster, the remaining nodes (consid-
ered faulty) must be isolated from their well-behaving peers
through a fencing service. The fencing can be enforced at
the hardware level (brutal power off via a remote power
switch or network filtering thanks to a manageable switch
fabric) or, in some cases, at the software level (through re-
configuration of the stack of the remaining nodes).

In our design, clients are not aware of each other and
do not directly cooperate. Thus, one could believe that it
is not necessary to include clients in the group monitored
by the cluster manager and that using a lease-based proto-
col should be enough. However, the problem is actually
more complex. For instance, the above mentioned “split
brain” problem could not be detected with such a setup (be-
cause there is no mechanism allowing the servers to make
an agreement on the current set of clients). A key difference

7Studies have shown that a cluster manager can be scalable provided
that the underlying network features hardware support for multicast [24],
which is the case for Ethernet.



with Petal/Frangipani in this regard is that, in Frangipani, a
given lock is only managed by a single lock server, whereas
in our design, we may have multiple servers in charge of
the same (conceptual) lock (because we have one lock for
each copy of a block). Thus, the complexity stems from the
fact that we have multiple managers in charge of the same
logical resource.

As a consequence, we take the following approach in or-
der to respect the previously described invariants:

• We deploy a cluster manager (CM) only for the server
nodes.

• The (distributed) CM does not only make decisions on
the liveliness of the member nodes but also elects a
leader among them. The leader server is assigned with
an additional and specific network address, which is
known by the clients.

• When the CM detects that a server node is not alive, it
triggers a fencing procedure for the latter (see details
below).

• On the clients, the management of network partitions
only involves the communication layer.

When a client sends a request to a server, it arms a timer,
which is destroyed when an acknowledgment is received.
The expiration of a timer indicates that a server is unreach-
able. In this case, the client must contact the leader server to
ask if the unresponsive node currently belongs to the group
of alive servers8.

If the leader replies that the server is not alive, then the
communication layer returns an error to the upper layer 9.

If the leader replies that the server is alive, then this
means that a network partition prevents the client from com-
municating with the server. In this case, the client should
consider itself disconnected from the all the servers and
the failed request should be acknowledged with a “discon-
nected” status. Upon propagation of the acknowledgment in
the Locus hierarchy, all the modules will take the necessary
measures to invalidate the state information that they hold
(locks, cached data and metadata) . All the future requests
should be rejected in the same way until a proper reconnec-
tion procedure succeeds.

If the leader does not reply, this means that a network
partition prevents the client from communicating with some
of the servers (or that all the servers are down). In this case,
the disconnection procedure should be employed as well.

8Note that the leader server should always be available. The use of a
cluster manager for the server nodes ensures this invariant (if the leader
crashes, a new one will be elected).

9Typically, upon notification of this error, an upper layer such as RAID
1 will switch to degraded mode and discard the path involving the failed
server.

As explained above, both clients and servers may need to
be fenced in order to preserve the integrity of a system expe-
riencing network partitions. However, a distinction should
be made on the severity of the fencing method to be used,
according to the role played by a “failed” node. A server
must be physically fenced because we need to make sure
that all the clients always get the same view of the set of
available servers. On the other hand, a client is responsi-
ble for fencing itself by voluntarily disconnecting from the
set of servers. A self-fenced client does not have to be shut
down or rebooted 10 and can (periodically) try to reconnect
to the servers. Failure to reach all the alive servers (a list
can be obtained from the leader) would indicate that com-
munications issues are still occurring and that reconnection
can not happen.

The above mentioned protocol related to network par-
titions is handled at the level of the communication layer.
Thus, these issues do not impact the others parts of the I/O
stack (the client-side modules only need to take the proper
measures for state invalidation in case they receive a notifi-
cation of disconnection).

4.2 Client failures

Throughout this section we assume that the client fail-
ures can be either due to a system crash (fail-stop model) or
to network partitions (permanent or temporary loss of con-
nectivity with the servers).

Locks: If a client fails while holding locks, this will even-
tually be detected by timeouts of the leases on a subset of
the servers. On these nodes, the server leasing module will
react to the timeout by reclaiming all the locks held by the
client (sending unlock requests to the server-side locking
module). If the client is still alive (i.e. the problem is not
related to a crash but to communication issues), the previ-
ously described procedure for network partitions should be
applied. If a client crashed without holding any locks, no
recovery procedure is needed.

Transactions: The atomicity of a transaction is ensured
by two properties: (i) the updates associated with a trans-
action are buffered on the client side until its closure and
(ii) the 2-phase update protocol ensures that all the servers
agree on whether a transaction should be committed or not.

If a client fails before a transaction is closed (or before
any prepare request is sent), then the transaction will be
automatically discarded because it will not reach any server.

If a client fails after sending the prepare requests (all
of them or only a fraction of them), then the two-phase

10However, the errors returned to the (user-level) application may re-
quire an application-specific treatment (possibly including a restart) but
this is beyond the scope of our contribution.



protocol is not sufficient to make a decision (this is a well
known issue of the 2PC protocol, which is blocking when
the coordinator fails). To solve this problem (without as-
suming that the client may be able to come back quickly, if
at all), we rely on server timeouts and the snapshot protocol.
On each server, when the STM module receives a pre-
pare request, it also triggers a corresponding timer. The
timer is normally discarded when the associated commit
request arrives. If the timer expires, the prepare request
is considered as suspect and further inquiry will be neces-
sary to determine if it deserves to be committed or not. The
solution actually comes from the next round of the snapshot
protocol: if at least one server has received a commit re-
quest, for the transaction, then the latter can be committed
safely. Otherwise, the transaction should be discarded. This
resolution process happens through the next “regular” round
of the snapshot protocol. These principles also apply when
the client fails while sending the commit requests (but in
this case, we are sure that the transaction will be eventually
committed).

Note that the protocol described above is not optimal be-
cause it may discard a transaction that could actually be
committed (if all the concerned servers have received and
acknowledged the prepare request and the client failed
just before sending the first commit request). Yet, this sce-
nario would seldom occur in practice and thus our approach
trades robustness for simplicity in this regard.

4.3 Server failures

Server failures can either be related to physical disk fail-
ures or other software or hardware failures on the storage
nodes.

4.3.1 Disk failures

The failure of a disk on a server can be masked to the client
if enough redundant information has been stored on other
drives (i.e. by means of a local RAID hierarchy) and if
these drives are still available. In this case the server RAID
layer must nonetheless notify the administrator about the
failure. Once the disk is replaced11, the administrator can
issue a request to the server module to trigger the synchro-
nization (a.k.a. “rebuild”) of the new disk. Since we are in
the context of a single node, the server RAID module acts
as a central controller and classical rebuild techniques can
be used.

If the disk failure cannot be masked by the server, the
concerned request will fail, be returned to the client and

11We assume that the machines support hot swapping for peripherals
such as disk drives and NICs, which is nowadays a common feature. If this
is not possible, the only way of increasing the robustness of the system is
to add new server nodes. This second method requires support for dynamic
reconfiguration [23], which is out of the scope of this paper.

reach the client RAID module (CRM), which replicates
block to independent server nodes. For a read request, the
CRM can then try to reissue the same request to another
server node (which should hopefully succeed this time). A
question is whether the node that returned the error should
be discarded eagerly (i.e. as soon as a the problem is spot-
ted) or if it should be kept online (because a subset of the
data may still be available). The first option is simple but
radical12. The second option is more complex and requires
(i) to keep information on the client RAID module (in order
to keep track of the blocks that are still valid on the defi-
cient node) as well as (ii) to inform (through upcalls) all the
clients that the server is in a degraded mode. For simplicity,
we choose to discard a server node with deficient disk(s)
in an eager fashion, similar to discarding a failed disk in a
local RAID-1 module.

4.3.2 Node failures

Several situations can lead to the complete (fail-stop) crash
of node. The root cause can obviously be a severe software
problem (e.g. a kernel crash) or a hardware failure (e.g. a
defective power supply). The stop of the node may also be
triggered by a fencing operation due to (a) a network parti-
tion or Byzantine failure that made the node unresponsive
to the cluster manager and led to its exclusion or (b) the
detection of its disk failures.

In any case, once a server has been shut down, it can-
not be later added to the pool of servers in a trivial man-
ner (even if the hardware of software problems that led to
its crash have been solved). Indeed the on-disk data and
the (volatile) state of the Locus stack must be synchronized
with the active servers. This process is not described in the
present document due to lack of space.

5 Conclusions

Networked storage architectures based on commodity
components promise more cost-effective and scalable stor-
age systems both in terms of capacity and performance.
However, they raise hard challenges in terms of reliability
and availability, which translate into complex system design
and overheads impacting system operation.

In this work, we discuss how reliability and availabil-
ity can be provided in networked storage systems by using
novel block-level mechanisms and exposing them through a
well defined programming model (interface) to higher sys-
tem layers, such as the file-system. This interface presents
transactional features and our design aims at implement-
ing these features with a low overhead at the block level.

12The fencing operation could be triggered by the defective server itself.
The latter may just discard (return with an error) all the subsequent requests
that it receives.



We detail the protocols that we use for achieving system
consistency despite failures and we discuss the process for
recovering from all major types of system faults (network
partitions, crashed clients or storage nodes).

Finally, as our protocol is currently under implementa-
tion, we do not present any performance results. However,
our design is such that (i) communication among clients is
never necessary and (ii) clients are not required to synchro-
nize during failure-free operation but rely on buffering in
the storage nodes to ensure transactional behavior of I/O
requests. Thus, we do not expect the I/O throughput to
be affected significantly. However, we expect that our de-
sign may impact I/O response time when strict reliability
(i.e durable commit semantics) is required, as requests have
to be completed only after they have been made persistent,
that is, after the next snapshot. It also remains to be seen
whether the costs of the snapshot protocol (global agree-
ment and synchronous writes for the metadata of the ver-
sioning layer) overcome those of (asynchronous) data copy-
ing required by a journaling approach.
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