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Abstract. Increasing the number of cores in modern CPUs is the main
trend for improving system performance. A central challenge is the run-
time support that multi-core systems ought to use for sustaining high
performance and scalability without increasing disproportionally the ef-
fort required by the programmer. In this work we present Tagged Proce-
dure Calls (TPC ), a runtime system for supporting task-based
programming models on architectures that require explicit data access
specification by the programmer. We present the design and implemen-
tation of TPC for the Cell processor and examine how the runtime
system can support task management functions with on-chip commu-
nication only. Through minimizing off-chip transactions in the runtime,
we achieve sub-microsecond task initiation latency and minimum null
task initiation/completion latency of 385 ns. We evaluate TPC with
several kernels and applications, demonstrating that TPC achieves scal-
able on-chip execution of codes previously parallelized and optimized for
shared-memory multiprocessors, can exploit additional fine-grain par-
allelism in codes previously parallelized at coarse levels of granularity,
and performs competitively to existing task-based parallel programming
frameworks that statically optimize data layout and task placement.

1 Introduction

Technology trends dictate that future high-performance, general-purpose and em-
bedded systems will be built using heterogeneous chip multi-processors (CMPs)
with many cores and tightly-coupled interconnects. Heterogeneous many-core
CMPs require a large degree of parallelism in applications as well as dealing with
heterogeneity, without significantly increasing programming effort.

For this reason, the role of the programming model is significant for future
CMPs. The two main, explicitly parallel programming models used today are
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shared memory and message passing. Shared memory requires programs to spec-
ify synchronization information for memory accesses. Message passing on the
other hand requires programs to deal with data placement and communication
buffer management. In both cases, application and system designers have been
tantalized by the effort required to program and debug such systems for over
two decades. The main issue appears to be drawing a different balance between
the mechanisms that are available in the underlying system and the abstraction
that is exposed to the applications.

We believe that task-based programming models have the potential to achieve
this balance. At a high level, explicitly parallel, task-based programming models
have two advantages: On one hand they force the programmer to consider code
complexity and data transfers at design time without worrying about the under-
lying mechanisms for communication and synchronization. On the other hand
they provide the underlying system (runtime and architecture) with extensive
information for efficient execution and runtime optimization. Thus, tasks as an
abstraction, present the potential for achieving efficient execution and reducing
programmer effort.

Although task-based programming models have been proposed in the past,
modern CMPs present new opportunities. Previous efforts with task-based pro-
gramming models had to deal with coarse-grained tasks due to task management
overhead. Task management operations, such as initiation, completion, queuing,
and scheduling, in traditional parallel systems cost in the order of tens of thou-
sands of cycles, relative to the clock cycle time of modern processors, due to
communication and memory management overheads [14]. In turn, coarse-grained
tasks make it hard for the programmer to identify and delineate tasks and, even
more so, task and data dependencies. In contrast, fine-grained tasks are easier to
identify in sequential codes by inspection as they require analyzing and resolv-
ing fewer data and control dependencies. Modern CMPs have the potential of
significantly reducing the required task size and achieve efficient execution while
reducing the associated effort to identify parallelism.

In this paper we introduce a runtime system for the Cell processor [8], Tagged
Procedure Calls (TPC ), that aims at supporting task-based programming mod-
els. The notion of a task is general and can be interpreted in various ways. In our
work we consider a task to be a piece of code that can execute in parallel as well
as the data that will be accessed by the code. Despite their advantages, fine-
grained tasks impose significant challenges for the runtime system. They require
efficient basic mechanisms for task management, in particular, task initiation
and completion that now become common-path operations. In this work we fo-
cus on better understanding and minimizing these basic overheads associated
with task management.

We first examine the overhead associated with task management operations
on a real system. We focus on task initiation, task completion, task queuing,
and task data transfer. Our implementation of TPC achieves null task initiation
latency from 180 to 380 cycles on the 3.2 GHz Cell processor, depending on
the size of the argument list. This represents a significant improvement over
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task initiation latencies reported in earlier work on task-level parallel execution
systems on the Cell [14]. The null task round-trip overhead in TPC is about
385 ns, when the ideal DMA round-trip latency of the Cell is just under 312 ns [2].

We examine the performance of TPC using both kernels and real applica-
tions. We port two applications from the SPLASH-2 [18] suite (FFT and LU)
and demonstrate that porting applications written and optimized for shared-
memory multiprocessors to TPC requires mostly simple and mechanical code
changes. TPC achieves nearly perfect scaling of these codes on the Cell cores.
We further port two applications written previously to exploit coarse-grain paral-
lelism on multi-processors and clusters, PBPI [7] and an H.264 video encoder [17].
We demonstrate that TPC enables the exploitation of further fine-grain on-chip
parallelism in these applications, with manageable programming effort. Lastly,
we port and evaluate several benchmarks distributed with the Sequoia program-
ming language [6]. This effort demonstrates that TPC performs competitively
to existing task-based parallel programming models for the Cell.

The rest of this paper is organized as follows. Section 2 presents the design and
implementation of TPC and its runtime system on the Cell processor. Section 3
presents the hardware and software environment we used for our performance
evaluation. Section 4 presents our experimental results. In Section 5 we discuss
the advantages of TPC over previous efforts and related work. Finally, we draw
our conclusions in Section 6.

2 TPC Design and Implementation

The Cell processor contains a general purpose PowerPC Processing Element
(PPE) and eight special purpose Synergistic Processing Elements (SPEs) with
their own instruction set. Each SPE has 256 KBytes of local memory without
any other cache between this memory and the SPE core. The PPE has a coher-
ent memory hierarchy with two levels of cache prior to the single global external
memory. DMAs in the Cell are capable of scatter/gather functions and can have
multiple (16 per SPE) outstanding transfers. Moreover, the PPE can access the
local memories of SPEs with remote load/store operations as they are mapped to
the main memory address space (MMIO). The PPE and SPEs can also commu-
nicate with messages via small mailbox registers. These options create trade-offs
that need to be understood before the runtime system is able to take advan-
tage of them. Finally, all communication in the Cell processor happens over an
on-chip element interconnect bus (EIB) that consists of four bi-directional rings.

TPC uses program annotations to identify certain procedure calls as concur-
rent tasks. Currently, annotations occur at the procedure level. Programmer can
encapsulate blocks of code or groups of loop iterations in TPC procedures. TPC
procedure calls execute in the same or another core, as asynchronous tasks, with
the current core continuing execution. In this work, procedure arguments can be
in, out, or inout. The issuing task can wait for tasks using point-to-point or bar-
rier synchronization. When issuing an asynchronous task, the runtime returns a
handle that can be used later for managing the specific instance of the issued
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task, while the issuing task continues with program execution. When a task
completes, it notifies the issuer for its completion. TPC procedures have no re-
turn values and all arguments are passed by reference. TPC arguments and their
sizes are determined at runtime before task initiation. TPC supports continuous
and fixed-stride arguments. We expect that programming interface extensions
for specifying memory layout for task arguments will play an important role on
programmer effort.

The TPC runtime library consists of two main parts, the initiator and the
target. Although any core can play the role of the initiator or target, currently,
and due to the Cell architecture, we only support task initiation from the PPE.
Similarly, only SPEs can execute tasks as targets. Each task consists of a de-
scriptor. Task descriptors are prepared by the initiator and they are placed in
task queues for execution. There is one task queue per target, located in its
local storage. The task descriptor contains the function id and the list of ar-
guments. For every argument, the descriptor specifies the argument’s address in
main memory, the argument size, a flag indicating if it is in, out, or inout, and
for stride arguments the stride between the elements.

TPC uses a private task queue for each SPE. The task queue itself is an array
of task descriptors. Since our goal is to eliminate off-chip operations, we place
each task queue in the local storage of the corresponding SPE. In addition to
the task queue, the runtime maintains a completion queue for each SPE (Fig-
ure 1(a)). The PPE polls each completion queue for task status notifications
from the SPEs. When a completion is received the task entry in the correspond-
ing task queue is released. Since tasks run to completion in each SPE, tasks
complete in order. The task completion status consists of a flag and a task id.

An important architectural aspect for implementing a task-based runtime
is the available mechanisms for communication among different memories and
cores. Although DMA performance on the Cell has been thoroughly analyzed in
previous work [2], low-latency control transfer mechanisms have not been fully
explored. In this work we examine PPE to SPE round-trip latency with various
mechanisms. We use the PPE as initiator, so the available options are: mailbox
messages, remote stores to SPE’s local store (MMIO), and PPE-initiated DMAs.

SPEs can communicate with the PPE via mailbox messages, DMA, or a
variant of DMA using the Atomic Cache Unit (ACU). A simple, non-atomic
DMA transfer writes results to main memory and invalidates the PPE’s cache,
thus requiring off-chip accesses. The ACU is intended for implementing high-
performance atomic synchronization primitives between SPEs and the PPE in
the global address space, using direct cache-to-cache transfers that remain on-
chip. This mechanism supports reserve-line (load-locked), conditional-store, and
unconditional-store operations.

Task initiation. Mailboxes are not appropriate mechanisms for initiating tasks.
First, the mailbox register resides in the SPE’s MFC. Sending mailbox messages
incurs in the PPE the same cost as a remote store operation because the SPE
mailbox register is memory mapped to the PPE in the same way as the SPE
local memory. In addition, to safely use the mailbox register a remote load is
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required first to check the status of the mailbox register and to ensure that
previous mailbox messages have been consumed by the SPE. This introduces
a network round-trip latency before posting the mailbox message. Using PPE-
initiated DMA requires five remote store operations to special SPE registers.
Then, the DMA controller of the SPE performs the actual DMA from main
memory to the local SPE memory. Thus, after preparing a task descriptor in
(cached) memory, the only two realistic options for the PPE to initiate a task
are: (a) issuing remote stores to post the descriptor to the SPE task queue or (b)
issuing fewer stores to indicate the existence of a new task descriptor, which then
the SPE can pull using DMA. Note that the first approach requires a number of
MMIO stores from the PPE that depend on the size of the task descriptor for
each task. The second approach requires a fixed number of remote stores at the
PPE but introduces an additional DMA transfer in the SPE. Assuming the task
descriptor is not evicted from the PPE cache, both approaches result in on-chip
traffic only. In all cases, PPE stores to SPEs are cache inhibited and complete in
program order. The PPE can use vector store instructions to reduce the number
of stores required to post a single task descriptor. The final store instruction
sets the active flag of the task descriptor in the task queue to notify the SPE of
a new task arrival, while the SPE polls its local memory. In our evaluation we
examine both options for task initiation.

Task pre-fetching and execution. Once a new task has been posted to the SPE’s
task queue, the SPE extracts the task descriptor, fetches in arguments, executes
the designated function, and writes back out arguments. The main challenge
in executing these steps is to maximize overlapping of data transfers with task
execution. To achieve this, TPC pipelines the different stages of task execution
and uses pre-fetching to overlap argument transfers and task execution.

Each task can be in one of the states ACTIVE, FETCH, READY, WRITE-
BACK, COMPLETE. Before executing a task that is ready, the SPE prepares
and issues the DMA commands for as many active tasks as possible from its
task queue, depending on the available space in the local storage, and places
these tasks in the fetch state. Then, it turns to executing the first task in the
queue whose arguments are available. When a task is done executing, the SPE
will initiate the write-back of out arguments and task completion status. Write-
back is asynchronous; The SPE places the task in write-back state and during
write-back it tries to pre-fetch data for the next active tasks in the queue. When
write-back finishes, the task turns to the complete state. If there are no more
active tasks in the task queue or the data of the next task has arrived, the next
task starts execution. Multiple write-backs and pre-fetches might be outstanding
and being overlapped with task execution.

Task completion. When a task completes, the SPE sends its completion status
to the SPE’s completion queue that is placed in main memory. The transfer of
the completion status is ordered with respect to the write-back of the task’s
results. The PPE polls these queues for completed tasks from each SPE. A task
completion informs the PPE that an entry in the corresponding task queue is
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now free and that it can issue a new task. Thus, the PPE polls the completion
queue when: (a) there is no more space in the task queues (b) the application
waits on task completion for synchronization purposes. We indicate the first type
of wait as queue stall time and the second as synchronization wait time.

The SPE can signal completion via a mailbox register or DMA transfer. Al-
though the writing of the mailbox register incurs very low overhead in the SPE,
it requires the PPE to poll the status of the register via remote loads that gen-
erate unnecessary EIB traffic. Thus, it is preferable for the SPE to use a DMA
transfer to a memory location. Then the PPE can poll using cached loads. In
this case, to avoid the cache invalidation and the resulting off-chip transfer, we
use the “putqlluc” atomic DMA command to unconditionally update the PPE’s
cache. Finally, each completion queue entry is padded and aligned to cache line
boundaries (128-bytes) for optimal DMA performance.

Based on these observations the main task management operations in TPC
are shown in Figure 1(a). Overall, task management operations in TPC require
only on-chip transfers. Next, we discuss our evaluation methodology and the
applications we use.

3 Experimental Platform and Methodology

In our experiments we use a Playstation3 (PS3) game console system, equipped
with a 3.2 GHz Cell processor and 256 MBytes of main memory. On the PS3,
applications are allowed to access only six of the eight SPEs in the Cell processor.

In our evaluation we use both application kernels as well as full applications.
The applications we use are: FFT and LU from SPLASH-2 [18], PBPI [7], and
an H.264 Encoder [1]. We re-implemented LU and FFT with single precision
floating point arithmetic, replacing the original double precision version, because
the SPEs exhibit significantly higher performance with single precision floating
point operations. Using single-precision floating point arithmetic results in higher
communication to computation ratios and a more realistic evaluation.

LU. We maintain the original algorithm [18] and modify the execution control
structure of LU to employ a single master and multiple worker cores. Phases
between barriers in the original code are translated to tasks, with the master
core waiting between phases for all tasks to complete. Porting LU to TPC es-
sentially involves converting three compute-intensive functions to TPC : bdiv(),
bmod(), and bmodd(). The main modification to these functions is the identifi-
cation of shared memory accesses in their body and conversion of these updates
to a task argument list. We use the contiguous blocks version of LU from the
SPLASH-2 suite, therefore we avoid stride arguments.

FFT. The SPLASH-2 version of FFT uses a six-step algorithm that involves
alternating phases of transpose and FFT calculations. In our porting, we re-
organize the code as follows: We merge steps two and three in a single asyn-
chronous call to reduce data transfers, as both steps modify the same data. We
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modify the transpose step to transpose the matrix in place. We split the orig-
inal matrix into blocks in a similar way as the original SPLASH-2 FFT but
we use the local storage of SPEs as an intermediate buffer to transpose each
block. Although certain aspects of porting FFT to TPC require understanding
the existing code beyond syntactic modification, eventually the changes required
are simple structural changes that do not require modifying data structures or
re-writing the code. Similarly to LU, this is because FFT has been optimized
to avoid fine-grain accesses to shared memory, which hinder scalability in tradi-
tional shared memory multiprocessors.

PBPI. Parallel Bayesian Phylogenetic Inference [7] constructs phylogenetic trees
from aligned homologous DNA sequences. The original code is implemented in
MPI. The TPC version of PBPI aims at exploiting fine-grain parallelism in each
MPI process by using TPC tasks. We use TPC tasks to parallelize three loops
that compute the likelihood on each node of the phylogenetic tree. The three
loops are separated by barriers. Each node has enough data to produce tasks for
all SPEs with argument sizes that result in efficient DMA transfers. Additionally,
loop portions that each task executes are unrolled and vectorized. We introduce
a user-defined parameter that specifies task size in terms of loop iterations. We
implement a static load balancing scheme to ensure that all SPEs execute the
same number of tasks, while adjusting their size to be as close as possible to the
user-defined size.

H.264 Encoder. A typical H.264 video encoder consists of three components:
prediction, transformation, and entropy encoding [17]. We port an existing par-
allel encoder, x264 [1], originally written for shared-memory multiprocessors, to
the Cell using TPC . Although parallelization of x264 can occur at different gran-
ularities, the limited on-chip memory leads to parallelization at the macro-block
level, which allows a single frame to be processed in parallel by all SPEs. This re-
quires satisfying macro-block dependencies in an antidiagonal-based manner [16].
We port the analyze, encode and Context-based Adaptive Variable Length Cod-
ing phases to the SPEs, leaving the rest of the code on the PPE. This allows for
parallelizing about 85% of the serial execution time. Finally, we vectorize certain
kernels of motion estimation for the SPEs: sum of absolute differences, sum of
absolute transformed differences, and pixel average. The remaining application
code that runs on the PPE is vectorized using the PowerPC Altivec extensions.

Kernels. We port SAXPY, SGEMV, and CONV2D directly from their original
implementation in Sequoia [6] to TPC , with no structural or algorithmic mod-
ifications in the kernel code. SAXPY and SGEMV are communication bound.
CONV2D is computation bound. CONV2D uses convolution to apply a mask
to a 2D image. The initial image of size M × N , is decomposed into a set of
parallel 2D convolution subproblems, each computing a non-overlapping region
of the output image of size S × T .

For each application, we present execution time breakdowns for both the PPE
and the SPEs. We break down the execution of the PPE in three parts: time
spent in the TPC runtime, time waiting for SPEs to complete, and time spent
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Fig. 1. (a) TPC runtime operations. (b) Null task latency for the different initiation
and completion mechanism. (c) Null task round-trip breakdown for MMIO initiation
and atomic DMA completion.

in application code. SPE breakdowns consist of task compute time, library time
(including data transfer time), and idle time. Also, as a reference point, we show
application execution time for a single PPE, where this is possible. Finally, in
this work we assume that the code to be executed by each task is already present
on the target SPE and PPE distributes tasks round-robin across SPEs.

4 Experimental Results

4.1 Basic Task Overheads

In this section we examine the basic overheads associated with task operations
in TPC using null tasks, which perform no computation. Furthermore, we set
the task queue size to a single entry to avoid overlapping of runtime overheads.

In Figure 1(b) we see the total latency for initiation and completion of a null
task. We evaluate two methods for initiation and two methods for completion.
The PPE can initiate a TPC task with remote stores directly to an SPE’s local
storage. We refer to this mechanism as MMIO initiation. Alternatively, the PPE
can build the task descriptor locally in its L2 cache and initiate a DMA command
in the SPE’s DMA controller to fetch the descriptor to the local storage of the
SPE. We refer to this mechanism as DMA initiation. Completion status from
SPE can be sent with a simple DMA command or an atomic DMA command.
We refer to these methods as DMA and atomic (ACU) completion respectively.
We use zero-byte arguments to show how the overhead of the runtime varies
with the number of TPC arguments without including the DMA transfer costs
that are not affected by the design of the runtime system. First, we see that
minimum round-trip latency is about 1230 cycles or 385 ns. Second, we note
that using MMIO for task initiation and the ACU for task completion results in
the lowest overhead. Using DMA instead of MMIO for task initiation adds about
1000 cycles, whereas replacing the ACU with regular DMA for task completion
adds about 200 cycles.
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Figure 1(c) shows the breakdown of null-task latency in the best case, when us-
ing MMIO and atomic DMA, for a varying number of zero-byte arguments. PPE
initiation includes building the task descriptor and issuing the remote stores.
The PPE initiation overhead increases slowly with the number of arguments
from 180 to 380 cycles. The EIB round-trip latency is about 800 cycles. We
should note that both PPE and SPE are dual-issue, in-order processors. This
makes them vulnerable to register dependencies and poor instruction scheduling.
For this reason, in the PPE, we use a separate tpc callN() function for tasks
with N arguments. In these versions of tpc callN() functions, as the number of
TPC arguments is fixed, we perform loop-unrolling and appropriate instruction
scheduling to help the compiler produce more efficient code. However, we can
not apply the same method for run-time operations in the SPE as they depend
not only on the number of TPC arguments but also on the types of these ar-
guments. We expect that compilers will be able to deal with these issues when
generating code for the TPC runtime.

The SPE portion of the round-trip overhead, excluding DMA transfers for
task data, involves four steps: SPE task detection recognizes the user function
to be invoked and sets up internal structures; SPE DMA list builds the DMA list
elements for input and output arguments, as described in the task descriptor;
SPE buffer allocation allocates the required space for task data in the local
storage; SPE completion builds the completion status and issues the atomic
DMA command to signal completion. The processing of tasks in the SPE is
dominated by the time needed to create the DMA list for fetching inputs and
writing back results. The cost for a single argument is 650 cycles and increases
to 1450 cycles for eight arguments. On the other hand, the time needed for task
detection, buffer allocation, and issuing the DMA for the completion status is
about 280 cycles and is not affected by the number of TPC arguments.

4.2 Impact of Queue Size

Figure 2 shows the impact of task queue size on null task latency and throughput,
when using a single argument of varying size, with the generic version of the
tpc call() function. The minimum average latency for null task with a zero-
byte argument is about 900-1000 cycles, when using more than two SPEs and
queue size of two or four, due to overlapping of tasks on multiple SPEs. Larger
queue sizes increase the average latency to about 1100 cycles when using more
than one SPEs. We observe similar behavior in the case of non-zero arguments
for null tasks. However, latency increases when queue size increases above four.

When looking at throughput in Figure 2, we see that a single argument of 8
KBytes or more can reach maximum throughput with queue sizes of two or more
on three or more SPEs. A queue size of one can reach maximum throughput only
when using all six SPEs. An argument size of 4 KBytes approaches half of the
maximum throughput for two SPEs and a queue size of four. The maximum
throughput achieved with a single 1-KByte argument is about 3 GBytes/s (12%
of the theoretical peak of 25.6 GBytes/s) with four SPEs and a queue size of
two or four.
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Fig. 2. Impact of queue size on null-task latency (top) and throughput (bottom) for
different number of TPC arguments

Overall, we expect that a small task queue size of up to four will be enough for
achieving all possible overlap of communication and computation in the SPEs.

4.3 Application Scaling

LU. Figure 3 shows LU execution time breakdowns for both PPE and SPEs
with a 4K × 4K input matrix, using 64 × 64 and 16 × 16 blocks. LU, though a
shared memory application has already been optimized to avoid scattered, fine-
grain accesses to shared data structures. For both block sizes, execution time
scales with the number of SPEs. Maximum speedup for six SPEs is 5.98 and
5.87 for 16×16 and 64×64 blocks respectively. However, note that using 16×16
blocks is about 105% slower than using 64 × 64 blocks when using one SPE.
With 64 × 64 blocks compute time dominates, as there are significantly fewer
and larger DMA transfers and the larger task compute time allows the runtime
to effectively pre-fetch future tasks.

FFT. Figure 3 shows the execution time breakdowns for the PPE and SPEs for
4M and 64K elements. The larger FFT problem size of 4M complex reals requires
about 64 MBytes of memory. FFT exhibits good performance and scalability.
For 4M FFT, TPC achieves speedup of 5.05 in 6 SPEs and for 64K FFT TPC
achieves speedup of 5.1. The number of TPC tasks depends only on the problem
size, as the task granularity is fixed to a single row of the matrix. For the 4M
problem size there are enough tasks to fill the task queue of every SPE. On the
other hand, the 64K problem size does not create enough tasks to take advantage
of task pre-fetching and incurs higher sync wait times on the PPE for more than
four SPEs. On the SPE side, compute time dominates the total execution time,
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Fig. 3. LU and FFT execution times. LU uses 4K×4K matrix, with block sizes 64×64
and 16 × 16. FFT computes 4M and 64K complex elements respectively.

whereas argument transfer overheads are less than 4% and 7% for the 64K and
4M problem sizes respectively. Overall, scalability of FFT is currently limited
mainly by the transpose steps of the algorithm. Table 1 shows that for 4M FFT
the computation and transpose times scale differently. Computation time alone
scales by a factor of 5.98 over 6 SPEs while the transpose time scales only by a
factor of 1.93 because memory throughput is saturated for more than two SPEs.
However, the time of the transpose step varies between 8.8% and 23% of the
total execution time and has a lower impact on scalability.

H.264 Encoder. In our experiments we use a number of full high definition
(1920×1088) video inputs taken from the HD-VideoBench [3]. Although the size
of a single macro-block is the same for every task, the amount of computation
involved in processing is different. Figures 4(a) and 4(b) present execution time
breakdowns for both PPE and SPEs for two different videos. Each video has
different computational complexity. We have set the queue size to two slots for
this application due to the high memory requirements for code in the SPEs
(about 150 KBytes of code). In our experiments we use three B-frames and one
reference frame with 128 × 128 motion vector search window. The achievable
speedup depends on the complexity of the input video sequence, since the input
stream affects the required computations. Overall, using 6 SPEs results in a
speedup of up to 5.0 compared to the initial version of the encoder running on
the PPE.

4.4 Comparison to Sequoia

Finally, we compare TPC to Sequoia using the SAXPY, SGEMV, and CONV2D
kernels that come with Sequoia. We port them to TPC using the same compu-
tation functions and the same data partitioning schemes. We also port PBPI to
TPC and compare with its Sequoia implementation [15]. SAXPY and SGEMV
are both communication bound kernels and saturate memory bandwidth with
more than two or three SPEs. For CONV2D, in order to achieve better DMA
performance, we split the 4K × 4K image into 32 × 64 blocks where each task
processes one block. The matrix is constructed in row-wise form, therefore we
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Fig. 4. TPC execution time breakdowns for x264, 2D convolution and PBPI

Table 1. FFT speedup

Speedup

SPEs Trans-
pose
fraction

Compu-
tation

Trans-
pose

Total

1 08.8% 1.00 1.00 1.00
6 23.0% 5.98 1.93 5.05
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Fig. 5. SAXPY and SGEMV breakdowns

use stride arguments. Computation time dominates the SPE execution time in
CONV2D. Figures 5 and 4(c) show that TPC and Sequoia scale similarly with
both communication bound and compute bound kernels. The performance dif-
ference between TPC and Sequoia for SAXPY and SGEMV when the kernels
use more than one SPEs is about 3%. TPC performs about 5% better than
Sequoia in CONV2D due to better overlapping of DMA transfers in the TPC
runtime.

For PBPI we use various task sizes in TPC . We find that tasks with argument
sizes larger than 4 KBytes reach almost maximum speedup at queue sizes of 4
or higher. Figure 4(d) shows that with 6 SPEs we achieve a maximum speedup
of 5.6 while Sequoia achieves a maximum speedup of 4.2 with the same setup.
TPC benefits from dynamic task execution and better load balancing in PBPI.

5 Related Work

The introduction of multi-core processors in mainstream computing environ-
ments has given rise to numerous proposals and associated research efforts on
parallel programming models. We concentrate our discussion of related work on
task-level parallel programming models targeting heterogeneous multi-core pro-
cessors with explicitly managed local memories and cover briefly other related
work due to space considerations.
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Sequoia [6] is a programming language which relies on explicit data accesses
and is similar to TPC in that locality is exploited through annotation of data
with in-out clauses. Sequoia follows a static execution model where the program-
mer statically optimizes the mapping of data and tasks relatively to the memory
hierarchy. TPC implements a dynamic execution model where the programmer
expresses parallelism and locality without considering the mapping of tasks and
data to cores. TPC is optimized towards achieving low-overhead dynamic task
management mechanisms in order to exploit fine-grain task-level parallelism,
whereas Sequoia is optimized for explicit, static locality management.

CellSs [13] is a programming model for expressing task-level parallelism with
code annotations. Contrary to TPC ’s RPC-style programming model, CellSs
uses compiler directives to annotate tasks and data with in-out clauses. The
distinguishing feature of CellSs is the use of a helper thread that dynamically
analyzes dependencies between tasks and schedules tasks dynamically after re-
solving their input dependencies. Dynamic dependence analysis incurs high over-
head, which can be amortized if the analysis can increase the degree of available
parallelism. TPC does not perform runtime dependence analysis although this
is not precluded by its design. TPC ’s task queues enable aggressive lookahead
optimizations, such as pre-fetching via multi-buffering, similarly to CellSs. On
the other hand, CellSs’s scheduling model assumes coarse task granularity to
mask the overhead of runtime data dependence analysis, whereas TPC targets
fine-grain task-parallel execution. TPC ’s measured task initiation/completion
times are one order of magnitude lower than those currently reported for CellSs.

OpenMP has been extended to support task parallelism [12]. OpenMP tasks
require the programmer to specify only the code region that will execute in paral-
lel as a task. Instead, TPC requires specification of both code and data accessed
by the task. The XLC [11] compiler for the Cell offers an OpenMP abstraction
for loop level parallelism, using DBDB [9]. XLC splits loop iterations across
SPEs and predicts statically the ideal number of grouped iterations in order to
overlap communication with computation. On the other hand, TPC generates
tasks dynamically and uses task queues to overlap DMA transfers of upcoming
tasks with current task execution. Our evaluation shows that TPC is success-
ful in hiding DMA latencies. Furthermore, TPC maps non-contiguous accesses
always to DMA-list elements to minimize DMA initiation overheads in the run-
time. On the other hand, DBDB uses an analytical model to predict whether
those accesses should be mapped to a single DMA, including unnecessary data,
multiple individual DMAs, or a single DMA list. The authors of DBDB find that
DMA lists offer the best performance in most applications. Overall, TPC aims
at minimizing the runtime overhead for preparing and initiating task and data
transfers on both the PPE and SPEs, whereas DBDB aims at optimizing data
transfer time.

Related work targeting heterogeneous multi-core architectures outside the
context of task-level parallel programming models includes data-parallel pro-
gramming models, such as RapidMind [10], and libraries for expressing and
managing communication between heterogeneous components, such as IBM ALF



320 G. Tzenakis et al.

and DaCs [5]. Other commonly used programming models for shared-memory
multiprocessors, such as Cilk [4], do not provide support for heterogeneous sys-
tems with explicitly managed local memories, although there are ongoing efforts
for extending these models to support heterogeneous systems in the future.

6 Conclusions

We present Tagged Procedure Calls (TPC ) a programming model for the Cell
processor, designed to exploit fine-grain parallelism and reduce programmer ef-
fort for scaling to large numbers of cores. TPC requires the programmer to
annotate programs at the procedure level for specifying parallel tasks and their
data accesses.

TPC implements task management using only on-chip operations for task
creation, initiation, assignment, and completion. TPC achieves null task initi-
ation and completion in 385 ns on the Cell, which is close to the round-trip
DMA latency. We find that applications previously implemented and optimized
for shared-memory multiprocessors can be ported with manageable effort that
involves mostly mechanical code changes and achieve high parallel efficiency us-
ing TPC . In addition, our results show that TPC enables the exploitation of
additional fine-grain parallelism on-chip in applications parallelized previously
at coarse granularity. Through a comparison with the Sequoia programming
language and its runtime we demonstrate that TPC performs competitively to
existing task-level parallel programming frameworks.

Finally, based on our experience with TPC , runtime support for future CMPs
will need to deal with three additional, broad issues: Mapping of the natural
task sizes of applications to fine-grained tasks for memory efficiency, scheduling
of fine-grained tasks, and code management. We believe that addressing these
issues at the runtime and architectural levels can result in efficient and scalable
task-based programming models for future CMPs.
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