
Running Kubernetes Workloads on HPC⋆

Antony Chazapis1, Fotis Nikolaidis1,
Manolis Marazakis1, and Angelos Bilas1,2

1 Institute of Computer Science, FORTH
2 Computer Science Department, University of Crete
{chazapis, fnikol, maraz, bilas}@ics.forth.gr

Abstract. Cloud and HPC increasingly converge in hardware platform
capabilities and specifications, nevertheless still largely differ in the soft-
ware stack and how it manages available resources. The HPC world typ-
ically favors Slurm for job scheduling, whereas Cloud deployments rely
on Kubernetes to orchestrate container instances across nodes. Running
hybrid workloads is possible by using bridging mechanisms that submit
jobs from one environment to the other. However, such solutions require
costly data movements, while operating within the constraints set by
each setup’s network and access policies. In this work, we explore a design
that enables running unmodified Kubernetes workloads directly on HPC.
With High-Performance Kubernetes (HPK), users deploy their own pri-
vate Kubernetes “mini Clouds”, which internally convert container life-
cycle management commands to use the system-level Slurm installation
for scheduling and Singularity/Apptainer as the container runtime. We
consider this approach to be practical for deployment in HPC centers, as
it requires minimal pre-configuration and retains existing resource man-
agement and accounting policies. HPK provides users with an effective
way to utilize resources by a combination of well-known tools, APIs,
and more interactive and user-friendly interfaces as is common practice
in the Cloud domain, as well as seamlessly combine Cloud-native tools
with HPC jobs in converged, containerized workflows.

Keywords: Cloud-HPC convergence · Kubernetes · Virtual Kubelet ·
Slurm · Singularity · Apptainer

1 Introduction

Both Cloud and High-Performance Computing (HPC) setups offer developers
computing environments to deploy large-scale applications, each with its unique
development tools and supporting utilities. The choice of platform usually de-
pends on the design characteristics and architecture of the application, or re-
quirements applying to the software frameworks utilized. As an example, it is
common to use HPC for running tightly parallelized codes performing large
simulations, while the Cloud is a better fit for deploying out elastic webs of mi-
croservices or Big Data runtimes. This dichotomy is challenged by the increasing

⋆ Preprint submitted for publication.



2 A. Chazapis et al.

complexity and diversity of large workloads that tend to be composed of multiple
processing stages in the form of workflows. Convergence is essential for develop-
ers of big processing pipelines, as they would like to effortlessly combine Cloud
with HPC steps and seamlessly transition between execution environments, us-
ing the most effective and efficient solution for each step.

Up to now, Cloud-HPC convergence has generally been realized with inter-
facing mechanisms for submitting HPC jobs from the Cloud side or vice versa.
However, bridging separate Cloud and HPC installations has several disadvan-
tages, as it requires synchronizing data between sites, each with its own storage,
data transfer, and authorization restrictions. Having two separate setups also
elevates the associated hardware and maintenance costs.

To this end, we explore an HPC-centric solution that accommodates both
Cloud and HPC on the same hardware. We focus our work on Kubernetes [9],
the most popular distributed container orchestrator in the Cloud [22] and the
runtime of choice for supporting the “Cloud-native” ecosystem [4]. We present
the design and implementation of High-Performance Kubernetes (HPK), an
open source integration of unmodified Kubernetes components and custom mod-
ules that runs as a user-level service, which in turn acts as a translator from
Kubernetes-native descriptions of services and jobs, to Slurm [16] and Singular-
ity/Apptainer [23, 17, 1] scripts that run on a typical HPC cluster. By delegat-
ing execution to Slurm, HPK “mini Clouds” comply with organization policies
and established resource accounting mechanisms. HPK requires minimal sup-
port from the HPC environment, all being changes to the container runtime
configuration, in order to enable private, inter-container communication across
cluster nodes and the ability to start containers that internally run commands
as arbitrary users.

HPK successfully runs several Cloud-native frameworks without modifica-
tions. This includes Argo Workflows [2] with placement of artifacts on MinIO
[10] (an S3 service), as well as examples using the Spark operator [8] and Ten-
sorFlow Serving [18]. We expect this technology to play a significant role in the
world of HPC, as it enables existing HPC users to tap on the vast collection
of available Cloud applications and services, as stand-alone solutions or in hy-
brid computation scenarios combining Cloud frameworks with HPC codes. HPC
centers may no longer need to maintain separate hardware partitions for Cloud
analytics and HPC, as HPK allows running the Cloud workloads on the main
HPC partition. Furthermore, HPK can be used to attract Cloud users to large
HPC installations, offering them a familiar interface to seamlessly exploit the
raw computing power available.

2 Related Work

We classify work related to Cloud-HPC convergence in two main categories:
Systems that maintain the separation of Cloud and HPC resources and systems
that embed one resource management framework into the other. In the former
case there are two separate resource managers, while in the latter there is a single



Running Kubernetes Workloads on HPC 3

authority that controls hardware allocations, shared by both Cloud and HPC
deployments; the embedded framework delegates resource management decisions
to the overall cluster manager. Works that assume separate clusters can further
be divided into bridging solutions that operate within the context of the Cloud
or HPC runtime, allowing the transparent submission of remote jobs, or third-
party systems that operate in their own context and are able to administer tasks
in both remote Cloud and HPC installations.

Many bridging solutions are available for Kubernetes, enabling Cloud users
to integrate the execution of remote HPC jobs into their workflows. In [24], the
authors use a utility called hpc-connector that acts as an HPC job proxy: Users
submit Kubernetes jobs with specific settings, and the hpc-connector forwards
them to the HPC cluster, monitors their execution, and collects their results.
In [29], a Kubernetes installation is interfaced to a Torque-based HPC clus-
ter, using a custom tool called Torque-Operator. The Bridge Operator [25] has
similar goals and a wider compatibility of remote job execution facilities. All
aforementioned projects use language extensions (Kubernetes custom resources)
for describing jobs targeted for the HPC cluster. On the other hand, KNoC
(Kubernetes Node on HPC Cluster) [26] is a virtual node for Kubernetes that
transparently manages the container lifecycle on a remote HPC cluster using
Slurm and Singularity. This technique effectively allows users to employ existing
Cloud-native tools, such as Argo Workflows to express complex data-processing
pipelines for both Cloud and HPC without explicit remote execution steps.

Bridging solutions are especially useful when Cloud and HPC resources are
colocated. HPC centers increasingly support on-demand provisioning of Cloud
resources—even as partitions of the main HPC machine [14]. However, when the
two are remotely situated, bridging suffers from the overhead of maintaining data
copies. The user must prepare and send inputs to the remote HPC cluster before
issuing any tasks, and then place back outputs in the Kubernetes context. Data
synchronization in hybrid workflows is addressed by StreamFlow [21], a third-
party system, which extends the workflow language with declarative descriptions
of execution sites (either Cloud or HPC) and their relationship to workflow
nodes. The runtime automatically infers data dependencies, so to copy required
data where needed before running each step.

Embedded convergence solutions avoid data copies and the requirement to
manage and maintain two separate setups, as both Cloud and HPC share a
common hardware platform. In [28], the authors embed the HPC runtime in
Kubernetes, by introducing the concept of the virtual cluster, as a group of
multiple container instances that function as a private HPC cluster for a user
(similar to [11]). Each node in a virtual cluster includes all necessary libraries
and utilities, as well as a full Slurm deployment; the user working inside a vir-
tual cluster can only view and manage jobs submitted from within the same
context. To coordinate resource allocations between tasks running within vir-
tual clusters and other Kubernetes services, the Slurm controller is extended
with a custom protocol that requests resources from the Kubernetes scheduler,
effectively placing Kubernetes in charge of resource management for the whole



4 A. Chazapis et al.

cluster. A custom Kubernetes scheduler is also employed, in order to apply differ-
ent container placement policies for “HPC” and “data center” services (typical
Kubernetes deployments that run in other containers).

From Slurm’s perspective, several embedded configurations are presented in
[27]: Over is defined as the setup where Slurm is in control of the cluster, creating
Kubernetes environments ephemerally within batch jobs, adjancent when both
Slurm and Kubernetes are installed on the same physical nodes but share a com-
mon scheduler (i.e., Kubernetes uses Slurm to place jobs [15]), and under when
Slurm-enabled pods are deployed in Kubernetes (like virtual clusters). HPK falls
within the over class, however it does not create a full Kubernetes environment
as a batch job, but rather transforms each Kubernetes-level deployment as an
individual Slurm script, allowing for better scheduling flexibility and finer grain
resource sharing.

We are not aware of any other system that embeds Kubernetes in HPC. User-
netes [19] is a step in this direction, providing a Kubernetes distribution that
can run without root privileges. We did consider extending Usernetes to imple-
ment HPK, but quickly realized that the necessity of interfacing with Slurm and
Singularity/Apptainer at multiple levels, would require reevaluating the internal
structure of Kubernetes leading to reimplementing several subsystems. Interest-
ingly, Usernetes solves the problem of managing the system’s routing tables by
utilizing a user-level networking stack, although this imposes several require-
ments to the environment, including availability of specific kernel modules.

3 Design

Our goal is to provide a mechanism for HPC users to run Kubernetes workloads
in a typical cluster environment, so they can easily deploy hybrid workflows that
combine Cloud-native frameworks with MPI codes. From a design perspective,
the requirements for this mechanism are:

– Compatibility: All Kubernetes abstractions should be available and fully
functional, except those that directly relate to physical hardware resources
(i.e., “NodePort” services that request a specific port number for exposing
services at Kubernetes nodes). Higher-level constructs, such as pods (one
or more containers that are scheduled and scaled as a group), deployments,
services, jobs, and volumes should be applicable with no changes. For sup-
porting microservices, pods should be individually addressable, with inter-
container networking and internal service discovery working as expected.

– Compliance: All resource management decisions should be delegated to the
cluster manager operating the cluster (i.e., Slurm). Organization policies
for resource allocation and accounting should be fully respected. Forwarded
workloads should include as much information as possible, so the cluster
manager can know at any point what is actually running. Also, minimal
(ideally none) configuration changes should be required to be done at the
host level by HPC administrators. Reliance on special libraries or binaries
that execute with “elevated” permissions should be avoided.



Running Kubernetes Workloads on HPC 5

– Usability: Make it easy for end users. Provide one simple command or script
to deploy. All binaries should be neatly packaged up with their dependencies
into a container, with no host-specific requirements. All relevant configura-
tion and files should reside in the user’s home directory.

To this end, we started by envisioning HPK as a user process; a Kubernetes-
in-a-box integration, packaging the official Kubernetes binaries in a container
that the user would be able to launch using a simple Slurm script. Kubernetes
is implemented as a set of communicating subsystems that collectively provide
the functionality of distributed container orchestration. A typical Kubernetes
deployment constitutes of the following (Figure 1):

– API server: The “heart” of Kubernetes. The main interface to the cluster
and the synchronization point for all controllers.

– etcd: The key-value store holding all state. Always accessed through the API
server.

– Controller manager: Watches for configuration changes or failures and per-
forms all necessary actions to reach the desired state set by the user. The
controller manager includes the controllers that implement the logic for the
base Kubernetes abstractions. As all controllers, it communicates only with
the API server.

– Scheduler: A controller that decides which node will be used to run new
pods.

– CoreDNS: A controller and DNS server for implementing naming and dis-
covery for pods and internal cluster services.

– Kubelet: An agent running on each worker node, implementing the pod life-
cycle using a specific container runtime (i.e., Docker or containerd directly).

– Network plugin: A service supporting the Container Network Interface (CNI)
specification that assigns addresses to pods. The network plugin, which—
depending on the Kubernetes version—is used by the kubelet or the container
runtime directly, implements the Kubernetes network model [7]. In addition
to assigning unique, cluster-wide addresses, it makes sure that pods can
communicate with each other across hosts. It may also realize traffic shaping
policies or other network-level features.

– Proxy: Creates local network routes for virtual IP addresses used by services
(i.e., for load balancing). Runs on each worker node, alongside the kubelet.

– Storage controller: A controller that provisions storage of some type that
can be attached to pods. Creates physical volumes to match requested per-
sistent volume claims. While this controller is optional, we consider it a core
component for a functioning system.

From these, we expected that the API server, etcd, controller manager, and
CoreDNS would require no changes, as they implement specific functions that
do not interface with the execution environment. On the other hand, assuming
that most HPC centers include Singularity/Apptainer as part of their standard
software environment, we would certainly require a custom kubelet to interface
with the container runtime. We considered several options on how to layout the



6 A. Chazapis et al.

Kubernetes

API server etcd

Controller manager

Scheduler

CoreDNS

Storage controller

Proxy

Kubelet Container runtime

Routing tables

Network plugin

Proxy

Kubelet Container runtime

Routing tables

Network plugin

Master node

Worker node

Worker node

kubectl

Fig. 1. Components involved in a typical Kubernetes deployment on bare-metal

cross-node Kubernetes components; whether to keep the arrangement of separate
Kubernetes agents running on every node, or use a single kubelet representing
the whole HPC cluster as one execution entity.

The former would require preallocating resources in several machines for a
multi-node deployment and then managing them from Kubernetes—essentially
running Kubernetes as one large Slurm job, spanning multiple nodes, which
would then internally schedule and place its own workloads. This solution, how-
ever, had several shortcomings. First, it would result in large, coarse-grain al-
locations, that would then need to be filled up with jobs, leading to less flexi-
bility (resource allocations in Slurm are static). Second, although not violating
the compliance requirement, the actual Kubernetes workloads would not show
up in Slurm, but remain hidden underneath the overall Kubernetes job. Only
Kubernetes would know the actual characteristics of each embedded workload,
including its size and duration.

For these reasons, it seemed reasonable to use a single, virtual kubelet in
HPK, which instead of interfacing directly with the container runtime, would
layer above both Slurm and Singularity/Apptainer for execution. In practice,
the hpk-kubelet is a translator from Kubernetes semantics to Slurm scripts,
as shown in Figure 2. With a single kubelet proxying requests to Slurm, the
whole HPK integration can be visualized as a translation service: Workloads
enter in YAML format through the Kubernetes API endpoint and exit as Slurm
scripts from hpk-kubelet. They transparently show up in Slurm queues, and
their Kubernetes-level resource requirements end up as allocation requests to
Slurm. This architecture has no special requirements for HPK as a whole; it can
all run with minimal resources on any cluster node. Additionally, with a single



Running Kubernetes Workloads on HPC 7

kubelet, the scheduler can be greatly simplified. Since cluster-level scheduling
is performed by Slurm, the HPK scheduler should always select hpk-kubelet,
regardless of actual resource availability.

Singularity/Apptainer

HPK (Kubernetes)

Slurm

Slurm 
commands/scripts

YAML workloads

Fig. 2. HPK translates Kubernetes workloads to Slurm and Singularity/Apptainer

The container runtime used also directly influences the mechanisms imple-
menting virtual addresses and networks employed internally by Kubernetes. In
a bare-metal Kubernetes setup, there are actually three networks involved: The
physical network between hosts, the—typically virtual—network used by pods,
and the virtual network used by services. While each uses a different IP address
range, the network plugin maintains the necessary routes for cross-network com-
munication between pods (and pods with hosts), while the proxy manages the
respective rules for services. HPK could not include any of these subsystems, as
they perform actions at the system level as the root user. Our approach for pod
addresses was to require that a corresponding network plugin is configured at the
Singularity/Apptainer level by the HPC administrators. Singularity/Apptainer
supports CNI plugins and can be easily set up to delegate network addressing
to a cluster-wide service (i.e., Flannel [5]). This, in addition to allowing contain-
ers to run as fakeroot for supporting common Docker images that use the root
user, are the only changes HPK requires from the HPC environment; both being
configuration options of the container runtime.

The service-level network is used by “ClusterIP” services. When such a ser-
vice is created, the Kubernetes control plane assigns a new virtual IP and the
proxy adds respective rules at the host to redirect traffic to a pod that implements
the service, or to load-balance between available backend pods. Supporting this



8 A. Chazapis et al.

functionality without being able to manipulate the routing tables of the host is
impossible, so we chose to completely disable “ClusterIP” services, making the
proxy obsolete. This would be possible via a Kubernetes admission controller—a
hook that monitors API requests and may reject or mutate them before reach-
ing the API server. In Kubernetes, services can explicitly request to not use a
virtual service IP (also called “headless” services). In such cases, service dis-
covery continues to function, as CoreDNS maps the service name to the actual
pod IPs instead of the virtual service address. Thus, microservice architectures
are not affected by the lack of service-specific IPs. If load-balancing between
pods is necessary, it can be implemented by using an additional service within
a deployment.

For storage, we experimented with various existing offerings and found that
it would be straight-forward to integrate a simple storage controller for bind-
ing directories inside the user’s home to containers as volumes (i.e., similar to
“HostPath” volumes).

The overall architecture of HPK is shown in Figure 3.

API server etcd

Controller manager

Pass-through scheduler

CoreDNS

Service adm. controller

Control plane container

Storage controller

hpk-kubelet

kubectl

HPK

Container runtime

Cluster node

Container runtime

Cluster node

Network plugin Network plugin

Slurm agent

Cluster manager

Slurm agent

Scheduler

Accounting

Slurm controller

Fig. 3. HPK architecture



Running Kubernetes Workloads on HPC 9

4 Implementation

HPK implementation started by integrating most Kubernetes submodules and
services into a container. The resulting Kubernetes-from-scratch image recipe
downloads and builds all relevant binaries. At runtime, necessary keys and cer-
tificates are generated, and the control plane is bootstrapped by initializing and
starting the executables in order. These include:

– Unmodified versions of theAPI server, etcd, controller manager, and CoreDNS.
As expected, these required no changes from the official releases.

– A simple scheduler that just selects the first available node.

– A simple admission controller that converts all services to “headless”, by
explicitly setting the “ClusterIP” to “None”.

We start this container using Singularity/Apptainer and wait for it to pro-
duce the configuration file containing the endpoint and credentials needed to
connect to the API server. This “control plane” container uses a virtual, private
IP, which is accessible by all hosts in the cluster, as the CNI plugin enabled in
Singularity/Apptainer has set up the appropriate network routes. Then, we start
hpk-kubelet, which uses the configuration file to connect to the API server and
announce its availability as a node. Without hpk-kubelet, pods can be created
in the API server without ever transitioning to a running state.

Our custom kubelet is implemented as a Virtual Kubelet Provider. Virtual
Kubelet [20] is an open source project that offers an intermediate, simpler API
to implement a kubelet; it is mostly used to easily submit containerized jobs
for execution on serverless platforms. Providers use Virtual Kubelet as a library
which implements the core logic of a node agent, and wire up their specific
implementations for supporting the lifecycle of pods and supporting resources
on non-standard container execution environments. The hpk-kubelet translates
Kubernetes actions into Slurm scripts using Singularity/Apptainer commands.

The main challenge faced when implementing hpk-kubelet, was respecting
the network semantics of pods. In Kubernetes, each pod may include multiple
containers in the same network namespace. Containers within the same pod
share the same external IP address and can use localhost (IP address 127.0.0.1)
to communicate with each other internally. As Singularity/Apptainer does not
support attaching a container to an existing namespace, we had to produce an
embedded container topology: hpk-kubelet starts a “parent” container, which
in turn uses Singularity/Apptainer to run each pod container. The pod IP ad-
dress is assigned to the parent container; “child” containers run within the same
network context without extra IP addresses. Synchronization between the hpk-
kubelet and parent containers is achieved through files placed under ∼/.hpk.
The ∼/.hpk directory, which is used for holding the state of all running Slurm
jobs and respective containers, is mounted by default in all parent containers.

In hpk-kubelet, creating a new pod is implemented as follows:

1. A request for a new pod is received.



10 A. Chazapis et al.

2. A pod-specific directory is created and listeners are established to watch for
changes in included files.

3. Two scripts are generated: A Slurm script that starts the parent container
and a secondary script that runs within the parent and starts all child con-
tainers. The secondary script also includes all necessary environment vari-
ables expected to be set in the Kubernetes context (mainly information on
available services and their respective ports) and volume mounts. The re-
sulting job identifier is recorded in a file within the pod directory.

4. Slurm starts the parent container, which in turn starts its children. The pod
directory is used by both scripts to save the generated IP address, as well as
exit codes and output of all containers.

5. The listener may react to changes on these files to calculate the new state
of the pod (i.e., a change in exit codes may trigger marking the pod as
“completed”, either with a success or failure).

6. The control plane is informed about the new state.

The hpk-kubelet will convert the requested allocation at the Kubernetes level
to corresponding flags specified in the preamble of the Slurm script. Additionally,
similar to KNoC [26], it will pass-through specific pod annotations unmodified
as additional flags, so that the user may further customize execution. This also
allows running a single container as a job in Kubernetes and scaling it up in
the HPC environment via MPI-specific Slurm parameters. The usage pattern is
unusual for Cloud users, but may prove helpful in HPC, as it allows compiling
workflows where each step’s scalability is individually controlled using just the
annotations. A simple example of an Argo workflow with an HPC running the
“embarassingly parallel” NAS benchmark [12] is shown in Listing 1. We use the
language’s withItems construct to spawn 4 parallel steps, each running another
instance of the executable with different parameters. Note the use of a Slurm
flag, defined as an annotation on the step template, to control the number of
tasks used for each instance. This template showcases a method to run a parallel
parameter sweep as part of a larger workflow. The “items” used may be explicitly
set or be dynamically generated as the output of a previous step.

1 kind: Workflow
2 metadata:
3 ...
4 spec:
5 entrypoint: npb -with -mpi
6 templates:
7 - name: npb -with -mpi
8 dag:
9 tasks:

10 - name: A
11 template: npb
12 arguments:
13 parameters:
14 - {name: cpus , value: "{{ item }}"}
15 withItems:
16 - 2
17 - 4
18 - 8
19 - 16
20 - name: npb
21 metadata:



Running Kubernetes Workloads on HPC 11

22 annotations:
23 slurm -job.hpk.io/flags: "--ntasks ={{ inputs.parameters.cpus }}"
24 slurm -job.hpk.io/mpi -flags: "..."
25 inputs:
26 parameters:
27 - name: cpus
28 container:
29 image: mpi -npb:latest
30 command: ["ep.A.{{ inputs.parameters.cpus }}"]

Listing 1. A simple Argo workflow executing multiple MPI steps in parallel, each with
a different number of Slurm tasks

Deleting a pod results in canceling the respective Slurm job, which in turn
updates the exit code of the parent container script that triggers cleanup. The
latter requires updating the API server and removing hpk-kubelet state, includ-
ing the pod directory.

For storage provisioning, we have currently integrated OpenEBS [13] in HPK
and configured it to create directories under ∼/.hpk to match volume claims.

HPK is open source and available online [6]. The repository includes docu-
mentation and scripts to deploy test environments in AWS ParallelCluster [3].
Most significant open development tasks include mapping GPU/accelerator re-
quests from Kubernetes to Slurm and handling port forwarding from services to
the cluster’s login node.

5 Conclusion

Kubernetes has become the industry standard runtime in the Cloud, providing
the necessary abstractions to embrace the breadth and heterogeneity of avail-
able resources. Compatible Cloud-native tools are constantly evolving, covering
a wide spectrum of applications, including database and queuing systems, in-
teractive code execution frontends, workflow management utilities, as well as
development frameworks that automatically optimize and scale operations. The
ability to deploy this software in an HPC cluster via High-Performance Kuber-
netes (HPK) opens up new possibilities for both Cloud and HPC users.

HPK simply runs as a user-triggered service. Container workloads are han-
dled by the hpk-kubelet executable—a virtual Kubernetes node representing
the entire HPC cluster as a single entity. The hpk-kubelet translates container
lifecycle actions to Slurm scripts and commands that internally use Singulari-
ty/Apptainer. HPK also includes several other customized Kubernetes modules
to facilitate integration with the HPC environment and simplify adoption by
HPC centers.

Acknowledgements. We thankfully acknowledge the support of the Euro-
pean Commission and the Greek General Secretariat for Research and Innova-
tion under the EuroHPC Programme through projects EUPEX (GA-101033975)
and DEEP-SEA (GA-955606). National contributions from the involved state
members (including the Greek General Secretariat for Research and Innovation)
match the EuroHPC funding.



12 A. Chazapis et al.

References

1. Apptainer, https://apptainer.org
2. Argo workflows, https://argoproj.github.io/projects/argo
3. Aws parallelcluster, https://aws.amazon.com/hpc/parallelcluster/
4. Cloud native computing foundation, https://www.cncf.io
5. Flannel, https://github.com/flannel-io/flannel
6. High-performance kubernetes, https://github.com/CARV-ICS-FORTH/HPK
7. The kubernetes network model, https://kubernetes.io/docs/concepts/services-

networking/#the-kubernetes-network-model
8. Kubernetes operator for apache spark, https://github.com/GoogleCloudPlatform/spark-

on-k8s-operator
9. Kubernetes: Production-grade container orchestration, https://kubernetes.io

10. Minio, https://min.io/
11. Mpi operator, https://github.com/kubeflow/mpi-operator
12. Nas parallel benchmarks, https://www.nas.nasa.gov/software/npb.html
13. Openebs: Kubernetes storage simplified, https://openebs.io/
14. S8s: Slurmenetes managed kubernetes service on meluxina hpc,

https://jpclipffel.s3.lxp.lu/userdoc/cloud/s8s/index.html
15. slurm-k8s-bridge: Experimental slurm scheduling plugin for kubernetes,

https://gitlab.com/SchedMD/training/slurm-k8s-bridge
16. Slurm workload manager, https://slurm.schedmd.com/documentation.html
17. Sylabs: Singularity container technology & services, https://sylabs.io
18. Tensorflow serving, https://github.com/tensorflow/serving
19. Usernetes: Kubernetes without the root privileges, https://github.com/rootless-

containers/usernetes
20. Virtual-kubelet, https://github.com/virtual-kubelet/virtual-kubelet
21. Colonnelli, I., Cantalupo, B., Merelli, I., Aldinucci, M.: Streamflow: Cross-breeding

cloud with hpc. IEEE Transactions on Emerging Topics in Computing 9(04), 1723–
1737 (oct 2021)

22. Coté, M.: Kubernetes is here to stay: This is why (2022),
https://tanzu.vmware.com/content/blog/state-of-kubernetes-2022

23. Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: Scientific containers for mo-
bility of compute. PLOS ONE 12(5), 1–20 (05 2017)

24. López-Huguet, S., Segrelles, J.D., Kasztelnik, M., Bubak, M., Blanquer, I.: Seam-
lessly managing hpc workloads through kubernetes. In: Jagode, H., Anzt, H., Juck-
eland, G., Ltaief, H. (eds.) High Performance Computing. pp. 310–320. Springer
International Publishing, Cham (2020)

25. Lublinsky, B., Jennings, E., Spǐsaková, V.: A kubernetes ’bridge’ operator between
cloud and external resources (2022), https://arxiv.org/abs/2207.02531v1

26. Maliaroudakis, E., Chazapis, A., Kanterakis, A., Marazakis, M., Bilas, A.: Interac-
tive, cloud-native workflows on hpc using knoc. In: Proceedings of the 5th Work-
shop on Interactive High-Performance Computing. InteractiveHPC 2022 (2022)

27. Wickberg, T.: Slurm and/or/vs kubernetes (2022),
https://slurm.schedmd.com/SC22/Slurm-and-or-vs-Kubernetes.pdf

28. Zervas, G., Chazapis, A., Sfakianakis, Y., Kozanitis, C., Bilas, A.: Virtual clusters:
Isolated, containerized hpc environments in kubernetes. In: Proceedings of the 17th
Workshop on Virtualization in High-Performance Cloud. VHPC’22 (2022)

29. Zhou, N., Georgiou, Y., Zhong, L., Zhou, H., Pospieszny, M.: Container orches-
tration on hpc systems. In: 2020 IEEE 13th International Conference on Cloud
Computing (CLOUD). pp. 34–36 (2020)


