Theophrastus: A Semantic Exploration Tool for Marine Taxonomists

Fafalios Pavlos, Papadakos Panagiotis
{fafalios|papadako}@ics.forth.gr

FORTH-ICS & University of Crete

Blue Hackathon
July 2, 2013
Theophrastus (Greek: Θεόφραστος; c. 371 – c. 287 BC), was the successor to Aristotle in the Peripatetic school. After Aristotle’s death, he continued his ichthyological research. He composed a treatise on amphibious fish. He offered the first systemization of the botanical world. **Phoenix theophrasti**, the Cretan Date Palm.
Data Available to Taxonomists

Many sources with available interesting data for taxonomists

- SPARQL endpoints for querying online Knowledge bases
- Web sources with literature related to a species
- Sources that provide available synonyms of a species in the literature
Taxonomists

Taxonomist Problematic Workflow

- **Diversity of Sources:** Taxonomists have to search for available information from a number of different places.

- **Ambiguous Synonyms:** Available synonyms are sometimes ambiguous (due to the huge 250 years bibliography).

- **Disengagement:** Taxonomists have to focus on other information sources instead of the original one.

- **Time Consuming:** Process is time consuming.
Taxonomists Need An Exploration Tool which:

- given a textual source (pdf, html) provides available information from a number of different Knowledge Bases in real-time
- when the taxonomist asks for it (i.e. sparql query cost paid only when needed)
- annotates the original information source
- is generic by configurable SPARQL endpoints and queries
 - take advantage of most accurate endpoints
 - support other areas of interest
- can semantically enrich textual information in RDFa
 - public repositories of RDFa enriched documents
 - search engines can take advantage of them (google, yahoo)
- taxonomist is not disengaged from the original information source
Data + Need = Hack (Theophrastus)

- **Entity mining** of original information source using GATE\(^1\) (over PDF or html)
- Taxonomists provide **entities of interest (categories)** through a configuration file (i.e. species, water areas, countries, etc) (a SPARQL endpoint for each category)
- Associate each category with a number of **information needs** (i.e. species synonyms, species taxonomy, species belonging to the same family or genus, etc)
- Each **information need** is associated with a specific SPARQL query
- **Annotate** original document with recognized entities (could use different colors for different categories) (for PDF file the entities are displayed in a sidebar)
- **Enrich** original information source with **semantic information**, i.e. RDFa (not for PDF files)
- **Navigate** to related information gathered from queries (i.e. related species, etc) through pop-up windows

All the above in **real-time**

\(^1\)http://gate.ac.uk/ie/
Theophrastus DEMO
Thank you!