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Abstract We present a collection of upper and

lower bounds on the complexity of asynchronous,

wait-free, linearizable, single-scanner snapshot im-

plementations from read-write registers. We argue

that at least m registers are needed to implement

a single-scanner snapshot with m components and

we prove that, in space-optimal implementations,

SCANS execute Ω(m2) steps. We present an algo-

rithm that runs in O(m2) steps and uses m + 1

registers.

We also present three implementations (namely,

T-Opt, RT and RT-Opt) that beat the Ω(m2) lower
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bound by using more registers. Specifically, T-Opt
has step complexity O(1) for UPDATE and O(m)

for SCAN. This step complexity is optimal, but the

number of registers that T-Opt uses is unbounded.

We then present interesting recycling techniques to

bound the number and the size of registers used,

resulting in RT and RT-Opt. Specifically, RT-Opt,
which has optimal step complexity, uses O(mn)

bounded-size registers, where n is the total num-

ber of processes.

Our implementations are the first with step

complexities that are (linear or quadratic) func-

tions only of m (and not of n). Moreover, T-Opt
and RT-Opt are the first implementations with op-

timal step complexity.

Keywords snapshots · single-scanner · multi-

writer · atomic objects · wait-freedom · lineariz-

ability · asynchronous · distributed algorithms ·
shared memory computing · step optimal algo-

rithms



1 Introduction

A fundamental problem in asynchronous, shared-

memory systems is to obtain an instantaneous view

of a block of shared memory while processes may

be concurrently updating its cells. Snapshots are

shared objects that provide such consistent views.

Specifically, a snapshot object consists of an ar-

ray of m components and supports two operations,

UPDATE that changes the value of a component, and

SCAN, which returns an instantaneous view of all

components. Snapshots can be used to record the

state of a system as it is changing, so they facili-

tate the solution of problems that have to perform

an action whenever the global state of the system

satisfies some condition [25]. Snapshots have been

extensively used for the design and verification of

distributed algorithms, e.g., for the construction

of concurrent timestamps [17], approximate agree-

ment [7], check-pointing and restarting [25], ran-

domized consensus [4], and the design of complex

distributed data structures [5].

A multi-writer snapshot allows each process to

UPDATE any component. It can be implemented

from read-write registers [3,12–14,21,22]. A single-

writer snapshot [1,2,8,19,20] is a restricted ver-

sion, where each component has only one process

that can UPDATE it. A snapshot implementation

from read-write registers uses the registers to store

the state of the snapshot components and provides

an algorithm, for each process, to execute SCAN and

UPDATE. A snapshot implementation is evaluated

in terms of its space complexity, which is expressed

in terms of the number (and the size) of registers

it uses, and its step complexity, which is the maxi-
mum number of steps taken by a process in every

execution to perform a SCAN or an UPDATE. The

advantages of snapshots can be exploited only if it

is possible to implement them efficiently.

Ideally, we would like to be able to design multi-

writer snapshot implementations, which have step

complexity that is independent of n, the total num-

ber of processes. (Usually, n is much larger than

the number m of snapshot components.) However,

it has been proved [14] that, in any implementa-

tion of multi-writer snapshot objects from a fixed

number of read-write registers, the step complexity

of SCAN grows without bound as n increases. Cur-

rent snapshot implementations [1,2,8,19,20,3,12–

14] from read-write registers have step complexity

at least linear in n.

In this paper, we show that the dependence of

step complexity on n can be beaten, if we restrict

attention to single-scanner snapshots [22,24,27]. A

single-scanner snapshot is an interesting variant of

a general snapshot object in which only one pro-

cess, called the scanner, performs SCAN operations

at any point in time.

Single-scanner snapshots have several applica-

tions and therefore studying their complexity is

of interest. Many of the contemporary program-

ming environments support garbage collection for

reclaiming memory. In such environments, a pro-

cess, known as a garbage collector, is periodically

executed to reclaim the unused memory. Backup

is another classical application of a single-scanner

snapshot algorithm. In such systems, a single pro-

cess is responsible for periodically taking snapshots

of a system’s critical data. As a last example, con-

sider a debugging environment for parallel applica-

tions. In all these environments, it is important to

take snapshots without interfering with the execu-

tion of the running application. The design of effi-

cient wait-free single-scanner snapshot algorithms

is therefore an interesting problem.

We study single-scanner, multi-writer snapshot

implementations and present a collection of upper

and lower bounds for their complexity. It turns

out that single-scanner multi-writer snapshot im-

plementations from read-write registers require at

least m registers, even if the registers are of un-

bounded size. Jayanti, Tan, and Toueg [23] have

presented a lower bound of Ω(n) on the step com-

plexity of implementations of perturbable objects

from read-write registers. They prove that single-

writer snapshots are perturbable [23]. Their proof

applies to the single-scanner case. A multi-writer
snapshot trivially implements a single-writer snap-

shot for m processes. This implies a lower bound

of Ω(m) on the step complexity of SCAN for single-

scanner, multi-writer snapshots.

We present a lower bound of Ω(m2) on the

step complexity of SCAN for space-optimal single-

scanner multi-writer snapshot implementations for

n > m processes. This lower bound holds even if

each of the snapshot components can store only

three different values. Additionally, we present a

single-scanner multi-writer snapshot implementa-

tion, called Checkmarking, which has O(m2) step

complexity and uses m+ 1 registers of unbounded

size. Thus, Checkmarking uses just one more reg-

ister than a space optimal implementation and its

step complexity matches the lower bound we proved

for such implementations to within a constant fac-

tor.
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We also present the Time-efficient family of sin-

gle scanner, multi-writer m-component snapshot

implementations from read-write registers. It con-

tains the first step-optimal implementations. These

implementations have step complexity O(m) for

SCAN and O(1) for UPDATE and use bounded-size

registers. The first implementation, called T-Opt,
is the simplest, but (in systems with no garbage

collector) the number of registers it uses depends

on the number of SCAN operations executed (that

might be unbounded).

To improve space efficiency, we first present a

relatively simple recycling technique that results

in an implementation, called RT, that uses O(mn)

bounded-size registers, and has step complexity

O(1) for UPDATE and O(n) for SCAN. Thus, RT sac-

rifices the step optimality of T-Opt for less space.

We then introduce a more interesting recycling

technique to get an implementation, called RT-
Opt, that uses O(mn) bounded-size read-write reg-

isters and achieves optimal step complexity, that

is, step complexity O(1) for UPDATE and O(m) for

SCAN. RT is a middle ground between T-Opt and

RT-Opt; its design provides intuition for RT-Opt
and simplifies its presentation. RT-Opt sacrifices

space for better step complexity. We believe that

it could be used to reduce the space complexity of

other interesting distributed problems.

A practical snapshot implementation should en-

sure that the performance of UPDATE is within a

small constant of that of a write. (It is usually not

desirable to significantly increase the cost of up-

dating shared memory.) The Time-efficient family

ensures this property by having UPDATES perform

a small number of accesses in shared memory.

We remark that T-Opt works even if processes

do not have unique identifiers. Moreover, T-Opt
and Checkmarking work even if the number of par-

ticipating processes is unbounded. All our single-

scanner implementations work even if several pro-

cesses perform SCANS, although not simultaneously.

T-Opt and RT do not require any changes. In order

that RT-Opt works, some of the scanner’s persis-

tent (static) variables must be accessed by each

process performing a SCAN, although these vari-

ables will never be accessed concurrently.

Table 1 summarizes known single-scanner snap-

shot implementations from registers.

The rest of the paper is organized as follows.

In Section 2, we discuss related work. Our model

is presented in Section 3. In Section 4, we present

the Ω(m2) lower bound on the step complexity

of space-optimal, single-scanner multi-writer snap-

shots. Checkmarking is presented in Section 5, and

T-Opt, RT and RT-Opt are presented in Sections 6,

7, and 8, respectively. A discussion and some open

problems are provided in Section 9.

2 Related Work

Fatourou, Fich, and Ruppert have proved in [11,

13] that multi-scanner multi-writer m-component

snapshot implementations from read-write regis-

ters require at least m registers. Moreover, they

have presented a lower bound ofΩ(mn) on the step

complexity of SCANS for such implementations that

are space optimal. Covering arguments [9] were

used to prove these lower bounds; first, a num-

ber of structural properties for these implemen-

tations were presented and then, these properties

were used to construct an execution where a trou-

blesome SCAN takes many steps. We employ similar

arguments in order to prove our lower bounds. It

is not difficult to observe that the structural prop-

erties proved in [13] also hold for the case of single-

scanner implementations. This leads to the obser-

vation that the space lower bound of Ω(m) proved

in [13] also holds for the single-scanner case. How-

ever, to prove the lower bound on the step com-

plexity, we had to cope with several complications.

To prove the lower bound of Ω(mn), it is essential

that, in the execution constructed in [13], a number

of SCANS take place concurrently with the trouble-

some SCAN in order to prove that the troublesome

SCAN needs to take more and more steps. In the

single-scanner case, it is not possible to have more

than one concurrent SCAN active at each point in

time, so it is only the troublesome SCAN, which

is allowed to be active during the execution. This

makes our construction more difficult and delicate

and differentiates it from that presented in [13].

Attiya, Ellen and Fatourou [6] proved a lower

bound of Ω(m) on the step complexity of UPDATE

for partitioned implementations of multi-scanner,

multi-writer snapshots from base objects of any

type. An implementation is partitioned if each base

object can only be modified by processes perform-

ing UPDATES to one specific component. T-Opt is a

partitioned implementation of single-scanner multi-

writer snapshots and has step complexity O(1) for

UPDATE. So, the lower bound in [6] can be beaten

if we restrict attention to the single-scanner case.

The first single-scanner, multi-writer snapshot

implementations from read-write registers were pre-

sented by Kirousis, Spirakis and Tsigas [24]. Their

first implementation uses an unbounded number of
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Implementation SW/MW Regs Type Regs Number Regs Size SCAN UPDATE

Checkmarking, this
paper

MW MW r/w m+ 1 unbounded O(m2) O(m2)

T-Opt, this paper MW MW r/w ∞ unbounded O(m) O(1)
RT, this paper MW MW r/w O(mn) O(logn) O(n) O(1)

RT-Opt, this paper MW MW r/w O(mn) O(logn) O(m) O(1)
Kirousis et al. [24] MW MW r/w O(mn) O(mn logn) O(mn) O(1)
Riany et al. [27] SW SW r/w n+ 1 unbounded O(n) O(1)

Jayanti [22] SW SW r/w O(n) O(1) O(n) O(1)
Jayanti [22] MW LL/SC & r/w O(m) O(1) O(m) O(1)

Table 1 Summary of known single-scanner snapshot implementations.

registers and has unbounded step complexity for

SCAN. A register recycling technique, which leads

to an implementation that uses O(mn) bounded-

size registers and has step complexity O(mn) for

SCAN and O(1) for UPDATE, is also presented in [24].

As in the recycled implementation in [24], RT-Opt
uses a two dimensional array of registers with O(n)

rows of m registers each. However, the recycling

technique employed by RT-Opt is much simpler

than that proposed in [24], since RT-Opt recycles

rows of this array and not a single element of an

appropriate row for each component, as done in

the implementation in [24]. Remarkably, our im-

plementations significantly improve upon the im-

plementations in [24] in terms of their step com-

plexity. This is accomplished by employing differ-

ent techniques to achieve fast termination.

For single-writer snapshots, a simplified version

of the implementation in [24] that uses n+1 single-

writer registers of unbounded size and has step

complexity O(n) for SCAN and O(1) for UPDATE is

presented in [27]. Jayanti [22] has presented a sim-

ple, single-scanner, single-writer snapshot imple-

mentation from O(n) bounded-size single-writer

registers that has step complexity O(n) for SCAN

and O(1) for UPDATE.

Recall that Table 1 summarizes known single-

scanner snapshot implementations from registers.

It is remarkable that the step complexity of all pre-

viously presented single-scanner snapshot imple-

mentations from read-write registers is a function

of n. In [22], Jayanti has also presented a single-

scanner snapshot implementation, which has step

complexity O(m) for SCAN and O(1) for UPDATE.

However, that implementation uses stronger base

objects such as LL/SC registers.

Our implementations are the first asynchronous

snapshot implementations, which have step com-

plexity that is linear (or quadratic) in the num-

ber of snapshot components. Snapshot implemen-

tations that are partially synchronous are provided

in [24], but the correctness of these implementa-

tions is heavily based on the timing assumptions.

Moreover, these assumptions simplify their design

significantly. A snapshot algorithm for a system in

which the number of processes may be infinite is

presented in [16].

3 Model

We consider a system in which a set P of n pro-

cesses run concurrently and asynchronously. The

processes communicate by accessing shared objects

and may fail by crashing. If a process crashes, it

takes no more steps.

A read-write register R is a base object that

stores a value from a set and supports the atomic

primitives write(R, v) that changes the value of

R to v and returns an acknowledgment ack, and

read(R), which returns the value of R without

any change. All processes may perform write to

a multi-writer register, whereas only one process

may perform write to a single-writer register.

A (multi-writer) snapshot object A consists of

m components A1, . . . , Am, each capable of storing

a value at a time; processes can perform two kinds

of operations on the object: UPDATE(i, v), which

updates component Ai with value v and returns

ack, and SCAN, which returns a vector of m values,

one for each component of the snapshot object.

We study implementations of multi-writer snap-

shot objects from read-write registers. An imple-

mentation uses the registers to simulate the state

of the snapshot components and provides an algo-

rithm, for each process, to implement each simu-

lated operation (i.e., SCAN and UPDATE).

A configuration C is a vector consisting of the

states of the processes and the states of the reg-

isters used by the implementation. A configura-

tion describes the system at some point in time.

In an initial configuration, all processes are in ini-

tial states and all registers contain initial values.

We say that a process takes a step whenever it
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performs a single access (read or write) to some

register. A step might as well contain the execution

of local computation by the process that takes the

step; this computation may cause a change to the

state of the process. Each step is executed atomi-

cally.

An execution is an alternating sequence of con-

figurations and steps starting with a configuration.

An execution α is legal, starting from a configu-

ration C, if the sequence of steps performed by

each process follows the algorithm for that process

(starting from its state in C) and for each regis-

ter, the responses to the operations performed on

the register are in accordance with its specification

and the value stored in the register at configura-

tion C. The schedule π(α) of an execution α is the

subsequence of α consisting of the steps of α. A

schedule π is legal from some configuration C if

there is a legal execution α starting from C for

which π = π(α).

A configuration C is reachable if there is a legal

execution α starting from an initial configuration

that results in C. A process is poised to perform

a primitive on a register in a configuration C if it

performs that primitive on the register when it is

next allocated a step. A process covers a register

R in a configuration C if it is poised to perform a

write primitive to R at C. A set of processes P ′

covers a set of registers R′ if |P ′| = |R′|, each pro-

cess in P ′ covers a register in R′ and each register

in R′ is covered by a process in P ′. Two executions

α and α′ are indistinguishable to some set of pro-

cesses P ′, denoted by α ≈P ′ α
′, if the sequence of

steps performed by each process p in P ′ and the

responses p received are the same in α and α′. In a

solo execution, all steps are performed by the same

process.

Let op be some SCAN or UPDATE operation in α.

The execution interval of op is the subsequence of

α that starts with the configuration that precedes

the invocation (i.e., the first step) of op and ends

when op responds. If the response of op precedes

the invocation of some other SCAN (or UPDATE) op′,

then op precedes op′. We say that op is pending at

some configuration C if the process p executing op,

has performed at least one step of the algorithm

of op at C but has not yet completed executing

op. If a process p has a pending operation at C, p

is called active; otherwise, p is inactive at C. In a

sequential execution, only one process is active at

each configuration of the execution.

A snapshot implementation is single-scanner if

in each execution produced by the implementa-

tion, there is only one process, called the scanner,

that performs SCANS at each point in time. We re-

mark that the implementations we present work

correctly even if several scanners perform SCANS

provided that the execution intervals of SCANS do

not overlap with one another. Our lower bounds

are also true in this case.

We study implementations that are lineariz-

able [18]. An execution α starting from an initial

configuration is linearizable if for each completed

SCAN or UPDATE operation op in α (and for some

of those that are not completed), we can choose a

point in its execution interval, called linearization

point, such that the response returned by op in α is

the same as the response op would return if these

operations were executed sequentially in the or-

der determined by their linearization points. The

sequence of these linearization points is called a

linearization of the execution. An implementation

is linearizable if all its executions are linearizable.

If L is a linearization of α, we say that the response

of op is consistent in α with respect to L (for sim-

plicity, we sometimes omit reference to α and L

whenever they are clear from the context).

Additionally, our implementations are wait-free.

Wait-freedom requires that every non-faulty pro-

cess should complete the execution of any SCAN or

UPDATE it initiates within a finite number of steps,

independently of whether other processes crash or

run at arbitrary speeds.

The step complexity of SCAN (UPDATE) for a

snapshot implementation I is the maximum num-

ber of steps executed by a process to perform SCAN

(UPDATE, respectively) in any execution produced

by I. The step complexity of I is the maximum

between the step complexity of SCAN and the step

complexity of UPDATE for I. The space complex-

ity of I is determined by the maximum number

of registers (and their sizes) used in any execution

produced by I.

4 Lower Bound

In this section, we present lower bounds for single-

scanner snapshot implementations. First, we argue

that in a single-scanner implementation of an m-

component multi-writer snapshot object for n >

m + 1 processes using only m multi-writer regis-

ters, processes must access the registers in a very

constrained way.

In multi-scanner (multi-writer) m-component

snapshot implementations that use only m reg-

isters, Fatourou, Fich and Ruppert have proved

5



in [12] that (1) SCANS do not write (Lemma 1), (2)

unless every process has taken steps, each UPDATE

operation writes to only one register (Lemma 2),

and (3) processes that perform UPDATE operations

to different snapshot components must write to

different registers (Lemma 3). It is easy to ver-

ify that the proofs of these lemmas for the single-

scanner case are similar to those presented in [12]

for multi-scanner snapshots. For the sake of com-

pleteness, the proofs of Lemmas 1-3 (as well as of

others that they depend on) are provided in the

appendix.

Let m,n be integers such that m < n − 1 and

fix any execution α of an n-process single-scanner,

multi-writer, m-component snapshot implementa-

tion from m registers starting from an initial con-

figuration, C0.

Lemma 1 (Fatourou, Fich and Ruppert) No

SCAN operation ever performs writes in α.

Consider any process pi, 1 ≤ i ≤ n, other than

the scanner, and any component Aj , 1 ≤ j ≤ m.

For any value v different from the initial value of

Aj , consider an execution where pi runs solo from

C0 to perform an UPDATE on Aj with value v. It

has been proved in [12] (see appendix) that this

execution contains at least one write to some reg-

ister and the first such write is performed to the

same register independently of the process that ex-

ecutes the UPDATE and the value used. Denote this

register by Rj .

Lemma 2 (Fatourou, Fich and Ruppert) If

there is a process, other than the scanner, that

takes no steps in α, then for each j ∈ {1, . . . ,m},
UPDATE operations to component Aj write only to

Rj.

Lemma 3 (Fatourou, Fich and Ruppert) For

distinct j1, j2 ∈ {1, . . . ,m}, Rj1 6= Rj2 .

Lemma 3 implies the following lower bound

on the space complexity of single-scanner, multi-

writer implementations of snapshot objects.

Theorem 1 Any n-process implementation of a

multi-writer, single-scanner snapshot object with

m < n− 1 components from multi-writer registers

requires at least m registers.

We next employ Lemmas 1-3 to prove our lower

bound on step complexity. To do so, we construct

an execution in which the scanner, ps, takes Ω(m2)

steps to perform a single SCAN operation S. The

construction is inductive, constructing executions

α0, α1, . . . , αm−2, in which ps takes more and more

steps to complete S. The key part of the induction

step is to show that, for each index i, 0 ≤ i ≤ m−2,

ps must read at least (m − i) registers after αi

to complete S. We prove that if ps completes S

without executing that many steps, then ps returns

an incorrect response. Thus, in αm−2, ps performs

at least Ω(m2) steps to execute S.

Theorem 2 Any n-process implementation of a

multi-writer, single-scanner snapshot object with

m < n− 1 components using m multi-writer regis-

ters has step complexity Ω(m2).

Proof Let ps, pu ∈ P , ps 6= pu, be any two pro-

cesses; ps will play the role of the scanner. We as-

sume that the initial value of every component is

⊥. Let B0 be the empty set, let π0 be the empty

sequence, and let α0 be the empty execution. For

0 < i < m−2, we inductively construct a sequence

of indices `i, where 1 ≤ `i ≤ m, a sequence of sets

of registers Bi, a sequence of processes pi, and a

sequence of schedules:

πi = ρ(`i, 0) · . . . · ρ(`1, 0) ·
σ1 · w1 · r1 ·
σ2 · w2 · r2 ·
...

σi · wi · ri ,

where for each 1 ≤ j ≤ i:

– pj is a process not in {ps, pu} that does not

take any step in πj−1,

– ρ(`j , 0) is the schedule of the biggest prefix of

the solo execution of UPDATE(`j , 0) by pj start-

ing from C0 that does not contain any write,

– wj is the write that pj is poised to perform

after ρ(`j , 0),

– σj is a sequence of read steps by ps, and

– rj is a single read step of R`j by ps.

The construction is done in such a way that, for

each 0 ≤ i < m− 2, the following claims hold:

1. if i > 0, R`i 6∈ Bi−1, Bi = Bi−1 ∪ {R`i}, and

|Bi| = i,

2. if i > 0, for every register R, if R is not in

Bi−1 ∪ {R`i}, then σi contains a read of R,

3. σi does not contain writes to any register, nor

does it contain any reads of register R`i ,

4. πi is legal starting from C0,

5. if αi is the execution we get when we apply

πi from C0, all steps by ps in αi are part of a

single SCAN operation S, and
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6. in a solo execution by ps starting from the final

configuration Ci of αi, all registers apart from

those in Bi are read.

The proof is by induction on i. For the base

case, where i = 0, Claims 1-5 hold vacuously. We

prove claim 6. Let γ be the execution where ps ex-

ecutes a SCAN operation solo starting from C0. We

prove that in γ all m registers are read. To derive

a contradiction, assume that there is an integer `,

1 ≤ ` ≤ m, such that R` is not read by ps during

γ. Let p ∈ P−{ps, pu} be any process and let γ′ be

the execution where p performs an UPDATE on com-

ponent A` with the value 1 solo starting from C0.

Let γ′′ be the execution we get when π(γ′) ·π(γ) is

applied starting from C0. Execution γ′′ is legal be-

cause Lemma 2 implies that all writes in γ′ are on

register R` and by assumption, register R` is not

read during γ. Thus, γ′′ is indistinguishable from γ

to process ps. Therefore, ps returns the same vec-

tor of values in both executions. Since ps’s SCAN

starts after p’s UPDATE has terminated in γ′′, pro-

cess ps must return the value 1 for component A`

in γ′′. Thus, ps must return 1 for A` in γ. How-

ever, no UPDATE with value 1 is executed in γ. This

contradicts linearizability for γ.

Induction Hypothesis: Fix any integer i, 0 <

i < m − 2. Assume that we have defined `i−1,

and we have constructed Bi−1 and πi−1 so that

the claims hold; let αi−1 be the execution we get

when πi−1 is applied starting from C0.

Induction Step: We choose `i and we show how

to construct Bi and πi so that the claims hold.

By induction hypothesis (claim 6), in a solo

execution by ps from the final configuration Ci−1
of αi−1, all registers apart from those in Bi−1 are

read. By induction hypothesis (claim 1), |Bi−1| =
(i−1). Since i < m−2, it follows that there is more

than one register that does not belong to Bi−1. Let

σi be the sequence of steps performed by ps when

it runs solo from Ci−1 until it has read all but

one register outside Bi−1 and it is poised to read

this last register for the first time. Let R`i be this

register and let Bi = Bi−1∪{R`i}. By definition of

Bi, it follows that |Bi| = i. Thus, claim 1 holds. By

definition of σi and R`i and by Lemma 1, claims 2

and 3 also hold.

Let pi be a process not in {ps, pu}, which has

not taken any steps during αi−1. Let

πi = ρ(`i, 0) ·
πi−1 ·
σi · wi · ri ,

where:

– ρ(`i, 0) is the schedule of the biggest prefix of

the solo execution of UPDATE(`i, 0) by pi from

C0 that does not contain any write primitive,

– wi is the write primitive that pi is poised to

perform after ρ(`i, 0) has been applied start-

ing from C0 (recall that the solo execution of

UPDATE(`i,−) starting from C0 contains at least

one write, and all writes contained in it are

to register R`i by Lemma 2), and

– ri is the read of register R`i that process ps is

poised to perform after ρ(`i, 0) ·πi−1 ·σi ·wi has

been applied starting from C0.

Let αi be the execution we get when πi is ap-

plied starting from C0. Since ρ(`i, 0) does not con-

tain any write primitives, ρ(`i, 0) ·πi−1 ·σi is legal

starting from C0. Moreover, wi and ri are just the

steps that processes pi and ps, respectively, are

poised to perform after ρ(`i, 0) · πi−1 · σi has been

applied starting from C0. Thus, αi is legal starting

from C0, and claim 4 holds.

By definition of σi and ri, claim 5 holds. We

next prove claim 6. To derive a contradiction, as-

sume that in a solo execution by ps starting from

the final configuration Ci of αi, there exists some

register R` 6∈ Bi that is not read. Denote by σ the

sequence of steps performed by ps when it runs

solo to complete its active SCAN starting from Ci.

Let p be any process not in {ps, pu} that does not

take any step in αi, and let

τ = ρ(`, 0) ·
πi ·
σ · w · S′

= ρ(`, 0) ·
ρ(`i, 0) · . . . · ρ(`1, 0) ·
σ1 · w1 · r1 ·
σ2 · w2 · r2 ·
...

σi · wi · ri ·
σ · w · S′ ,

where:

– ρ(`, 0) is the schedule of the biggest prefix of

the solo execution of UPDATE(`, 0) by p from C0

that does not contain any write primitive,

– w is the write primitive that process p is poised

to perform after ρ(`, 0) has been applied start-

ing from C0, and

– S′ is the sequence of steps by process ps for

executing one more SCAN operation (other than

S) solo starting from the configuration that we
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get when ρ(`, 0) · πi · σ · w is applied starting

from C0.

Let γ be the execution we get when τ is ap-

plied starting from C0. We argue that γ is legal.

By definition, ρ(`, 0) contains no write primitives,

so the execution we get when ρ(`, 0) · πi · σ is ap-

plied starting from C0 is legal. Since w is the step p

is poised to perform after ρ(`, 0) has been applied

starting from C0, γ is legal.

We aim at constructing another execution γ′

such that γ′ is indistinguishable from γ to process

ps and still ps must return different vectors of val-

ues in these two executions.

Execution γ′ is constructed by adding a num-

ber of UPDATES, each with value 1, executed by

process pu. More specifically, an UPDATE operation

U(`1, 1) by process pu on component `1 with value

1 is executed before σ1. For each 1 ≤ j < i, a

sequence of two UPDATES U(`j+1, 1) · U ′(`j , 1) by

process pu on components `j+1 and `j with value

1 is executed after σj . A sequence of two UPDATES

U(`, 1) · U ′(`i, 1) by process pu on components `

and `i with value 1 is executed after σi. An UPDATE

operation U ′(`, 1) with value 1 by process pu is ex-

ecuted after σ. Let

τ ′ = ρ(`, 0) · ρ(`i, 0) · . . . · ρ(`1, 0) ·
U(`1, 1) ·
σ1 · U(`2, 1) · U ′(`1, 1) · w1 · r1 ·
σ2 · U(`3, 1) · U ′(`2, 1) · w2 · r2 ·
...

σi−1 · U(`i, 1) · U ′(`i−1, 1) · wi−1 · ri−1 ·
σi · U(`, 1) · U ′(`i, 1) · wi · ri ·
σ · U ′(`, 1) · w · S′ .

Let γ′ be the execution we get when τ ′ is ap-

plied starting from C0. We first prove that γ′ is le-

gal. After the beginning of the execution of U(`1, 1)

(that is the first UPDATE by pu), each of the pro-

cesses p1, . . . , pi, p executes just the write primi-

tive that it is poised to perform. By Lemma 2, for

each 1 ≤ j ≤ i, all writes contained in U(`j , 1) are

to register R`j . By induction hypothesis (claim 3),

register R`j is not read during σj . Moreover, wj

overwrites any value that was written to R`j dur-

ing U(`j , 1). By Lemma 2, all writes contained in

U ′(`j , 1) are to register R`j . Register R`j is over-

written by wj before ps executes any read primi-

tive. By Lemma 2, all writes contained in U(`, 1)

and U ′(`, 1) are to register R`. By assumption, reg-

ister R` is not read during σ; moreover, register R`

is overwritten by w. Thus, none of the values writ-

ten to a register by pu is ever read by ps. It follows

that γ′ is legal starting from C0. Notice that γ′

is indistinguishable from γ to all processes other

than pu. (We remark that for defining τ ′ we abuse

notation and use U and U ′ to denote both the

UPDATE operations and the sequence of steps these

UPDATES perform in γ′.)

From now on we call process pu invisible, while

the rest of the processes that perform UPDATES are

visible. UPDATES performed by visible processes are

called visible UPDATES, whereas those performed by

pu are called invisible UPDATES. We remark that

all visible UPDATES use the value 0, whereas all

invisible UPDATES use the value 1.

The operations by pu and the final SCAN S′ are

executed serially in γ′, so they are linearized ac-

cording to the order of their execution:

U(`1, 1),

U(`2, 1), U ′(`1, 1),

U(`3, 1), U ′(`2, 1),
...

U(`i, 1), U ′(`i−1, 1)

U(`, 1), U ′(`i, 1)

U ′(`, 1), S′.

We next argue about the order in which visible

UPDATES are linearized. By claim 1, for all j, k, 1 ≤
j, k ≤ i, j 6= k, `j 6= `k. Moreover, ` 6= `j and

` 6= `k since R` 6∈ Bi. Thus, every visible UPDATE is

executed on a different component from any other

visible UPDATE in γ and γ′.

Since γ is indistinguishable from γ′ to process

ps, S
′ returns the same vector of values in γ and γ′.

In the partial linearization order presented above,

no invisible UPDATE on A`j is linearized between

U ′(`j , 1) and S′. Thus, for each 1 ≤ j ≤ i, S′

returns either 1 for component A`j or the value

0 of some visible UPDATE that is linearized after

U ′(`j , 1). However, S′ cannot return 1 for A`j be-

cause S′ returns the same vector of values in γ and

γ′, and no UPDATE with value 1 is executed in γ.

Thus, U(`j , 0) (the unique visible UPDATE on A`j )

must be linearized between U ′(`j , 1) and S′ (see

Fig. 1).

We next prove that in any linearization order of

γ′, the snapshot object always contains the value

1 in at least one of its components after the exe-

cution of U(`1, 1). For each 1 ≤ j ≤ i, the value 1,

written by U(lj , 1), is in A`j from the execution of

U(`j , 1) until the execution of U ′(`j , 1). Moreover,

the value 1 is in A` from the execution of U(`, 1)

until the execution of U ′(`, 1). Notice that S, the

first SCAN by ps, starts its execution in γ′ after

U(l1, 1) and terminates before U ′(`, 1). Thus, its

linearization point must be placed between U(l1, 1)
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Fig. 1 Proof of Theorem 2: Linearization points for SCANS and UPDATES in γ′.

and U ′(`, 1) (see Fig. 1). It follows that S must re-

turn the value 1 for at least one component in γ′

(independently of where exactly it is linearized).

However, ps must return the same vector of values

in executions γ and γ′, and no UPDATE with value

1 is executed in γ. This contradicts the fact that

γ is linearizable.

We conclude that claim 6 holds. The proof of

the induction step is now complete.

Claims 1 and 2 imply that for each i, 1 ≤ i <

m−2, ps performs m− i read primitives during σi
and ri. Thus, in αm−1, ps performs at least (m +

(m− 1) + . . .+ 3) ∈ Ω(m2) read primitives.

5 The Checkmarking Algorithm

In this section, we present Checkmarking, a single-

scanner, multi-writer m-component snapshot im-

plementation from m + 1 registers. Checkmarking
is linearizable and has step complexity O(m2).

A description of Checkmarking is provided in

Section 5.1. In Section 5.2, we prove that Check-
marking is linearizable, and in Section 5.3, we study

its space complexity and its step complexity.

5.1 Description

Checkmarking uses m+1 registers, denoted R1, . . .,

Rm+1; these are the only shared variables used by

the algorithm. Each component Ai, 1 ≤ i ≤ m, is

associated with a register Ri and processes updat-

ing Ai write only to Ri. Register Rm+1 is written

when some SCAN takes place (i.e., it is written by

the process executing the SCAN). Notice that if we

assume that all SCANS are performed by a single

process (that is, there is a single scanner in the

system), then Rm+1 is a single-writer register. We

remark that the algorithm is correct even if SCAN

operations are executed by different processes pro-

vided that no pair of SCANS overlaps.

Checkmarking is based on the well-known tech-

nique [1] in which a scanner repeatedly reads the m

registers written by the updaters until it sees the

same values in all registers in two consecutive sets

of reads. To achieve wait-freedom, a process exe-

cuting UPDATE helps SCAN by calculating a vector

of values and storing it in the appropriate register

together with the new value. In contrast to what

happens in [1], Checkmarking avoids paying a step

complexity cost of Ω(n) by introducing a new effi-

cient termination technique for SCANS, which takes

into consideration the fact that Checkmarking is

single-scanner.

For each 1 ≤ i ≤ m, register Ri stores the

following information: (1) the value of component

Ai, (2) the identifier id of the process p that per-

formed the last write to Ri,(3) a timestamp, which

is used by p to distinguish its UPDATES, (4) a se-

quence number, curr seq, that p read in Rm+1 at

the beginning of the execution of the UPDATE oper-

ation that last wrote in Ri, and (5) a vector view

containing a value for each of the m components.

Register Rm+1 stores only an integer, curr seq,

which has the initial value 1 and is increased by

one each time a new SCAN operation starts execut-

ing.

Each SCAN and UPDATE operation tries to ob-

tain a consistent vector by executing GetVector.

Each time a SCAN S is executed by some process

p, the following actions take place. Process p in-

creases by one the curr seq field of register Rm+1.

Then, p executes GetVector and returns the vec-

tor calculated by it.

Each process has a local variable ts, with ini-

tial value 0, which is incremented every time the

process executes an UPDATE operation. During the

execution of an UPDATE on some component Ai by

some process p, the following actions take place.

Process p first reads the value of curr seq from reg-

ister Rm+1. To help SCANS complete, the UPDATE

then tries to obtain a consistent vector by execut-

ing GetVector. Finally, p writes the new value of

Ai, its identifier, its increased timestamp, the value

of curr seq it read in Rm+1, and the vector of val-

ues calculated by GetVector to register Ri. The

pseudocode for SCAN and UPDATE is presented in

Algorithm 1. For ease of presentation, we assume
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Algorithm 1 Pseudocode for UPDATE and SCAN.

(We assume that components store values of type

data.)

struct register {
data value;
int id;
int timestamp;
int curr seq;
data view[1..m];

}

shared struct register R1, R2 . . . , Rm+1;
// initially, Rm+1.curr seq = 1

void UPDATE(int i, data value, int id, int ts) {
1 data view[1..m];
2 int curr seq;

3 curr seq = Rm+1.curr seq;
4 view = GetVector(curr seq);
5 Ri = <value, id, ts, curr seq, view>;
}

data *SCAN(void) {
6 data view[1..m];
7 int curr seq;

8 curr seq = Rm+1.curr seq + 1;
9 Rm+1.curr seq = curr seq;
10 view = GetVector(curr seq);
11 return view;
}

that Rm+1 has the same structure as the rest of

the registers and all its fields other than curr seq

are unused.

Any instance g of GetVector performs consec-

utive sets of reads of R1, . . . , Rm until one of the

following conditions is satisfied:

1. If the curr seq field of some register Ri has a

value larger than or equal to the curr seq pa-

rameter of g, then the UPDATE operation that

wrote this value to Ri started its execution af-

ter the beginning of the operation that invoked

g and finished it before the completion of g. In

this case, g returns the vector of values read in

the view field of Ri.

2. Assume that there exist integers ` > 1 and

j ≥ `, for which the following hold: there ex-

ists an integer d ≥ 0, such that (a) during the

`-th set of reads, d registers Rx1
, . . . , Rxd

(and

no others) have different values than those read

during the (`− 1)st set of reads, (b) g has seen

each of these d registers change at least once

between the `-th set of reads and the j-th set

of reads, and (c) j is the smallest and ` is the

largest integer for which conditions (a) and (b)

A1 A2 A3 A4

1
2 X
3 X X
4 X
5 X
6 X

Fig. 2 An example of an execution of an instance of
GetVector in Checkmarking that terminates by evaluat-
ing the second termination condition to true.

hold. Then, g responds by returning the value

fields of R1, . . . , Rm read during the `-th set of

reads. We remark that if d = 0, then g termi-

nates by observing, for each register, the same

values in two consecutive sets of reads, namely

the (` − 1)-st and the `-th set of reads; we re-

mark that in this case, j = `.

To better illustrate the second termination con-

dition, Fig. 2 shows array history for a snapshot

object of four components in an execution of a

SCAN S where six sets of reads take place before the

second termination condition becomes true and S

terminates. A X appears in those elements of the

array whose value has changed from the (j − 1)-st

set of reads to the j-th set of reads. Termination

condition (2) is satisfied for the first time when

j = 6 and ` = 3 because components A1 and A3,

which are seen by S to have changed from the 2nd

to the 3rd set of reads, have changed once more

between the 3rd set of reads and the 6th set of

reads. Notice that, for all smaller values of j, there

is no value of ` that satisfies the required property.

The pseudocode for GetVector is presented in

Algorithm 2. Each of the processes maintains a lo-

cal array of two dimensions, called history. Row

1 of history stores the information that is read

during the initial set of reads (line 18 of the pseu-

docode). Specifically, for each i, 1 ≤ i ≤ m, each

element of history[1][i] has two fields; these are r,

which stores the value read in Ri during the first

set of reads, and a boolean variable change, which

is equal to false. For each 1 < j ≤ m + 2, row

j of history stores the information that is read

during the j-th set of reads. We will prove in Sec-

tion 5.3 that at most m+ 2 sets of reads may take

place in any execution of GetVector. Moreover,

history[j][i].change, 1 ≤ i ≤ m, is a boolean vari-

able that indicates whether register Ri has been

found to have a different value when it was read

during the j-th set of reads from the value read

in it during the (j − 1)-st set of reads. The num-

ber of registers that have been found to indeed

have a different value is stored in checkmarks[j].
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Specifically, checkmarks[j] stores a counter of the

number of checkmarks in row j that have no later

checkmark in the same column (see Fig. 2).

To check whether condition (2) is satisfied, each

time a checkmark is added in history[j][i], where

2 ≤ j ≤ m+ 2, 1 ≤ i ≤ m, the algorithm walks up

column i starting from row j − 1 until it reaches

an earlier checkmark in column i (or the beginning

of the column). If an earlier checkmark is reached

on row ` of history, checkmarks[`] is decreased

by one and that checkmark is removed. If a row’s

counter becomes equal to zero, condition (2) is sat-

isfied and the algorithm terminates and returns the

vector of values stored in that row.

Consider any SCAN S and let U be an UPDATE

that performs its write primitive in the execution

interval of S. Notice that if U starts its execution

after S writes into Rm+1, then the execution inter-

val of U is contained in the execution interval of

S. A SCAN that sees such an UPDATE borrows the

vector written by it. Condition (2) guarantees that

S terminates even if it does not ever see such an

UPDATE.

5.2 Linearizability

Consider any execution α of Checkmarking. By in-

spection of the pseudocode (lines 1-5), it follows

that no UPDATE ever writes into register Rm+1.

Thus, Rm+1 is written only by SCANS. Moreover,

the integers stored in Rm+1 (lines 8-9) are strictly

increasing.

Observation 3 The following hold:

1. no UPDATE ever writes to register Rm+1, and

2. the values written into Rm+1 are strictly in-

creasing.

Let S be any SCAN executed in α and denote

by g the instance of GetVector executed by S.

Lemma 4 Suppose that g terminates after epoch

iterations of the while loop of line 20. For each

integer `, 1 ≤ ` ≤ epoch, at the beginning of the

`-th iteration, it holds that for each integer i, 1 <

i < `, checkmarks[i] > 0.

Proof The proof is a direct induction on `. The

claim holds vacuously when ` = 1. Fix any `, 1 ≤
` < epoch and suppose that the claim is true for `.

We prove that the claim holds for `+ 1.

Since ` < epoch, it follows that g does not ter-

minate during the `-th iteration of the while loop.

By inspection of the pseudocode, it follows that

the condition of the if statement of line 26 eval-

uates to true at least once during the execution

of the `-th iteration (otherwise, g would return on

line 38 before the end of the `-th iteration). It fol-

lows that checkmarks[`] > 0 at the end of the `-th

iteration.

The induction hypothesis implies that at the

beginning of the `-th iteration, for each j, 2 ≤ j <
`, checkmarks[j] > 0. By inspection of the pseu-

docode, it follows that checkmarks[j] is reduced

only whenever line 30 is executed. However, the if

statement of line 32 implies that the first time that

checkmarks[j] becomes equal to zero for some j,

g terminates. Since ` < epoch, this does not oc-

cur during the `-th iteration of the while loop. It

follows that at the beginning of the (` + 1)-st it-

eration, it holds that for each j, 2 ≤ j < ` + 1,

checkmarks[j] > 0.

By inspection of the pseudocode (lines 34 and 38)

and by Lemma 4, we get the following observation.

Observation 4 Suppose that g returns on line 34

or 38. Then, the following hold:

1. at the point that g returns, there is an integer

`, 1 < ` ≤ epoch, such that checkmarks[`] = 0,

and for each integer j, 1 < j ≤ epoch, j 6= `,

checkmarks[j] 6= 0,

2. g returns the values read during the `-th itera-

tion of the while loop of line 20.

We split the execution interval of g into epochs

as follows. Epoch 1 starts with the first and ends

with the last read primitive of the initial set of

reads. Similarly, for each i > 1, the i-th epoch (or

epoch i) starts with the first and ends with the last

read primitive of the i-th set of reads.

Assume that g completes on line 25 of the pseu-

docode. We denote by kg the largest integer for

which the following holds: there exists a sequence

U1, . . . , Ukg
of UPDATES such that:

– Ukg
is the UPDATE operation that writes the vec-

tor of values returned by g, and

– for each `, 1 < ` ≤ kg, the instance g` of

GetVector that is executed by U` returns (on

line 25) the vector of values written by U`−1.

Let SU(g) = U1, . . . , Ukg
and let SG(g) = g1, . . . , gkg

.

In case g does not terminate on line 25, SU(g) =

SG(g) = λ (where λ is the empty sequence). No-

tice that g and each of the g1, . . . , gkg
∈ SG(g)

return the same vector of values. Moreover, g1 re-

turns by executing line 34 or line 38 of the pseu-

docode, while g2, . . . , gkg , g return by executing line 25.
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Algorithm 2 Pseudocode for GetVector.

struct info {
12 struct register r;
13 boolean change;
}

data *GetVector(int curr seq) {
14 struct info history[1..m+ 2][1..m];
15 int epoch = 1, i, `, k, checkmarks[1..m+ 2] = {0, . . . , 0};
16 data view[1..m];
17 struct register mp;

// initial set of reads
18 for (i = 1; i ≤ m; i++) history[epoch][i] = 〈read(Ri), false〉;
19 epoch = epoch + 1;

20 while (true) {
// perform the next set of reads checking if condition 1 is satisfied

21 for (i = 1; i ≤ m; i++) {
22 mp = read(Ri);
23 history[epoch][i] = 〈mp, false〉;
24 if (mp.curr seq ≥ curr seq)
25 return mp.view;
26 if (history[epoch-1][i].r 6= history[epoch][i].r) {
27 history[epoch][i].change = true;

checkmarks[epoch]++;

28 for (` = epoch-1; ` ≥ 2; `−−) {
29 if (history[`][i].change == true) {
30 (checkmarks[`])−−;
31 history[`][i].change = false;
32 if (checkmarks[`] == 0) {
33 for (k =1; k ≤ m; k++) view[k] = history[`][k].r.value ;
34 return view;

} // if
35 break; // stop executing the for loop of line 28

} // if
} // for

} // if
} // for

36 if (checkmarks[epoch] == 0) {
37 for (k = 1; k ≤ m; k++) view[k] = history[epoch][k].r.value;
38 return view;

} // if
39 epoch = epoch + 1;

} //while
}

Let g(S) = g1 if SG(g) 6= λ, and let g(S) = g oth-

erwise. For clarity of presentation, Table 2 sum-

marizes the notation used in this section.

The following observation is a consequence of

the above definitions.

Observation 5 For any SCAN operation S in α,

the following hold:

1. g(S) returns on line 34 or line 38,

2. S returns the same vector of values as g(S),

and

3. if g is the instance of GetVector invoked by

S and SG(g) 6= λ, then g returns by execut-

ing line 25. Moreover, for each instance g′ of

GetVector in SG(g) other than g(S), g′ re-

turns by executing line 25.

We next assign linearization points to SCANS

that complete in α and to UPDATES that perform

the write of line 5 in α.

Consider any SCAN operation S that completes

in α. We find it helpful to assign a linearization

point not only to S but also to g(S). Assume that

g(S) returns after having executed epoch ≥ 1 itera-

tions of the while loop of line 20. By Observation 5

(claim 1), g(S) terminates by executing line 34 or

line 38. By Observation 4, at the point that g(S)
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Notation Description

Ai, 1 ≤ i ≤ m The i-th component of the snapshot object

Ri, 1 ≤ i ≤ m Register that is associated with component Ai; UPDATES to component Ai

write only to Ri

Rm+1 Register that is written by SCANS

α An execution of Checkmarking
S A SCAN operation in α
g The instance of GetVector executed by S

Ukg

The UPDATE that writes the vector of values returned by g (if g returns on
line 25)

SU(g) = U1, . . . , Ukg

The instance g`, 1 < ` ≤ kg, of GetVector executed by Ul terminates on
line 25 and returns the vector of values written by Ul−1; kg ≥ 0 is the
length of this sequence

SG(g) = g1 . . . , gkg

The sequence of instances of GetVector that are invoked by U1, . . . , Ukg
,

respectively
λ The empty sequence
g(S) g(S) = g1 if SU(g) 6= λ, g(S) = g otherwise

Table 2 Notation used in the proof of Checkmarking.

terminates, there is a unique integer `, 1 < ` ≤
epoch, for which it holds that checkmarks[`] = 0;

moreover, g(S) returns the values it read during

its `-th epoch. We insert the linearization point for

g(S) immediately before the point that performs

the first read primitive of the `-th epoch. The lin-

earization point for S is inserted at the same place

as that for g(S).

Let d ≥ 0 be the number of registers whose

values have changed from the (` − 1)-st to the `-

th epoch of g(S). Denote by Rx1
, . . . , Rxd

these

registers, denote by vx1
, . . . , vxd

the values read

by g(S) in Rx1 , . . . , Rxd
, respectively, during the

`-th epoch, and let Ux1
, . . . , Uxd

be the UPDATES

that wrote the values vx1
, . . . , vxd

to Rx1
, . . . , Rxd

.

Notice that Ux1 , . . . , Uxd
update different compo-

nents. For those UPDATES of the Ux1
, . . . , Uxd

that

performed their write primitives after the first

read primitive r1 of the `-th epoch of g(S), we

insert their linearization points immediately be-

fore the linearization point of g(S) (in any order

since they all update different components). After

we have assigned linearization points to all SCANS

(and to some UPDATES) according to the rules de-

scribed above, we linearize each UPDATE that has

not yet been assigned a linearization point at the

point where its write occurs. Let L be the lin-

earization of α determined by assigning lineariza-

tion points to operations as described above.

Intuitively, it turns out that all values read

by g(S) in the `-th epoch have been written by

UPDATES that have started their execution before

S writes to Rm+1. Some of them perform their

write before r1 (where S is linearized), whereas

others after it. Let U be such an UPDATE that per-

forms its write before r1. LetAj be the component

that U updates. We argue that U is linearized at

its write and no other UPDATE has written to Rj

between U ’s write and r1. This implies the con-

sistency of the value returned for Aj by g(S) (as

well as by S).

To guarantee the consistency of those values

returned by S that have been written by UPDATES,

which perform their writes after r1, we have to

move the linearization points of these UPDATES im-

mediately before r1 (that is earlier than the point

where their write primitives occur). Let U be an

UPDATE whose linearization point has been placed

immediately before r1. Assume that U updates

component Aj and let w be the write primitive

performed by U . Notice that w may obliterate the

evidence of some other UPDATE U ′ on Aj that per-

forms its write between r1 and rj . Since S does
not see the value that U ′ writes for Aj , U

′ is lin-

earized at its write primitive and therefore af-

ter the linearization point of U . This might cause

problems to the consistency of SCANS that follow

S (see Fig. 3). For this reason, termination condi-

tion (2) requires that S sees the value written by

one more UPDATE on Aj (let it be U ′′) after the

`-th epoch of its execution; we argue that U ′′ is

linearized at its write primitive, which occurs af-

ter rj and before the end of S, and therefore U ′′

is linearized after U and U ′. Thus, in order to be

consistent, SCANS that are subsequent to S must

return the value of U ′′ or some later UPDATE (and

not that of U ′, which they cannot be aware of).

By the way linearization points are assigned,

each SCAN and each UPDATE that is linearized at the

write primitive it performs on line 5 is assigned a

unique linearization point. Consider an UPDATE U

that is not linearized at the write primitive it per-
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Fig. 3 An example of an execution of Checkmarking.

forms on line 5; let w be this primitive. By the way

linearization points are assigned, there is a SCAN S

such that w is performed within the execution in-

terval of S. Since there is a single active SCAN at

each point in time, it follows that the linearization

point of U is unique.

To argue that for each SCAN and UPDATE, its

linearization point is within its execution interval,

we first prove the following technical lemma.

Lemma 5 Consider any SCAN operation S in α

and denote by g the instance of GetVector that is

executed by S. Let SU(g) = U1, . . . , Ukg
6= λ and

let SG(g) = g1, . . . , gkg
. Then, for each 1 ≤ j ≤

kg, it holds that:

1. if j > 1, Uj−1 performs its write primitive

before the write primitive of Uj,

2. the value of curr seq read in Rm+1 by Uj is the

value written there by S, and

3. the execution interval of Uj (and therefore also

of gj) is within the execution interval of S and

starts after S has written to Rm+1.

Proof We start by proving claim 1. By definition of

SU(g) and SG(g), for each 1 < j ≤ kg, gj (that is

invoked by Uj) returns the vector of values written

by Uj−1. Thus, Uj−1 executes its (unique) write

primitive before the end of gj and therefore before

the write primitive of Uj .

Next, we prove claim 2. Let gkg+1 = g. Con-

sider any j, 1 < j ≤ kg+1. Observation 5 (claim 3)

implies that gj terminates by executing line 25 of

the pseudocode. Therefore, the condition of the if

statement on line 24 is evaluated to true by gj .

Since (1) gj returns mp.view, (2) mp is the value

written by Uj−1, and (3) mp.curr seq is greater

than or equal to the curr seq parameter of gj , it

follows that Uj−1 has read a value for curr seq in

Rm+1 that is greater than or equal to that read by

Uj (if j ≤ kg), or to the value written there by S

(if j = kg + 1). (Notice that the value written to

Rm+1 by S is equal to the curr seq parameter of

g = gkg+1.)

By definition of SU(g), g returns the vector of

values written by Ukg . Thus, Ukg terminates before

the end of g (and therefore also before the end of

S). By claim 1, for each 1 ≤ j < kg, Uj terminates

before Ukg
. Therefore, Uj also terminates before

the end of S. Since there is just a single active

SCAN in the system at each point in time and for

each j, 1 ≤ j ≤ kg, S terminates after the end of

Uj , Observation 3 (claim 1) implies that Uj cannot

read a value for curr seq in Rm+1 greater than

that written there by S. Thus, Uj reads the value

written to Rm+1 by S for curr seq.

We next prove claim 3. It suffices to prove that

Uj (and therefore also gj , which is invoked by Uj)

starts its execution after S has written to Rm+1.

This is so because Uj starts its execution by read-

ing Rm+1 and reads there the value written by S.

The next lemma is a consequence of Lemma 5

and the definition of g(S).

Lemma 6 Consider any SCAN operation S in α.

Then, the following hold:

1. the execution interval of g(S) is contained in

the execution interval of S and starts after S

has written to Rm+1, and

2. the curr seq parameter of g(S) has the value

written to Rm+1 by S.

Proof Let g be the instance of GetVector executed

by S. Consider first the case where SG(g) = λ.

Then, g(S) = g (by definition). Obviously, the ex-

ecution interval of g is contained in the execution

interval of S (since g is executed by S). By in-

spection of the pseudocode (lines 8-10), S invokes

g after it writes to Rm+1. Also, notice that the

curr seq parameter of g has the value written to

Rm+1 by S (because g is called by S with this

parameter).

Consider now the case where SG(g) 6= λ. Then,

g(S) = g1 (by definition). By Lemma 5 (claim 3),

it follows that the execution interval of the first

instance g1 of GetVector in SG(g) is within the
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execution interval of S and starts after S has writ-

ten to Rm+1. Lemma 5 (claim 2) implies that the

curr seq parameter of g1 has the value written to

Rm+1 by S.

We next prove that the linearization point of

any SCAN that terminates in α is within its execu-

tion interval.

Lemma 7 For each SCAN operation S that termi-

nates in α, the following hold:

1. the linearization point of g(S) is within its ex-

ecution interval, and

2. the linearization point of S is within its execu-

tion interval.

Proof Consider any SCAN S that terminates in α.

By Observation 5 (claim 1), g(S) returns by exe-

cuting line 34 or line 38. By the way linearization

points are assigned, it follows that the linearization

point of g(S) is within its execution interval. More-

over, the linearization point of S is placed at the

same point as that of g(S). By Lemma 6 (claim 1),

the execution interval of g(S) is within the exe-

cution interval of S. Therefore, the linearization

point of S is within its execution interval.

Next, we study properties of an UPDATE oper-

ation whose linearization point has not been in-

serted at its write primitive.

Lemma 8 Consider any UPDATE operation U on

a component Aj such that the linearization point

of U is not at the point that it performs its write

primitive. Then, there exists a SCAN operation S

such that:

1. the linearization point of U is contained in the

execution interval of S,

2. S returns the value v written by U for compo-

nent Aj, and

3. the write primitive of U follows the lineariza-

tion point of g(S) and precedes the end of S.

Proof We start by proving claim 1. Since the lin-

earization point of U has not been inserted at the

point that U performs its write, by the way lin-

earization points are assigned, there is some SCAN

operation S such that U is linearized immediately

before g(S). The linearization point of S is placed

at the same point as the linearization point of g(S).

By Lemma 7 (claim 2), the linearization point of S

is within its execution interval. It follows that the

linearization point of U is within the execution in-

terval of S.

Next, we prove claim 2. Assume that g(S) re-

turns after epoch iterations of the while loop of

line 20. By Observation 5 (claim 1), g(S) termi-

nates by executing line 34 or line 38. By Obser-

vation 4, at the point that g(S) terminates, there

is a unique integer `, 1 < ` ≤ epoch, for which

it holds that checkmarks[`] = 0; moreover, g(S)

returns the values it read during its `-th epoch.

Let d ≥ 0 be the number of registers whose val-

ues have changed from the (` − 1)-st to the `-th

epoch of g(S). Denote by Rx1 , . . . , Rxd
these reg-

isters, denote by vx1
, . . . , vxd

the values read by

g(S) in Rx1
, . . . , Rxd

, respectively, during the `-th

epoch, and let Ux1 , . . . , Uxd
be the UPDATES that

wrote the values vx1
, . . . , vxd

to Rx1
, . . . , Rxd

. By

the way linearization points are assigned, U must

be one of the Ux1 , . . . , Uxd
. Thus, in the `-th epoch,

g(S) reads the value written by U for Aj . Since

g(S) returns the vector of values read in the `-th

epoch, it follows that g(S) returns the value writ-

ten by U for Aj . By Observation 5 (claim 2), S

returns the same vector of values as g(S). Thus, S

returns the value written by U for Aj .

We next prove claim 3. Let r1 be the first read

primitive executed by g(S) at the `-th epoch, and

let rj be the read primitive executed by g(S) on

register Rj (that corresponds to component Aj)

during the `-th epoch. By the way linearization

points are assigned, the write primitive w of U fol-

lows r1. Since g(S) is linearized immediately before

r1, it follows that the write primitive of U follows

the linearization point of g(S). Since S returns the

value v written by U for Aj , it follows that w is

performed before the end of S.

We next prove that the linearization point of

each UPDATE operation is within its execution in-

terval.

Lemma 9 For each UPDATE operation U that per-

forms its write in α, the linearization point of U

is within its execution interval.

Proof If the linearization point of U has been in-

serted at the point where its write occurs, then it

is obviously within its execution interval. Assume

that this is not the case. Then, there exists a SCAN

operation S such that the linearization point of

U has been inserted immediately before the lin-

earization point of g(S). By Lemma 7 (claim 1),

the linearization point of g(S) is within its execu-

tion interval. By Lemma 8 (claim 3), U has per-

formed its write primitive after the linearization

point of g(S).
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By Lemma 6 (claim 1), the execution interval

of g(S) starts after S has written to Rm+1. It suf-

fices to prove that U has started its execution be-

fore the write of S to Rm+1. Suppose not. By

Lemma 8 (claim 2), S returns the value written

by U . By Observation 5 (claim 2), S returns the

same vector of values as g(S). It follows that g(S)

reads the value written by U . By inspection of the

pseudocode (lines 22-25), it follows that if U reads

a value for curr seq greater than or equal to that

written to Rm+1 by S, g(S) will terminate by ex-

ecuting line 25 returning the vector of values writ-

ten by U . This contradicts Observation 5 (claim 1).

Thus, U reads in Rm+1 a value for curr seq less

than that written there by S. Therefore, Observa-

tion 3 implies that U starts its execution before S

writes to Rm+1.

Consider any UPDATE operation U on a com-

ponent Aj such that the linearization point of U

has not been inserted at the point that it performs

its write primitive. By Lemma 8, there exists a

SCAN operation, which we will denote by S(U),

such that the linearization point of U has been in-

serted immediately before the linearization point

of g(S(U)). To prove consistency of SCANS (with

respect to L), we first prove the following techni-

cal lemma.

Lemma 10 Consider any UPDATE operation U on

a component Aj such that the linearization point

of U has not been inserted at the point that it per-

forms its write primitive. Then, there exists an

UPDATE operation U ′ such that:

1. the write primitive w of U precedes the write

primitive w′ of U ′,

2. w′ precedes the end of S(U), and

3. the linearization point of U ′ follows the lin-

earization point of S(U).

Proof Assume that g(S(U)) returns after epoch it-

erations of the while loop (line 20). By Observa-

tion 5 (claim 1), g(S(U)) terminates by execut-

ing line 34 or line 38. By Observation 4, at the

point that g(S(U)) terminates, there is a unique

integer `, 1 < ` ≤ epoch, for which it holds that

checkmarks[`] = 0; moreover, g(S(U)) returns the

values it read during its `-th epoch. By the way

linearization points are assigned, g(S(U)) reads

the value written by U for Aj during the `-th

epoch.

Let r1 be the first read executed by g(S(U)) at

the `-th epoch, and let rj be the read of g(S(U))

on register Rj in the `-th epoch. By the way lin-

earization points are assigned, g(S(U)) is linearized

Fig. 4 Case 2 of Lemma 11.

before r1, U is linearized before g(S(U)), and U ’s

write is performed after r1 and before rj . There-

fore, the first time g(S(U)) reads the value writ-

ten to Rj by U is by executing rj (i.e., in the

`-th epoch). By the pseudocode, it follows that

history[`][j].change == true at the point that rj
is executed and therefore checkmarks[`] is greater

than zero at that point. By definition of `, it fol-

lows that checkmarks[`] is equal to zero at the

point that g(S(U)) terminates. By inspection of

the pseudocode, it follows that there is some in-

teger `′ > ` such that history[`′][j].change ==

true. Therefore, Rj that has changed from the

(` − 1)-st to the `-th epoch of g(S(U)) changes

again from the (`′ − 1)-st to the `′-th epoch. So,

there exists some UPDATE operation U ′, which per-

forms its write primitive w′ after the write prim-

itive w of U and before the end of the execution

interval of g(S(U)) (and therefore also of S(U)).

So, claims 1 and 2 hold.

Next, we prove claim 3. We argue that the lin-

earization point of U ′ is inserted at its write prim-

itive and therefore it follows the linearization point

of g(S(U)) and S(U). Suppose not. Then, by the

way linearization points are assigned, there exists

some SCAN operation S′ such that S′ returns U ′’s

value for Aj and the linearization point of U ′ is

placed immediately before that of g(S′) (and S′).

Since S(U) returns U ’s value and not U ′’s value

for Aj , S
′ is different from S. Since, by claim 2, w′

is performed before the end of the execution inter-
val of S(U), Lemma 9 implies that the lineariza-

tion point of U ′ is placed before the end of S(U).

Thus, U ′ and therefore also S′ is linearized before

S(U). Lemma 7 (claim 1), Lemma 6 (claim 1), and

Lemma 8 (claim 3) imply that w′ occurs in the ex-

ecution interval of S′. Since w occurs in the exe-

cution interval of S(U) (between r1 and rj), it fol-

lows that w′ precedes w. This contradicts claim 1

proved above.

We are now ready to prove that SCANS return

consistent vectors with respect to L.

Lemma 11 For each SCAN operation S that ter-

minates in α, the vector of values returned by S is

consistent with respect to L.

Proof By the way linearization points are assigned,

S is linearized at the same place as g(S). By Ob-

servation 5 (claim 2), S returns the same vector
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of values as g(S). Thus, it suffices to prove that

g(S) returns a consistent vector of values with re-

spect to L. Assume that view = 〈v1, . . . , vm〉 is

the vector of values returned by g(S). To derive

a contradiction, assume that there is some integer

j ∈ {1, . . . ,m} such that the value parameter of

the last UPDATE U on Aj , which is linearized be-

fore g(S) is not vj . Assume that the value of U is v

and let Uj be the UPDATE operation, which writes

the value vj read by g(S) to Rj .

By Observation 5 (claim 1), g(S) returns by

executing line 34 or line 38 of the pseudocode.

Assume that g(S) returns after having executed

epoch iterations of the while loop. By Observa-

tion 4, at the point that g(S) terminates, there is

a unique integer `, 1 < ` ≤ epoch, for which it

holds that checkmarks[`] = 0; moreover, g(S) re-

turns the values it read during its `-th epoch. Let

r1 be the first read of g(S) in the `-th epoch and

let rj be the read of g(S) on register Rj (that cor-

responds to component Aj) in the `-th epoch. We

proceed by case analysis.

1. Assume first that Uj performs its write primi-

tive wj after r1. Since g(S) returns vj , it follows

that Uj performs its write primitive between

r1 and rj . By the way linearization points are

assigned, the linearization point of Uj is in-

serted immediately before the linearization point

of g(S) and no other UPDATE operation on Aj

is linearized between Uj and S. (Recall that all

UPDATES that are linearized immediately before

g(S) are on distinct components.) This contra-

dicts our assumption that U is linearized be-

tween Uj and g(S).

2. Assume now that wj precedes r1. Assume first

that U ’s write primitive w follows wj . Since

g(S) returns vj for Aj , the last write primitive

to Rj that precedes rj is wj . Since w follows wj ,

it follows that w follows rj (see Fig. 4). Since

g(S) is linearized immediately before r1, the

linearization point of g(S) precedes w. Since

U is linearized before S (and therefore before

g(S)), it follows that U is not linearized at w.

By the way linearization points are assigned,

there exists some SCAN operation S′ such that

S′ returns v and the linearization point of U is

placed immediately before that of g(S′). Since

S returns vj and not v for Aj , S
′ is different

from S. Lemma 8 (claim 3) implies that w pre-

cedes the end of the execution interval of S′.

Because w follows r1 (and precedes the end of

the execution interval of S′), and there is just

Fig. 5 Case 3 of Lemma 11.

a single SCAN operation active at each point in

time, it follows that S′ follows S.

By Lemma 7 (claim 2), the linearization point

of S is within its execution interval. By Lemma 8

(claim 1), the linearization point of U is within

the execution interval of S′. It follows that the

linearization point of U follows the lineariza-

tion point of S. This is a contradiction.

Assume next that w precedes wj (see Fig. 5).

By Lemma 9, U is linearized within its own exe-

cution interval. Thus, the latest point at which

U can be linearized is at its write primitive

w. Since w precedes wj and U is linearized be-

tween Uj and S (and therefore after Uj), it fol-

lows that Uj is not linearized at its write prim-

itive. Lemma 8 implies that there exists some

SCAN operation S′′ such that Uj is linearized

within the execution interval of S′′. If S = S′′,

by the way linearization points are assigned,

the linearization point of Uj is placed imme-

diately before that of S and no other UPDATE

on component Aj can be linearized in between.

Since U is linearized between Uj and S, it fol-

lows that S 6= S′′.

By Lemma 9, Uj is linearized within its own

execution interval. Since wj is the last instruc-

tion executed by Uj and wj precedes r1, it fol-

lows that S′′ precedes S. Lemma 10 (claims 1

and 2) implies that there exists some UPDATE

operation U ′ whose write primitive w′ follows

wj and precedes the end of the execution inter-

val of S′′. It follows that S does not read the

value written by Uj in Rj , so it does not return

vj for Aj . A contradiction.

The following theorem is an immediate conse-

quence of Lemmas 7, 9 and 11.

Theorem 6 Checkmarking is linearizable.

5.3 Space and Step Complexity

In this section, we study the step complexity of

Checkmarking. By inspection of the pseudocode,

each SCAN and UPDATE operation performs only a

constant number of shared memory accesses in ad-

dition to executing GetVector. Therefore, it suf-

fices to prove that the step complexity of GetVector

is O(m2).
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Consider any execution α of Checkmarking and

let g be any instance of GetVector executed in

α. We prove that g does not execute more than

m+1 iterations of the while loop of line 20. To de-

rive a contradiction, assume that g executes m+ 1

iterations of the while loop without having ter-

minated. By the pseudocode, it follows that for

each i, 2 ≤ i ≤ m + 2, there is an integer ji,

1 ≤ ji ≤ m, such that history[i][ji].change = true

and no other change has been observed on column

ji of history after row i. Therefore, ji must be

distinct for each i. Since the snapshot object has

only m components, this is a contradiction. Thus,

after at most m+ 1 iterations of the while loop, g

completes its execution.

In each iteration of the while loop, m registers

are read. GetVector additionally executes a set of

m reads at the beginning of its execution. Thus,

the step complexity of GetVector is O(m2). We

remark that the number of instructions executed

by each instance of GetVector as local computa-

tion is also in O(m2).

Theorem 7 Checkmarking uses m+1 registers and

has step complexity O(m2).

6 The T-Opt Algorithm

In this section, we present T-Opt, the first of the

implementations of the Time-efficient family of al-

gorithms. T-Opt is optimal in terms of its step

complexity, i.e., it has step complexity O(m) for

SCANS and O(1) for UPDATES. The number of reg-

isters that T-Opt uses is linear in the number of

SCANS it performs in each execution and therefore

it is unbounded.

The pseudocode for T-Opt is given in Algo-

rithm 3. T-Opt is described in Section 6.1. Its cor-

rectness proof is provided in Section 6.2 and its

space and step complexity are studied in Section 6.3

6.1 Description

Each time a SCAN starts its execution, the scanner

stores a new sequence number in a register seq

(line 7). In addition, T-Opt uses an array V al of

m registers, one for each component.

Any UPDATE U on a component Ai, 1 ≤ i ≤ m,

writes its value into V al[i] (line 6). Before doing

so, it stores (line 5) the current value of V al[i] in

some appropriate element of an array of registers,

called preV al, to help SCANS be consistent. Array

preV al is a two-dimensional array with each row

Algorithm 3 Pseudo-code for T-Opt. (We assume

that components store values of type data.)

shared int seq = 1;
shared data preVal[1..κ][1..m] =

{{⊥, . . . , ⊥}, . . . , {⊥, . . . ,⊥}};
// κ is the number of executed SCANS

shared data Val[1..m] = {⊥, . . . ,⊥};

void UPDATE(data value, int i) {
int curr seq;
data v1, v2;

1 curr seq = seq;
2 v1 = Val[i];
3 v2 = preVal[curr seq][i];
4 if (v2 == ⊥)
5 preVal[curr seq][i] = v1;
6 Val[i] = value;
}

data *SCAN(void) {
data view[1..m], v1, v2;
int i;

7 seq = seq+1;
8 for (i = 1; i ≤ m; i++) {
9 v1 = Val[i];
10 v2 = preVal[seq][i];
11 if(v2 == ⊥) view[i] = v1;
12 else view[i] = v2;

}
return view;

}

having m registers; the number of its rows depends

on the maximum number of SCANS performed in

an execution. Specifically, U starts by reading seq

(line 1) and uses the sequence number that it reads

there to determine the row of preV al in the ith

entry of which it stores the value of V al[i] (line 5)

before it overwrites it (line 6).

We will place the linearization point of each

SCAN operation, S, at line 7. To ensure consistency,

S must ignore the values written by UPDATES that

start their execution after the beginning of S. To

achieve this, S reads all m registers of V al (line 9)

and the m registers of preV al[seq] (line 10), where

seq contains the value written to it by S. We re-

mark that UPDATES, which start their execution

after S has written to seq and before the end of S,

write to some register of row seq of preV al. There-

fore, if preV al[seq][i] 6= ⊥ for some i, 1 ≤ i ≤ m,

S should return the old value of V al[i] for compo-

nent Ai, which is stored in preV al[seq][i] (line 12).

UPDATES that write to smaller rows of preV al have

started their execution before S, so if S reads in

V al the value written by such an UPDATE, it can

include it to the vector it returns (line 11).

18



Fig. 6 V S
i writes vi to register preV al[seqS ][i] and this

write is the last to preV al[seqS ][i] that precedes r̃Si .

6.2 Linearizability

Let α be any execution of T-Opt and let S be any

SCAN performed in α. We start by introducing some

useful notation. Let wS
seq be the write to seq per-

formed by S (line 7) and let seqS be the value

written to seq by S. Since there is a single-scanner

active at each point in time, by inspection of the

pseudocode (lines 7-12), we get the following:

Observation 8 The initial value of seq is 1 and

seq’s value is incremented each time a SCAN exe-

cutes line 7.

For each i ∈ {1, . . . ,m}, denote by rSi the read

of V al[i] by S (line 9), and by r̃Si the read of

preV al[seqS ][i] by S (line 10).

Observation 9 For each i ∈ {1, . . . ,m}, wS
seq pre-

cedes rSi , which precedes r̃Si .

Let vi be the value that S returns for com-

ponent Ai. In case S reads ⊥ in preV al[seqS ][i],

we denote by US
i the UPDATE such that US

i writes

vi to V al[i] and this write is the last to V al[i]

that precedes rSi . If S reads vi in preV al[seqS ][i],

we introduce the following notation. We denote by

V S
i the UPDATE such that V S

i writes vi to regis-

ter preV al[seqS ][i] and this write is the last to

preV al[seqS ][i] that precedes r̃Si (see Fig. 6). By

inspection of the pseudocode (lines 2-5), V S
i reads

the value vi in V al[i]. We denote by US
i the UPDATE

on Ai such that US
i writes vi to V al[i] and this

write is the last write to V al[i] before V S
i reads

V al[i]. In either case, let wS
i be the write to V al[i]

by US
i (line 6). For clarity of presentation, Table 3

summarizes the notation used in this section.

By definition of V S
i , V S

i writes into register

preV al[seqS ][i]. By inspection of the pseudocode

(lines 1, 4-5), it follows that it reads a value equal

to ⊥ in preV al[seqS ][i] (line 3) and seqS in reg-

ister seq (line 1). Moreover, by definition of V S
i

and US
i , the read of V al[i] by V S

i follows wS
i since

V S
i reads in V al[i] the value written there by wS

i ;

additionally, r̃Si reads in preV al[seqS ][i] the value

written there by V S
i , so r̃Si follows the write to

preV al[seqS ][i] by V S
i .

Observation 10 For every i ∈ {1, . . . ,m}, if S

reads vi in preV al[seqS ][i], the following hold:

Fig. 7 Proof of Lemma 12, wS
i precedes wS

seq.

Fig. 8 Proof of Lemma 12, S reads ⊥ in
preV al[seqS ][i].

Fig. 9 Proof of Lemma 12, wS
i precedes rSi and S reads

vi in V al[i].

1. V S
i reads the value seqS in register seq and the

value ⊥ in preV al[seqS ][i],

2. the read of V al[i] by V S
i follows wS

i , and

3. r̃Si follows the write to preV al[seqS ][i] by V S
i .

We now assign linearization points. Each SCAN

S that terminates in α is linearized at wS
seq. For

each i ∈ {1, . . . ,m}, if wS
i (performed by US

i ) fol-

lows wS
seq, we place the linearization point of US

i

immediately before wS
seq. We also place the lin-

earization point of each UPDATE on Ai that per-

forms its write to V al[i] between wS
seq and wS

i

immediately before wS
seq; ties are broken by the or-

der that the writes to register V al[i] occur. After

assigning linearization points to all SCANS and to

some UPDATES (following the rules just described),

we linearize each of the rest of the UPDATES that

performs the write to V al[i] (line 6) in α, at this

write. Let L be the linearization of α determined

by assigning linearization points to operations as

described above.

We remark that US
i uses as a parameter the

value vi returned by S for Ai. Notice that in case

wS
i is executed after wS

seq, we assign linearization

points to UPDATES in such a way that US
i is the

last UPDATE on Ai that is linearized before S. We

later prove (in Lemma 14) that US
i and all UPDATES

that perform their writes between wS
seq and wS

i

start their execution before wS
seq. In case US

i ex-

ecutes wS
i before wS

seq, we argue that US
i is the

last UPDATE on Ai that is linearized before S. In-

tuitively, this is so for the following reasons: (1) by

the way linearization points are assigned, for each

i, 1 ≤ i ≤ m, the linearization order of UPDATES on

Ai respects the order in which the writes to V al[i]

of those UPDATES have been performed, and (2) by

definition of US
i , no other UPDATE on Ai writes to

V al[i] between wS
i and wS

seq. Thus, S returns a

consistent vector with respect to L.
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Notation Description

α An execution of T-Opt
L The linearization of α
S A SCAN that terminates in α
wS

seq The write to register seq (line 7) performed by S

seqS The value written to register seq by S
vi The value that S returns for component Ai

rSi The read of V al[i] performed by S (line 9)
r̃Si The read of preV al[seqS ][i] performed by S (line 10)

V S
i

The UPDATE that writes vi to preV al[seqS ][i]; this write is the last to
preV al[seqS ][i] that precedes r̃Si .

US
i The UPDATE that writes vi to V al[i].

wS
i The write to V al[i] performed by US

i (line 6)

Table 3 Notation used in the proof of T-Opt.

We start by proving two simple technical lem-

mas.

Lemma 12 For each i ∈ {1, . . . ,m}, wS
i precedes

r̃Si .

Proof If wS
i precedes wS

seq (see Fig. 7), the claim

holds because, by Observation 9, wS
seq precedes r̃Si .

So, assume that wS
i follows wS

seq. Assume first that

S reads ⊥ in preV al[seqS ][i] and vi in V al[i]. By

definition of US
i , wS

i writes the value vi to V al[i],

which is read by S. So, wS
i precedes rSi (see Fig. 8).

By Observation 9, rSi precedes r̃Si . So, wS
i precedes

r̃Si .

Assume now that S reads vi in preV al[seqS ][i].

Then, V S
i is well-defined. Observation 10 (claims 2

and 3) implies that the read of V al[i] by V S
i fol-

lows wS
i and r̃Si follows the write primitive to

preV al[seqS ][i] by V S
i (see Fig. 9). By inspection

of the pseudocode (lines 2, 5), the write primitive

to preV al[seqS ][i] by V S
i follows its read of V al[i].

Therefore, wS
i precedes r̃Si .

Lemma 13 Fix any i ∈ {1, . . . ,m} such that S

reads vi in preV al[seqS ][i]. If rv is the read of

V al[i] by V S
i , then rv is executed after wS

seq.

Proof To derive a contradiction, assume that rv is

executed before wS
seq. By inspection of the pseu-

docode (lines 1-2), the read rs of seq by V S
i pre-

cedes rv. It follows that rs precedes wS
seq. Since

there is only one SCAN active at each point in time,

Observation 8 implies that rs reads a value t <

seqS . This contradicts Observation 10 (claim 1).

Lemma 14 For each i ∈ {1, . . . ,m} such that wS
i

follows wS
seq, it holds that any UPDATE on Ai that

performs its write to V al[i] between wS
seq and wS

i

(including US
i ) begins its execution before wS

seq.

Proof To derive a contradiction, assume that there

is an UPDATE U on Ai that starts its execution af-

ter wS
seq and performs its write w to V al[i] at or

Fig. 10 U starts its execution after wS
seq.

before wS
i (see Fig. 10). By Lemma 12, wS

i pre-

cedes r̃Si and therefore U ends its execution be-

fore the end of S. Since U starts its execution af-

ter wS
seq, Observation 8 implies that U reads seqS

in seq. By inspection of the pseudocode (lines 2-

3), U first reads register V al[i] and then regis-

ter preV al[seqS ][i]. Moreover, in case U reads ⊥
in preV al[seqs][i], it writes in preV al[seqS ][i] the

value it read in V al[i].

By inspection of the pseudocode, lines 4-5 are

executed by U before w and therefore before wS
i .

Since wS
i precedes r̃Si , it follows that the execution

of lines 4-5 precedes r̃Si . Thus, r̃Si reads a value

other than ⊥ in preV al[seqS ][i], so V S
i is well-

defined. By Observation 10 (claim 2), the read of

V al[i] by V S
i follows wS

i . It follows that the read of

preV al[seqS ][i] by V S
i , which (by inspection of the

pseudocode) follows its read to V al[i], comes after

U ’s execution of lines 4-5 and the possible write

to preV al[seqS ][i] by U . Thus, V S
i reads a value

other than ⊥ in preV al[seqS ][i]. This contradicts

Observation 10 (claim 1).

Using Lemma 14, it can be easily proved that

the linearization point of each operation is within

its execution interval.

Lemma 15 The linearization point of each SCAN

that terminates in α and each UPDATE that executes

the write of line 6 is within its execution interval.

Proof By the way that linearization points are as-

signed to SCANS, a SCAN is linearized within its ex-

ecution interval. The same is true for each UPDATE

that is linearized at its write primitive to V al.
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Fig. 11 Case 2 of proof of Lemma 16.

Fig. 12 Case 2 of proof of Lemma 16.

Let U be an UPDATE on Ai, which is not lin-

earized at its write to V al[i]. By the way that

linearization points are assigned, there is a SCAN

S′ such that (1) wS′

i of US′

i is executed after wS′

seq,

(2) the write to V al[i] by U is executed between

wS′

seq and wS′

i , and (3) U is linearized immediately

before wS′

seq. Obviously, the execution of U ends

after wS′

seq. Lemma 14 implies that U begins its ex-

ecution before wS′

seq. Thus, U is linearized within

its execution interval.

To prove that SCANS return consistent vectors

with respect to L, we first prove that the lineariza-

tion order of the UPDATES on any component Ai re-

spects the order in which these UPDATES perform

their writes to V al[i].

Lemma 16 Let U1, U2 be two UPDATE operations

on some component Ai, 1 ≤ i ≤ m. Denote by w1

the write to V al[i] by U1 and by w2 the write to

V al[i] by U2. If w1 precedes w2, the linearization

point of U1 precedes the linearization point of U2.

Proof We consider the following cases.

1. U2 is linearized at w2. Lemma 15 implies that

U1 is linearized within its execution interval,

so U1 is linearized at or before w1. Since w1

precedes w2, U1 is linearized before U2.

2. U1 is linearized at w1 and U2 is not linearized

at w2 (see Fig. 11). By the way linearization

points are assigned, there is a SCAN S′ such that

w2 has been performed between wS′

seq and wS′

i .

Since w1 precedes w2, w1 has been executed be-

fore wS′

i . Since U1 is linearized at w1, it follows

that wS′

seq follows w1 (see Fig. 12), since other-

wise U1 would be linearized at wS′

seq. Lemma 15

implies that U1 is linearized the latest at w1. By

the way linearization points are assigned, U2 is

linearized immediately before wS′

seq. Thus, U1 is

linearized before U2.

3. Neither U1 nor U2 is linearized at its write to

V al[i]. By the way linearization points are as-

signed, there are two SCAN operations S1 and

S2 such that w1 has been performed between

wS1
seq and wS1

i , and w2 has been performed be-

tween wS2
seq and wS2

i . Since w1 precedes w2 and

there is just a single SCAN active at each point

in time, it follows that either S1 = S2 or S1

precedes S2.

If S1 = S2, both U1 and U2 are linearized im-

mediately before wS1
seq = wS2

seq in the order they

perform their writes to V al[i]. So, U1 is lin-

earized before U2.

If S1 precedes S2, the linearization point of U1,

which is placed immediately before wS1
seq, pre-

cedes the linearization point of U2, which is

placed immediately before wS2
seq.

We finally use Lemma 16 to prove consistency.

Lemma 17 Every SCAN operation that terminates

in α returns a consistent vector with respect to L.

Proof Consider any SCAN operation S that termi-

nates in α. Assume that S returns v = 〈v1, ..., vm〉.
By definition, for each i ∈ {1, . . . ,m}, US

i writes vi
to V al[i] and therefore it uses vi as a parameter. In

case wS
i precedes wS

seq, Lemma 15 implies that US
i

is linearized before S. In case wS
i follows wS

seq, by

the way linearization points are assigned, the lin-

earization point of US
i precedes the linearization

point of S. Thus, in either case, the linearization

point of US
i precedes the linearization point of S.

We prove that there is no UPDATE on component

Ai that is linearized between US
i and S. This im-

plies that S returns a consistent value for Ai with

respect to L.

To derive a contradiction, assume that there is

an integer i ∈ {1, . . . ,m} such that the last UPDATE

on Ai linearized before S is not US
i . Denote by U

this UPDATE and let w be the write to V al[i] by

U . In case w precedes wS
i , Lemma 16 implies that

U is linearized before US
i . This is a contradiction.

Thus, assume that w follows wS
i . We argue that w

follows wS
seq by considering the following cases.

1. Assume first that S reads a value equal to ⊥
in register preV al[seqS ][i]. By the definition of

wS
i , rSi reads the value that wS

i writes to regis-

ter V al[i]. Since w follows wS
i , it follows that w

follows rSi and therefore also wS
seq (see Fig. 13).

2. Assume next that S reads vi in preV al[seqS ][i].

In this case, V S
i is well-defined and let rv be the

read of V al[i] by V S
i . By the definitions of US

i

and V S
i , rv returns the value written by wS

i and

therefore rv follows wS
i . Since w follows wS

i , it

follows that w must follow rv. By Lemma 13, rv
follows wS

seq (see Fig. 14). Therefore, w follows

wS
seq.
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Fig. 13 Case 1 of proof of Lemma 17.

Fig. 14 Case 2 of proof of Lemma 17.

Since U is linearized before S and S is lin-

earized at wS
seq, U cannot be linearized at w. Thus,

there is a SCAN S′ such that wS′

i follows wS′

seq, w

is performed between wS′

seq and wS′

i , and U is lin-

earized immediately before wS′

seq. Since w is per-

formed after wS
i , S′ 6= S. Because (1) w is per-

formed between wS′

seq and wS′

i , (2) w follows wS
seq,

and (3) there is just a single SCAN active at each

point in time, it follows that S′ follows S. Thus, the

linearization point of U , which is placed at wS′

seq,

follows the linearization point of S, which is placed

at wS
seq. This is a contradiction. We conclude that

no UPDATE on component Ai is linearized between

US
i and S. Thus, S returns a consistent vector with

respect to L.

Theorem 11 T-Opt is linearizable.

6.3 Step and Space Complexity

By inspection of the pseudocode, it follows that

the step complexity of UPDATE is O(1), and the

step complexity of SCAN is O(m). Thus, T-Opt is an

optimal implementation in terms of its step com-

plexity.

Every register used by T-Opt, other than seq,

stores just a single value and seq stores an integer

(that is incremented each time a SCAN takes place).

The number of registers used by T-Opt is linear in

the maximum number of SCANS performed in any

execution and it is therefore unbounded. Thus, in

a first glance, T-Opt does not seem to be space-

efficient.

Theorem 12 T-Opt has optimal step complexity,

O(1) for UPDATE and O(m) for SCAN.

We remark that it is easy to implement T-Opt
in a more space efficient way as follows. Each time

a SCAN S starts executing, the scanner dynami-

cally allocates a new block of m positions in shared

memory and sets a pointer sptr to point to this

Algorithm 4 Pseudocode for improved version of

T-Opt.

// initially all m elements are equal to ⊥
shared pointer sptr[]=new data[m];
shared data Val[1..m] = {⊥, . . . ,⊥};

void UPDATE(data value, int i) {

data *lptr;
data v1, v2;

1 lptr = sptr;
2 v1 = Val[i];
3 v2 = lptr[i];
4 if (v2 == ⊥)
5 lptr[i] = v1;
6 Val[i] = value;
}

data *SCAN(void) {
data view[1..m], v1, v2;
int i;

7 sptr = new data[m];
8 for (i = 1; i ≤ m; i++) {
9 v1 = Val[i];
10 v2 = sptr[i];
11 if(v2 == ⊥) view[i] = v1;
12 else view[i] = v2;

}
return view;

}

block of memory. An UPDATE on Ai starts by read-

ing sptr (that plays the role of seq); it then saves

the value it read in V al[i] in the ith entry of the

block of shared memory pointed to by the pointer

read in sptr. In order to compute the vector to re-

turn, S reads the m positions of the block pointed

to by sptr in addition to the m registers of V al.

The pseudocode for the improved version of T-Opt
is presented in Algorithm 4.

In Algorithm 4, seq has been replaced by a

memory pointer and a garbage collector can be

used to de-allocate blocks of memory that are not

referenced to by the processes. We remark that

the total number of allocated blocks that are ref-

erenced by all processes at each point in time is

at most n. For systems with no garbage collector,

more space efficient implementations are presented

in later sections.

7 The RT Algorithm

In this section, we present RT, the second imple-

mentation of the Time-efficient family. (RT stands

for Time-efficient algorithm with Recycling.) RT
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Algorithm 5 Pseudocode for RT (process p, 1 ≤
p ≤ n).

shared int seq = 1;
shared int SeqNums[1..n] = {1,..,1};
shared data preVal[1..n+2][1..m] = {⊥, . . . ,⊥};
shared data Val[1..m] = {⊥, . . . ,⊥};

void UPDATE(data value, int i){
int curr seq1, curr seq2;
data v1, v2;

1 curr seq1 = seq;
2 SeqNums[p] = curr seq1;
3 curr seq2 = seq;
4 v1 = Val[i];
5 v2 = preVal[curr seq1][i];
6 if (v2 == ⊥ AND curr seq1 == curr seq2)
7 preVal[curr seq1][i] = v1;
8 Val[i] = value;
}

data *SCAN(void) {
data view[1..m], v1, v2;
set seq nums;
int curr seq, i;

9 seq nums = {seq};
10 for (i = 1; i ≤ n; i++)
11 seq nums = seq nums ∪ {SeqNums[i]};
12 curr seq = any int in set ({1,..,n+2} - seq nums);
13 for (i = 1; i ≤ m; i++) preVal[curr seq][i] = ⊥;
14 seq = curr seq;
15 for (i = 1; i ≤ m; i++) {
16 v1 = Val[i];
17 v2 = preVal[seq][i];
18 if(v2 == ⊥) view[i] = v1;
19 else view[i] = v2;

}
return view;

}

makes an attempt to reduce the number of regis-

ters used by T-Opt. In RT, array preV al has only

n + 2 rows. To achieve this, RT employs an ad-

ditional array SeqNums, of n single-writer regis-

ters, one for each process, which are written when

UPDATES are performed. The pseudocode for RT is

presented in Algorithm 5.

An UPDATE by some process p records the value

it read in seq into register SeqNums[p] (line 2).

A SCAN S reads all n registers of SeqNums and

chooses as its sequence number, seqS , some index

not appearing in any of these registers (lines 10-

12). Thus, RT trades the step complexity of SCANS

(that is now not optimal) for better space com-

plexity.

The main goal of the implementation is to guar-

antee that only those UPDATES that perform the

biggest part of their execution after the write prim-

Fig. 15 Lemma 19. rv is executed before wS
seq.

Fig. 16 Lemma 19. r′seq precedes rp.

itive, wS
seq, to seq by S (line 14), write to registers

of row seqS of preV al. This is achieved by employ-

ing a technique that resembles handshaking be-

tween the scanner and each of the updaters. Each

time some process p performs an UPDATE operation

U , it uses SeqNums[p] to inform the scanner of the

value it read in seq (lines 1-2). Then, it reads seq

again (line 3) and only if it sees the same value

in seq (line 6), does it attempt to write to preV al

(line 7).

If U performs its write to SeqNums[p] before

S reads SeqNums[p], S will choose a sequence

number other than that read by U in seq. If U

writes to SeqNums[p] after S has read it and per-

forms its second read of seq before wS
seq, then the

second read of seq by U reads the sequence num-

ber of the SCAN that precedes S (or the initial value

of seq if such a SCAN does not exist).

RT guarantees that S chooses a sequence num-

ber different from the n numbers that S read in

SeqNums, and from that chosen by the previous

SCAN to S, as well as from the initial value of seq.

It follows that the number of different values that

may be stored into seq is n + 2 and, therefore,

preV al now has n+ 2 different rows.

7.1 Linearizability

Let α be an execution of RT and let S be any

SCAN performed in α. Let wS
seq be the write to seq

performed by S (line 14) and let seqS be the value

written to seq by wS
seq. For each i ∈ {1, . . . ,m},

we introduce the notation rSi , r̃Si , vi, U
S
i , V S

i and

wS
i , and assign linearization points to SCANS and

UPDATES in exactly the same way as we did for

T-Opt. Let L be the resulting linearization of α.

The proof of the linearizability of RT is, in its

biggest part, similar to the proof of T-Opt (Sec-

tion 6.2). Specifically, the following two observa-

tions, which are similar to Observations 9 and 10,

also hold for RT. Lemma 18, which is similar to

Lemma 12 from Section 6, also holds for RT.
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Observation 13 For each i ∈ {1, . . . ,m}, wS
seq

precedes rSi and rSi precedes r̃Si .

Observation 14 For every i ∈ {1, . . . ,m} such

that S reads vi in preV al[seqS ][i], the following

hold:

1. V S
i reads the value seqS in register seq and the

value ⊥ in preV al[seqS ][i],

2. the read of V al[i] by V S
i follows wS

i , and

3. r̃Si follows the write to preV al[seqS ][i] by V S
i .

Lemma 18 For each i ∈ {1, . . . ,m}, wS
i precedes

r̃Si .

Lines 9-12 and 14 of the pseudocode imply the

following observation.

Observation 15 Let S and S′ be two consecutive

SCANS in α, it holds that seqS′ 6= seqS.

The statement of the following lemma is similar

to that of Lemma 13 but its proof is different than

that of Lemma 13, so we present it below.

Lemma 19 Fix any i ∈ {1, . . . ,m} such that S

reads vi in preV al[seqS ][i]. If rv is the read of

V al[i] by V S
i , then rv is executed after wS

seq.

Proof To derive a contradiction, assume that rv is

executed before wS
seq (see Fig. 15). Denote by rseq

the first read of seq by V S
i (line 1) and by r′seq the

second read of seq by V S
i (line 3). Let p be the

process that executes V S
i , let wp be the write to

SeqNums[p] by V S
i (line 2), and let rp be the read

of SeqNums[p] by S (line 11). Since rv precedes

wS
seq, the same is true for rseq, wp and r′seq (since

V S
i executes these instructions before rv).

Assume first that r′seq follows rp (see Fig. 15).

Since r′seq precedes rv, r′seq precedes wS
seq. Let S′ be

the SCAN executed immediately before S in α (or a

fictitious SCAN that writes the initial value to seq if

no such SCAN exists). By Observation 15, it follows

that seqS′ 6= seqS . Since rp and wS
seq are executed

by S and r′seq follows rp and precedes wS
seq, it fol-

lows that r′seq reads seqS′ in seq. By inspection of

the pseudocode (lines 1-3, 7), it follows that V S
i

does not write to preV al[seqS ][i]. This contradicts

the definition of V S
i .

Assume now that r′seq precedes rp (Fig. 16). By

definition, V S
i writes to preV al[seqS ][i] the value

vi that is read from there by S. After rp, S initi-

ates preV al[seqS ][i] to⊥ (line 13). Thus, the write

to preV al[seqS ][i] by V S
i occurs after rp. Since

wp precedes r′seq, it follows that wp precedes rp.

Since V S
i executes wp before rp and its write to

preV al[seqS ][i] after rp, it follows that the value

Fig. 17 U starts its execution after wS
seq and finishes

before wS
i .

t written to SeqNums[p] by wp (line 2) is the

value read by rp. By the pseudocode (lines 11, 12

and 14), it follows that seqS 6= t. By inspection of

the pseudocode (lines 1-3, 7), it follows that V S
i

writes to register preV al[t][i] 6= preV al[seqS ][i].

This contradicts the definition of V S
i .

A big part of the proof of the next lemma fol-

lows similar arguments as the proof of Lemma 14.

Lemma 20 For each i ∈ {1, . . . ,m} such that wS
i

follows wS
seq, it holds that any UPDATE on Ai that

performs its write to V al[i] between wS
seq and wS

i

(including US
i ) begins its execution before wS

seq.

Proof To derive a contradiction, assume that there

is an UPDATE U on Ai that starts its execution af-

ter wS
seq and performs its write w to V al[i] be-

fore wS
i (see Fig. 17). By Lemma 18, wS

i precedes

r̃Si and therefore U ends its execution before the

end of S. Since U starts its execution after wS
seq

and ends before the end of S, by inspection of the

pseudocode, it follows that U reads seqS in seq

both times (on lines 1 and 3). So, the second con-

dition of the if statement of line 6 is evaluated to

true. By inspection of the pseudocode (lines 4-

5), U first reads register V al[i] and then register

preV al[seqS ][i]. Moreover, in case U reads ⊥ in

preV al[seqs][i], it writes the value it read in V al[i]

to preV al[seqS ][i].

By inspection of the pseudocode (line 13), S

initializes the m registers of row seqS of preV al

to the value ⊥ before wS
seq. Since U starts after

wS
seq, the execution of lines 6-7 (i.e., the if state-

ment and the possible write to preV al[seqs][i]) by

U follows the initialization of preV al[seqS ][i] to ⊥
by S. By inspection of the pseudocode, lines 6-

7 are executed by U before w and therefore be-

fore wS
i . By Lemma 18, wS

i precedes r̃Si . Thus, r̃Si
reads a value other than ⊥ in preV al[seqS ][i], so

V S
i is well-defined. By Observation 14 (claim 2),

the read of V al[i] by V S
i follows wS

i . It follows

that the read of preV al[seqS ][i] by V S
i , which (by

inspection of the pseudocode) follows its read to

V al[i], comes after U ’s execution of lines 6-7 and

the possible write to preV al[seqS ][i] by U . Thus,

V S
i reads a value other than ⊥ in preV al[seqS ][i].

This contradicts Observation 14 (claim 1).
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Lemmas 15-17, which we have proved in Sec-

tion 6 for T-Opt, hold also for RT without any

modification to their proofs.

Lemma 21 The linearization point of each SCAN

that terminates in α and each UPDATE that executes

the write of line 8 in α is within its execution

interval.

Lemma 22 Let U1, U2 be two UPDATES on some

component Ai, 1 ≤ i ≤ m. Denote by w1 the write

to V al[i] by U1 and by w2 the write to V al[i] by

U2. If w1 precedes w2, the linearization point of U1

precedes the linearization point of U2.

Lemma 23 Every SCAN operation that terminates

in α returns a consistent vector with respect to L.

Lemma 23 implies that the following theorem

holds for RT.

Theorem 16 RT is linearizable.

7.2 Step and Space Complexity

By inspection of the pseudocode, it is obvious that

the step complexity of UPDATE is O(1) and the step

complexity of SCAN is O(n).

RT uses (n+3)m+n+1 registers; (n+3)m out

of these registers (namely, the registers of arrays

V al and preV al) store just a single value, while

the remaining n+ 1 registers (namely, seq and the

registers of array SeqNums) store O(log n) bits

each (since each of them stores values from the set

{1, . . . , n+ 2}).

Theorem 17 RT uses (n+ 3)m+ n+ 1 registers

of bounded size and has step complexity O(n) for

SCAN and O(1) for UPDATE.

8 The RT-Opt Algorithm

In this section, we present RT-Opt, the last im-

plementation of the Time-efficient family of single-

scanner, multi-writer snapshots. RT-Opt has step

complexity O(m) for SCAN, O(1) for UPDATE and

uses O(mn) registers of bounded size. Thus, RT-
Opt improves upon T-Opt in terms of its space

complexity. It also improves upon RT in terms of

its step complexity.

The pseudocode for RT-Opt is presented in Al-

gorithm 6. RT-Opt is described in Section 8.1. The

correctness proof of RT-Opt is provided in Sec-

tion 8.2 and its space and step complexity are stud-

ied in Section 8.3

8.1 Description

The UPDATE in RT-Opt is exactly the same as in

RT. The major goal of any SCAN operation, S, for

both RT and RT-Opt is to keep track of the differ-

ent rows of preV al where old UPDATES (i.e., those

that have performed some part of their execution

before the write primitive, wS
seq, of S to seq) may

write. S must choose a row of preV al where no

such UPDATE could possibly write, in order to en-

sure that all values other than ⊥ that it reads in

preV al have been written by UPDATES that have

performed the biggest part of their execution after

wS
seq.

In RT, this is achieved by having each SCAN S

read all n registers of SeqNums and choose some

value to write into seq other than those read in

these registers. Unfortunately, this results in some

overhead on the step complexity of SCAN. To keep

the step complexity of SCAN optimal, each SCAN

in RT-Opt reads only m of the n registers of ar-

ray SeqNums. So, dn/me consecutive SCANS are

required to read all n registers of SeqNums. We

remark that sequence numbers in RT-Opt are cho-

sen from the set {1, . . . , n+ 2dn/me+ 1}, which is

larger than the set {1, . . . , n+ 2} used in RT.

We partition each execution α of RT-Opt into

execution fragments, called epochs, each contain-

ing dn/me consecutive SCANS. The scanner keeps

track of the values that can be used, as sequence

numbers, by SCANS of each epoch, in a persistent

local variable, called free, which implements a set.

All sequence numbers chosen by the SCANS of an

epoch Ej , j ≥ 1, are distinct (line 25). For the first

epoch E1, all these values are additionally differ-

ent from the initial value of seq (see initialization

of seq and free on lines 3 and 19-21). Consider a

later epoch Ej , j > 1. Recall that all registers of

array SeqNums have been read once during Ej−1.

All the values read in these registers index rows of

preV al where old UPDATES may write. So, none

of these values should be chosen, as a sequence

number, by any SCAN of epoch Ej . However, ex-

cluding only these values from the set of available

sequence numbers for epoch Ej is not sufficient,

since some of these values may be already obsolete.

This occurs if some process p has started a new

UPDATE and has written (again) to SeqNums[p]

after the read of SeqNums[p] during Ej−1. No-

tice that such an UPDATE will read in seq the value

written there by some SCAN of epoch Ej−1. So, val-

ues chosen as sequence numbers by SCANS of epoch

Ej−1 may also index rows of preV al that can be
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written by old UPDATES, and should be excluded

from the set of available sequence numbers for the

SCANS of epoch Ej .

Set candidates keeps track of all the values that

are allowed to be chosen as sequence numbers by

SCANS of the next epoch. Notice that at the be-

ginning of each epoch, candidates is initialized to

contain all possible sequence numbers (line 22).

Then, during the execution of the dn/me SCANS
of the epoch, all values read in registers of ar-

ray SeqNums, as well as those chosen as sequence

numbers by the SCANS of the epoch, are removed

from candidates (lines 26 and 29-30). At the be-

ginning of the next epoch, the values remaining in

candidates can be moved to the set free of avail-

able sequence numbers for the epoch (line 21). We

remark that no other element is added to free

during the epoch.

At the beginning of any execution α of RT-Opt,
candidates contains n+2∗ScansPerEpoch differ-

ent sequence numbers, where ScansPerEpoch =

dn/me. During E1, at most n + ScansPerEpoch

sequence numbers are removed from candidates.

This is so because the ScansPerEpoch SCAN op-

erations that are executed during E1, read the n

sequence numbers recorded in SeqNums and re-

move them from candidates. The ScansPerEpoch

sequence numbers chosen by these SCANS are also

removed from candidates. So, at the end of epoch

E1, candidates contains ScansPerEpoch values,

which are added to free at the beginning of E2.

So, free contains enough sequence numbers for

the ScansPerEpoch SCANS that are executed dur-

ing E2. Consider now any epoch Ej , j > 1. At

the beginning of Ej (specifically, after line 21 has

been executed by the first SCAN of the epoch),

candidates contains n+2∗ScansPerEpoch+1 dif-

ferent sequence numbers. During Ej , at most n+

ScansPerEpoch sequence numbers are removed

from candidates. Thus, at least ScansPerEpoch+

1 sequence numbers are added to free at the be-

ginning of Ej+1, which are enough for the SCANS of

epoch Ej+1. We remark that when line 21 is exe-

cuted, free and candidates may contain elements

that are common to both sets. For instance, at the

end of E1, candidates is a subset of free. From

this discussion, it follows that n + 2 ∗ dn/me + 1

different sequence numbers are required in order

for RT-Opt to be correct.

8.2 Linearizability

Let α be an execution of RT-Opt and let S be any

SCAN performed in α. Let wS
seq be the write to seq

performed by S (line 28), and let seqS be the value

written to seq by wS
seq. For each i ∈ {1, . . . ,m},

we introduce the notation rSi , r̃Si , vi, U
S
i , V S

i and

wS
i , and assign linearization points to SCANS and

UPDATES in exactly the same way as we did for

T-Opt. Let L be the resulting linearization of α.

The proof of the linearizability of RT-Opt is

in its biggest part similar to the proof of T-Opt.
Specifically, the following two observations, which

are similar to Observations 9 and 10 from Sec-

tion 6, hold for RT-Opt. The same holds for Lemma

24, which is similar to Lemma 12 (from Section 6)

and Lemma 18 (from Section 7).

Observation 18 For each i ∈ {1, . . . ,m}, wS
seq

precedes rSi and rSi precedes r̃Si .

Observation 19 For every i ∈ {1, . . . ,m} such

that S reads vi in preV al[seqS ][i], the following

hold:

1. V S
i reads the value seqS in register seq (lines 7

and 9) and the value ⊥ in preV al[seqS ][i] on

line 11,

2. the read of V al[i] by V S
i follows wS

i , and

3. r̃Si follows the write to preV al[seqS ][i] by V S
i .

Lemma 24 For each i ∈ {1, . . . ,m}, wS
i precedes

r̃Si .

As in the correctness proof of RT, the main

difficulty in proving that RT-Opt is linearizable is

to prove that, for any SCAN S, the UPDATES that

write values to row seqS of preV al have executed

the biggest part of their execution after the write

wS
seq to seq by S. To prove this we need to intro-

duce the following notation.

We split α into epochs so that each epoch con-

tains exactly dn/me SCANS. Denote by Ej the j-

th epoch of α, j ≥ 1. Epoch E1 starts with the

first instruction of the execution and ends with the

last instruction of the dn/me-th SCAN (or E1 =

α if fewer than dn/me SCANS occur in α). For

each j > 1, epoch Ej starts at the point that

the execution of the ((j − 1)dn/me)-th SCAN ends

and finishes with the last instruction executed by

the (jdn/me)-th SCAN (or Ej is the suffix of α,

which starts at the point that the execution of

the ((j − 1)dn/me)-th SCAN ends, if fewer than

(jdn/me) SCANS occur in α). Notice that if α con-

tains (c1dn/me + c2) SCANS, where c1 ≥ 0 and
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Algorithm 6 Pseudocode for RT-Opt (process p).

1 constant ReadsPerScan = m;
2 constant ScansPerEpoch = dn/ReadsPerScane;

3 shared int seq = 1;
4 shared int SeqNums[1..ScansPerEpoch*m]={1,..,1};
5 shared data Val[1..m]={⊥,..,⊥};
6 shared data preVal[1..n+2*ScansPerEpoch+1][1..m]={⊥,..,⊥};

void UPDATE(data value, int i){
int curr seq1, curr seq2;
data v1, v2;

7 curr seq1 = seq;
8 SeqNums[p] = curr seq1;
9 curr seq2 = seq;
10 v1 = Val[i];
11 v2 = preVal[curr seq1][i];
12 if(v2 == ⊥ && curr seq1 == curr seq2)
13 preVal[curr seq1][i] = v1;
14 Val[i] = value;

}

data *SCAN(void){
15 data view[1..m], v1, v2;
16 int curr seq, i;
17 static int cur period = 0; // variables that are declared as static
18 static set free = ∅; // are not re-initialized each time SCAN is called
19 static set candidates = {2, . . ., n+2*ScansPerEpoch+1;}

20 if (cur period == 0) {
21 free = free ∪ candidates;
22 candidates = {1, . . ., n+2*ScansPerEpoch+1};

}
23 curr seq = any element of set free;
24 for (i = 1; i≤m; i++) preVal[curr seq][i] = ⊥;
25 free = free - {curr seq};
26 candidates = candidates - {curr seq};
27 cur period = (cur period+1) mod ScansPerEpoch;

28 seq = curr seq;
29 for (j = 1; j ≤ ReadsPerScan; j++)
30 candidates = candidates - { SeqNums[cur period*ReadsPerScan+j] };
31 for (i = 1; i ≤ m; i++) {
32 v1 = Val[i];
33 v2 = preVal[seq][i];
34 if (v2 == ⊥) view[i] = v1;
35 else view[i] = v2;

}
return view;

}

0 ≤ c2 < dn/me are constants, then α contains

c1 + 1 epochs, where the (c1 + 1)-st epoch contains

c2 < dn/me SCANS. We remark that the (c1 + 1)-st

epoch may contain only steps by UPDATE opera-

tions (if c2 = 0) or may be empty. Let k be the

number of epochs in α. (We remark that if α is

infinite, the number of epochs in it may be infi-

nite.) For each j ∈ {1, . . . , k}, denote by SNj the

set of values written in register seq by any SCAN of

epoch Ej and by freej the set free at the end of

Ej . Denote by candidatesj the set candidates at

the end of Ej .

Next, we prove four simple technical lemmas

that are basically direct consequences of the pseu-

docode.
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Lemma 25 For each j ∈ {1, . . . , k − 1} and for

each p ∈ {1, . . . , n}, there is a unique SCAN that

reads register SeqNums[p] during Ej.

Proof By definition of Ej , exactly dn/me SCANS

are performed during Ej . Each of these SCANS reads

m distinct registers of SeqNums (lines 27, 29, 30).

Thus, each of the n registers of SeqNums is read

exactly once during Ej .

Lemma 26 For each j ∈ {1, . . . , k}, it holds that

(1) freej∩SNj = ∅, and (2) candidatesj∩SNj =

∅.

Proof By inspection of the pseudocode (line 25),

each value chosen as the sequence number of some

SCAN during Ej is removed from free (line 25); the

same is true for candidates (line 26). Thus, at the

end of epoch Ej it holds that freej ∩ SNj = ∅,
and candidatesj ∩ SNj = ∅.

By inspection of the pseudocode (lines 20-22

and 27), lines 21-22 are executed only by the 1-st,

(dn/me+1)-st, . . . , ((k − 1)dn/me+ 1)-st SCAN of

α, as stated by the following lemma.

Lemma 27 For each j ∈ {1, . . . , k}, the following

hold for the first SCAN S executed during Ej:

1. S is the only SCAN in Ej that adds elements to

free, and

2. S is the only SCAN in Ej that executes line 22

to initialize candidates.

The next lemma states that each SCAN oper-

ation S writes to seq a value different from the

values written to seq by the other SCANS of the

epoch to which S belongs.

Lemma 28 For each j ∈ {1, . . . , k}, each SCAN of

epoch Ej writes a distinct value to seq.

Proof Fix any j ∈ {1, . . . , k}. Lemma 27 implies

that elements are added into free only by the first

SCAN of epoch Ej . By inspection of the pseudocode

(line 23), each SCAN S of epoch Ej chooses as its se-

quence number some element of free. This element

is removed from free when S executes line 25.

Thus, SCANS of Ej that are executed after S choose

to write different values into seq.

The next lemma proves that the SCANS of an

epoch choose different sequence numbers than the

SCANS of the previous epoch.

Lemma 29 For each j ∈ {2, . . . , k}, it holds that

SNj−1 ∩ SNj = ∅.

Fig. 18 Case 2 in proof of Lemma 30.

Proof Fix any j ∈ {2, . . . , k}. By Lemma 27, the

only SCAN of Ej that adds elements to free is the

first SCAN S of Ej . Specifically, S adds the elements

of candidatesj−1 to freej−1 by executing line 21.

Denote by freesj the set free after line 21 has

been executed by S. Clearly, freesj = freej−1 ∪
candidatesj−1. Lemma 26 implies that freej−1 ∩
SNj−1 = ∅, and candidatesj−1 ∩ SNj−1 = ∅. It

follows that freesj ∩ SNj−1 = ∅. By inspection of

the pseudocode (line 23), all elements of SNj are

chosen by freesj . Thus, SNj ∩ SNj−1 = ∅.

We are now ready to prove a lemma similar to

Lemma 19.

Lemma 30 Fix any i ∈ {1, . . . ,m} such that S

reads vi in preV al[seqS ][i]. If rv is the read of

V al[i] by V S
i , then rv is executed after wS

seq.

Proof To derive a contradiction, assume that rv is

executed before wS
seq. Denote by rseq the first read

of seq by V S
i (line 7), and by r′seq the second read

of seq by V S
i (line 9). Let p be the process that ex-

ecutes V S
i and let wp be the write to SeqNums[p]

by V S
i (line 8). Since rv precedes wS

seq, the same

is true for r′seq (that is executed by V S
i before rv).

Assume that S is executed in epoch Ej , j ≥ 1. We

proceed by case analysis.

1. Assume first that j = 1. By inspection of the

pseudocode (line 21), by the way free and candidates

are initialized (lines 18, 19), and by Lemma 27

(claim 1), it follows that free does not con-

tain the initial value of seq during the first

epoch. Since SCANS of each epoch choose ele-

ments from free as their sequence numbers,

S chooses a sequence number different from

the initial value of seq. Lemma 28 implies that

no SCAN that precedes S chooses the same se-

quence number as S. By definition, V S
i writes

in row seqS of preV al. By inspection of the

pseudocode (lines 12-13), this write is performed

only if both rseq and r′seq read seqS in seq. It

follows that rseq and r′seq are both performed

after wS
seq. Since rv follows r′seq, rv follows wS

seq.

This contradicts our assumption that rv pre-

cedes wS
seq.
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Fig. 19 Case 2a in proof of Lemma 30.

Fig. 20 Case 2b in proof of Lemma 30.

2. Assume now that j > 1. By inspection of the

pseudocode (line 24), S initializes all m reg-

isters of preV al[seqS ] to ⊥. By definition of

V S
i , S reads the value that V S

i writes to reg-

ister preV al[seqS ][i]. Thus, V S
i writes to reg-

ister preV al[seqS ][i] after the initialization of

preV al[seqS ][i] to ⊥ by S. Since SeqNums[p]

is written only by p and V S
i does not terminate

before the initialization of preV al[seqS ][i] by S,

it follows that SeqNums[p] contains the value

seqS written by V S
i from wp until (at least) the

initialization of preV al[seqS ][i] by S.

By Lemma 25, there is a unique SCAN opera-

tion S′ that reads SeqNums[p] during Ej−1.

Denote by rp the read of SeqNums[p] by S′

(see Fig. 18). We consider the following cases.

(a) r′seq follows rp (see Fig. 19). By Observa-

tion 19 (claim 1), r′seq reads seqS in seq.

Since r′seq follows rp and rp is executed by

a SCAN of epoch Ej−1, it follows that r′seq is

executed after the beginning of epoch Ej−1.

By Lemma 29, SNj−1 ∩ SNj = ∅. Thus,

since seqS ∈ SNj , seqS 6∈ SNj−1, that is,

no SCAN of epoch Ej−1 writes seqS to seq.

By Lemma 28, each SCAN of epoch Ej writes

a distinct value to seq. So, no SCAN of epoch

Ej other than S writes seqS to seq. It fol-

lows that the only way for r′seq to read seqS
is if it occurs after wS

seq. Since rv follows

r′seq, it follows that rv follows wS
seq. This

contradicts our assumption that rv precedes

wS
seq.

(b) r′seq precedes rp (Fig. 20). Observation 19

(claim 1) implies that r′seq reads seqS in

seq. Assume that S` is the SCAN that writes

the value seqS read by r′seq to seq and let

E`, ` ≥ 1, be the epoch in which S` is ex-

ecuted. If no such SCAN exists, then r′seq
reads the initial value of seq, so it holds

that seqS = 1; moreover, r′seq is executed

before the write to seq by the first SCAN of

epoch E1. In this case, let ` = 0, let free0 =

∅, and let candidates0 = {2, . . . , n + 2 ∗
ScansPerEpoch + 1} (i.e., sets free0 and

candidates0 are the initial values of sets

free and candidates, respectively). Since

seqS ∈ SNj , Lemma 29 implies that seqS 6∈
SNj−1. Thus, 0 ≤ ` < j − 1.

If ` > 0, let wS`
seq be the write to seq by

S`. Since r′seq reads the value written by

wS`
seq, r′seq is performed between wS`

seq and

the write to seq by the next SCAN after S`

(since l < j − 1, such a SCAN exists). So,

r′seq is executed either during E` or at the

beginning of epoch E`+1, before the write

to seq by the first SCAN of E`+1 (this situa-

tion may occur if S` is the last SCAN of E`).

(Notice that since ` < j − 1, E`+1 is either

Ej−1 or an earlier epoch.)

We prove the following claims.

Claim 1 For each f ∈ {`, . . . , j − 1},
seqS 6∈ candidatesf .

Proof Assume first that f = `. In case ` =

0, recall that seqS = 1 and candidates0 =

{2, . . . , n + 2 ∗ ScansPerEpoch + 1}. So,

seqS 6∈ candidates0. Assume now that ` >

0. Since S` is executed in epoch E` and

chooses seqS as its sequence number, seqS ∈
SN`. By Lemma 29, candidates`∩SN` = ∅.
Thus, it holds that seqS 6∈ candidates`.
Assume now that f > `. By Lemma 25,

SeqNums[p] is read by a unique SCAN Sf

of Ef . Recall that SeqNums[p] stores the

value seqS from wp until at least the be-

ginning of S; moreover, r′seq (and therefore

also wp, which is performed by V S
i before

r′seq) is executed before the write to seq

by the first SCAN of epoch E`+1. By inspec-

tion of the pseudocode (lines 28-30), a SCAN

first writes to seq and then reads some of

the registers of array SeqNums. Since ` <

f ≤ j − 1 and S occurs in epoch Ej , it fol-

lows that SeqNums[p] contains the value

seqS when Sf reads SeqNums[p]. By in-

spection of the pseudocode (line 30), it fol-

lows that seqS is removed from candidates

during Ef . By Lemma 27 (claim 1), no ele-

ments are added in candidates after the ex-

ecution of line 22 by the first SCAN of epoch
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Ef . Since line 30 follows line 22, it follows

that seqS 6∈ candidatesf .

Claim 2 For each f ∈ {`, . . . , j−1}, seqS 6∈
freef .

Proof We first prove the claim for f = `. In

case ` = 0, free0 = ∅, so seqS 6∈ free0. As-

sume that ` > 0. Since S` chooses seqS as its

sequence number, seqS ∈ SN`. Lemma 26

implies that free`∩SN` = ∅. Thus, seqS 6∈
free`.

To derive a contradiction, assume that f ,

where ` < f ≤ j − 1, is the smallest inte-

ger for which the claim does not hold, i.e.,

seqS ∈ freef . Since the claim holds for f −
1, it follows that seqS 6∈ freef−1. By Claim

1, it follows that seqS 6∈ candidatesf−1. Let

freesf denote set free after the execution

of line 21 by the first SCAN of epoch Ef .

By inspection of the pseudocode (line 21),

freesf = freef−1 ∪ candidatesf−1. It fol-

lows that seqS 6∈ freesf . Lemma 27 (claim 1)

implies that no elements are added to free

after the execution of line 21 and until the

end of Ef . Thus, seqS 6∈ freef . This is a

contradiction.

For f = j − 1, Claim 1 implies that seqS 6∈
candidatesj−1, and Claim 2 implies that

seqS 6∈ freej−1. By Lemma 27, only the

first SCAN of epoch Ej adds elements to free

by executing line 21 of the pseudocode. Let

freesj denote set free after the execution of

this line. By the pseudocode, it follows that

freesj = freej−1∪candidatesj−1. It follows

that seqS 6∈ freesj . All SCANS of epoch Ej

(including S) choose their sequence num-

bers from freesj . Since seqS does not exist

in freesj , it follows that S cannot choose

seqS as its sequence number. This is a con-

tradiction.

The statement (and the proof) of the following

lemma is the same as that of Lemma 20.

Lemma 31 For each i ∈ {1, . . . ,m} such that wS
i

follows wS
seq, it holds that any UPDATE on Ai that

performs its write to V al[i] between wS
seq and wS

i

(including US
i ) begins its execution before wS

seq.

Lemmas 15-17, which we have proved in Sec-

tion 6 for T-Opt, hold also for RT-Opt without re-

quiring any modification in their proofs:

Lemma 32 The linearization point of each SCAN

that terminates in α and each UPDATE that executes

the write of line 14 in α is within its execution

interval.

Lemma 33 Let U1, U2 be two UPDATES on some

component Ai, 1 ≤ i ≤ m. Denote by w1 the write

to V al[i] by U1 and by w2 the write to V al[i] by

U2. If w1 precedes w2, the linearization point of U1

precedes the linearization point of U2.

Lemma 34 Every SCAN operation that terminates

in α returns a consistent vector with respect to L.

Lemma 34 implies that the following theorem

holds for RT-Opt.

Theorem 20 RT-Opt is linearizable.

8.3 Step and Space Complexity

By inspection of the pseudocode, it is obvious that

the step complexity of UPDATE in RT-Opt is O(1).

If in each execution α of RT-Opt, just a single pro-

cess (always the same) performs the SCANS in α,

then RT-Opt’s step complexity for SCAN is O(m).

Specifically, each SCAN reads 3m shared registers,

namely, m registers of SeqNums (since it holds

that ReadsPerScan = m), m registers of preV al,

and m registers of V al; the rest of the SCAN com-

putation is on local variables.

Remarkably, the value of ReadsPerScan can

be chosen to be any value between 1 and n. If

ReadsPerScan = n, RT-Opt works in the same

way and has the same step complexity for SCAN

and UPDATE as RT. If ReadsPerScan = m and a

single process plays the role of the scanner in the

system, RT-Opt achieves optimal step complexity.

RT-Opt uses O(mn) registers. Most of these

registers (e.g., the registers of V al and preV al)

store just one value. The size of each of the rest of

the registers is O(log n) bits.

Theorem 21 RT-Opt uses O(mn) registers that

have bounded size and has step complexity O(m)

for SCAN and O(1) for UPDATE.

9 Discussion

This paper presents a collection of lower and up-

per bounds for single-scanner multi-writer snap-

shot implementations from registers, including the

first such implementations that are optimal in terms

of step complexity.
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An object is called historyless if the current

state of the object depends only on the last non-

trivial primitive that was performed on the ob-

ject [15]; nontrivial is a primitive that can change

the state of the object. An example of a history-

less object is a swap object. A swap object sup-

ports, in addition to read, the primitive swap(v)

that changes the state of the object to v and re-

turns the previous value stored in the object. It

was proved in [14] that any type of historyless ob-

ject can be implemented by a swap object with

the same set of possible states. Moreover, each op-

eration of the historyless object can be simulated

by a single access to the swap object. As a conse-

quence, proving a complexity lower bound for im-

plementations from swap objects implies the same

lower bound for implementations from historyless

objects. It is easy to verify that the proof of our

lower bound holds for implementations from swap

objects. Thus, our lower bound holds for imple-

mentations from historyless objects as well.

Dwork and Waarts [10], have proposed a primi-

tive, called a traceable register, which provides the

capability of tracing the values that are still ac-

tive (i.e., those that are currently stored in the

shared variables of the system or the local vari-

ables of the processes) among those that have been

written in the traceable register. A traceable reg-

ister stores a value and supports the operations

tread, twrite, and garbage-collect; tread and

twrite are used for reading and writing the reg-

ister, while garbage-collect allows a process to

find out which values that have been written into

the traceable register are still active. The first trace-

able register implementation [10] uses O(n) regis-
ters and employs handshaking techniques [26] to

have processes notify others when they access the

register. Specifically, each time twrite is invoked

by a writer to store a new value into the trace-

able register, the writer handshakes with all the

readers and sets aside (i.e., stores in some of the

O(n) registers) the old value of the traceable reg-

ister for each one of them with which handshaking

succeeds. Readers handshake with the writer and

depending on whether the handshaking succeeds,

they decide whether to return the current value of

the register or one of the old values set aside for

them. A garbage-collect reads all the registers

and returns a set of all the values stored in them.

This implementation has time complexity O(n) for

twrite.

Traceable registers could be employed to de-

sign a version of T-Opt that is space-bounded. In

this version, a SCAN would writes into traceable

registers in order to specify into which registers

UPDATES may write their values. These traceable

registers are tread by UPDATE. Then, the scanner

would be able to find out which of the values ever

written in the traceable register are still active by

performing garbage-collect. However, this would

lead to an implementation where the time com-

plexity of SCAN is O(n) (due to the handshaking).

RT-Opt uses a much simpler recycling technique

that is based on the standard read-write-read ap-

proach. This avoids handshaking and leads to op-

timal SCAN complexity.

Garbage collection in [10] is an expensive task

because there are many processes that can per-

form twrite; so a value that appears for the first

time in a traceable register may be later written

to some other traceable register and be read from

there (i.e., the degree of indirection can be greater

than one). Dwork and Waarts [10] remark that

garbage-collect can be executed more efficiently

if values that are supposed to be active are grad-

ually collected during the execution of more than

one twrite. In a space bounded version of T-Opt
using a traceable register, the degree of indirection

is one. As a consequence of this, all the informa-

tion collected during a garbage-collect is local

to SCAN, so that the execution of garbage-collect

has no influence on the time complexity of SCAN

even if it is not performed gradually (despite this,

the time complexity of SCAN is linear in n due to

handshaking). However, the technique of gradu-

ally collecting information about values written by

SCANS that may still be active is useful in RT-Opt,
which owes its good time complexity mainly to

such a technique. However, space bounded versions

of T-Opt employing this implementation do not

achieve time complexity less than Θ(n) for SCAN.

An interesting problem left open by our work

is to derive a lower bound on the number of read-

write registers that are needed to design an im-

plementation that ensures step complexity O(m)

for SCAN and O(1) for UPDATE. Is there an algo-

rithm with this step complexity that uses less than

Θ(mn) registers?

Checkmarking has the same step complexity as

a space-optimal single-scanner snapshot implemen-

tation. However, in contrast to such an implemen-

tation, it uses an additional single-writer register

and allows SCANS to write to this register. It is in-

teresting to investigate whether the Ω(m2) lower

bound still holds on the step complexity of SCAN,
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for single-scanner implementations in which SCAN

is allowed to write to a single-writer register.
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A Proofs of Lemmas 1, 2, and 3

Consider any implementation of an m-component multi-
writer snapshot object shared by n > m + 1 processes
from a set of m multi-writer read/write registers. The
statements of Lemmas 35 and 36 and their proofs are
slightly modified versions of similar lemmas that appear
in [12]. Lemmas 37, 38, 39 and 40 and their proofs are ex-
actly the same as their analogs from [12]. For the shake
of simplicity, our proofs below assume that there is a
unique process ps that performs SCAN operations in the
system. (We remark that the lemmas hold even if SCAN
operations are executed by different processes provided
that no pair of SCANS overlap.)

For the shake of simplicity, in this section, we assume
that an execution is a sequence of steps. Fix any exe-
cution α of a single-scanner, multi-writer, m-component
snapshot implementation from m registers starting from
C0.

Lemma 35 Suppose that, in configuration C, a set PO

of at most n − 1 processes covers a set of registers O,
and all processes not in PO are inactive. Furthermore,
suppose there is some component Ai such that no pro-
cess has a pending UPDATE to Ai in configuration C.
Consider an execution starting from C in which the pro-
cesses in PO execute a step each to perform their writes
and, immediately afterwards, the scanner ps performs a
solo execution in which it finishes its pending operation
(if it has one) and then performs a complete SCAN. Let
v be the value that this SCAN returns for component Ai.
Then, for all p 6∈ PO∪{q} and all v′ 6= v, the solo execu-
tion by p of UPDATE(i, v′) starting from C must perform
a write to a register outside O.

Proof Suppose not. Let C′ be the configuration ob-
tained from C when the processes in PO perform one
step each and let β be the solo execution by ps starting
from C′. Let C′′ be the configuration obtained when p
performs a solo execution of UPDATE(i, v′) starting from
C and then the processes in PO execute a step each to
perform their writes. By our assumption, p does not
write to any register outside O, so each register has the
same value in C′′ that it has in C′. Furthermore, ps is
in the same state in C′ and C′′. Therefore, the solo ex-
ecution β by ps starting from C′′ is legal and ps’s SCAN

returns the value v for component Ai. However, the exe-
cution β starting from C′′ must return the value v′ 6= v
for component Ai, since p completed its UPDATE(i, v′)
before the SCAN began and no process has a pending
UPDATE to Ai at C. This is a contradiction.

For any configuration C and for any set of pro-
cesses P ′, the set of components with a pending UPDATE

in C by a process in P ′ is denoted CPU(C,P ′).

Definition 1 Consider any integer `, where 1 ≤ ` ≤
m < n. A configuration C is `-fatal if there exists a
subset O of ` registers and a set PO of ` processes such
that PO covers O in C and |CPU(C,PO)| < `.

Lemma 36 No implementation for n processes of an
m-component snapshot object from m registers has a
reachable `-fatal configuration, for 1 ≤ ` ≤ m < n− 1.

Proof Suppose the lemma is false. Let ` be the largest
integer such that there is a reachable `-fatal configu-
ration, C1. Then there is a set O of ` registers and

a set PO of ` processes such that PO covers O and
|CPU(C1, PO)| < `. Let C be the configuration ob-
tained from C1 by running all processes not in PO until
they are inactive. Since it holds that |CPU(C,PO)| =
|CPU(C1, PO)| < ` ≤ m, there exists a component
Ai 6∈ CPU(C,PO).

Let p 6∈ PO be any process other than ps. These
process exists because |PO| = ` and 1 ≤ ` < n − 1.
Consider the execution starting from C in which the
processes in PO execute a step each to perform their
writes, ps finishes its pending operation (if any), and
then ps performs a complete SCAN. Let v be the value
that this SCAN returns for component Ai. By Lemma
35, for all v′ 6= v, the solo execution of UPDATE(i, v′) to
Ai by p starting from C contains a write to a register
R 6∈ O.

If ` = m, then we have a contradiction, since all reg-
isters are in O. Otherwise, l < m. In this case, let C2 be
the reachable configuration obtained by performing p’s
solo execution of UPDATE(i, v′) starting from C until just
before p writes to R for the first time. Let O′ = O∪{R}
and let P ′O = PO ∪ {p}. Then |O′| = |P ′O| = ` + 1, P ′O
covers O′ in C2, and CPU(C2, P ′O) = CPU(C,PO) ∪
{Ai}, so |CPU(C2, P ′O)| < `+1. Thus, C2 is a reachable
(`+1)-fatal configuration, contradicting the maximality
of `.

Lemma 37 SCAN operations never perform writes.

Proof Suppose there is an execution of a SCAN opera-
tion by process ps that contains a write to a register
R. Consider the configuration C that occurs just be-
fore this write is performed. Since {q} covers {R} and
CPU(C, {q}) is empty, this configuration is 1-fatal, con-
tradicting Lemma 36.

A solo SCAN starting from C0 returns ⊥ for every
component. For each process pi other than ps, each
component Aj , and each possible value v 6= ⊥, con-
sider the solo execution of an UPDATE of component Aj

with value v by process pi starting from C0. Since all
processes are inactive in C0, we can apply Lemma 35
with O = PO = ∅ to see that this execution by pi con-
tains at least one write to a register. Denote by Ri(j, v)
the first register written by pi and denote by ρi(j, v) the
prefix of this execution up to, but not including this first
write. (The sequence ρi(j, v) may be empty.)

Lemma 38 Consider any component Aj . For any pro-
cesses pi1 and pi2 other than ps, and for any non-⊥
values v1 and v2, Ri1(j, v1) = Ri2(j, v2).

Proof Assume first that pi1 6= pi2 . Consider the ex-
ecution ρi1(j, v1) · ρi2(j, v2) starting from C0 and let
C be the resulting configuration. This execution is le-
gal since pi1 performs no writes during ρi1(j, v1). Note
that {pi1 , pi2} covers {Ri1(j, v1), Ri2(j, v2)} in C and
CPU(C, {pi1 , pi2}) = {Aj}. If Ri1(j, v1) 6= Ri2(j, v2),
then C is 2-fatal. This contradicts Lemma 36. Hence
Ri1(j, v1) = Ri2(j, v2).

Assume now that pi1 = pi2 . Let pi be any other pro-
cess. By the argument above, Ri(j, v1) = Ri1(j, v1) and
Ri(j, v1) = Ri2(j, v2). Hence Ri1(j, v1) = Ri2(j, v2).

Lemma 38 allows us to define Rj to be the regis-
ter Ri(j, v) covered by each process pi other than ps,
immediately after it executes ρi(j, v) starting from C0,
for any value v 6= ⊥. That is, every process (other than
ps) does its first write to Rj when it performs any solo
UPDATE to Aj (with a non-⊥ value) starting from C0.
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Lemma 39 Let α be an execution starting from C0 in
which some process other than ps takes no steps. Then,
for each j ∈ {1, . . . ,m}, UPDATE operations to compo-
nent Aj in α write only to Rj .

Proof Suppose there is a process pi other than ps that
performs a write to a register R 6= Rj during the execu-
tion of an UPDATE to component Aj in α. Let α′ denote
the prefix of α up to, but not including this write by pi
to register R.

Let pk be a process other than ps that takes no steps
in α and let v be a non-⊥ value. Consider the execution
ρk(j, v) · α′ and let C′ be the resulting configuration.
This execution is legal since pk performs no writes dur-
ing ρk(j, v). Note that {pi, pk} covers {R,Rj} in C′ and
since it holds that CPU(C′, {pi, pk}) = {Aj}, it follows
that C′ is 2-fatal. This contradicts Lemma 36.

The next result shows that processes, which per-
form UPDATE operations to different snapshot compo-
nents must write to different registers.

Lemma 40 Rj1
6= Rj2

for distinct j1, j2 ∈ {1, . . . ,m}.

Proof To derive a contradiction, suppose Rj1
= Rj2

for
some j1 6= j2. Let pk1

and pk2
be two distinct pro-

cesses other than ps. Let v be some non-⊥ value. Let
C be the configuration that results when ρk2

(j2, v) is
performed by pk2

starting from C0. In configuration C,
{pk2
} covers {Rj2

}, all other processes are inactive, and
no process has a pending UPDATE to Aj1

. Let C′ be the
configuration obtained from C by allowing pk2

to do its
pending write. A solo SCAN by process ps starting from
C′ returns ⊥ for component Aj1

, since no UPDATES to
Aj1

have been started in this execution. Let α be the
solo execution of UPDATE(j1, v) by pk1

starting from C.
By Lemma 35, pk1

must write to some register other
than Rj1

= Rj2
during α.

Since pk2
performs no writes during ρk2

(j2, v), it is
also the case that α is a legal execution starting from
C0. Process pk2

takes no steps during α, so Lemma 39
implies that pk1

writes only to Rj1
during α. This is a

contradiction.
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