Lower and Upper Bounds for Single-Scanner Snapshot Implementations

Panagiota Fatourou · Nikolaos D. Kallimanis

Received: date / Accepted: date

Abstract We present a collection of upper and lower bounds on the complexity of asynchronous, wait-free, linearizable, single-scanner snapshot implementations from read-write registers. We argue that at least m registers are needed to implement a single-scanner snapshot with m components and we prove that, in space-optimal implementations, SCANS execute $\Omega(m^2)$ steps. We present an algorithm that runs in $O(m^2)$ steps and uses m + 1registers.

We also present three implementations (namely, T-Opt, RT and RT-Opt) that beat the $\Omega(m^2)$ lower

Panagiota Fatourou FORTH-ICS & University of Crete, Department of Computer Science E-mail: faturu@ics.forth.gr Present address: Foundation for Research and Technology - Hellas (FORTH) Institute of Computer Science (ICS) N. Plastira 100 Vassilika Vouton, GR-70013 Heraklion Crete Island, Greece Nikolaos D. Kallimanis

FORTH-ICS E-mail: nkallima@ics.forth.gr Present address: Foundation for Research and Technology - Hellas (FORTH) Institute of Computer Science (ICS) N. Plastira 100 Vassilika Vouton, GR-70013 Heraklion Crete Island, Greece bound by using more registers. Specifically, **T-Opt** has step complexity O(1) for UPDATE and O(m) for SCAN. This step complexity is optimal, but the number of registers that **T-Opt** uses is unbounded. We then present interesting recycling techniques to bound the number and the size of registers used, resulting in RT and RT-Opt. Specifically, RT-Opt, which has optimal step complexity, uses O(mn) bounded-size registers, where n is the total number of processes.

Our implementations are the *first* with step complexities that are (linear or quadratic) functions only of m (and not of n). Moreover, **T-Opt** and **RT-Opt** are the *first* implementations with optimal step complexity.

Keywords snapshots \cdot single-scanner \cdot multiwriter \cdot atomic objects \cdot wait-freedom \cdot linearizability \cdot asynchronous \cdot distributed algorithms \cdot shared memory computing \cdot step optimal algorithms

A preliminary version of this work appeared in the Proceedings of the 25th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), 2006, pages 228–237 and the 26th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), 2007, pages 33–42.

1 Introduction

A fundamental problem in asynchronous, sharedmemory systems is to obtain an instantaneous view of a block of shared memory while processes may be concurrently updating its cells. Snapshots are shared objects that provide such consistent views. Specifically, a snapshot object consists of an array of m components and supports two operations, UPDATE that changes the value of a component, and SCAN, which returns an instantaneous view of all components. Snapshots can be used to record the state of a system as it is changing, so they facilitate the solution of problems that have to perform an action whenever the global state of the system satisfies some condition [25]. Snapshots have been extensively used for the design and verification of distributed algorithms, e.g., for the construction of concurrent timestamps [17], approximate agreement [7], check-pointing and restarting [25], randomized consensus [4], and the design of complex distributed data structures [5].

A *multi-writer* snapshot allows each process to UPDATE any component. It can be implemented from read-write registers [3, 12–14, 21, 22]. A singlewriter snapshot [1, 2, 8, 19, 20] is a restricted version, where each component has only one process that can UPDATE it. A snapshot implementation from read-write registers uses the registers to store the state of the snapshot components and provides an algorithm, for each process, to execute SCAN and UPDATE. A snapshot implementation is evaluated in terms of its *space complexity*, which is expressed in terms of the number (and the size) of registers it uses, and its *step complexity*, which is the maximum number of steps taken by a process in every execution to perform a SCAN or an UPDATE. The advantages of snapshots can be exploited only if it is possible to implement them efficiently.

Ideally, we would like to be able to design multiwriter snapshot implementations, which have step complexity that is independent of n, the total number of processes. (Usually, n is much larger than the number m of snapshot components.) However, it has been proved [14] that, in any implementation of multi-writer snapshot objects from a fixed number of read-write registers, the step complexity of SCAN grows without bound as n increases. Current snapshot implementations [1,2,8,19,20,3,12– 14] from read-write registers have step complexity at least linear in n.

In this paper, we show that the dependence of step complexity on n can be beaten, if we restrict

attention to single-scanner snapshots [22, 24, 27]. A *single-scanner* snapshot is an interesting variant of a general snapshot object in which only one process, called the *scanner*, performs SCAN operations at any point in time.

Single-scanner snapshots have several applications and therefore studying their complexity is of interest. Many of the contemporary programming environments support garbage collection for reclaiming memory. In such environments, a process, known as a garbage collector, is periodically executed to reclaim the unused memory. Backup is another classical application of a single-scanner snapshot algorithm. In such systems, a single process is responsible for periodically taking snapshots of a system's critical data. As a last example, consider a debugging environment for parallel applications. In all these environments, it is important to take snapshots without interfering with the execution of the running application. The design of efficient wait-free single-scanner snapshot algorithms is therefore an interesting problem.

We study single-scanner, multi-writer snapshot implementations and present a collection of upper and lower bounds for their complexity. It turns out that single-scanner multi-writer snapshot implementations from read-write registers require at least m registers, even if the registers are of unbounded size. Jayanti, Tan, and Toueg [23] have presented a lower bound of $\Omega(n)$ on the step complexity of implementations of *perturbable* objects from read-write registers. They prove that singlewriter snapshots are perturbable [23]. Their proof applies to the single-scanner case. A multi-writer snapshot trivially implements a single-writer snapshot for m processes. This implies a lower bound of $\Omega(m)$ on the step complexity of SCAN for singlescanner, multi-writer snapshots.

We present a lower bound of $\Omega(m^2)$ on the step complexity of SCAN for space-optimal singlescanner multi-writer snapshot implementations for n > m processes. This lower bound holds even if each of the snapshot components can store only three different values. Additionally, we present a single-scanner multi-writer snapshot implementation, called Checkmarking, which has $O(m^2)$ step complexity and uses m + 1 registers of unbounded size. Thus, Checkmarking uses just one more register than a space optimal implementation and its step complexity matches the lower bound we proved for such implementations to within a constant factor. We also present the Time-efficient family of single scanner, multi-writer *m*-component snapshot implementations from read-write registers. It contains the first *step-optimal* implementations. These implementations have step complexity O(m) for SCAN and O(1) for UPDATE and use bounded-size registers. The first implementation, called T-Opt, is the simplest, but (in systems with no garbage collector) the number of registers it uses depends on the number of SCAN operations executed (that might be unbounded).

To improve space efficiency, we first present a relatively simple recycling technique that results in an implementation, called RT, that uses O(mn)bounded-size registers, and has step complexity O(1) for UPDATE and O(n) for SCAN. Thus, RT sacrifices the step optimality of T-Opt for less space. We then introduce a more interesting recycling technique to get an implementation, called RT-Opt, that uses O(mn) bounded-size read-write registers and achieves optimal step complexity, that is, step complexity O(1) for UPDATE and O(m) for SCAN. RT is a middle ground between T-Opt and RT-Opt; its design provides intuition for RT-Opt and simplifies its presentation. RT-Opt sacrifices space for better step complexity. We believe that it could be used to reduce the space complexity of other interesting distributed problems.

A practical snapshot implementation should ensure that the performance of UPDATE is within a small constant of that of a write. (It is usually not desirable to significantly increase the cost of updating shared memory.) The Time-efficient family ensures this property by having UPDATES perform a small number of accesses in shared memory.

We remark that T-Opt works even if processes do not have unique identifiers. Moreover, T-Opt and Checkmarking work even if the number of participating processes is unbounded. All our singlescanner implementations work even if several processes perform SCANS, although not simultaneously. T-Opt and RT do not require any changes. In order that RT-Opt works, some of the scanner's persistent (static) variables must be accessed by each process performing a SCAN, although these variables will never be accessed concurrently.

Table 1 summarizes known single-scanner snapshot implementations from registers.

The rest of the paper is organized as follows. In Section 2, we discuss related work. Our model is presented in Section 3. In Section 4, we present the $\Omega(m^2)$ lower bound on the step complexity of space-optimal, single-scanner multi-writer snapshots. Checkmarking is presented in Section 5, and T-Opt, RT and RT-Opt are presented in Sections 6, 7, and 8, respectively. A discussion and some open problems are provided in Section 9.

2 Related Work

Fatourou, Fich, and Ruppert have proved in [11, 13] that multi-scanner multi-writer m-component snapshot implementations from read-write registers require at least m registers. Moreover, they have presented a lower bound of $\Omega(mn)$ on the step complexity of SCANS for such implementations that are space optimal. Covering arguments [9] were used to prove these lower bounds; first, a number of structural properties for these implementations were presented and then, these properties were used to construct an execution where a troublesome SCAN takes many steps. We employ similar arguments in order to prove our lower bounds. It is not difficult to observe that the structural properties proved in [13] also hold for the case of singlescanner implementations. This leads to the observation that the space lower bound of $\Omega(m)$ proved in [13] also holds for the single-scanner case. However, to prove the lower bound on the step complexity, we had to cope with several complications. To prove the lower bound of $\Omega(mn)$, it is essential that, in the execution constructed in [13], a number of SCANS take place concurrently with the troublesome SCAN in order to prove that the troublesome SCAN needs to take more and more steps. In the single-scanner case, it is not possible to have more than one concurrent SCAN active at each point in time, so it is only the troublesome SCAN, which is allowed to be active during the execution. This makes our construction more difficult and delicate and differentiates it from that presented in [13].

Attiya, Ellen and Fatourou [6] proved a lower bound of $\Omega(m)$ on the step complexity of UPDATE for partitioned implementations of multi-scanner, multi-writer snapshots from base objects of any type. An implementation is *partitioned* if each base object can only be modified by processes performing UPDATES to one specific component. T-Opt is a partitioned implementation of single-scanner multiwriter snapshots and has step complexity O(1) for UPDATE. So, the lower bound in [6] can be beaten if we restrict attention to the single-scanner case.

The first single-scanner, multi-writer snapshot implementations from read-write registers were presented by Kirousis, Spirakis and Tsigas [24]. Their first implementation uses an unbounded number of

Implementation	SW/MW	Regs Type	Regs Number	Regs Size	SCAN	UPDATE
Checkmarking, this paper	MW	MW r/w	m + 1	unbounded	$O(m^2)$	$O(m^2)$
T-Opt, this paper	MW	MW r/w	∞	unbounded	O(m)	O(1)
RT, this paper	MW	MW r/w	O(mn)	$O(\log n)$	O(n)	O(1)
RT-Opt, this paper	MW	MW r/w	O(mn)	$O(\log n)$	O(m)	O(1)
Kirousis et al. [24]	MW	MW r/w	O(mn)	$O(mn\log n)$	O(mn)	O(1)
Riany et al. [27]	SW	SW r/w	n + 1	unbounded	O(n)	O(1)
Jayanti [22]	SW	SW r/w	O(n)	O(1)	O(n)	O(1)
Jayanti [22]	MW	LL/SC & r/w	O(m)	O(1)	O(m)	O(1)

Table 1 Summary of known single-scanner snapshot implementations.

registers and has unbounded step complexity for SCAN. A register recycling technique, which leads to an implementation that uses O(mn) boundedsize registers and has step complexity O(mn) for SCAN and O(1) for UPDATE, is also presented in [24]. As in the recycled implementation in [24], RT-Opt uses a two dimensional array of registers with O(n)rows of m registers each. However, the recycling technique employed by RT-Opt is much simpler than that proposed in [24], since RT-Opt recycles rows of this array and not a single element of an appropriate row for each component, as done in the implementation in [24]. Remarkably, our implementations significantly improve upon the implementations in [24] in terms of their step complexity. This is accomplished by employing different techniques to achieve fast termination.

For single-writer snapshots, a simplified version of the implementation in [24] that uses n+1 singlewriter registers of unbounded size and has step complexity O(n) for SCAN and O(1) for UPDATE is presented in [27]. Jayanti [22] has presented a simple, single-scanner, single-writer snapshot implementation from O(n) bounded-size single-writer registers that has step complexity O(n) for SCAN and O(1) for UPDATE.

Recall that Table 1 summarizes known singlescanner snapshot implementations from registers. It is remarkable that the step complexity of all previously presented single-scanner snapshot implementations from read-write registers is a function of n. In [22], Jayanti has also presented a singlescanner snapshot implementation, which has step complexity O(m) for SCAN and O(1) for UPDATE. However, that implementation uses stronger base objects such as LL/SC registers.

Our implementations are the first asynchronous snapshot implementations, which have step complexity that is linear (or quadratic) in the number of snapshot components. Snapshot implementations that are partially synchronous are provided in [24], but the correctness of these implementations is heavily based on the timing assumptions. Moreover, these assumptions simplify their design significantly. A snapshot algorithm for a system in which the number of processes may be infinite is presented in [16].

3 Model

We consider a system in which a set P of n processes run concurrently and asynchronously. The processes communicate by accessing shared objects and may fail by crashing. If a process crashes, it takes no more steps.

A read-write register R is a base object that stores a value from a set and supports the atomic primitives write(R, v) that changes the value of R to v and returns an acknowledgment ack, and read(R), which returns the value of R without any change. All processes may perform write to a *multi-writer* register, whereas only one process may perform write to a *single-writer* register.

A (multi-writer) snapshot object A consists of m components A_1, \ldots, A_m , each capable of storing a value at a time; processes can perform two kinds of operations on the object: UPDATE(i, v), which updates component A_i with value v and returns ack, and SCAN, which returns a vector of m values, one for each component of the snapshot object.

We study implementations of multi-writer snapshot objects from read-write registers. An *implementation* uses the registers to simulate the state of the snapshot components and provides an algorithm, for each process, to implement each simulated operation (i.e., SCAN and UPDATE).

A configuration C is a vector consisting of the states of the processes and the states of the registers used by the implementation. A configuration describes the system at some point in time. In an *initial* configuration, all processes are in initial states and all registers contain initial values. We say that a process takes a *step* whenever it performs a single access (read or write) to some register. A step might as well contain the execution of local computation by the process that takes the step; this computation may cause a change to the state of the process. Each step is executed atomically.

An execution is an alternating sequence of configurations and steps starting with a configuration. An execution α is *legal*, starting from a configuration C, if the sequence of steps performed by each process follows the algorithm for that process (starting from its state in C) and for each register, the responses to the operations performed on the register are in accordance with its specification and the value stored in the register at configuration C. The schedule $\pi(\alpha)$ of an execution α is the subsequence of α consisting of the steps of α . A schedule π is *legal* from some configuration C if there is a legal execution α starting from C for which $\pi = \pi(\alpha)$.

A configuration C is *reachable* if there is a legal execution α starting from an initial configuration that results in C. A process is *poised* to perform a primitive on a register in a configuration C if it performs that primitive on the register when it is next allocated a step. A process *covers* a register R in a configuration C if it is poised to perform a write primitive to R at C. A set of processes P'covers a set of registers R' if |P'| = |R'|, each process in P' covers a register in R' and each register in R' is covered by a process in P'. Two executions α and α' are *indistinguishable* to some set of processes P', denoted by $\alpha \approx_{P'} \alpha'$, if the sequence of steps performed by each process p in P' and the responses p received are the same in α and α' . In a solo execution, all steps are performed by the same process.

Let op be some SCAN or UPDATE operation in α . The *execution interval* of op is the subsequence of α that starts with the configuration that precedes the invocation (i.e., the first step) of op and ends when op responds. If the response of op precedes the invocation of some other SCAN (or UPDATE) op', then op precedes op'. We say that op is pending at some configuration C if the process p executing op, has performed at least one step of the algorithm of op at C but has not yet completed executing op. If a process p has a pending operation at C, pis called *active*; otherwise, p is *inactive* at C. In a *sequential* execution, only one process is active at each configuration of the execution.

A snapshot implementation is *single-scanner* if in each execution produced by the implementation, there is only one process, called the *scanner*, that performs SCANS at each point in time. We remark that the implementations we present work correctly even if several scanners perform SCANS provided that the execution intervals of SCANS do not overlap with one another. Our lower bounds are also true in this case.

We study implementations that are *lineariz*able [18]. An execution α starting from an initial configuration is *linearizable* if for each completed SCAN or UPDATE operation op in α (and for some of those that are not completed), we can choose a point in its execution interval, called *linearization point*, such that the response returned by op in α is the same as the response op would return if these operations were executed sequentially in the order determined by their linearization points. The sequence of these linearization points is called a *linearization* of the execution. An implementation is *linearizable* if all its executions are linearizable. If L is a linearization of α , we say that the response of op is consistent in α with respect to L (for simplicity, we sometimes omit reference to α and L whenever they are clear from the context).

Additionally, our implementations are *wait-free*. *Wait-freedom* requires that every non-faulty process should complete the execution of any SCAN or UPDATE it initiates within a finite number of steps, independently of whether other processes crash or run at arbitrary speeds.

The step complexity of SCAN (UPDATE) for a snapshot implementation I is the maximum number of steps executed by a process to perform SCAN (UPDATE, respectively) in any execution produced by I. The step complexity of I is the maximum between the step complexity of SCAN and the step complexity of UPDATE for I. The space complexity of I is determined by the maximum number of registers (and their sizes) used in any execution produced by I.

4 Lower Bound

In this section, we present lower bounds for singlescanner snapshot implementations. First, we argue that in a single-scanner implementation of an mcomponent multi-writer snapshot object for n > m + 1 processes using only m multi-writer registers, processes must access the registers in a very constrained way.

In multi-scanner (multi-writer) m-component snapshot implementations that use only m registers, Fatourou, Fich and Ruppert have proved in [12] that (1) SCANS do not write (Lemma 1), (2) unless every process has taken steps, each UPDATE operation writes to only one register (Lemma 2), and (3) processes that perform UPDATE operations to different snapshot components must write to different registers (Lemma 3). It is easy to verify that the proofs of these lemmas for the single-scanner case are similar to those presented in [12] for multi-scanner snapshots. For the sake of completeness, the proofs of Lemmas 1-3 (as well as of others that they depend on) are provided in the appendix.

Let m, n be integers such that m < n - 1 and fix any execution α of an *n*-process single-scanner, multi-writer, *m*-component snapshot implementation from *m* registers starting from an initial configuration, C_0 .

Lemma 1 (Fatourou, Fich and Ruppert) No SCAN operation ever performs writes in α .

Consider any process p_i , $1 \le i \le n$, other than the scanner, and any component A_j , $1 \le j \le m$. For any value v different from the initial value of A_j , consider an execution where p_i runs solo from C_0 to perform an UPDATE on A_j with value v. It has been proved in [12] (see appendix) that this execution contains at least one write to some register and the first such write is performed to the same register independently of the process that executes the UPDATE and the value used. Denote this register by R_j .

Lemma 2 (Fatourou, Fich and Ruppert) If there is a process, other than the scanner, that takes no steps in α , then for each $j \in \{1, \ldots, m\}$, **UPDATE** operations to component A_j write only to R_j .

Lemma 3 (Fatourou, Fich and Ruppert) For distinct $j_1, j_2 \in \{1, \ldots, m\}, R_{j_1} \neq R_{j_2}$.

Lemma 3 implies the following lower bound on the space complexity of single-scanner, multiwriter implementations of snapshot objects.

Theorem 1 Any n-process implementation of a multi-writer, single-scanner snapshot object with m < n - 1 components from multi-writer registers requires at least m registers.

We next employ Lemmas 1-3 to prove our lower bound on step complexity. To do so, we construct an execution in which the scanner, p_s , takes $\Omega(m^2)$ steps to perform a single SCAN operation S. The construction is inductive, constructing executions $\alpha_0, \alpha_1, \ldots, \alpha_{m-2}$, in which p_s takes more and more steps to complete S. The key part of the induction step is to show that, for each index $i, 0 \leq i \leq m-2$, p_s must read at least (m-i) registers after α_i to complete S. We prove that if p_s completes Swithout executing that many steps, then p_s returns an incorrect response. Thus, in α_{m-2}, p_s performs at least $\Omega(m^2)$ steps to execute S.

Theorem 2 Any n-process implementation of a multi-writer, single-scanner snapshot object with m < n-1 components using m multi-writer registers has step complexity $\Omega(m^2)$.

Proof Let $p_s, p_u \in P$, $p_s \neq p_u$, be any two processes; p_s will play the role of the scanner. We assume that the initial value of every component is \bot . Let B_0 be the empty set, let π_0 be the empty sequence, and let α_0 be the empty execution. For 0 < i < m-2, we inductively construct a sequence of indices ℓ_i , where $1 \leq \ell_i \leq m$, a sequence of sets of registers B_i , a sequence of processes p_i , and a sequence of schedules:

$$\pi_i = \rho(\ell_i, 0) \cdot \ldots \cdot \rho(\ell_1, 0) \cdot \\ \sigma_1 \cdot w_1 \cdot r_1 \cdot \\ \sigma_2 \cdot w_2 \cdot r_2 \cdot \\ \vdots \\ \sigma_i \cdot w_i \cdot r_i \,,$$

where for each $1 \leq j \leq i$:

- $-p_j$ is a process not in $\{p_s, p_u\}$ that does not take any step in π_{j-1} ,
- $-\rho(\ell_j, 0)$ is the schedule of the biggest prefix of the solo execution of UPDATE $(\ell_j, 0)$ by p_j starting from C_0 that does not contain any write,
- $-w_j$ is the write that p_j is poised to perform after $\rho(\ell_j, 0)$,
- $-\sigma_j$ is a sequence of read steps by p_s , and
- $-r_j$ is a single read step of R_{ℓ_j} by p_s .

The construction is done in such a way that, for each $0 \le i < m - 2$, the following claims hold:

- 1. if i > 0, $R_{\ell_i} \notin B_{i-1}$, $B_i = B_{i-1} \cup \{R_{\ell_i}\}$, and $|B_i| = i$,
- 2. if i > 0, for every register R, if R is not in $B_{i-1} \cup \{R_{\ell_i}\}$, then σ_i contains a read of R,
- 3. σ_i does not contain writes to any register, nor does it contain any reads of register R_{ℓ_i} ,
- 4. π_i is legal starting from C_0 ,
- 5. if α_i is the execution we get when we apply π_i from C_0 , all steps by p_s in α_i are part of a single SCAN operation S, and

6. in a solo execution by p_s starting from the final configuration C_i of α_i , all registers apart from those in B_i are read.

The proof is by induction on i. For the base case, where i = 0, Claims 1-5 hold vacuously. We prove claim 6. Let γ be the execution where p_s executes a SCAN operation solo starting from C_0 . We prove that in γ all *m* registers are read. To derive a contradiction, assume that there is an integer ℓ , $1 \leq \ell \leq m$, such that R_{ℓ} is not read by p_s during γ . Let $p \in P - \{p_s, p_u\}$ be any process and let γ' be the execution where p performs an UPDATE on component A_{ℓ} with the value 1 solo starting from C_0 . Let γ'' be the execution we get when $\pi(\gamma') \cdot \pi(\gamma)$ is applied starting from C_0 . Execution γ'' is legal because Lemma 2 implies that all writes in γ' are on register R_{ℓ} and by assumption, register R_{ℓ} is not read during γ . Thus, γ'' is indistinguishable from γ to process p_s . Therefore, p_s returns the same vector of values in both executions. Since p_s 's SCAN starts after p's UPDATE has terminated in γ'' , process p_s must return the value 1 for component A_ℓ in γ'' . Thus, p_s must return 1 for A_ℓ in γ . However, no UPDATE with value 1 is executed in γ . This contradicts linearizability for γ .

Induction Hypothesis: Fix any integer i, 0 < i < m - 2. Assume that we have defined ℓ_{i-1} , and we have constructed B_{i-1} and π_{i-1} so that the claims hold; let α_{i-1} be the execution we get when π_{i-1} is applied starting from C_0 .

Induction Step: We choose ℓ_i and we show how to construct B_i and π_i so that the claims hold.

By induction hypothesis (claim 6), in a solo execution by p_s from the final configuration C_{i-1} of α_{i-1} , all registers apart from those in B_{i-1} are read. By induction hypothesis (claim 1), $|B_{i-1}| =$ (i-1). Since i < m-2, it follows that there is more than one register that does not belong to B_{i-1} . Let σ_i be the sequence of steps performed by p_s when it runs solo from C_{i-1} until it has read all but one register outside B_{i-1} and it is poised to read this last register for the first time. Let R_{ℓ_i} be this register and let $B_i = B_{i-1} \cup \{R_{\ell_i}\}$. By definition of B_i , it follows that $|B_i| = i$. Thus, claim 1 holds. By definition of σ_i and R_{ℓ_i} and by Lemma 1, claims 2 and 3 also hold.

Let p_i be a process not in $\{p_s, p_u\}$, which has not taken any steps during α_{i-1} . Let

$$\pi_i = \rho(\ell_i, 0) \cdot \\ \pi_{i-1} \cdot \\ \sigma_i \cdot w_i \cdot r_i ,$$

where:

- $-\rho(\ell_i, 0)$ is the schedule of the biggest prefix of the solo execution of $UPDATE(\ell_i, 0)$ by p_i from C_0 that does not contain any write primitive,
- w_i is the write primitive that p_i is poised to perform after $\rho(\ell_i, 0)$ has been applied starting from C_0 (recall that the solo execution of UPDATE(ℓ_i , -) starting from C_0 contains at least one write, and all writes contained in it are to register R_{ℓ_i} by Lemma 2), and
- r_i is the **read** of register R_{ℓ_i} that process p_s is poised to perform after $\rho(\ell_i, 0) \cdot \pi_{i-1} \cdot \sigma_i \cdot w_i$ has been applied starting from C_0 .

Let α_i be the execution we get when π_i is applied starting from C_0 . Since $\rho(\ell_i, 0)$ does not contain any write primitives, $\rho(\ell_i, 0) \cdot \pi_{i-1} \cdot \sigma_i$ is legal starting from C_0 . Moreover, w_i and r_i are just the steps that processes p_i and p_s , respectively, are poised to perform after $\rho(\ell_i, 0) \cdot \pi_{i-1} \cdot \sigma_i$ has been applied starting from C_0 . Thus, α_i is legal starting from C_0 , and claim 4 holds.

By definition of σ_i and r_i , claim 5 holds. We next prove claim 6. To derive a contradiction, assume that in a solo execution by p_s starting from the final configuration C_i of α_i , there exists some register $R_\ell \notin B_i$ that is not read. Denote by σ the sequence of steps performed by p_s when it runs solo to complete its active SCAN starting from C_i . Let p be any process not in $\{p_s, p_u\}$ that does not take any step in α_i , and let

$$\tau = \rho(\ell, 0) \cdot \\\pi_i \cdot \\\sigma \cdot w \cdot S' \\= \rho(\ell, 0) \cdot \\\rho(\ell_i, 0) \cdot \dots \cdot \rho(\ell_1, 0) \\\sigma_1 \cdot w_1 \cdot r_1 \cdot \\\sigma_2 \cdot w_2 \cdot r_2 \cdot \\\vdots \\\sigma_i \cdot w_i \cdot r_i \cdot \\\sigma \cdot w \cdot S'$$

where:

- $-\rho(\ell, 0)$ is the schedule of the biggest prefix of the solo execution of UPDATE $(\ell, 0)$ by p from C_0 that does not contain any write primitive,
- w is the write primitive that process p is poised to perform after $\rho(\ell, 0)$ has been applied starting from C_0 , and
- -S' is the sequence of steps by process p_s for executing one more SCAN operation (other than S) solo starting from the configuration that we

get when $\rho(\ell, 0) \cdot \pi_i \cdot \sigma \cdot w$ is applied starting from C_0 .

Let γ be the execution we get when τ is applied starting from C_0 . We argue that γ is legal. By definition, $\rho(\ell, 0)$ contains no write primitives, so the execution we get when $\rho(\ell, 0) \cdot \pi_i \cdot \sigma$ is applied starting from C_0 is legal. Since w is the step pis poised to perform after $\rho(\ell, 0)$ has been applied starting from C_0 , γ is legal.

We aim at constructing another execution γ' such that γ' is indistinguishable from γ to process p_s and still p_s must return different vectors of values in these two executions.

Execution γ' is constructed by adding a number of UPDATES, each with value 1, executed by process p_u . More specifically, an UPDATE operation $U(\ell_1, 1)$ by process p_u on component ℓ_1 with value 1 is executed before σ_1 . For each $1 \leq j < i$, a sequence of two UPDATES $U(\ell_{j+1}, 1) \cdot U'(\ell_j, 1)$ by process p_u on components ℓ_{j+1} and ℓ_j with value 1 is executed after σ_j . A sequence of two UPDATES $U(\ell, 1) \cdot U'(\ell_i, 1)$ by process p_u on components ℓ and ℓ_i with value 1 is executed after σ_i . An UPDATE operation $U'(\ell, 1)$ with value 1 by process p_u is executed after σ . Let

$$\begin{aligned} \tau' &= \rho(\ell, 0) \cdot \rho(\ell_i, 0) \cdot \ldots \cdot \rho(\ell_1, 0) \cdot \\ & U(\ell_1, 1) \cdot \\ \sigma_1 \cdot U(\ell_2, 1) \cdot U'(\ell_1, 1) \cdot w_1 \cdot r_1 \cdot \\ \sigma_2 \cdot U(\ell_3, 1) \cdot U'(\ell_2, 1) \cdot w_2 \cdot r_2 \cdot \\ & \vdots \\ & \sigma_{i-1} \cdot U(\ell_i, 1) \cdot U'(\ell_{i-1}, 1) \cdot w_{i-1} \cdot r_{i-1} \cdot \\ & \sigma_i \cdot U(\ell, 1) \cdot U'(\ell_i, 1) \cdot w_i \cdot r_i \cdot \\ & \sigma \cdot U'(\ell, 1) \cdot w \cdot S' . \end{aligned}$$

Let γ' be the execution we get when τ' is applied starting from C_0 . We first prove that γ' is legal. After the beginning of the execution of $U(\ell_1, 1)$ (that is the first UPDATE by p_u), each of the processes p_1, \ldots, p_i, p executes just the write primitive that it is poised to perform. By Lemma 2, for each $1 \leq j \leq i$, all writes contained in $U(\ell_i, 1)$ are to register R_{ℓ_i} . By induction hypothesis (claim 3), register R_{ℓ_i} is not read during σ_j . Moreover, w_j overwrites any value that was written to R_{ℓ_i} during $U(\ell_j, 1)$. By Lemma 2, all writes contained in $U'(\ell_j, 1)$ are to register R_{ℓ_j} . Register R_{ℓ_j} is overwritten by w_j before p_s executes any read primitive. By Lemma 2, all writes contained in $U(\ell, 1)$ and $U'(\ell, 1)$ are to register R_{ℓ} . By assumption, register R_{ℓ} is not read during σ ; moreover, register R_{ℓ} is overwritten by w. Thus, none of the values written to a register by p_u is ever read by p_s . It follows

that γ' is legal starting from C_0 . Notice that γ' is indistinguishable from γ to all processes other than p_u . (We remark that for defining τ' we abuse notation and use U and U' to denote both the UPDATE operations and the sequence of steps these UPDATES perform in γ' .)

From now on we call process p_u invisible, while the rest of the processes that perform UPDATES are visible. UPDATES performed by visible processes are called visible UPDATES, whereas those performed by p_u are called invisible UPDATES. We remark that all visible UPDATES use the value 0, whereas all invisible UPDATES use the value 1.

The operations by p_u and the final SCAN S' are executed serially in γ' , so they are linearized according to the order of their execution:

$$U(\ell_{1}, 1), U(\ell_{2}, 1), U'(\ell_{1}, 1), U(\ell_{3}, 1), U'(\ell_{2}, 1), U'(\ell_{2}, 1), U'(\ell_{2}, 1), U'(\ell_{i}, 1), U'(\ell_{i}, 1, 1) U(\ell_{i}, 1), U'(\ell_{i}, 1) U'(\ell_{i}$$

$$U'(\ell, 1), S'.$$

We next argue about the order in which visible UPDATES are linearized. By claim 1, for all $j, k, 1 \leq j, k \leq i, j \neq k, \ell_j \neq \ell_k$. Moreover, $\ell \neq \ell_j$ and $\ell \neq \ell_k$ since $R_\ell \notin B_i$. Thus, every visible UPDATE is executed on a different component from any other visible UPDATE in γ and γ' .

Since γ is indistinguishable from γ' to process p_s , S' returns the same vector of values in γ and γ' . In the partial linearization order presented above, no invisible UPDATE on A_{ℓ_j} is linearized between $U'(\ell_j, 1)$ and S'. Thus, for each $1 \leq j \leq i, S'$ returns either 1 for component A_{ℓ_j} or the value 0 of some visible UPDATE that is linearized after $U'(\ell_j, 1)$. However, S' cannot return 1 for A_{ℓ_j} because S' returns the same vector of values in γ and γ' , and no UPDATE with value 1 is executed in γ . Thus, $U(\ell_j, 0)$ (the unique visible UPDATE on A_{ℓ_j}) must be linearized between $U'(\ell_j, 1)$ and S' (see Fig. 1).

We next prove that in any linearization order of γ' , the snapshot object always contains the value 1 in at least one of its components after the execution of $U(\ell_1, 1)$. For each $1 \leq j \leq i$, the value 1, written by $U(l_j, 1)$, is in A_{ℓ_j} from the execution of $U(\ell_j, 1)$ until the execution of $U'(\ell_j, 1)$. Moreover, the value 1 is in A_ℓ from the execution of $U(\ell, 1)$ until the execution of $U'(\ell, 1)$. Notice that S, the first SCAN by p_s , starts its execution in γ' after $U(l_1, 1)$ and terminates before $U'(\ell, 1)$. Thus, its linearization point must be placed between $U(l_1, 1)$

Fig. 1 Proof of Theorem 2: Linearization points for SCANS and UPDATES in γ' .

and $U'(\ell, 1)$ (see Fig. 1). It follows that S must return the value 1 for at least one component in γ' (independently of where exactly it is linearized). However, p_s must return the same vector of values in executions γ and γ' , and no UPDATE with value 1 is executed in γ . This contradicts the fact that γ is linearizable.

We conclude that claim 6 holds. The proof of the induction step is now complete.

Claims 1 and 2 imply that for each i, $1 \leq i < m-2$, p_s performs m-i read primitives during σ_i and r_i . Thus, in α_{m-1} , p_s performs at least $(m + (m-1) + \ldots + 3) \in \Omega(m^2)$ read primitives.

5 The Checkmarking Algorithm

In this section, we present Checkmarking, a singlescanner, multi-writer *m*-component snapshot implementation from m + 1 registers. Checkmarking is linearizable and has step complexity $O(m^2)$.

A description of Checkmarking is provided in Section 5.1. In Section 5.2, we prove that Checkmarking is linearizable, and in Section 5.3, we study its space complexity and its step complexity.

5.1 Description

Checkmarking uses m+1 registers, denoted R_1, \ldots, R_{m+1} ; these are the only shared variables used by the algorithm. Each component A_i , $1 \le i \le m$, is associated with a register R_i and processes updating A_i write only to R_i . Register R_{m+1} is written when some SCAN takes place (i.e., it is written by the process executing the SCAN). Notice that if we assume that all SCANS are performed by a single process (that is, there is a single scanner in the system), then R_{m+1} is a single-writer register. We remark that the algorithm is correct even if SCAN operations are executed by different processes provided that no pair of SCANS overlaps.

Checkmarking is based on the well-known technique [1] in which a scanner repeatedly reads the mregisters written by the updaters until it sees the same values in all registers in two consecutive sets of reads. To achieve wait-freedom, a process executing UPDATE helps SCAN by calculating a vector of values and storing it in the appropriate register together with the new value. In contrast to what happens in [1], Checkmarking avoids paying a step complexity cost of $\Omega(n)$ by introducing a new efficient termination technique for SCANS, which takes into consideration the fact that Checkmarking is single-scanner.

For each $1 \leq i \leq m$, register R_i stores the following information: (1) the value of component A_i , (2) the identifier *id* of the process *p* that performed the last write to R_i ,(3) a *timestamp*, which is used by *p* to distinguish its UPDATES, (4) a sequence number, *curr_seq*, that *p* read in R_{m+1} at the beginning of the execution of the UPDATE operation that last wrote in R_i , and (5) a vector view containing a value for each of the *m* components. Register R_{m+1} stores only an integer, *curr_seq*, which has the initial value 1 and is increased by one each time a new SCAN operation starts executing.

Each SCAN and UPDATE operation tries to obtain a consistent vector by executing GetVector. Each time a SCAN S is executed by some process p, the following actions take place. Process p increases by one the curr_seq field of register R_{m+1} . Then, p executes GetVector and returns the vector calculated by it.

Each process has a local variable ts, with initial value 0, which is incremented every time the process executes an UPDATE operation. During the execution of an UPDATE on some component A_i by some process p, the following actions take place. Process p first reads the value of $curr_seq$ from register R_{m+1} . To help SCANS complete, the UPDATE then tries to obtain a consistent vector by executing GetVector. Finally, p writes the new value of A_i , its identifier, its increased timestamp, the value of $curr_seq$ it read in R_{m+1} , and the vector of values calculated by GetVector to register R_i . The pseudocode for SCAN and UPDATE is presented in Algorithm 1. For ease of presentation, we assume

Algorithm 1 Pseudocode for UPDATE and SCAN. (We assume that components store values of type data.)

struct register {
data value;
int id;
int timestamp;
int curr_seq;
data view $[1m]$;
}

1

 $\mathbf{2}$

shared struct register $R_1, R_2 \dots, R_{m+1}$; // initially, R_{m+1} .curr_seq = 1

void UPDATE(int i, data value, int id, int ts) {
 data view[1..m];
 int curr_seq;

```
3
          \operatorname{curr\_seq} = R_{m+1}.\operatorname{curr\_seq};
          view = GetVector(curr_seq);
4
          R_i = \langle \text{value, id, ts, curr\_seq, view} \rangle;
5
      }
      data *SCAN(void) {
6
          data view[1..m];
7
          int curr_seq;
8
          \operatorname{curr\_seq} = R_{m+1}.\operatorname{curr\_seq} + 1;
9
          R_{m+1}.\mathrm{curr\_seq} = \mathrm{curr\_seq};
10
          view = GetVector(curr_seq);
          return view;
11
      }
```

that R_{m+1} has the same structure as the rest of the registers and all its fields other than $curr_seq$ are unused.

Any instance g of GetVector performs consecutive sets of reads of R_1, \ldots, R_m until one of the following conditions is satisfied:

- 1. If the *curr_seq* field of some register R_i has a value larger than or equal to the *curr_seq* parameter of g, then the UPDATE operation that wrote this value to R_i started its execution after the beginning of the operation that invoked g and finished it before the completion of g. In this case, g returns the vector of values read in the *view* field of R_i .
- 2. Assume that there exist integers $\ell > 1$ and $j \ge \ell$, for which the following hold: there exists an integer $d \ge 0$, such that (a) during the ℓ -th set of reads, d registers R_{x_1}, \ldots, R_{x_d} (and no others) have different values than those read during the $(\ell 1)$ st set of reads, (b) g has seen each of these d registers change at least once between the ℓ -th set of reads and the j-th set of reads, and (c) j is the smallest and ℓ is the largest integer for which conditions (a) and (b)

	A_1	A_2	A_3	A_4
1				
2		\checkmark		
3	\checkmark		\checkmark	
4				\checkmark
5			\checkmark	
6	\checkmark			

Fig. 2 An example of an execution of an instance of GetVector in Checkmarking that terminates by evaluating the second termination condition to true.

hold. Then, g responds by returning the *value* fields of R_1, \ldots, R_m read during the ℓ -th set of reads. We remark that if d = 0, then g terminates by observing, for each register, the same values in two consecutive sets of reads, namely the $(\ell - 1)$ -st and the ℓ -th set of reads; we remark that in this case, $j = \ell$.

To better illustrate the second termination condition, Fig. 2 shows array *history* for a snapshot object of four components in an execution of a SCAN S where six sets of reads take place before the second termination condition becomes **true** and S terminates. A \checkmark appears in those elements of the array whose value has changed from the (j-1)-st set of reads to the *j*-th set of reads. Termination condition (2) is satisfied for the first time when j = 6 and $\ell = 3$ because components A_1 and A_3 , which are seen by S to have changed from the 2nd to the 3rd set of reads, have changed once more between the 3rd set of reads and the 6th set of reads. Notice that, for all smaller values of j, there is no value of ℓ that satisfies the required property.

The pseudocode for GetVector is presented in Algorithm 2. Each of the processes maintains a local array of two dimensions, called *history*. Row 1 of *history* stores the information that is read during the initial set of reads (line 18 of the pseudocode). Specifically, for each $i, 1 \leq i \leq m$, each element of history[1][i] has two fields; these are r, which stores the value read in R_i during the first set of reads, and a boolean variable *change*, which is equal to false. For each $1 < j \leq m+2$, row j of *history* stores the information that is read during the j-th set of reads. We will prove in Section 5.3 that at most m+2 sets of reads may take place in any execution of GetVector. Moreover, $history[j][i].change, 1 \leq i \leq m$, is a boolean variable that indicates whether register R_i has been found to have a different value when it was read during the *j*-th set of reads from the value read in it during the (j-1)-st set of reads. The number of registers that have been found to indeed have a different value is stored in checkmarks[j].

Specifically, checkmarks[j] stores a counter of the number of checkmarks in row j that have no later checkmark in the same column (see Fig. 2).

To check whether condition (2) is satisfied, each time a checkmark is added in history[j][i], where $2 \leq j \leq m+2, 1 \leq i \leq m$, the algorithm walks up column *i* starting from row j-1 until it reaches an earlier checkmark in column *i* (or the beginning of the column). If an earlier checkmark is reached on row ℓ of *history*, *checkmarks*[ℓ] is decreased by one and that checkmark is removed. If a row's counter becomes equal to zero, condition (2) is satisfied and the algorithm terminates and returns the vector of values stored in that row.

Consider any SCAN S and let U be an UPDATE that performs its write primitive in the execution interval of S. Notice that if U starts its execution after S writes into R_{m+1} , then the execution interval of U is contained in the execution interval of S. A SCAN that sees such an UPDATE borrows the vector written by it. Condition (2) guarantees that S terminates even if it does not ever see such an UPDATE.

5.2 Linearizability

Consider any execution α of Checkmarking. By inspection of the pseudocode (lines 1-5), it follows that no UPDATE ever writes into register R_{m+1} . Thus, R_{m+1} is written only by SCANS. Moreover, the integers stored in R_{m+1} (lines 8-9) are strictly increasing.

Observation 3 The following hold:

- 1. no UPDATE ever writes to register R_{m+1} , and
- 2. the values written into R_{m+1} are strictly increasing.

Let S be any SCAN executed in α and denote by g the instance of GetVector executed by S.

Lemma 4 Suppose that g terminates after epoch iterations of the while loop of line 20. For each integer ℓ , $1 \leq \ell \leq$ epoch, at the beginning of the ℓ -th iteration, it holds that for each integer i, $1 < i < \ell$, checkmarks[i] > 0.

Proof The proof is a direct induction on ℓ . The claim holds vacuously when $\ell = 1$. Fix any ℓ , $1 \leq \ell < epoch$ and suppose that the claim is true for ℓ . We prove that the claim holds for $\ell + 1$.

Since $\ell < epoch$, it follows that g does not terminate during the ℓ -th iteration of the while loop. By inspection of the pseudocode, it follows that the condition of the if statement of line 26 evaluates to **true** at least once during the execution of the ℓ -th iteration (otherwise, g would return on line 38 before the end of the ℓ -th iteration). It follows that $checkmarks[\ell] > 0$ at the end of the ℓ -th iteration.

The induction hypothesis implies that at the beginning of the ℓ -th iteration, for each $j, 2 \leq j < \ell$, checkmarks[j] > 0. By inspection of the pseudocode, it follows that checkmarks[j] is reduced only whenever line 30 is executed. However, the if statement of line 32 implies that the first time that checkmarks[j] becomes equal to zero for some j, g terminates. Since $\ell < epoch$, this does not occur during the ℓ -th iteration of the while loop. It follows that at the beginning of the $(\ell + 1)$ -st iteration, it holds that for each $j, 2 \leq j < \ell + 1$, checkmarks[j] > 0.

By inspection of the pseudocode (lines 34 and 38) and by Lemma 4, we get the following observation.

Observation 4 Suppose that g returns on line 34 or 38. Then, the following hold:

- 1. at the point that g returns, there is an integer ℓ , $1 < \ell \le epoch$, such that $checkmarks[\ell] = 0$, and for each integer j, $1 < j \le epoch$, $j \ne \ell$, $checkmarks[j] \ne 0$,
- g returns the values read during the ℓ-th iteration of the while loop of line 20.

We split the execution interval of g into epochs as follows. Epoch 1 starts with the first and ends with the last **read** primitive of the initial set of reads. Similarly, for each i > 1, the *i*-th epoch (or epoch *i*) starts with the first and ends with the last **read** primitive of the *i*-th set of reads.

Assume that g completes on line 25 of the pseudocode. We denote by k_g the largest integer for which the following holds: there exists a sequence U_1, \ldots, U_{k_g} of UPDATES such that:

- U_{k_g} is the UPDATE operation that writes the vector of values returned by g, and
- for each ℓ , $1 < \ell \leq k_g$, the instance g_ℓ of **GetVector** that is executed by U_ℓ returns (on line 25) the vector of values written by $U_{\ell-1}$.

Let $SU(g) = U_1, \ldots, U_{k_g}$ and let $SG(g) = g_1, \ldots, g_{k_g}$. In case g does not terminate on line 25, $SU(g) = SG(g) = \lambda$ (where λ is the empty sequence). Notice that g and each of the $g_1, \ldots, g_{k_g} \in SG(g)$ return the same vector of values. Moreover, g_1 returns by executing line 34 or line 38 of the pseudocode, while g_2, \ldots, g_{k_g}, g return by executing line 25.

Algorithm 2 Pseudocode for GetVector.

struct info { 12 struct register r; 13boolean change; } data *GetVector(int curr_seq) { 14struct info history [1..m+2][1..m];int epoch = 1, i, ℓ , k, checkmarks $[1..m + 2] = \{0, ..., 0\};$ 1516data view[1..m]; struct register mp; 17// initial set of reads 18 for $(i = 1; i \le m; i++)$ history[epoch][i] = $\langle read(R_i), false \rangle$; 19epoch = epoch + 1;20while (true) { // perform the next set of reads checking if condition 1 is satisfied for $(i = 1; i \le m; i++)$ { 2122 $mp = read(R_i);$ 23 $history[epoch][i] = \langle mp, false \rangle;$ 24if $(mp.curr_seq \ge curr_seq)$ 25return mp.view; if $(history[epoch-1][i].r \neq history[epoch][i].r)$ { 2627history[epoch][i].change = true; checkmarks[epoch]++; 28for $(\ell = \text{epoch-1}; \ell \ge 2; \ell - -)$ { 29if $(history[\ell][i].change == true)$ { $(\text{checkmarks}[\ell]) - -;$ 30 31 $history[\ell][i].change = false;$ 32 if $(\text{checkmarks}[\ell] == 0)$ { 33 for $(k = 1; k \le m; k++)$ view $[k] = history[\ell][k]$.r.value; 34return view; } // if break; // stop executing the for loop of line 28 35} // if } // for } // if // for 36 if (checkmarks[epoch] == 0) { 37 for $(k = 1; k \le m; k++)$ view[k] = history[epoch][k].r.value;38 return view: } // if 39 epoch = epoch + 1;} //while }

Let $g(S) = g_1$ if $SG(g) \neq \lambda$, and let g(S) = g otherwise. For clarity of presentation, Table 2 summarizes the notation used in this section.

The following observation is a consequence of the above definitions.

Observation 5 For any SCAN operation S in α , the following hold:

- 1. g(S) returns on line 34 or line 38,
- 2. S returns the same vector of values as g(S), and
- 3. if g is the instance of GetVector invoked by S and $SG(g) \neq \lambda$, then g returns by execut-

ing line 25. Moreover, for each instance g' of GetVector in SG(g) other than g(S), g' returns by executing line 25.

We next assign linearization points to SCANS that complete in α and to UPDATES that perform the write of line 5 in α .

Consider any SCAN operation S that completes in α . We find it helpful to assign a linearization point not only to S but also to g(S). Assume that g(S) returns after having executed $epoch \ge 1$ iterations of the while loop of line 20. By Observation 5 (claim 1), g(S) terminates by executing line 34 or line 38. By Observation 4, at the point that g(S)

Notation	Description
$A_i, 1 \le i \le m$	The <i>i</i> -th component of the snapshot object
$R_i, 1 \le i \le m$	Register that is associated with component A_i ; UPDATES to component A_i
	write only to R_i
R_{m+1}	Register that is written by SCANS
α	An execution of Checkmarking
S	A SCAN operation in α
g	The instance of $GetVector$ executed by S
U_{k_g}	The UPDATE that writes the vector of values returned by g (if g returns on
	line 25)
	The instance g_{ℓ} , $1 < \ell \leq k_g$, of GetVector executed by U_l terminates on
$SU(g) = U_1, \ldots, U_{k_g}$	line 25 and returns the vector of values written by U_{l-1} ; $k_g \ge 0$ is the
	length of this sequence
$SG(g) = g_1 \dots, g_{k_g}$	The sequence of instances of GetVector that are invoked by U_1, \ldots, U_{k_g} ,
	respectively
λ	The empty sequence
g(S)	$g(S) = g_1$ if $SU(g) \neq \lambda$, $g(S) = g$ otherwise

Table 2 Notation used in the proof of Checkmarking.

terminates, there is a unique integer ℓ , $1 < \ell \leq epoch$, for which it holds that $checkmarks[\ell] = 0$; moreover, g(S) returns the values it read during its ℓ -th epoch. We insert the linearization point for g(S) immediately before the point that performs the first **read** primitive of the ℓ -th epoch. The linearization point for S is inserted at the same place as that for g(S).

Let $d \ge 0$ be the number of registers whose values have changed from the $(\ell - 1)$ -st to the ℓ th epoch of g(S). Denote by R_{x_1}, \ldots, R_{x_d} these registers, denote by v_{x_1}, \ldots, v_{x_d} the values read by g(S) in R_{x_1}, \ldots, R_{x_d} , respectively, during the ℓ -th epoch, and let U_{x_1}, \ldots, U_{x_d} be the UPDATES that wrote the values v_{x_1}, \ldots, v_{x_d} to R_{x_1}, \ldots, R_{x_d} . Notice that U_{x_1}, \ldots, U_{x_d} update different components. For those UPDATES of the U_{x_1}, \ldots, U_{x_d} that performed their write primitives after the first read primitive r_1 of the ℓ -th epoch of q(S), we insert their linearization points immediately before the linearization point of g(S) (in any order since they all update different components). After we have assigned linearization points to all SCANS (and to some UPDATES) according to the rules described above, we linearize each UPDATE that has not yet been assigned a linearization point at the point where its write occurs. Let L be the linearization of α determined by assigning linearization points to operations as described above.

Intuitively, it turns out that all values read by g(S) in the ℓ -th epoch have been written by **UPDATES** that have started their execution before S writes to R_{m+1} . Some of them perform their write before r_1 (where S is linearized), whereas others after it. Let U be such an **UPDATE** that performs its write before r_1 . Let A_j be the component that U updates. We argue that U is linearized at its write and no other UPDATE has written to R_j between U's write and r_1 . This implies the consistency of the value returned for A_j by g(S) (as well as by S).

To guarantee the consistency of those values returned by S that have been written by UPDATES, which perform their writes after r_1 , we have to move the linearization points of these UPDATES immediately before r_1 (that is earlier than the point where their write primitives occur). Let U be an UPDATE whose linearization point has been placed immediately before r_1 . Assume that U updates component A_i and let w be the write primitive performed by U. Notice that w may obliterate the evidence of some other UPDATE U' on A_j that performs its write between r_1 and r_j . Since S does not see the value that U' writes for A_i , U' is linearized at its write primitive and therefore after the linearization point of U. This might cause problems to the consistency of SCANS that follow S (see Fig. 3). For this reason, termination condition (2) requires that S sees the value written by one more UPDATE on A_j (let it be U'') after the ℓ -th epoch of its execution; we argue that U'' is linearized at its write primitive, which occurs after r_i and before the end of S, and therefore U''is linearized after U and U'. Thus, in order to be consistent, SCANS that are subsequent to S must return the value of U'' or some later UPDATE (and not that of U', which they cannot be aware of).

By the way linearization points are assigned, each SCAN and each UPDATE that is linearized at the write primitive it performs on line 5 is assigned a unique linearization point. Consider an UPDATE Uthat is not linearized at the write primitive it per-

Fig. 3 An example of an execution of Checkmarking.

forms on line 5; let w be this primitive. By the way linearization points are assigned, there is a SCAN Ssuch that w is performed within the execution interval of S. Since there is a single active SCAN at each point in time, it follows that the linearization point of U is unique.

To argue that for each SCAN and UPDATE, its linearization point is within its execution interval, we first prove the following technical lemma.

Lemma 5 Consider any SCAN operation S in α and denote by g the instance of GetVector that is executed by S. Let $SU(g) = U_1, \ldots, U_{k_g} \neq \lambda$ and let $SG(g) = g_1, \ldots, g_{k_g}$. Then, for each $1 \leq j \leq k_g$, it holds that:

- 1. if j > 1, U_{j-1} performs its write primitive before the write primitive of U_j ,
- 2. the value of curr_seq read in R_{m+1} by U_j is the value written there by S, and
- 3. the execution interval of U_j (and therefore also of g_j) is within the execution interval of S and starts after S has written to R_{m+1} .

Proof We start by proving claim 1. By definition of SU(g) and SG(g), for each $1 < j \leq k_g$, g_j (that is invoked by U_j) returns the vector of values written by U_{j-1} . Thus, U_{j-1} executes its (unique) write primitive before the end of g_j and therefore before the write primitive of U_j .

Next, we prove claim 2. Let $g_{k_g+1} = g$. Consider any $j, 1 < j \le k_g+1$. Observation 5 (claim 3) implies that g_j terminates by executing line 25 of the pseudocode. Therefore, the condition of the if statement on line 24 is evaluated to **true** by g_j . Since (1) g_j returns mp.view, (2) mp is the value written by U_{j-1} , and (3) $mp.curr_seq$ is greater than or equal to the curr_seq parameter of g_j , it follows that U_{j-1} has read a value for curr_seq in R_{m+1} that is greater than or equal to the value written by S (if $j \le k_g$), or to the value written there by S (if $j = k_g + 1$). (Notice that the value written to R_{m+1} by S is equal to the curr_seq parameter of $g = g_{k_g+1}$.)

By definition of SU(g), g returns the vector of values written by U_{k_g} . Thus, U_{k_g} terminates before the end of g (and therefore also before the end of S). By claim 1, for each $1 \leq j < k_g$, U_j terminates before U_{k_g} . Therefore, U_j also terminates before the end of S. Since there is just a single active SCAN in the system at each point in time and for each j, $1 \leq j \leq k_g$, S terminates after the end of U_j , Observation 3 (claim 1) implies that U_j cannot read a value for curr_seq in R_{m+1} greater than that written there by S. Thus, U_j reads the value written to R_{m+1} by S for curr_seq.

We next prove claim 3. It suffices to prove that U_j (and therefore also g_j , which is invoked by U_j) starts its execution after S has written to R_{m+1} . This is so because U_j starts its execution by reading R_{m+1} and reads there the value written by S.

The next lemma is a consequence of Lemma 5 and the definition of g(S).

Lemma 6 Consider any SCAN operation S in α . Then, the following hold:

- 1. the execution interval of g(S) is contained in the execution interval of S and starts after S has written to R_{m+1} , and
- 2. the curr_seq parameter of g(S) has the value written to R_{m+1} by S.

Proof Let g be the instance of GetVector executed by S. Consider first the case where $SG(g) = \lambda$. Then, g(S) = g (by definition). Obviously, the execution interval of g is contained in the execution interval of S (since g is executed by S). By inspection of the pseudocode (lines 8-10), S invokes g after it writes to R_{m+1} . Also, notice that the curr_seq parameter of g has the value written to R_{m+1} by S (because g is called by S with this parameter).

Consider now the case where $SG(g) \neq \lambda$. Then, $g(S) = g_1$ (by definition). By Lemma 5 (claim 3), it follows that the execution interval of the first instance g_1 of GetVector in SG(g) is within the execution interval of S and starts after S has written to R_{m+1} . Lemma 5 (claim 2) implies that the curr_seq parameter of g_1 has the value written to R_{m+1} by S.

We next prove that the linearization point of any SCAN that terminates in α is within its execution interval.

Lemma 7 For each SCAN operation S that terminates in α , the following hold:

- 1. the linearization point of g(S) is within its execution interval, and
- 2. the linearization point of S is within its execution interval.

Proof Consider any SCAN S that terminates in α . By Observation 5 (claim 1), g(S) returns by executing line 34 or line 38. By the way linearization points are assigned, it follows that the linearization point of g(S) is within its execution interval. Moreover, the linearization point of S is placed at the same point as that of g(S). By Lemma 6 (claim 1), the execution interval of g(S) is within the execution interval of S. Therefore, the linearization point of S is within its execution interval.

Next, we study properties of an UPDATE operation whose linearization point has not been inserted at its write primitive.

Lemma 8 Consider any UPDATE operation U on a component A_j such that the linearization point of U is not at the point that it performs its write primitive. Then, there exists a SCAN operation S such that:

- 1. the linearization point of U is contained in the execution interval of S,
- 2. S returns the value v written by U for component A_i , and
- 3. the write primitive of U follows the linearization point of g(S) and precedes the end of S.

Proof We start by proving claim 1. Since the linearization point of U has not been inserted at the point that U performs its write, by the way linearization points are assigned, there is some SCAN operation S such that U is linearized immediately before g(S). The linearization point of S is placed at the same point as the linearization point of g(S). By Lemma 7 (claim 2), the linearization point of Sis within its execution interval. It follows that the linearization point of S.

Next, we prove claim 2. Assume that q(S) returns after *epoch* iterations of the while loop of line 20. By Observation 5 (claim 1), g(S) terminates by executing line 34 or line 38. By Observation 4, at the point that q(S) terminates, there is a unique integer ℓ , $1 < \ell \leq epoch$, for which it holds that *checkmarks* $[\ell] = 0$; moreover, g(S)returns the values it read during its ℓ -th epoch. Let $d \geq 0$ be the number of registers whose values have changed from the $(\ell - 1)$ -st to the ℓ -th epoch of g(S). Denote by R_{x_1}, \ldots, R_{x_d} these registers, denote by v_{x_1}, \ldots, v_{x_d} the values read by g(S) in R_{x_1}, \ldots, R_{x_d} , respectively, during the ℓ -th epoch, and let U_{x_1}, \ldots, U_{x_d} be the UPDATES that wrote the values v_{x_1}, \ldots, v_{x_d} to R_{x_1}, \ldots, R_{x_d} . By the way linearization points are assigned, U must be one of the U_{x_1}, \ldots, U_{x_d} . Thus, in the ℓ -th epoch, g(S) reads the value written by U for A_i . Since g(S) returns the vector of values read in the ℓ -th epoch, it follows that g(S) returns the value written by U for A_i . By Observation 5 (claim 2), S returns the same vector of values as g(S). Thus, S returns the value written by U for A_i .

We next prove claim 3. Let r_1 be the first **read** primitive executed by g(S) at the ℓ -th epoch, and let r_j be the **read** primitive executed by g(S) on register R_j (that corresponds to component A_j) during the ℓ -th epoch. By the way linearization points are assigned, the **write** primitive w of U follows r_1 . Since g(S) is linearized immediately before r_1 , it follows that the **write** primitive of U follows the linearization point of g(S). Since S returns the value v written by U for A_j , it follows that w is performed before the end of S.

We next prove that the linearization point of each UPDATE operation is within its execution interval.

Lemma 9 For each UPDATE operation U that performs its write in α , the linearization point of U is within its execution interval.

Proof If the linearization point of U has been inserted at the point where its write occurs, then it is obviously within its execution interval. Assume that this is not the case. Then, there exists a SCAN operation S such that the linearization point of U has been inserted immediately before the linearization point of g(S). By Lemma 7 (claim 1), the linearization point of g(S) is within its execution interval. By Lemma 8 (claim 3), U has performed its write primitive after the linearization point of g(S).

By Lemma 6 (claim 1), the execution interval \mathbf{B} of g(S) starts after S has written to R_{m+1} . It suffices to prove that U has started its execution before the write of S to R_{m+1} . Suppose not. By Lemma 8 (claim 2), S returns the value written by U. By Observation 5 (claim 2), S returns the same vector of values as g(S). It follows that g(S)reads the value written by U. By inspection of the pseudocode (lines 22-25), it follows that if U reads a value for *curr_seq* greater than or equal to that written to R_{m+1} by S, g(S) will terminate by executing line 25 returning the vector of values written by U. This contradicts Observation 5 (claim 1). Thus, U reads in R_{m+1} a value for curr_seq less than that written there by S. Therefore, Observation 3 implies that U starts its execution before Swrites to R_{m+1} .

Consider any UPDATE operation U on a component A_j such that the linearization point of Uhas not been inserted at the point that it performs its write primitive. By Lemma 8, there exists a SCAN operation, which we will denote by S(U), such that the linearization point of U has been inserted immediately before the linearization point of g(S(U)). To prove consistency of SCANS (with respect to L), we first prove the following technical lemma.

Lemma 10 Consider any UPDATE operation U on a component A_j such that the linearization point of U has not been inserted at the point that it performs its write primitive. Then, there exists an UPDATE operation U' such that:

- the write primitive w of U precedes the write primitive w' of U',
- 2. w' precedes the end of S(U), and
- 3. the linearization point of U' follows the linearization point of S(U).

Proof Assume that g(S(U)) returns after epoch iterations of the while loop (line 20). By Observation 5 (claim 1), g(S(U)) terminates by executing line 34 or line 38. By Observation 4, at the point that g(S(U)) terminates, there is a unique integer ℓ , $1 < \ell \leq epoch$, for which it holds that $checkmarks[\ell] = 0$; moreover, g(S(U)) returns the values it read during its ℓ -th epoch. By the way linearization points are assigned, g(S(U)) reads the value written by U for A_j during the ℓ -th epoch.

Let r_1 be the first **read** executed by g(S(U)) at the ℓ -th epoch, and let r_j be the **read** of g(S(U))on register R_j in the ℓ -th epoch. By the way linearization points are assigned, g(S(U)) is linearized

Fig. 4 Case 2 of Lemma 11.

before r_1, U is linearized before g(S(U)), and U's write is performed after r_1 and before r_j . Therefore, the first time q(S(U)) reads the value written to R_j by U is by executing r_j (i.e., in the ℓ -th epoch). By the pseudocode, it follows that $history[\ell][j].change ==$ true at the point that r_i is executed and therefore $checkmarks[\ell]$ is greater than zero at that point. By definition of ℓ , it follows that $checkmarks[\ell]$ is equal to zero at the point that q(S(U)) terminates. By inspection of the pseudocode, it follows that there is some integer $\ell' > \ell$ such that $history[\ell'][j]$.change == true. Therefore, R_j that has changed from the $(\ell - 1)$ -st to the ℓ -th epoch of q(S(U)) changes again from the $(\ell' - 1)$ -st to the ℓ' -th epoch. So, there exists some UPDATE operation U', which performs its write primitive w' after the write primitive w of U and before the end of the execution interval of g(S(U)) (and therefore also of S(U)). So, claims 1 and 2 hold.

Next, we prove claim 3. We argue that the linearization point of U' is inserted at its write primitive and therefore it follows the linearization point of g(S(U)) and S(U). Suppose not. Then, by the way linearization points are assigned, there exists some SCAN operation S' such that S' returns U''s value for A_i and the linearization point of U' is placed immediately before that of g(S') (and S'). Since S(U) returns U's value and not U's value for A_i, S' is different from S. Since, by claim 2, w'is performed before the end of the execution interval of S(U), Lemma 9 implies that the linearization point of U' is placed before the end of S(U). Thus, U' and therefore also S' is linearized before S(U). Lemma 7 (claim 1), Lemma 6 (claim 1), and Lemma 8 (claim 3) imply that w' occurs in the execution interval of S'. Since w occurs in the execution interval of S(U) (between r_1 and r_j), it follows that w' precedes w. This contradicts claim 1 proved above.

We are now ready to prove that SCANS return consistent vectors with respect to L.

Lemma 11 For each SCAN operation S that terminates in α , the vector of values returned by S is consistent with respect to L.

Proof By the way linearization points are assigned, S is linearized at the same place as g(S). By Observation 5 (claim 2), S returns the same vector of values as g(S). Thus, it suffices to prove that g(S) returns a consistent vector of values with respect to L. Assume that $view = \langle v_1, \ldots, v_m \rangle$ is the vector of values returned by g(S). To derive a contradiction, assume that there is some integer $j \in \{1, \ldots, m\}$ such that the value parameter of the last UPDATE U on A_j , which is linearized before g(S) is not v_j . Assume that the value of U is v and let U_j be the UPDATE operation, which writes the value v_j read by g(S) to R_j .

By Observation 5 (claim 1), g(S) returns by executing line 34 or line 38 of the pseudocode. Assume that g(S) returns after having executed *epoch* iterations of the while loop. By Observation 4, at the point that g(S) terminates, there is a unique integer ℓ , $1 < \ell \leq epoch$, for which it holds that *checkmarks* $[\ell] = 0$; moreover, g(S) returns the values it read during its ℓ -th epoch. Let r_1 be the first read of g(S) in the ℓ -th epoch and let r_j be the read of g(S) on register R_j (that corresponds to component A_j) in the ℓ -th epoch. We proceed by case analysis.

- 1. Assume first that U_j performs its write primitive w_j after r_1 . Since g(S) returns v_j , it follows that U_j performs its write primitive between r_1 and r_j . By the way linearization points are assigned, the linearization point of U_j is inserted immediately before the linearization point of g(S) and no other UPDATE operation on A_j is linearized between U_j and S. (Recall that all UPDATES that are linearized immediately before g(S) are on distinct components.) This contradicts our assumption that U is linearized between U_j and g(S).
- 2. Assume now that w_j precedes r_1 . Assume first that U's write primitive w follows w_i . Since g(S) returns v_j for A_j , the last write primitive to R_j that precedes r_j is w_j . Since w follows w_j , it follows that w follows r_j (see Fig. 4). Since g(S) is linearized immediately before r_1 , the linearization point of q(S) precedes w. Since U is linearized before S (and therefore before g(S), it follows that U is not linearized at w. By the way linearization points are assigned, there exists some SCAN operation S' such that S' returns v and the linearization point of U is placed immediately before that of g(S'). Since S returns v_i and not v for A_i , S' is different from S. Lemma 8 (claim 3) implies that w precedes the end of the execution interval of S'. Because w follows r_1 (and precedes the end of the execution interval of S'), and there is just

a single SCAN operation active at each point in time, it follows that S' follows S.

By Lemma 7 (claim 2), the linearization point of S is within its execution interval. By Lemma 8 (claim 1), the linearization point of U is within the execution interval of S'. It follows that the linearization point of U follows the linearization point of S. This is a contradiction.

Assume next that w precedes w_i (see Fig. 5). By Lemma 9, U is linearized within its own execution interval. Thus, the latest point at which U can be linearized is at its write primitive w. Since w precedes w_i and U is linearized between U_i and S (and therefore after U_i), it follows that U_i is not linearized at its write primitive. Lemma 8 implies that there exists some SCAN operation S'' such that U_i is linearized within the execution interval of S''. If S = S'', by the way linearization points are assigned, the linearization point of U_i is placed immediately before that of S and no other UPDATE on component A_i can be linearized in between. Since U is linearized between U_j and S, it follows that $S \neq S''$.

By Lemma 9, U_j is linearized within its own execution interval. Since w_j is the last instruction executed by U_j and w_j precedes r_1 , it follows that S'' precedes S. Lemma 10 (claims 1 and 2) implies that there exists some UPDATE operation U' whose write primitive w' follows w_j and precedes the end of the execution interval of S''. It follows that S does not read the value written by U_j in R_j , so it does not return v_j for A_j . A contradiction.

The following theorem is an immediate consequence of Lemmas 7, 9 and 11.

Theorem 6 Checkmarking is linearizable.

5.3 Space and Step Complexity

In this section, we study the step complexity of Checkmarking. By inspection of the pseudocode, each SCAN and UPDATE operation performs only a constant number of shared memory accesses in addition to executing GetVector. Therefore, it suffices to prove that the step complexity of GetVector is $O(m^2)$.

Consider any execution α of Checkmarking and let g be any instance of GetVector executed in α . We prove that g does not execute more than m+1 iterations of the while loop of line 20. To derive a contradiction, assume that g executes m+1iterations of the while loop without having terminated. By the pseudocode, it follows that for each $i, 2 \leq i \leq m+2$, there is an integer j_i , $1 \leq j_i \leq m$, such that $history[i][j_i].change = true$ and no other change has been observed on column j_i of history after row i. Therefore, j_i must be distinct for each i. Since the snapshot object has only m components, this is a contradiction. Thus, after at most m+1 iterations of the while loop, gcompletes its execution.

In each iteration of the while loop, m registers are read. **GetVector** additionally executes a set of m reads at the beginning of its execution. Thus, the step complexity of **GetVector** is $O(m^2)$. We remark that the number of instructions executed by each instance of **GetVector** as local computation is also in $O(m^2)$.

Theorem 7 Checkmarking uses m+1 registers and has step complexity $O(m^2)$.

6 The T-Opt Algorithm

In this section, we present T-Opt, the first of the implementations of the Time-efficient family of algorithms. T-Opt is optimal in terms of its step complexity, i.e., it has step complexity O(m) for SCANS and O(1) for UPDATES. The number of registers that T-Opt uses is linear in the number of SCANS it performs in each execution and therefore it is unbounded.

The pseudocode for T-Opt is given in Algorithm 3. T-Opt is described in Section 6.1. Its correctness proof is provided in Section 6.2 and its space and step complexity are studied in Section 6.3

6.1 Description

Each time a SCAN starts its execution, the scanner stores a new sequence number in a register seq (line 7). In addition, T-Opt uses an array Val of m registers, one for each component.

Any UPDATE U on a component A_i , $1 \le i \le m$, writes its value into Val[i] (line 6). Before doing so, it stores (line 5) the current value of Val[i] in some appropriate element of an array of registers, called *preVal*, to help SCANS be consistent. Array *preVal* is a two-dimensional array with each row **Algorithm 3** Pseudo-code for T-Opt. (We assume that components store values of type *data*.)

```
shared int seq = 1;
     shared data preVal[1..\kappa][1..m] =
                 \{\{\perp, \ldots, \perp\}, \ldots, \{\perp, \ldots, \perp\}\};\
      // \kappa is the number of executed SCANS
     shared data Val[1..m] = {\perp, ..., \perp};
     void UPDATE(data value, int i) {
         int curr_seq;
         data v1, v2;
1
         \operatorname{curr}_{\operatorname{seq}} = \operatorname{seq};
\mathbf{2}
         v1 = Val[i];
3
         v2 = preVal[curr\_seq][i];
         if (v2 = \pm)
\mathbf{4}
5
             preVal[curr\_seq][i] = v1;
6
         Val[i] = value;
     }
     data *SCAN(void) {
         data view[1..m], v1, v2;
         int i;
7
         seq = seq+1;
         for (i = 1; i \le m; i++) {
8
            v1 = Val[i];
9
10
            v2 = preVal[seq][i];
11
            if (v2 == \bot) view[i] = v1;
12
            else view[i] = v2;
         3
         return view;
     }
```

having m registers; the number of its rows depends on the maximum number of SCANS performed in an execution. Specifically, U starts by reading seq(line 1) and uses the sequence number that it reads there to determine the row of preVal in the *i*th entry of which it stores the value of Val[i] (line 5) before it overwrites it (line 6).

We will place the linearization point of each SCAN operation, S, at line 7. To ensure consistency, S must ignore the values written by UPDATES that start their execution after the beginning of S. To achieve this, S reads all m registers of Val (line 9) and the *m* registers of preVal[seq] (line 10), where seq contains the value written to it by S. We remark that UPDATES, which start their execution after S has written to seq and before the end of S, write to some register of row seq of preVal. Therefore, if $preVal[seq][i] \neq \bot$ for some $i, 1 \leq i \leq m$, S should return the old value of Val[i] for component A_i , which is stored in preVal[seq][i] (line 12). UPDATES that write to smaller rows of preVal have started their execution before S, so if S reads in Val the value written by such an UPDATE, it can include it to the vector it returns (line 11).

Fig. 6 V_i^S writes v_i to register $preVal[seq_S][i]$ and this write is the last to $preVal[seq_S][i]$ that precedes \tilde{r}_i^S .

6.2 Linearizability

Let α be any execution of T-Opt and let S be any SCAN performed in α . We start by introducing some useful notation. Let w_{seq}^S be the write to seq performed by S (line 7) and let seq_S be the value written to seq by S. Since there is a single-scanner active at each point in time, by inspection of the pseudocode (lines 7-12), we get the following:

Observation 8 The initial value of seq is 1 and seq's value is incremented each time a SCAN executes line 7.

For each $i \in \{1, \ldots, m\}$, denote by r_i^S the read of Val[i] by S (line 9), and by \tilde{r}_i^S the read of $preVal[seq_S][i]$ by S (line 10).

Observation 9 For each $i \in \{1, ..., m\}$, w_{seq}^S precedes r_i^S , which precedes \tilde{r}_i^S .

Let v_i be the value that S returns for component A_i . In case S reads \perp in $preVal[seq_S][i]$, we denote by U_i^S the UPDATE such that U_i^S writes v_i to Val[i] and this write is the last to Val[i]that precedes r_i^S . If S reads v_i in $preVal[seq_S][i]$, we introduce the following notation. We denote by V_i^S the UPDATE such that V_i^S writes v_i to register $preVal[seq_S][i]$ and this write is the last to $preVal[seq_S][i]$ that precedes \tilde{r}_i^S (see Fig. 6). By inspection of the pseudocode (lines 2-5), V_i^S reads the value v_i in Val[i]. We denote by U_i^S the UPDATE on A_i such that U_i^S writes v_i to Val[i] and this write is the last write to Val[i] before V_i^S reads Val[i]. In either case, let w_i^S be the write to Val[i]by U_i^S (line 6). For clarity of presentation, Table 3 summarizes the notation used in this section.

By definition of V_i^S , V_i^S writes into register $preVal[seq_S][i]$. By inspection of the pseudocode (lines 1, 4-5), it follows that it reads a value equal to \perp in $preVal[seq_S][i]$ (line 3) and seq_S in register seq (line 1). Moreover, by definition of V_i^S and U_i^S , the read of Val[i] by V_i^S follows w_i^S since V_i^S reads in Val[i] the value written there by w_i^S ; additionally, \tilde{r}_i^S reads in $preVal[seq_S][i]$ the value written there by V_i^S , so \tilde{r}_i^S follows the write to $preVal[seq_S][i]$ by V_i^S .

Observation 10 For every $i \in \{1, ..., m\}$, if S reads v_i in preVal[seq_S][i], the following hold:

Fig. 8 Proof of Lemma 12, S reads \perp in $preVal[seq_S][i]$.

Fig. 9 Proof of Lemma 12, w_i^S precedes r_i^S and S reads v_i in Val[i].

- 1. V_i^S reads the value seq_S in register seq and the value \perp in preVal[seq_S][i],
- 2. the read of Val[i] by V_i^S follows w_i^S , and
- 3. \tilde{r}_i^S follows the write to $preVal[seq_S][i]$ by V_i^S .

We now assign linearization points. Each SCAN S that terminates in α is linearized at w_{seq}^S . For each $i \in \{1, \ldots, m\}$, if w_i^S (performed by U_i^S) follows w_{seq}^S , we place the linearization point of U_i^S immediately before w_{seq}^S . We also place the linearization point of each UPDATE on A_i that performs its write to Val[i] between w_{seq}^S and w_i^S immediately before w_{seq}^S ; ties are broken by the order that the writes to register Val[i] occur. After assigning linearization points to all SCANS and to some UPDATES (following the rules just described), we linearize each of the rest of the UPDATES that performs the write to Val[i] (line 6) in α , at this write. Let L be the linearization of α determined by assigning linearization points to operations as described above.

We remark that U_i^S uses as a parameter the value v_i returned by S for A_i . Notice that in case w^S_i is executed after $w^S_{seq},$ we assign linearization points to UPDATES in such a way that U_i^S is the last UPDATE on A_i that is linearized before S. We later prove (in Lemma 14) that U_i^S and all UPDATES that perform their writes between w_{seq}^S and w_i^S start their execution before w_{seq}^S . In case U_i^S ex-ecutes w_i^S before w_{seq}^S , we argue that U_i^S is the last UPDATE on A_i that is linearized before S. Intuitively, this is so for the following reasons: (1) by the way linearization points are assigned, for each $i,\,1\leq i\leq m,$ the linearization order of UPDATES on A_i respects the order in which the writes to Val[i]of those UPDATES have been performed, and (2) by definition of U_i^S , no other UPDATE on A_i writes to Val[i] between w_i^S and w_{seq}^S . Thus, S returns a consistent vector with respect to L.

Notation	Description
α	An execution of T-Opt
L	The linearization of α
S	A SCAN that terminates in α
w_{seq}^S	The write to register seq (line 7) performed by S
seq_S	The value written to register seq by S
v_i	The value that S returns for component A_i
r_i^S	The read of $Val[i]$ performed by S (line 9)
\tilde{r}_i^S	The read of $preVal[seq_S][i]$ performed by S (line 10)
V^S	The UPDATE that writes v_i to $preVal[seq_S][i]$; this write is the last to
v _i	$preVal[seq_S][i]$ that precedes \tilde{r}_i^S .
U_i^S	The UPDATE that writes v_i to $Val[i]$.
w_i^S	The write to $Val[i]$ performed by U_i^S (line 6)

Table 3 Notation used in the proof of T-Opt.

We start by proving two simple technical lemmas.

Lemma 12 For each $i \in \{1, ..., m\}$, w_i^S precedes \tilde{r}_i^S .

Proof If w_i^S precedes w_{seq}^S (see Fig. 7), the claim holds because, by Observation 9, w_{seq}^S precedes \tilde{r}_i^S . So, assume that w_i^S follows w_{seq}^S . Assume first that S reads \perp in $preVal[seq_S][i]$ and v_i in Val[i]. By definition of U_i^S , w_i^S writes the value v_i to Val[i], which is read by S. So, w_i^S precedes r_i^S (see Fig. 8). By Observation 9, r_i^S precedes \tilde{r}_i^S . So, w_i^S precedes \tilde{r}_i^S .

Assume now that S reads v_i in $preVal[seq_S][i]$. Then, V_i^S is well-defined. Observation 10 (claims 2 and 3) implies that the **read** of Val[i] by V_i^S follows w_i^S and \tilde{r}_i^S follows the **write** primitive to $preVal[seq_S][i]$ by V_i^S (see Fig. 9). By inspection of the pseudocode (lines 2, 5), the **write** primitive to $preVal[seq_S][i]$ by V_i^S follows its **read** of Val[i]. Therefore, w_i^S precedes \tilde{r}_i^S .

Lemma 13 Fix any $i \in \{1, ..., m\}$ such that S reads v_i in preVal[seq_S][i]. If r_v is the read of Val[i] by V_i^S , then r_v is executed after w_{seq}^S .

Proof To derive a contradiction, assume that r_v is executed before w_{seq}^S . By inspection of the pseudocode (lines 1-2), the read r_s of seq by V_i^S precedes r_v . It follows that r_s precedes w_{seq}^S . Since there is only one SCAN active at each point in time, Observation 8 implies that r_s reads a value $t < seq_S$. This contradicts Observation 10 (claim 1).

Lemma 14 For each $i \in \{1, \ldots, m\}$ such that w_i^S follows w_{seq}^S , it holds that any UPDATE on A_i that performs its write to Val[i] between w_{seq}^S and w_i^S (including U_i^S) begins its execution before w_{seq}^S .

Proof To derive a contradiction, assume that there is an UPDATE U on A_i that starts its execution after w_{seq}^S and performs its write w to Val[i] at or

Fig. 10 U starts its execution after w_{sea}^S

before w_i^S (see Fig. 10). By Lemma 12, w_i^S precedes \tilde{r}_i^S and therefore U ends its execution before the end of S. Since U starts its execution after w_{seq}^S , Observation 8 implies that U reads seq_S in seq. By inspection of the pseudocode (lines 2-3), U first reads register Val[i] and then register $preVal[seq_S][i]$. Moreover, in case U reads \perp in $preVal[seq_S][i]$, it writes in $preVal[seq_S][i]$ the value it read in Val[i].

By inspection of the pseudocode, lines 4-5 are executed by U before w and therefore before w_i^S . Since w_i^S precedes \tilde{r}_i^S , it follows that the execution of lines 4-5 precedes \tilde{r}_i^S . Thus, \tilde{r}_i^S reads a value other than \perp in $preVal[seq_S][i]$, so V_i^S is welldefined. By Observation 10 (claim 2), the read of Val[i] by V_i^S follows w_i^S . It follows that the read of $preVal[seq_S][i]$ by V_i^S , which (by inspection of the pseudocode) follows its read to Val[i], comes after U's execution of lines 4-5 and the possible write to $preVal[seq_S][i]$ by U. Thus, V_i^S reads a value other than \perp in $preVal[seq_S][i]$. This contradicts Observation 10 (claim 1).

Using Lemma 14, it can be easily proved that the linearization point of each operation is within its execution interval.

Lemma 15 The linearization point of each SCAN that terminates in α and each UPDATE that executes the write of line 6 is within its execution interval.

Proof By the way that linearization points are assigned to SCANS, a SCAN is linearized within its execution interval. The same is true for each UPDATE that is linearized at its write primitive to Val.

Fig. 12 Case 2 of proof of Lemma 16.

Let U be an UPDATE on A_i , which is not linearized at its write to Val[i]. By the way that linearization points are assigned, there is a SCAN S' such that (1) $w_i^{S'}$ of $U_i^{S'}$ is executed after $w_{seq}^{S'}$, (2) the write to Val[i] by U is executed between $w_{seq}^{S'}$ and $w_i^{S'}$, and (3) U is linearized immediately before $w_{seq}^{S'}$. Obviously, the execution of U ends after $w_{seq}^{S'}$. Lemma 14 implies that U begins its execution before $w_{seq}^{S'}$. Thus, U is linearized within its execution interval.

To prove that SCANS return consistent vectors with respect to L, we first prove that the linearization order of the UPDATES on any component A_i respects the order in which these UPDATES perform their writes to Val[i].

Lemma 16 Let U_1 , U_2 be two UPDATE operations on some component A_i , $1 \le i \le m$. Denote by w_1 the write to Val[i] by U_1 and by w_2 the write to Val[i] by U_2 . If w_1 precedes w_2 , the linearization point of U_1 precedes the linearization point of U_2 .

Proof We consider the following cases.

- 1. U_2 is linearized at w_2 . Lemma 15 implies that U_1 is linearized within its execution interval, so U_1 is linearized at or before w_1 . Since w_1 precedes w_2 , U_1 is linearized before U_2 .
- 2. U_1 is linearized at w_1 and U_2 is not linearized at w_2 (see Fig. 11). By the way linearization points are assigned, there is a SCAN S' such that w_2 has been performed between $w_{seq}^{S'}$ and $w_i^{S'}$. Since w_1 precedes w_2, w_1 has been executed before $w_i^{S'}$. Since U_1 is linearized at w_1 , it follows that $w_{seq}^{S'}$ follows w_1 (see Fig. 12), since otherwise U_1 would be linearized at $w_{seq}^{S'}$. Lemma 15 implies that U_1 is linearized the latest at w_1 . By the way linearization points are assigned, U_2 is linearized immediately before $w_{seq}^{S'}$. Thus, U_1 is linearized before U_2 .
- 3. Neither U_1 nor U_2 is linearized at its write to Val[i]. By the way linearization points are assigned, there are two SCAN operations S_1 and S_2 such that w_1 has been performed between

 $w_{seq}^{S_1}$ and $w_i^{S_1}$, and w_2 has been performed between $w_{seq}^{S_2}$ and $w_i^{S_2}$. Since w_1 precedes w_2 and there is just a single SCAN active at each point in time, it follows that either $S_1 = S_2$ or S_1 precedes S_2 .

If $S_1 = S_2$, both U_1 and U_2 are linearized immediately before $w_{seq}^{S_1} = w_{seq}^{S_2}$ in the order they perform their writes to Val[i]. So, U_1 is linearized before U_2 .

If S_1 precedes S_2 , the linearization point of U_1 , which is placed immediately before $w_{seq}^{S_1}$, precedes the linearization point of U_2 , which is placed immediately before $w_{seq}^{S_2}$.

We finally use Lemma 16 to prove consistency.

Lemma 17 Every SCAN operation that terminates in α returns a consistent vector with respect to L.

Proof Consider any SCAN operation S that terminates in α . Assume that S returns $\mathbf{v} = \langle v_1, ..., v_m \rangle$. By definition, for each $i \in \{1, \ldots, m\}, U_i^S$ writes v_i to Val[i] and therefore it uses v_i as a parameter. In case w_i^S precedes w_{seq}^S , Lemma 15 implies that U_i^S is linearized before S. In case w_i^S follows w_{seq}^S , by the way linearization points are assigned, the linearization point of U_i^S precedes the linearization point of S. Thus, in either case, the linearization point of U_i^S precedes the linearization point of S. We prove that there is no UPDATE on component A_i that is linearized between U_i^S and S. This implies that S returns a consistent value for A_i with respect to L.

To derive a contradiction, assume that there is an integer $i \in \{1, \ldots, m\}$ such that the last UPDATE on A_i linearized before S is not U_i^S . Denote by Uthis UPDATE and let w be the write to Val[i] by U. In case w precedes w_i^S , Lemma 16 implies that U is linearized before U_i^S . This is a contradiction. Thus, assume that w follows w_i^S . We argue that wfollows w_{seq}^S by considering the following cases.

- 1. Assume first that S reads a value equal to \perp in register $preVal[seq_S][i]$. By the definition of w_i^S, r_i^S reads the value that w_i^S writes to register Val[i]. Since w follows w_i^S , it follows that w follows r_i^S and therefore also w_{seq}^S (see Fig. 13).
- 2. Assume next that S reads v_i in $preVal[seq_S][i]$. In this case, V_i^S is well-defined and let r_v be the read of Val[i] by V_i^S . By the definitions of U_i^S and V_i^S , r_v returns the value written by w_i^S and therefore r_v follows w_i^S . Since w follows w_i^S , it follows that w must follow r_v . By Lemma 13, r_v follows w_{seq}^S (see Fig. 14). Therefore, w follows w_{seq}^S .

Fig. 14 Case 2 of proof of Lemma 17.

Since U is linearized before S and S is linearized at w_{seq}^S , U cannot be linearized at w. Thus, there is a SCAN S' such that $w_i^{S'}$ follows $w_{seq}^{S'}$, w is performed between $w_{seq}^{S'}$ and $w_i^{S'}$, and U is linearized immediately before $w_{seq}^{S'}$. Since w is performed after w_i^S , $S' \neq S$. Because (1) w is performed between $w_{seq}^{S'}$ and $w_i^{S'}$, (2) w follows w_{seq}^S , and (3) there is just a single SCAN active at each point in time, it follows that S' follows S. Thus, the linearization point of U, which is placed at $w_{seq}^{S'}$, follows the linearization point of S, which is placed at w_{seq}^S . This is a contradiction. We conclude that no UPDATE on component A_i is linearized between U_i^S and S. Thus, S returns a consistent vector with respect to L.

Theorem 11 T-Opt is linearizable.

6.3 Step and Space Complexity

By inspection of the pseudocode, it follows that the step complexity of UPDATE is O(1), and the step complexity of SCAN is O(m). Thus, **T-Opt** is an optimal implementation in terms of its step complexity.

Every register used by T-Opt, other than *seq*, stores just a single value and *seq* stores an integer (that is incremented each time a SCAN takes place). The number of registers used by T-Opt is linear in the maximum number of SCANS performed in any execution and it is therefore unbounded. Thus, in a first glance, T-Opt does not seem to be space-efficient.

Theorem 12 T-Opt has optimal step complexity, O(1) for UPDATE and O(m) for SCAN.

We remark that it is easy to implement $\mathsf{T-Opt}$ in a more space efficient way as follows. Each time a SCAN S starts executing, the scanner dynamically allocates a new block of m positions in shared memory and sets a pointer *sptr* to point to this

Algorithm 4 Pseudocode for improved version of T-Opt.

```
// initially all m elements are equal to \perp
     shared pointer sptr[]=new data[m];
     shared data \operatorname{Val}[1..m] = \{\bot, \ldots, \bot\};
     void UPDATE(data value, int i) {
        data *lptr;
        data v1, v2;
        lptr = sptr:
1
\mathbf{2}
        v1 = Val[i];
3
        v2 = lptr[i];
4
        if (v^2 = \perp)
\mathbf{5}
            lptr[i] = v1;
\mathbf{6}
         Val[i] = value;
     }
     data *SCAN(void) {
        data view[1..m], v1, v2;
        int i;
7
        sptr = new data[m];
8
        for (i = 1; i \le m; i++) {
            v1 = Val[i];
9
10
            v2 = sptr[i];
11
            if(v2 == \bot) view[i] = v1;
12
            else view[i] = v2;
        return view;
     }
```

block of memory. An UPDATE on A_i starts by reading *sptr* (that plays the role of *seq*); it then saves the value it read in Val[i] in the *i*th entry of the block of shared memory pointed to by the pointer read in *sptr*. In order to compute the vector to return, *S* reads the *m* positions of the block pointed to by *sptr* in addition to the *m* registers of *Val*. The pseudocode for the improved version of **T-Opt** is presented in Algorithm 4.

In Algorithm 4, seq has been replaced by a memory pointer and a garbage collector can be used to de-allocate blocks of memory that are not referenced to by the processes. We remark that the total number of allocated blocks that are referenced by all processes at each point in time is at most n. For systems with no garbage collector, more space efficient implementations are presented in later sections.

7 The RT Algorithm

In this section, we present RT, the second implementation of the Time-efficient family. (RT stands for Time-efficient algorithm with Recycling.) RT

Algorithm 5 Pseudocode for RT (process $p, 1 \le p \le n$).

```
shared int seq = 1;
      shared int SeqNums[1..n] = \{1,..,1\};
      shared data preVal[1..n+2][1..m] = {\perp,..., \perp};
      shared data \operatorname{Val}[1..m] = \{\bot, \ldots, \bot\};
      void UPDATE(data value, int i){
         int curr_seq1, curr_seq2;
         data v1, v2;
          \operatorname{curr}_{\operatorname{seq}1} = \operatorname{seq};
1
\mathbf{2}
          SeqNums[p] = curr\_seq1;
3
          \operatorname{curr}_{\operatorname{seq}2} = \operatorname{seq};
          v1 = Val[i];
4
\mathbf{5}
          v2 = preVal[curr\_seq1][i];
6
          if (v2 == \perp AND curr\_seq1 == curr\_seq2)
7
              preVal[curr\_seq1][i] = v1;
8
          Val[i] = value;
      }
      data *SCAN(void) {
          data view[1..m], v1, v2;
         set seq_nums:
          int curr_seq, i;
9
         seq_nums = {seq};
10
         for (i = 1; i \le n; i++)
11
              seq_nums = seq_nums \cup {SeqNums[i]};
12
          \operatorname{curr}_{\operatorname{seq}} = \operatorname{any} \operatorname{int} \operatorname{in} \operatorname{set} (\{1, \dots, n+2\} - \operatorname{seq}_{\operatorname{nums}});
13
          for (i = 1; i \le m; i++) preVal[curr_seq][i] = \perp;
14
          seq = curr_seq;
15
          for (i = 1; i \le m; i++) {
16
              v1 = Val[i];
              v2 = preVal[seq][i];
17
              if (v2 == \bot) view[i] = v1;
18
19
              else view[i] = v2;
         return view;
      }
```

makes an attempt to reduce the number of registers used by T-Opt. In RT, array preVal has only n + 2 rows. To achieve this, RT employs an additional array SeqNums, of n single-writer registers, one for each process, which are written when UPDATES are performed. The pseudocode for RT is presented in Algorithm 5.

An UPDATE by some process p records the value it read in *seq* into register SeqNums[p] (line 2). A SCAN S reads all n registers of SeqNums and chooses as its sequence number, seq_S , some index not appearing in any of these registers (lines 10-12). Thus, RT trades the step complexity of SCANS (that is now not optimal) for better space complexity.

The main goal of the implementation is to guarantee that only those UPDATES that perform the biggest part of their execution after the write prim-

Fig. 15 Lemma 19. r_v is executed before w_{seq}^S .

$$\overbrace{r_{p}}{r_{p}} \xrightarrow{r_{seq}} \overbrace{r_{v}}{r_{v}}$$

Fig. 16 Lemma 19. r'_{seq} precedes r_p .

itive, w_{seq}^S , to seq by S (line 14), write to registers of row seq_S of preVal. This is achieved by employing a technique that resembles handshaking between the scanner and each of the updaters. Each time some process p performs an UPDATE operation U, it uses SeqNums[p] to inform the scanner of the value it read in seq (lines 1-2). Then, it reads seqagain (line 3) and only if it sees the same value in seq (line 6), does it attempt to write to preVal(line 7).

If U performs its write to SeqNums[p] before S reads SeqNums[p], S will choose a sequence number other than that read by U in seq. If U writes to SeqNums[p] after S has read it and performs its second read of seq before w_{seq}^S , then the second read of seq by U reads the sequence number of the SCAN that precedes S (or the initial value of seq if such a SCAN does not exist).

RT guarantees that S chooses a sequence number different from the n numbers that S read in SeqNums, and from that chosen by the previous SCAN to S, as well as from the initial value of seq. It follows that the number of different values that may be stored into seq is n + 2 and, therefore, preVal now has n + 2 different rows.

7.1 Linearizability

Let α be an execution of RT and let S be any SCAN performed in α . Let w_{seq}^S be the write to seqperformed by S (line 14) and let seq_S be the value written to seq by w_{seq}^S . For each $i \in \{1, \ldots, m\}$, we introduce the notation r_i^S , \tilde{r}_i^S , v_i , U_i^S , V_i^S and w_i^S , and assign linearization points to SCANS and UPDATES in exactly the same way as we did for T-Opt. Let L be the resulting linearization of α .

The proof of the linearizability of RT is, in its biggest part, similar to the proof of T-Opt (Section 6.2). Specifically, the following two observations, which are similar to Observations 9 and 10, also hold for RT. Lemma 18, which is similar to Lemma 12 from Section 6, also holds for RT.

Observation 13 For each $i \in \{1, ..., m\}$, w_{seq}^S precedes r_i^S and r_i^S precedes \tilde{r}_i^S .

Observation 14 For every $i \in \{1, ..., m\}$ such that S reads v_i in $preVal[seq_S][i]$, the following hold:

- 1. V_i^S reads the value seq_S in register seq and the value \perp in preVal[seq_S][i],
- 2. the read of Val[i] by V_i^S follows w_i^S , and
- 3. \tilde{r}_i^S follows the write to $preVal[seq_S][i]$ by V_i^S .

Lemma 18 For each $i \in \{1, \ldots, m\}$, w_i^S precedes \tilde{r}_i^S .

Lines 9-12 and 14 of the pseudocode imply the following observation.

Observation 15 Let S and S' be two consecutive SCANS in α , it holds that $seq_{S'} \neq seq_S$.

The statement of the following lemma is similar to that of Lemma 13 but its proof is different than that of Lemma 13, so we present it below.

Lemma 19 Fix any $i \in \{1, \ldots, m\}$ such that S reads v_i in preVal $[seq_S][i]$. If r_v is the read of Val[i] by V_i^S , then r_v is executed after w_{seq}^S .

Proof To derive a contradiction, assume that r_v is executed before w_{seq}^S (see Fig. 15). Denote by r_{seq} the first read of seq by V_i^S (line 1) and by r'_{seq} the second read of seq by V_i^S (line 3). Let p be the process that executes V_i^S , let w_p be the write to SeqNums[p] by V_i^S (line 2), and let r_p be the read of SeqNums[p] by S (line 11). Since r_v precedes w_{seq}^S , the same is true for r_{seq}, w_p and r'_{seq} (since V_i^S executes these instructions before r_v).

Assume first that r'_{seq} follows r_p (see Fig. 15). Since r'_{seq} precedes r_v , r'_{seq} precedes w^S_{seq} . Let S' be the SCAN executed immediately before S in α (or a fictitious SCAN that writes the initial value to seq if no such SCAN exists). By Observation 15, it follows that $seq_{S'} \neq seq_S$. Since r_p and w^S_{seq} are executed by S and r'_{seq} follows r_p and precedes w^S_{seq} , it follows that r'_{seq} reads $seq_{S'}$ in seq. By inspection of the pseudocode (lines 1-3, 7), it follows that V^S_i does not write to $preVal[seq_S][i]$. This contradicts the definition of V^S_i .

Assume now that r'_{seq} precedes r_p (Fig. 16). By definition, V_i^S writes to $preVal[seq_S][i]$ the value v_i that is read from there by S. After r_p , S initiates $preVal[seq_S][i]$ to \perp (line 13). Thus, the write to $preVal[seq_S][i]$ by V_i^S occurs after r_p . Since w_p precedes r'_{seq} , it follows that w_p precedes r_p . Since V_i^S executes w_p before r_p and its write to $preVal[seq_S][i]$ after r_p , it follows that the value

Fig. 17 U starts its execution after w_{seq}^S and finishes before w_i^S .

t written to SeqNums[p] by w_p (line 2) is the value read by r_p . By the pseudocode (lines 11, 12 and 14), it follows that $seq_S \neq t$. By inspection of the pseudocode (lines 1-3, 7), it follows that V_i^S writes to register $preVal[t][i] \neq preVal[seq_S][i]$. This contradicts the definition of V_i^S .

A big part of the proof of the next lemma follows similar arguments as the proof of Lemma 14.

Lemma 20 For each $i \in \{1, ..., m\}$ such that w_i^S follows w_{seq}^S , it holds that any UPDATE on A_i that performs its write to Val[i] between w_{seq}^S and w_i^S (including U_i^S) begins its execution before w_{seq}^S .

Proof To derive a contradiction, assume that there is an UPDATE U on A_i that starts its execution after w_{seq}^S and performs its write w to Val[i] before w_i^S (see Fig. 17). By Lemma 18, w_i^S precedes \tilde{r}_i^S and therefore U ends its execution before the end of S. Since U starts its execution after w_{seq}^S and ends before the end of S, by inspection of the pseudocode, it follows that U reads seq_S in seqboth times (on lines 1 and 3). So, the second condition of the if statement of line 6 is evaluated to true. By inspection of the pseudocode (lines 4-5), U first reads register Val[i] and then register $preVal[seq_S][i]$. Moreover, in case U reads \perp in $preVal[seq_S][i]$, it writes the value it read in Val[i]to $preVal[seq_S][i]$.

By inspection of the pseudocode (line 13), S initializes the *m* registers of row seq_S of preValto the value \perp before w_{seq}^S . Since U starts after w^S_{seq} , the execution of lines 6-7 (i.e., the if statement and the possible write to $preVal[seq_s][i]$) by U follows the initialization of $preVal[seq_S][i]$ to \perp by S. By inspection of the pseudocode, lines 6-7 are executed by U before w and therefore before w_i^S . By Lemma 18, w_i^S precedes \tilde{r}_i^S . Thus, \tilde{r}_i^S reads a value other than \perp in $preVal[seq_S][i]$, so V_i^S is well-defined. By Observation 14 (claim 2), the read of Val[i] by V_i^S follows w_i^S . It follows that the read of $preVal[seq_S][i]$ by V_i^S , which (by inspection of the pseudocode) follows its read to Val[i], comes after U's execution of lines 6-7 and the possible write to $preVal[seq_S][i]$ by U. Thus, V_i^S reads a value other than \perp in $preVal[seq_S][i]$. This contradicts Observation 14 (claim 1).

Lemmas 15-17, which we have proved in Section 6 for T-Opt, hold also for RT without any modification to their proofs.

Lemma 21 The linearization point of each SCAN that terminates in α and each UPDATE that executes the write of line 8 in α is within its execution interval.

Lemma 22 Let U_1 , U_2 be two UPDATES on some component A_i , $1 \le i \le m$. Denote by w_1 the write to Val[i] by U_1 and by w_2 the write to Val[i] by U_2 . If w_1 precedes w_2 , the linearization point of U_1 precedes the linearization point of U_2 .

Lemma 23 Every SCAN operation that terminates in α returns a consistent vector with respect to L.

Lemma 23 implies that the following theorem holds for RT.

Theorem 16 RT is linearizable.

7.2 Step and Space Complexity

By inspection of the pseudocode, it is obvious that the step complexity of UPDATE is O(1) and the step complexity of SCAN is O(n).

RT uses (n+3)m+n+1 registers; (n+3)m out of these registers (namely, the registers of arrays Val and preVal) store just a single value, while the remaining n+1 registers (namely, seq and the registers of array SeqNums) store $O(\log n)$ bits each (since each of them stores values from the set $\{1, \ldots, n+2\}$).

Theorem 17 RT uses (n+3)m + n + 1 registers of bounded size and has step complexity O(n) for SCAN and O(1) for UPDATE.

8 The RT-Opt Algorithm

In this section, we present RT-Opt, the last implementation of the Time-efficient family of singlescanner, multi-writer snapshots. RT-Opt has step complexity O(m) for SCAN, O(1) for UPDATE and uses O(mn) registers of bounded size. Thus, RT-Opt improves upon T-Opt in terms of its space complexity. It also improves upon RT in terms of its step complexity.

The pseudocode for RT-Opt is presented in Algorithm 6. RT-Opt is described in Section 8.1. The correctness proof of RT-Opt is provided in Section 8.2 and its space and step complexity are studied in Section 8.3

8.1 Description

The UPDATE in RT-Opt is exactly the same as in RT. The major goal of any SCAN operation, S, for both RT and RT-Opt is to keep track of the different rows of *preVal* where old UPDATES (i.e., those that have performed some part of their execution before the write primitive, w_{seq}^S , of S to seq) may write. S must choose a row of *preVal* where no such UPDATE could possibly write, in order to ensure that all values other than \perp that it reads in *preVal* have been written by UPDATES that have performed the biggest part of their execution after w_{seq}^S .

In RT, this is achieved by having each SCAN S read all n registers of SeqNums and choose some value to write into seq other than those read in these registers. Unfortunately, this results in some overhead on the step complexity of SCAN. To keep the step complexity of SCAN optimal, each SCAN in RT-Opt reads only m of the n registers of array SeqNums. So, $\lceil n/m \rceil$ consecutive SCANS are required to read all n registers of SeqNums. We remark that sequence numbers in RT-Opt are chosen from the set $\{1, \ldots, n+2 \rceil n/m \rceil + 1\}$, which is larger than the set $\{1, \ldots, n+2\}$ used in RT.

We partition each execution α of **RT-Opt** into execution fragments, called epochs, each containing $\lfloor n/m \rfloor$ consecutive SCANS. The scanner keeps track of the values that can be used, as sequence numbers, by SCANS of each epoch, in a persistent local variable, called free, which implements a set. All sequence numbers chosen by the SCANS of an epoch $E_j, j \ge 1$, are distinct (line 25). For the first epoch E_1 , all these values are additionally different from the initial value of seq (see initialization of seq and free on lines 3 and 19-21). Consider a later epoch E_j , j > 1. Recall that all registers of array SeqNums have been read once during E_{j-1} . All the values read in these registers index rows of preVal where old UPDATES may write. So, none of these values should be chosen, as a sequence number, by any SCAN of epoch E_j . However, excluding only these values from the set of available sequence numbers for epoch E_j is not sufficient, since some of these values may be already obsolete. This occurs if some process p has started a new UPDATE and has written (again) to SeqNums[p]after the read of SeqNums[p] during E_{i-1} . Notice that such an UPDATE will read in seq the value written there by some SCAN of epoch E_{i-1} . So, values chosen as sequence numbers by SCANS of epoch E_{j-1} may also index rows of *preVal* that can be written by old UPDATES, and should be excluded from the set of available sequence numbers for the SCANS of epoch E_i .

Set candidates keeps track of all the values that are allowed to be chosen as sequence numbers by SCANS of the next epoch. Notice that at the beginning of each epoch, candidates is initialized to contain all possible sequence numbers (line 22). Then, during the execution of the $\lceil n/m \rceil$ SCANS of the epoch, all values read in registers of array SeqNums, as well as those chosen as sequence numbers by the SCANS of the epoch, are removed from candidates (lines 26 and 29-30). At the beginning of the next epoch, the values remaining in candidates can be moved to the set free of available sequence numbers for the epoch (line 21). We remark that no other element is added to free during the epoch.

At the beginning of any execution α of RT-Opt, candidates contains n+2*ScansPerEpoch different sequence numbers, where ScansPerEpoch =[n/m]. During E_1 , at most n + ScansPerEpochsequence numbers are removed from candidates. This is so because the *ScansPerEpoch* SCAN operations that are executed during E_1 , read the nsequence numbers recorded in SeqNums and remove them from *candidates*. The *ScansPerEpoch* sequence numbers chosen by these SCANS are also removed from *candidates*. So, at the end of epoch E_1 , candidates contains ScansPerEpoch values, which are added to *free* at the beginning of E_2 . So, *free* contains enough sequence numbers for the ScansPerEpoch SCANS that are executed during E_2 . Consider now any epoch E_j , j > 1. At the beginning of E_j (specifically, after line 21 has been executed by the first SCAN of the epoch), candidates contains n+2*ScansPerEpoch+1 different sequence numbers. During E_i , at most n + iScansPerEpoch sequence numbers are removed from candidates. Thus, at least ScansPerEpoch+1 sequence numbers are added to free at the beginning of E_{j+1} , which are enough for the SCANS of epoch E_{j+1} . We remark that when line 21 is executed, free and candidates may contain elements that are common to both sets. For instance, at the end of E_1 , candidates is a subset of free. From this discussion, it follows that $n + 2 * \lceil n/m \rceil + 1$ different sequence numbers are required in order for RT-Opt to be correct.

8.2 Linearizability

Let α be an execution of RT-Opt and let S be any SCAN performed in α . Let w_{seq}^S be the write to seqperformed by S (line 28), and let seq_S be the value written to seq by w_{seq}^S . For each $i \in \{1, \ldots, m\}$, we introduce the notation r_i^S , \tilde{r}_i^S , v_i , U_i^S , V_i^S and w_i^S , and assign linearization points to SCANS and UPDATES in exactly the same way as we did for T-Opt. Let L be the resulting linearization of α .

The proof of the linearizability of RT-Opt is in its biggest part similar to the proof of T-Opt. Specifically, the following two observations, which are similar to Observations 9 and 10 from Section 6, hold for RT-Opt. The same holds for Lemma 24, which is similar to Lemma 12 (from Section 6) and Lemma 18 (from Section 7).

Observation 18 For each $i \in \{1, ..., m\}$, w_{seq}^S precedes r_i^S and r_i^S precedes \tilde{r}_i^S .

Observation 19 For every $i \in \{1, ..., m\}$ such that S reads v_i in $preVal[seq_S][i]$, the following hold:

- 1. V_i^S reads the value seq_S in register seq (lines 7 and 9) and the value \perp in $preVal[seq_S][i]$ on line 11,
- 2. the read of Val[i] by V_i^S follows w_i^S , and
- 3. \tilde{r}_i^S follows the write to $preVal[seq_S][i]$ by V_i^S .

Lemma 24 For each $i \in \{1, ..., m\}$, w_i^S precedes \tilde{r}_i^S .

As in the correctness proof of RT, the main difficulty in proving that RT-Opt is linearizable is to prove that, for any SCAN S, the UPDATES that write values to row seq_S of preVal have executed the biggest part of their execution after the write w_{seq}^S to seq by S. To prove this we need to introduce the following notation.

We split α into epochs so that each epoch contains exactly $\lceil n/m \rceil$ SCANS. Denote by E_j the *j*th epoch of α , $j \geq 1$. Epoch E_1 starts with the first instruction of the execution and ends with the last instruction of the $\lceil n/m \rceil$ -th SCAN (or $E_1 = \alpha$ if fewer than $\lceil n/m \rceil$ SCANS occur in α). For each j > 1, epoch E_j starts at the point that the execution of the $((j-1)\lceil n/m \rceil)$ -th SCAN ends and finishes with the last instruction executed by the $(j\lceil n/m \rceil)$ -th SCAN (or E_j is the suffix of α , which starts at the point that the execution of the $((j-1)\lceil n/m \rceil)$ -th SCAN ends, if fewer than $(j\lceil n/m \rceil)$ SCANS occur in α). Notice that if α contains $(c_1\lceil n/m \rceil + c_2)$ SCANS, where $c_1 \geq 0$ and

Algorithm 6 Pseudocode for $\mathsf{RT-Opt}$ (process p).

$\frac{1}{2}$	constant ReadsPerScan = m; constant ScansPerEpoch = $\lceil n / \text{ReadsPerScan} \rceil$;
$ \begin{array}{c} 3 \\ 4 \\ 5 \\ 6 \end{array} $	shared int seq = 1; shared int SeqNums[1ScansPerEpoch*m]= $\{1,,1\}$; shared data Val[1m]= $\{\perp,,\perp\}$; shared data preVal[1n+2*ScansPerEpoch+1][1m]= $\{\perp,,\perp\}$;
	<pre>void UPDATE(data value, int i){ int curr_seq1, curr_seq2; data v1, v2;</pre>
7 8 9 10 11 12 13 14	$\begin{array}{l} curr_seq1 = seq;\\ SeqNums[p] = curr_seq1;\\ curr_seq2 = seq;\\ v1 = Val[i];\\ v2 = preVal[curr_seq1][i];\\ if(v2 == \bot \&\& \ curr_seq1 == \ curr_seq2)\\ preVal[curr_seq1][i] = v1;\\ Val[i] = value;\\ \end{array}$
15	data *SCAN(void){
16	data view[1in], v1, v2;
17	static int current period = 0: $//$ variables that are declared as static
18 19	static set free = \emptyset ; // are not re-initialized each time SCAN is called static set candidates = $\{2,, n+2^*$ ScansPerEpoch+1; $\}$
20	if (cur period $== 0$) {
21	free = free \cup candidates:
22	candidates = $\{1,, n+2*ScansPerEpoch+1\};$
23	$curr_seq = any element of set free;$
24	for $(i = 1; i \le m; i++)$ preVal[curr_seq][i] = \perp ;
20 26	$ree = ree - \{curr seq\};$
$\frac{20}{27}$	$cur_{period} = (cur_{period+1}) \mod ScansPerEpoch;$
28	$seq = curr_seq;$
29	for $(j = 1; j \le \text{ReadsPerScan}; j++)$
30	$candidates = candidates - \{ SeqNums[cur_period*ReadsPerScan+j] \};$
31	for $(i = 1; i \le m; i++)$ {
32	$v_1 = v_{al[1]};$ $v_2 = p_{re}V_{al[acc][i]};$
34	$v_2 = preval[seq][i],$ if $(v_2 = = 1)$ view[i] = v1:
35	else view[i] = v2;
	}
	}

 $0 \leq c_2 < \lceil n/m \rceil$ are constants, then α contains $c_1 + 1$ epochs, where the $(c_1 + 1)$ -st epoch contains $c_2 < \lceil n/m \rceil$ SCANS. We remark that the $(c_1 + 1)$ -st epoch may contain only steps by UPDATE operations (if $c_2 = 0$) or may be empty. Let k be the number of epochs in α . (We remark that if α is infinite, the number of epochs in it may be infinite.) For each $j \in \{1, \ldots, k\}$, denote by SN_j the set of values written in register seq by any SCAN of

epoch E_j and by $free_j$ the set free at the end of E_j . Denote by $candidates_j$ the set candidates at the end of E_j .

Next, we prove four simple technical lemmas that are basically direct consequences of the pseudocode.

Lemma 25 For each $j \in \{1, ..., k-1\}$ and for each $p \in \{1, ..., n\}$, there is a unique SCAN that reads register SeqNums[p] during E_j .

Proof By definition of E_j , exactly $\lceil n/m \rceil$ SCANS are performed during E_j . Each of these SCANS reads m distinct registers of SeqNums (lines 27, 29, 30). Thus, each of the n registers of SeqNums is read exactly once during E_j .

Lemma 26 For each $j \in \{1, ..., k\}$, it holds that (1) $free_j \cap SN_j = \emptyset$, and (2) $candidates_j \cap SN_j = \emptyset$.

Proof By inspection of the pseudocode (line 25), each value chosen as the sequence number of some SCAN during E_j is removed from *free* (line 25); the same is true for *candidates* (line 26). Thus, at the end of epoch E_j it holds that $free_j \cap SN_j = \emptyset$, and *candidates* $j \cap SN_j = \emptyset$.

By inspection of the pseudocode (lines 20-22 and 27), lines 21-22 are executed only by the 1-st, $(\lceil n/m \rceil + 1)$ -st, ..., $((k-1)\lceil n/m \rceil + 1)$ -st SCAN of α , as stated by the following lemma.

Lemma 27 For each $j \in \{1, ..., k\}$, the following hold for the first SCAN S executed during E_j :

- 1. S is the only SCAN in E_j that adds elements to free, and
- 2. S is the only SCAN in E_j that executes line 22 to initialize candidates.

The next lemma states that each SCAN operation S writes to seq a value different from the values written to seq by the other SCANS of the epoch to which S belongs.

Lemma 28 For each $j \in \{1, ..., k\}$, each SCAN of epoch E_j writes a distinct value to seq.

Proof Fix any $j \in \{1, \ldots, k\}$. Lemma 27 implies that elements are added into *free* only by the first SCAN of epoch E_j . By inspection of the pseudocode (line 23), each SCAN S of epoch E_j chooses as its sequence number some element of *free*. This element is removed from *free* when S executes line 25. Thus, SCANS of E_j that are executed after S choose to write different values into *seq*.

The next lemma proves that the SCANS of an epoch choose different sequence numbers than the SCANS of the previous epoch.

Lemma 29 For each $j \in \{2, ..., k\}$, it holds that $SN_{j-1} \cap SN_j = \emptyset$.

Fig. 18 Case 2 in proof of Lemma 30.

Proof Fix any $j \in \{2, \ldots, k\}$. By Lemma 27, the only SCAN of E_j that adds elements to *free* is the first SCAN S of E_j . Specifically, S adds the elements of *candidates*_{j-1} to *free*_{j-1} by executing line 21. Denote by *free*^s_j the set *free* after line 21 has been executed by S. Clearly, *free*^s_j = *free*_{j-1} \cup *candidates*_{j-1}. Lemma 26 implies that *free*_{j-1} \cap $SN_{j-1} = \emptyset$, and *candidates*_{j-1} \cap $SN_{j-1} = \emptyset$. It follows that *free*^s_j \cap $SN_{j-1} = \emptyset$. By inspection of the pseudocode (line 23), all elements of SN_j are chosen by *free*^s_j. Thus, $SN_j \cap SN_{j-1} = \emptyset$.

We are now ready to prove a lemma similar to Lemma 19.

Lemma 30 Fix any $i \in \{1, \ldots, m\}$ such that S reads v_i in preVal $[seq_S][i]$. If r_v is the read of Val[i] by V_i^S , then r_v is executed after w_{seq}^S .

Proof To derive a contradiction, assume that r_v is executed before w_{seq}^S . Denote by r_{seq} the first read of seq by V_i^S (line 7), and by r'_{seq} the second read of seq by V_i^S (line 9). Let p be the process that executes V_i^S and let w_p be the write to SeqNums[p]by V_i^S (line 8). Since r_v precedes w_{seq}^S , the same is true for r'_{seq} (that is executed by V_i^S before r_v). Assume that S is executed in epoch E_j , $j \ge 1$. We proceed by case analysis.

1. Assume first that j = 1. By inspection of the pseudocode (line 21), by the way free and candidates are initialized (lines 18, 19), and by Lemma 27 (claim 1), it follows that free does not contain the initial value of seq during the first epoch. Since SCANS of each epoch choose elements from *free* as their sequence numbers, S chooses a sequence number different from the initial value of seq. Lemma 28 implies that no SCAN that precedes S chooses the same sequence number as S. By definition, V_i^S writes in row seq_S of preVal. By inspection of the pseudocode (lines 12-13), this write is performed only if both r_{seq} and r'_{seq} read seq_S in seq. It follows that r_{seq} and r'_{seq} are both performed after w_{seq}^S . Since r_v follows r'_{seq} , r_v follows w_{seq}^S . This contradicts our assumption that r_v precedes w_{seq}^S .

Fig. 19 Case 2a in proof of Lemma 30.

Fig. 20 Case 2b in proof of Lemma 30.

2. Assume now that j > 1. By inspection of the pseudocode (line 24), S initializes all m registers of $preVal[seq_S]$ to \bot . By definition of V_i^S , S reads the value that V_i^S writes to register $preVal[seq_S][i]$. Thus, V_i^S writes to register $preVal[seq_S][i]$ after the initialization of $preVal[seq_S][i]$ to \bot by S. Since SeqNums[p]is written only by p and V_i^S does not terminate before the initialization of $preVal[seq_S][i]$ by S, it follows that SeqNums[p] contains the value seq_S written by V_i^S from w_p until (at least) the initialization of $preVal[seq_S][i]$ by S.

By Lemma 25, there is a unique SCAN operation S' that reads SeqNums[p] during E_{j-1} . Denote by r_p the read of SeqNums[p] by S'(see Fig. 18). We consider the following cases.

- (a) r_{seq}^\prime follows r_p (see Fig. 19). By Observation 19 (claim 1), r'_{seq} reads seq_S in seq. Since r'_{seq} follows r_p and r_p is executed by a SCAN of epoch E_{j-1} , it follows that r'_{seq} is executed after the beginning of epoch E_{j-1} . By Lemma 29, $SN_{j-1} \cap SN_j = \emptyset$. Thus, since $seq_S \in SN_i$, $seq_S \notin SN_{i-1}$, that is, no SCAN of epoch E_{j-1} writes seq_S to seq. By Lemma 28, each SCAN of epoch E_j writes a distinct value to seq. So, no SCAN of epoch E_i other than S writes seq_S to seq. It follows that the only way for r'_{seq} to read seq_S is if it occurs after w_{seq}^S . Since r_v follows r'_{seq} , it follows that r_v follows w^S_{seq} . This contradicts our assumption that r_v precedes w_{seq}^S .
- (b) r'_{seq} precedes r_p (Fig. 20). Observation 19 (claim 1) implies that r'_{seq} reads seq_S in seq. Assume that S_ℓ is the SCAN that writes the value seq_S read by r'_{seq} to seq and let $E_\ell, \ell \ge 1$, be the epoch in which S_ℓ is executed. If no such SCAN exists, then r'_{seq} reads the initial value of seq, so it holds

that $seq_S = 1$; moreover, r'_{seq} is executed before the write to seq by the first SCAN of epoch E_1 . In this case, let $\ell = 0$, let $free_0 = \emptyset$, and let $candidates_0 = \{2, \ldots, n + 2 * ScansPerEpoch + 1\}$ (i.e., sets $free_0$ and $candidates_0$ are the initial values of sets free and candidates, respectively). Since $seq_S \in SN_j$, Lemma 29 implies that $seq_S \notin SN_{j-1}$. Thus, $0 \leq \ell < j - 1$.

If $\ell > 0$, let $w_{seq}^{S_{\ell}}$ be the write to seq by S_{ℓ} . Since r'_{seq} reads the value written by $w_{seq}^{S_{\ell}}$, r'_{seq} is performed between $w_{seq}^{S_{\ell}}$ and the write to seq by the next SCAN after S_{ℓ} (since l < j - 1, such a SCAN exists). So, r'_{seq} is executed either during E_{ℓ} or at the beginning of epoch $E_{\ell+1}$, before the write to seq by the first SCAN of $E_{\ell+1}$ (this situation may occur if S_{ℓ} is the last SCAN of E_{ℓ}). (Notice that since $\ell < j - 1$, $E_{\ell+1}$ is either E_{j-1} or an earlier epoch.) We prove the following claims.

Claim 1 For each $f \in \{\ell, \ldots, j-1\}$, seq_S \notin candidates_f.

Proof Assume first that $f = \ell$. In case $\ell =$ 0, recall that $seq_S = 1$ and $candidates_0 =$ $\{2,\ldots,n+2*ScansPerEpoch+1\}$. So, $seq_S \notin candidates_0$. Assume now that $\ell > \ell$ 0. Since S_{ℓ} is executed in epoch E_{ℓ} and chooses seq_S as its sequence number, $seq_S \in$ SN_{ℓ} . By Lemma 29, $candidates_{\ell} \cap SN_{\ell} = \emptyset$. Thus, it holds that $seq_S \notin candidates_\ell$. Assume now that $f > \ell$. By Lemma 25, SeqNums[p] is read by a unique SCAN S_f of E_f . Recall that SeqNums[p] stores the value seq_S from w_p until at least the beginning of S; moreover, r'_{seq} (and therefore also w_p , which is performed by V_i^S before r'_{seq}) is executed before the write to seqby the first SCAN of epoch $E_{\ell+1}$. By inspection of the pseudocode (lines 28-30), a SCAN first writes to seq and then reads some of the registers of array SeqNums. Since $\ell <$ $f \leq j-1$ and S occurs in epoch E_j , it follows that SeqNums[p] contains the value seq_S when S_f reads SeqNums[p]. By inspection of the pseudocode (line 30), it follows that seq_S is removed from *candidates* during E_f . By Lemma 27 (claim 1), no elements are added in *candidates* after the execution of line 22 by the first SCAN of epoch E_f . Since line 30 follows line 22, it follows that $seq_S \notin candidates_f$.

Claim 2 For each $f \in \{\ell, \ldots, j-1\}$, $seq_S \notin free_f$.

Proof We first prove the claim for $f = \ell$. In case $\ell = 0$, $free_0 = \emptyset$, so $seq_S \notin free_0$. Assume that $\ell > 0$. Since S_ℓ chooses seq_S as its sequence number, $seq_S \in SN_\ell$. Lemma 26 implies that $free_\ell \cap SN_\ell = \emptyset$. Thus, $seq_S \notin$ $free_\ell$.

To derive a contradiction, assume that f, where $\ell < f \leq j - 1$, is the smallest integer for which the claim does not hold, i.e., $seq_S \in free_f$. Since the claim holds for f -1, it follows that $seq_S \notin free_{f-1}$. By Claim 1, it follows that $seq_S \notin candidates_{f-1}$. Let $free_f^s$ denote set free after the execution of line 21 by the first SCAN of epoch E_f . By inspection of the pseudocode (line 21), $free_f^s = free_{f-1} \cup candidates_{f-1}$. It follows that $seq_S \notin free_f^s$. Lemma 27 (claim 1) implies that no elements are added to freeafter the execution of line 21 and until the end of E_f . Thus, $seq_S \notin free_f$. This is a contradiction.

For f = j - 1, Claim 1 implies that $seq_S \notin candidates_{j-1}$, and Claim 2 implies that $seq_S \notin free_{j-1}$. By Lemma 27, only the first SCAN of epoch E_j adds elements to free by executing line 21 of the pseudocode. Let $free_j^s$ denote set free after the execution of this line. By the pseudocode, it follows that $free_j^s = free_{j-1} \cup candidates_{j-1}$. It follows that $seq_S \notin free_j^s$. All SCANS of epoch E_j (including S) choose their sequence numbers from $free_j^s$. Since seq_S does not exist in $free_j^s$, it follows that S cannot choose seq_S as its sequence number. This is a contradiction.

The statement (and the proof) of the following lemma is the same as that of Lemma 20.

Lemma 31 For each $i \in \{1, ..., m\}$ such that w_i^S follows w_{seq}^S , it holds that any UPDATE on A_i that performs its write to Val[i] between w_{seq}^S and w_i^S (including U_i^S) begins its execution before w_{seq}^S .

Lemmas 15-17, which we have proved in Section 6 for T-Opt, hold also for RT-Opt without requiring any modification in their proofs:

Lemma 32 The linearization point of each SCAN that terminates in α and each UPDATE that executes

the write of line 14 in α is within its execution interval.

Lemma 33 Let U_1 , U_2 be two UPDATES on some component A_i , $1 \le i \le m$. Denote by w_1 the write to Val[i] by U_1 and by w_2 the write to Val[i] by U_2 . If w_1 precedes w_2 , the linearization point of U_1 precedes the linearization point of U_2 .

Lemma 34 Every SCAN operation that terminates in α returns a consistent vector with respect to L.

Lemma 34 implies that the following theorem holds for RT-Opt.

Theorem 20 RT-Opt is linearizable.

8.3 Step and Space Complexity

By inspection of the pseudocode, it is obvious that the step complexity of UPDATE in RT-Opt is O(1). If in each execution α of RT-Opt, just a single process (always the same) performs the SCANS in α , then RT-Opt's step complexity for SCAN is O(m). Specifically, each SCAN reads 3m shared registers, namely, m registers of SeqNums (since it holds that ReadsPerScan = m), m registers of preVal, and m registers of Val; the rest of the SCAN computation is on local variables.

Remarkably, the value of ReadsPerScan can be chosen to be any value between 1 and n. If ReadsPerScan = n, RT-Opt works in the same way and has the same step complexity for SCAN and UPDATE as RT. If ReadsPerScan = m and a single process plays the role of the scanner in the system, RT-Opt achieves optimal step complexity.

RT-Opt uses O(mn) registers. Most of these registers (e.g., the registers of *Val* and *preVal*) store just one value. The size of each of the rest of the registers is $O(\log n)$ bits.

Theorem 21 RT-Opt uses O(mn) registers that have bounded size and has step complexity O(m)for SCAN and O(1) for UPDATE.

9 Discussion

This paper presents a collection of lower and upper bounds for single-scanner multi-writer snapshot implementations from registers, including the first such implementations that are optimal in terms of step complexity.

An object is called *historyless* if the current state of the object depends only on the last nontrivial primitive that was performed on the object [15]; nontrivial is a primitive that can change the state of the object. An example of a historyless object is a swap object. A swap object supports, in addition to read, the primitive swap(v)that changes the state of the object to v and returns the previous value stored in the object. It was proved in [14] that any type of historyless object can be implemented by a swap object with the same set of possible states. Moreover, each operation of the historyless object can be simulated by a single access to the swap object. As a consequence, proving a complexity lower bound for implementations from swap objects implies the same lower bound for implementations from historyless objects. It is easy to verify that the proof of our lower bound holds for implementations from swap objects. Thus, our lower bound holds for implementations from historyless objects as well.

Dwork and Waarts [10], have proposed a primitive, called a *traceable register*, which provides the capability of tracing the values that are still active (i.e., those that are currently stored in the shared variables of the system or the local variables of the processes) among those that have been written in the traceable register. A traceable reg*ister* stores a value and supports the operations tread, twrite, and garbage-collect; tread and twrite are used for reading and writing the register, while garbage-collect allows a process to find out which values that have been written into the traceable register are still active. The first traceable register implementation [10] uses O(n) registers and employs handshaking techniques [26] to have processes notify others when they access the register. Specifically, each time twrite is invoked by a writer to store a new value into the traceable register, the writer handshakes with all the readers and sets aside (i.e., stores in some of the O(n) registers) the old value of the traceable register for each one of them with which handshaking succeeds. Readers handshake with the writer and depending on whether the handshaking succeeds, they decide whether to return the current value of the register or one of the old values set aside for them. A garbage-collect reads all the registers and returns a set of all the values stored in them. This implementation has time complexity O(n) for twrite.

Traceable registers could be employed to design a version of **T-Opt** that is space-bounded. In this version, a SCAN would writes into traceable registers in order to specify into which registers UPDATES may write their values. These traceable registers are tread by UPDATE. Then, the scanner would be able to find out which of the values ever written in the traceable register are still active by performing garbage-collect. However, this would lead to an implementation where the time complexity of SCAN is O(n) (due to the handshaking). RT-Opt uses a much simpler recycling technique that is based on the standard read-write-read approach. This avoids handshaking and leads to optimal SCAN complexity.

Garbage collection in [10] is an expensive task because there are many processes that can perform twrite; so a value that appears for the first time in a traceable register may be later written to some other traceable register and be read from there (i.e., the degree of *indirection* can be greater than one). Dwork and Waarts [10] remark that garbage-collect can be executed more efficiently if values that are supposed to be active are gradually collected during the execution of more than one twrite. In a space bounded version of T-Opt using a traceable register, the degree of indirection is one. As a consequence of this, all the information collected during a garbage-collect is local to SCAN, so that the execution of garbage-collect has no influence on the time complexity of SCAN even if it is not performed gradually (despite this, the time complexity of SCAN is linear in n due to handshaking). However, the technique of gradually collecting information about values written by SCANS that may still be active is useful in RT-Opt, which owes its good time complexity mainly to such a technique. However, space bounded versions of T-Opt employing this implementation do not achieve time complexity less than $\Theta(n)$ for SCAN.

An interesting problem left open by our work is to derive a lower bound on the number of readwrite registers that are needed to design an implementation that ensures step complexity O(m)for SCAN and O(1) for UPDATE. Is there an algorithm with this step complexity that uses less than $\Theta(mn)$ registers?

Checkmarking has the same step complexity as a space-optimal single-scanner snapshot implementation. However, in contrast to such an implementation, it uses an additional single-writer register and allows SCANS to write to this register. It is interesting to investigate whether the $\Omega(m^2)$ lower bound still holds on the step complexity of SCAN, for single-scanner implementations in which SCAN is allowed to write to a single-writer register.

Acknowledgments. This research has been supported by the European Commission through the TransForm, Euroserver, and HiPEAC3 projects. It has also been supported by the ARISTEIA Action of the Operational Programme Education and Lifelong Learning through the GreenVM project, and by the project "Computer Science Studies at the University of Ioannina" of the Operational Program for Education and Initial Vocational Training funded by the 3rd Community Support Framework and the Hellenic Ministry of Education.

We would like to thank Faith Ellen for her valuable comments on an early version of this work. We would also like to thank Prasad Jayanti for pointing out some related work.

References

- Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic Snapshots of Shared Memory. Journal of the ACM (JACM) 40(4), 873–890 (1993)
- Anderson, J.H.: Composite registers. Distributed Computing 6(3), 141–154 (1993)
- Anderson, J.H.: Multi-writer composite registers. Distributed Computing 7(4), 175–195 (1994)
- Aspnes, J.: Time-and space-efficient randomized consensus. In: Proceedings of the ninth annual ACM symposium on Principles of distributed computing, pp. 325–331. ACM (1990)
- Aspnes, J., Herlihy, M.: Wait-Free Data Structures in the Asynchronous PRAM Model. In: Proc. 2nd ACM Symposium on Parallel Algorithms and Architectures, pp. 340–349 (1990)
- Attiya, H., Ellen, F., Fatourou, P.: The complexity of updating snapshot objects. J. Parallel Distrib. Comput. **71**(12), 1570–1577 (2011)
- Attiya, H., Lynch, N., Shavit, N.: Are Wait-free Algorithms Fast? Journal of the ACM (JACM) 41(4), 725–763 (1994)
- 8. Attiya, H., Rachman, O.: Atomic Snapshots in $O(n \log n)$ Operations. SIAM J. Comput. **27**(2), 319–340 (1998)
- Burns, J., Lynch, N.: Bounds on shared memory for mutual exclusion. Information and Computation 107(2), 171–184 (1993)
- Dwork, C., Waarts, O.: Simple and efficient bounded concurrent timestamping and the traceable use abstraction. Journal of the ACM (JACM) 46(5), 633–666 (1999)
- Ellen, F., Fatourou, P., Ruppert, E.: Time lower bounds for implementations of multi-writer snapshots. Journal of the ACM (JACM) 54(6), 30 (2007)
- Fatourou, P., Fich, F., Ruppert, E.: Space-optimal multi-writer snapshot objects are slow. In: Proceedings of the twenty-first annual symposium on Principles of distributed computing, pp. 13–20. ACM (2002)

- Fatourou, P., Fich, F., Ruppert, E.: A tight time lower bound for space-optimal implementations of multi-writer snapshots. In: Proceedings of the 35th ACM Symposium on Theory of Computing, pp. 259–268 (2003)
- Fatourou, P., Fich, F., Ruppert, E.: Time-space tradeoffs for implementations of snapshots. In: Proceedings of the 38th ACM Symposium on Theory of Computing (2006)
- Fich, F., Herlihy, M., Shavit, N.: On the space complexity of randomized synchronization. Journal of the ACM (JACM) 45(5), 843–862 (1998)
- 16. Gafni, E., Merritt, M., Taubenfeld, G.: The concurrency hierarchy, and algorithms for unbounded concurrency. In: Proceedings of the twentieth annual ACM symposium on Principles of distributed computing, pp. 161–169. ACM (2001)
- 17. Gawlick, R., Lynch, N., Shavit, N.: Concurrent timestamping made simple. In: Proceedings of the Israel Symposium on the Theory of Computing and Systems, *LNCS*, vol. 601, pp. 171–183 (1992)
- Herlihy, M., Wing, J.M.: Linearizability: A Correctness Condition for Concurrent Objects. ACM Transactions on Programming Languages and Systems 12(3), 463–492 (1990)
- Inoue, M., Chen, W., Masuzawa, T., Tokura, N.: Linear Time Snapshots Using Multi-writer Multireader Registers. In: Distributed Algorithms, 8th International Workshop, *LNCS*, vol. 857, pp. 130– 140 (1994)
- Israeli, A., Shaham, A., Shirazi, A.: Linear-time snapshot implementations in unbalanced systems. Mathematical Systems Theory 28(5), 469–486 (1995)
- Jayanti, P.: F-arrays: implementation and applications. In: Proceedings of the 21th ACM Symposium on Principles of Distributed Computing, pp. 270–279 (2002)
- Jayanti, P.: An Optimal Multi-Writer Snapshot Algorithm. In: Proceedings of the 37th ACM Symposium on Theory of Computing, pp. 723–732 (2005)
- Jayanti, P., Tan, K., Toueg, S.: Time and Space Lower Bounds for Nonblocking Implementations. SIAM J. Comput. **30**(2), 438–456 (2000)
- 24. Kirousis, L.M., Spirakis, P., Tsigas, P.: Reading many variables in one atomic operation: solutions with linear or sublinear complexity. IEEE Transactions on Parallel and Distributed Systems 5(7), 688–696 (1994)
- Mullender, S.: Distributed Systems. Addison-Wesley (1994)
- Peterson, G.L.: Concurrent reading while writing. ACM Transactions on Programming Languages and Systems (TOPLAS) 5(1), 46–55 (1983)
- Rianny, Y., Shavit, N., Touitou, D.: Towards a practical snapshot algorithm. Theoretical Computer Science 269(1-2), 163–201 (2003)

A Proofs of Lemmas 1, 2, and 3

Consider any implementation of an *m*-component multiwriter snapshot object shared by n > m + 1 processes from a set of *m* multi-writer read/write registers. The statements of Lemmas 35 and 36 and their proofs are slightly modified versions of similar lemmas that appear in [12]. Lemmas 37, 38, 39 and 40 and their proofs are exactly the same as their analogs from [12]. For the shake of simplicity, our proofs below assume that there is a unique process p_s that performs SCAN operations in the system. (We remark that the lemmas hold even if SCAN operations are executed by different processes provided that no pair of SCANS overlap.)

For the shake of simplicity, in this section, we assume that an execution is a sequence of steps. Fix any execution α of a single-scanner, multi-writer, *m*-component snapshot implementation from *m* registers starting from C_0 .

Lemma 35 Suppose that, in configuration C, a set P_O of at most n - 1 processes covers a set of registers O, and all processes not in P_O are inactive. Furthermore, suppose there is some component A_i such that no process has a pending UPDATE to A_i in configuration C. Consider an execution starting from C in which the processes in P_O execute a step each to perform their writes and, immediately afterwards, the scanner p_s performs a solo execution in which it finishes its pending operation (if it has one) and then performs a complete SCAN. Let v be the value that this SCAN returns for component A_i . Then, for all $p \notin P_O \cup \{q\}$ and all $v' \neq v$, the solo execution by p of UPDATE(i, v') starting from C must perform a write to a register outside O.

Proof Suppose not. Let C' be the configuration obtained from C when the processes in P_O perform one step each and let β be the solo execution by p_s starting from C'. Let C'' be the configuration obtained when pperforms a solo execution of $\mathtt{UPDATE}(i,v')$ starting from ${\cal C}$ and then the processes in ${\cal P}_{{\cal O}}$ execute a step each to perform their writes. By our assumption, p does not write to any register outside O, so each register has the same value in $\overline{C''}$ that it has in C'. Furthermore, p_s is in the same state in C' and C''. Therefore, the solo execution β by p_s starting from C'' is legal and p_s 's SCAN returns the value v for component A_i . However, the execution β starting from C'' must return the value $v' \neq v$ for component A_i , since p completed its UPDATE(i, v')before the SCAN began and no process has a pending **UPDATE** to A_i at C. This is a contradiction.

For any configuration C and for any set of processes P', the set of components with a pending UPDATE in C by a process in P' is denoted CPU(C, P').

Definition 1 Consider any integer ℓ , where $1 \leq \ell \leq m < n$. A configuration C is ℓ -fatal if there exists a subset O of ℓ registers and a set P_O of ℓ processes such that P_O covers O in C and $|CPU(C, P_O)| < \ell$.

Lemma 36 No implementation for n processes of an m-component snapshot object from m registers has a reachable ℓ -fatal configuration, for $1 \le \ell \le m < n - 1$.

Proof Suppose the lemma is false. Let ℓ be the largest integer such that there is a reachable ℓ -fatal configuration, C_1 . Then there is a set O of ℓ registers and

a set P_O of ℓ processes such that P_O covers O and $|CPU(C_1, P_O)| < \ell$. Let C be the configuration obtained from C_1 by running all processes not in P_O until they are inactive. Since it holds that $|CPU(C, P_O)| = |CPU(C_1, P_O)| < \ell \leq m$, there exists a component $A_i \notin CPU(C, P_O)$.

Let $p \notin P_O$ be any process other than p_s . These process exists because $|P_O| = \ell$ and $1 \leq \ell < n - 1$. Consider the execution starting from C in which the processes in P_O execute a step each to perform their writes, p_s finishes its pending operation (if any), and then p_s performs a complete SCAN. Let v be the value that this SCAN returns for component A_i . By Lemma 35, for all $v' \neq v$, the solo execution of UPDATE(i, v') to A_i by p starting from C contains a write to a register $R \notin O$.

If $\ell = m$, then we have a contradiction, since all registers are in O. Otherwise, l < m. In this case, let C_2 be the reachable configuration obtained by performing p's solo execution of UPDATE(i, v') starting from C until just before p writes to R for the first time. Let $O' = O \cup \{R\}$ and let $P'_O = P_O \cup \{p\}$. Then $|O'| = |P'_O| = \ell + 1$, P'_O covers O' in C_2 , and $CPU(C_2, P'_O) = CPU(C, P_O) \cup \{A_i\}$, so $|CPU(C_2, P'_O)| < \ell + 1$. Thus, C_2 is a reachable $(\ell + 1)$ -fatal configuration, contradicting the maximality of ℓ .

Lemma 37 SCAN operations never perform writes.

Proof Suppose there is an execution of a SCAN operation by process p_s that contains a write to a register R. Consider the configuration C that occurs just before this write is performed. Since $\{q\}$ covers $\{R\}$ and $CPU(C, \{q\})$ is empty, this configuration is 1-fatal, contradicting Lemma 36.

A solo SCAN starting from C_0 returns \perp for every component. For each process p_i other than p_s , each component A_j , and each possible value $v \neq \perp$, consider the solo execution of an UPDATE of component A_j with value v by process p_i starting from C_0 . Since all processes are inactive in C_0 , we can apply Lemma 35 with $O = P_O = \emptyset$ to see that this execution by p_i contains at least one write to a register. Denote by $R_i(j,v)$ the first register written by p_i and denote by $\rho_i(j,v)$ the prefix of this execution up to, but not including this first write. (The sequence $\rho_i(j, v)$ may be empty.)

Lemma 38 Consider any component A_j . For any processes p_{i_1} and p_{i_2} other than p_s , and for any non- \perp values v_1 and v_2 , $R_{i_1}(j, v_1) = R_{i_2}(j, v_2)$.

Proof Assume first that $p_{i_1} \neq p_{i_2}$. Consider the execution $\rho_{i_1}(j, v_1) \cdot \rho_{i_2}(j, v_2)$ starting from C_0 and let C be the resulting configuration. This execution is legal since p_{i_1} performs no writes during $\rho_{i_1}(j, v_1)$. Note that $\{p_{i_1}, p_{i_2}\}$ covers $\{R_{i_1}(j, v_1), R_{i_2}(j, v_2)\}$ in C and $CPU(C, \{p_{i_1}, p_{i_2}\}) = \{A_j\}$. If $R_{i_1}(j, v_1) \neq R_{i_2}(j, v_2)$, then C is 2-fatal. This contradicts Lemma 36. Hence $R_{i_1}(j, v_1) = R_{i_2}(j, v_2)$.

Assume now that $p_{i_1} = p_{i_2}$. Let p_i be any other process. By the argument above, $R_i(j, v_1) = R_{i_1}(j, v_1)$ and $R_i(j, v_1) = R_{i_2}(j, v_2)$. Hence $R_{i_1}(j, v_1) = R_{i_2}(j, v_2)$.

Lemma 38 allows us to define R_j to be the register $R_i(j, v)$ covered by each process p_i other than p_s , immediately after it executes $\rho_i(j, v)$ starting from C_0 , for any value $v \neq \bot$. That is, every process (other than p_s) does its first write to R_j when it performs any solo UPDATE to A_j (with a non- \bot value) starting from C_0 .

Lemma 39 Let α be an execution starting from C_0 in which some process other than p_s takes no steps. Then, for each $j \in \{1, \ldots, m\}$, UPDATE operations to component A_j in α write only to R_j .

Proof Suppose there is a process p_i other than p_s that performs a write to a register $R \neq R_j$ during the execution of an UPDATE to component A_j in α . Let α' denote the prefix of α up to, but not including this write by p_i to register R.

Let p_k be a process other than p_s that takes no steps in α and let v be a non- \perp value. Consider the execution $\rho_k(j, v) \cdot \alpha'$ and let C' be the resulting configuration. This execution is legal since p_k performs no writes during $\rho_k(j, v)$. Note that $\{p_i, p_k\}$ covers $\{R, R_j\}$ in C' and since it holds that $CPU(C', \{p_i, p_k\}) = \{A_j\}$, it follows that C' is 2-fatal. This contradicts Lemma 36.

The next result shows that processes, which perform UPDATE operations to different snapshot components must write to different registers.

Lemma 40 $R_{j_1} \neq R_{j_2}$ for distinct $j_1, j_2 \in \{1, ..., m\}$.

Proof To derive a contradiction, suppose $R_{j_1} = R_{j_2}$ for some $j_1 \neq j_2$. Let p_{k_1} and p_{k_2} be two distinct processes other than p_s . Let v be some non- \perp value. Let C be the configuration that results when $\rho_{k_2}(j_2, v)$ is performed by p_{k_2} starting from C_0 . In configuration C, $\{p_{k_2}\}$ covers $\{R_{j_2}\}$, all other processes are inactive, and no process has a pending UPDATE to A_{j_1} . Let C' be the configuration obtained from C by allowing p_{k_2} to do its pending write. A solo SCAN by process p_s starting from C' returns \perp for component A_{j_1} , since no UPDATES to A_{j_1} have been started in this execution. Let α be the solo execution of UPDATE (j_1, v) by p_{k_1} starting from C. By Lemma 35, p_{k_1} must write to some register other than $R_{j_1} = R_{j_2}$ during α .

Since p_{k_2} performs no writes during $\rho_{k_2}(j_2, v)$, it is also the case that α is a legal execution starting from C_0 . Process p_{k_2} takes no steps during α , so Lemma 39 implies that p_{k_1} writes only to R_{j_1} during α . This is a contradiction.