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ABSTRACT
We study the ability of different shared object types to solve recov-

erable consensus using non-volatile shared memory in a system

with crashes and recoveries. In particular, we compare the difficulty

of solving recoverable consensus to the difficulty of solving the

standard wait-free consensus problem in a system with halting

failures. We focus on the model where individual processes may

crash and recover and on the large class of object types that are

equipped with a read operation. We characterize the readable object

types that can solve recoverable consensus among a given number

of processes. Using this characterization, we show that the number

of processes that can solve consensus using a readable type can

be larger than the number of processes that can solve recoverable

consensus using that type, but only slightly larger.
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1 INTRODUCTION
Recoverable consensus can play a key role in the study of asynchro-

nous systems with non-volatile shared memory where processes

can crash and recover, just as the standard consensus problem plays

a central role in the study of asynchronous systems where processes

may halt. In this paper, our goal is to leverage extensive research

on the solvability of the standard consensus problem in systems

equipped with different types of shared objects to gain knowledge

about recoverable consensus in systems with non-volatile memory.

We consider an asynchronous model of computation, where pro-

cesses communicate with one another by accessing shared memory.

In particular, we are interested in studying how concurrent algo-

rithms can take advantage of recent advances in non-volatile main

memory, which maintains its stored values even when its power

supply is turned off. This allows for algorithms that can carry on

with a computation when processes crash and recover. We con-

sider a standard theoretical model [3, 20–22] for this setting, where

each process’s local memory is volatile, but shared memory is non-

volatile, and processes may crash and recover individually in an

asynchronous manner. After a process crashes, its local memory,

including its programme counter, is reinitialized to its initial state

when the process recovers. Process crashes do not affect the state

of shared memory. At recovery time, the process begins to execute

its code again from the beginning
1
. We refer to the sequence of

steps that a process takes between crashes as a run of its code.

The consensus problem, where each process gets an input and

all processes must agree to output one of them, has been central to

the study of shared-memory computation in asynchronous systems

with process halting failures (but no recoveries). A shared object

type is defined by a sequential specification, which specifies the set

of possible states of the object, the operations that can be performed

on it, and how the object changes state and returns a response when

an operation is applied on it. Herlihy [25] defined the consensus

number of a type 𝑇 , denoted 𝑐𝑜𝑛𝑠 (𝑇 ), to be the maximum number

of processes that can solve consensus using objects of type 𝑇 and

read/write registers, or∞ if there is no such maximum. The classi-

fication of types according to their consensus number is called the

consensus hierarchy. This classification is particularly meaningful

because of Herlihy’s universality result: a type 𝑇 can be used (with

1
Alternatively, it could execute a recovery function. Our results hold either way. We

use the simpler assumption of re-starting upon recovery to prove our results.
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registers) to obtain wait-free implementations of all object types in
a system of 𝑛 processes if and only if 𝑐𝑜𝑛𝑠 (𝑇 ) is at least 𝑛.

Golab [20] defined the recoverable consensus (RC) problem, where

processes must agree on one of their input values, even if processes

may crash and recover. An algorithm for RC defines a routine for

each process to execute that takes an input value and eventually

returns an output value, satisfying the following three properties.

• Agreement: no two output values produced are different.

(This includes outputs by different processes and outputs

of the same process when it performs multiple runs of the

algorithm because it crashes and recovers.)

• Validity: each output value is the input value of some process.

• Recoverable wait-freedom: if a process executes its algorithm

from the beginning, it either crashes or outputs a value after

a finite number of its own steps.

Like Golab, we assume a process’s input value does not change,

even across multiple runs, but this is not a crucial assumption. (If an

RC algorithm requires this precondition, it can be transformed into

one that does not using a register for each process’s input. When a

process begins a run, it reads this register and, if it has not yet been

written, the process writes its input value. It then uses the value in

the register as its input, ensuring that all of the process’s runs of the

original algorithm use the same input value.) Berryhill, Golab and

Tripunitara [6] described how Herlihy’s universality result carries

over to the model with crashes and recoveries, using RC in place of

consensus. (See Section 4 for details.)

There are two common failure models for crashes and recoveries:

simultaneous crashes [26], where all processes crash simultaneously,

and independent crashes (introduced in [23] to study recoverable

mutual exclusion), where processes can crash and recover individ-

ually in an asynchronous way. Golab [20] defined two recoverable

consensus hierarchies. For an object type 𝑇 , the simultaneous RC
number of 𝑇 is the maximum number of processes that can solve

RC using an unbounded number of shared objects of type 𝑇 and

read/write registers when simultaneous crashes may occur. Simi-

larly, the independent RC number of𝑇 , which we denote 𝑟𝑐𝑜𝑛𝑠 (𝑇 ), is
the maximum number of processes that can solve RC using shared

objects of type𝑇 and read/write registers when independent crashes

may occur. In both cases, if no maximum exists we say the RC

number is ∞. This is a slight modification of Golab’s definition.
2

As an example, 𝑟𝑐𝑜𝑛𝑠 (𝑠𝑡𝑎𝑐𝑘) = 1 [13], whereas it is known that

𝑐𝑜𝑛𝑠 (𝑠𝑡𝑎𝑐𝑘) = 2 [25].

1.1 Our Results
We focus on independent crashes since a simple extension of Golab’s

result [20] described in Section 2 shows that RC has exactly the

same difficulty as consensus in a system with simultaneous crashes.

Our main results are for deterministic shared object types that

are readable, meaning that they are equipped with a read operation

2
Golab’s definition of RC numbers required the RC algorithms to use a bounded number

of objects. We permit an infinite number of objects. When Jayanti [27] formalized

Herlihy’s consensus hierarchy, he similarly allowed an unbounded number of objects

to be used in solving consensus. (However, it follows from König’s Lemma [28] that

any wait-free algorithm for the standard consensus problem that uses objects with

finite non-determinism will use finitely many objects.) Universal constructions, which

are one of the main motivations for studying the hierarchy, require an infinite number

of instances of consensus anyway, so even if each instance uses a finite number of

objects, the overall construction would still use an infinite number.

that returns the current state of the object without changing it. We

define, for all 𝑛 ≥ 2, the 𝑛-recording property for shared object

types. Roughly speaking, a readable type 𝑇 is 𝑛-recording if 𝑛 pro-

cesses can be divided into two teams and use one object of type 𝑇

to determine which of the two teams “wins”, even when processes

crash and recover. The first team to perform an update operation

on the object is the winning team, and this information is recorded
in the object’s state, so that processes can determine which team

wins by reading the object.

We show in Section 3.1 that being 𝑛-recording is sufficient for

solving RC among 𝑛 processes. We also show in Section 3.2 that the

slightly weaker condition of being (𝑛−1)-recording is necessary for
solving RC among 𝑛 processes. Thus, we have a fairly simple way of

determining the approximate value of 𝑟𝑐𝑜𝑛𝑠 (𝑇 ): if 𝑇 is 𝑛-recording

but not (𝑛+1)-recording, we know that 𝑟𝑐𝑜𝑛𝑠 (𝑇 ) is either 𝑛 or 𝑛+1.
Our 𝑛-recording property is related to Ruppert’s 𝑛-discerning

property [33], which was defined to characterize readable types

that can solve 𝑛-process consensus. In Section 3.3, we prove rela-

tionships between these two properties. This allows us to prove that

if a type has consensus number 𝑛, then its RC number is between

𝑛 − 2 and 𝑛. We give examples of types 𝑇 with 𝑟𝑐𝑜𝑛𝑠 (𝑇 ) = 𝑐𝑜𝑛𝑠 (𝑇 )
and others with 𝑟𝑐𝑜𝑛𝑠 (𝑇 ) < 𝑐𝑜𝑛𝑠 (𝑇 ). In Section 3.4, we also use

our characterization to show that weak types do not become much

stronger (in terms of their power to solve RC) when used together.

Section 4 describes how Herlihy’s motivation for studying the con-

sensus hierarchy carries over to the RC hierarchy for the setting of

non-volatile memory. See Figure 1 for an overview of our results.

2 SIMULTANEOUS CRASH MODEL
In the case of simultaneous crashes, the RC hierarchy is identical

to the standard consensus hierarchy.

Theorem 1. Recoverable consensus is solvable among 𝑛 processes
using objects of type 𝑇 and registers in the simultaneous crash model
if and only if 𝑐𝑜𝑛𝑠 (𝑇 ) ≥ 𝑛.

Golab [20] showed how to transform a standard consensus algo-

rithm into an algorithm for RC in the case of simultaneous crashes.

His transformation required a bound on the number of crashes to

ensure that the space used by the algorithm is bounded. Since we

allow an unbounded number of objects to be used to solve RC, a

simple modification of Golab’s algorithm can be used to prove The-

orem 1. See the full version [13] for details. In view of Theorem 1,

we focus on determining RC numbers of types in the presence of

independent crashes in the remainder of the paper.

3 READABLE OBJECTS
A deterministic object type has a sequential specification that speci-

fies a unique response and state transition when a given operation

is applied to an object of this type that is in a given state. An object

is readable if it has a Read operation that returns the entire state

of the object without altering it.
3
Ruppert [33] provided a charac-

terization of deterministic, readable types that can solve consensus

3
We use this definition for simplicity, but our results would apply equally well to the

original, more general definition of readable objects in [33], which allows the state of

the object to be read piece-by-piece. For example, an array of registers is also readable

under the more general definition.
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Figure 1: Relationships between conditions and solvability of consensus and recoverable consensus (with independent crashes)
using a deterministic, readable type.

among 𝑛 processes. In this section, we develop a similar characteri-

zation for RC with independent crashes, and use this to compare

the ability of types to solve the two problems.

The characterizations for consensus and for RC are linked to the

team consensus problem, which is the problem of solving consensus

when the set of processes are divided in advance into two non-

empty teams and all processes on the same team get the same input.

(This problem is also known as static consensus [31].)

We first review the characterization for standard consensus [33].

Suppose each process can perform a single update operation on an

object 𝑂 of type 𝑇 , and then read 𝑂 at some later time, and, based

only on the responses of these two steps, determine which team

updated 𝑂 first. If this is possible, we say 𝑇 is 𝑛-discerning.

Definition 2. A deterministic type 𝑇 is called 𝑛-discerning if
there exist
• a state 𝑞0,
• a partition of 𝑛 processes 𝑝1, . . . , 𝑝𝑛 into two non-empty teams
𝐴 and 𝐵, and
• operations 𝑜𝑝1, 𝑜𝑝2, . . . , 𝑜𝑝𝑛

such that, for all 𝑗 ∈ {1, . . . , 𝑛}, 𝑅𝐴,𝑗 ∩𝑅𝐵,𝑗 = ∅, where 𝑅𝑋,𝑗 is the set
of pairs (𝑟, 𝑞) for which there exist distinct process indices 𝑖1, . . . , 𝑖𝛼
including 𝑗 with 𝑝𝑖1 ∈ 𝑋 such that if 𝑜𝑝𝑖1 , . . . , 𝑜𝑝𝑖𝛼 are performed in
this order on an object of type 𝑇 initially in state 𝑞0, then 𝑜𝑝 𝑗 returns
𝑟 and the object ends up in state 𝑞.

In this definition and in Definition 4, an operation 𝑜𝑝𝑖 includes

the name of the operation and any arguments to it. For example,

Write(42) is an operation on a read/write register. Operations

𝑜𝑝1, . . . , 𝑜𝑝𝑛 need not be distinct. Ruppert used a valency argument

to show that any deterministic, readable type that can solve con-

sensus among 𝑛 processes must be 𝑛-discerning. Conversely, team

consensus can be solved using a readable 𝑛-discerning object 𝑂

and one register per team as follows. Each process 𝑝𝑖 writes its

input in its team’s register, performs its operation 𝑜𝑝𝑖 on 𝑂 and

then reads 𝑂 ’s state. The process determines which team updated

𝑂 first and outputs the value in that team’s register. A tournament

then solves consensus: processes within each team agree on an

input value recursively and then run team consensus to choose the

final output value. The argument sketched here yields the following

characterization.

Theorem 3 ([33]). A deterministic, readable type can be used,
together with registers, to solve 𝑛-process wait-free consensus if and
only if it is 𝑛-discerning.

We now consider how to characterize readable types that can

solve recoverable consensus, with independent process crashes. Re-
coverable team consensus is the RC problem where the processes

are partitioned in advance into two non-empty teams and inputs

are constrained so that all processes on the same team have the

same input value. We shall show that RC is solvable if and only

if recoverable team consensus is solvable: the only if direction is

trivial, and the converse will be shown using the same tournament

algorithm outlined above. So, it suffices to characterize types that

can solve recoverable team consensus for 𝑛 processes.

We shall define a property called 𝑛-recording such that a type 𝑇

satisfying the property will allow 𝑛 processes to solve recoverable

team consensus in a simple way. A shared object 𝑂 of type 𝑇 is

initialized to some state 𝑞0. To solve team consensus using an 𝑛-

discerning type, each process performs a single operation on 𝑂

and then reads 𝑂 , and is able to conclude from the responses to

these two steps which team updated 𝑂 first. There are two key

difficulties when we consider processes that may crash and recover:

(1) if a process crashes after performing its update, thereby losing

the response of that update, the process cannot use the response to

determine which team won, and (2) a process that recovers should

try to avoid performing its update on 𝑂 a second time so that it

does not obliterate the evidence of which team updated 𝑂 first.

To cope with (1), our new 𝑛-recording property should allow a

process to determine which team updated 𝑂 first based simply on

the state of 𝑂 , which can be read at any time. Thus, two sequences

of update operations that start with processes on opposite teams

must not take𝑂 to the same state. This is formalized in condition 1

of Definition 4, below.

We now consider how to cope with (2). If 𝑂 could never return

to its initial state 𝑞0, checking that𝑂 ’s state is 𝑞0 before updating𝑂

would ensure that no process ever updates 𝑂 twice. (See the code

for processes on team 𝐴 in Figure 2.) However, we can solve team

consensus under a weaker condition:𝑂 ’s state can return to 𝑞0 after

a process from team 𝐴 updates 𝑂 first, provided that team 𝐵 has

only one process. In this case, condition 1 of Definition 4 implies

that the state cannot return to 𝑞0 if a process on team 𝐵 updates 𝑂

first. Processes on team 𝐴 behave as before, updating𝑂 if they find

it in state 𝑞0. If |𝐵 | > 1, processes on team 𝐵 do likewise. However,

if |𝐵 | = 1, the lone process on team 𝐵 updates𝑂 if it finds𝑂 in state

𝑞0 and sees that no process on team 𝐴 has started its algorithm: in

this case it knows that no operation has been performed on𝑂 , since

𝑂 can return to 𝑞0 only if a process on team𝐴 updated it first. If the

lone process on team 𝐵 finds that a process on team 𝐴 has already

started, it simply outputs team 𝐴’s input value. (See the code for

processes on team 𝐵 in Figure 2.) This motivates condition 2 of

Definition 4 below. A symmetric scenario motivates condition 3.

The approach of having processes on team 𝐵 defer to team 𝐴 if

they see that a process on team 𝐴 has started running works only

if |𝐵 | = 1: if the algorithm used this approach with |𝐵 | > 1, one



process on team 𝐵 might start running before any process on team

𝐴 and later go on to be the first process to update 𝑂 , while another

process on team 𝐵 might start after a process on team 𝐴 has taken

steps and defer to team 𝐴. In this case, the latter process on team

𝐵 would conclude that team 𝐴 won, while others would conclude

that team 𝐵 won, violating agreement.

These considerations lead us to formulate the 𝑛-recording prop-

erty in Definition 4, which uses the following notation. Fix a deter-

ministic, readable type𝑇 . Let𝑋 be a subset of the set of all processes

{𝑝1, . . . , 𝑝𝑛} and let 𝑜𝑝1, . . . , 𝑜𝑝𝑛 be operations. Let 𝑞0 be a state of

type 𝑇 . Define 𝑄𝑋 (𝑞0, 𝑜𝑝1, . . . , 𝑜𝑝𝑛) to be the set of all states 𝑞 for

which there exist distinct process indices 𝑖1, . . . , 𝑖𝛼 with 𝑝𝑖1 ∈ 𝑋

such that the sequence of operations 𝑜𝑝𝑖1 , . . . , 𝑜𝑝𝑖𝛼 applied to an

object of type 𝑇 initially in state 𝑞0 leaves the object in state 𝑞. We

omit the parameters of 𝑄𝑋 when they are clear from context.

Definition 4. A deterministic type 𝑇 is 𝑛-recording if there exist
• a state 𝑞0,
• a partition of 𝑛 processes 𝑝1, . . . , 𝑝𝑛 into two non-empty teams
𝐴 and 𝐵, and
• operations 𝑜𝑝1, . . . , 𝑜𝑝𝑛

satisfying the following three conditions.
(1) 𝑄𝐴 (𝑞0, 𝑜𝑝1, . . . , 𝑜𝑝𝑛) ∩𝑄𝐵 (𝑞0, 𝑜𝑝1, . . . , 𝑜𝑝𝑛) = ∅.
(2) 𝑞0 ∉ 𝑄𝐴 (𝑞0, 𝑜𝑝1, . . . , 𝑜𝑝𝑛) or |𝐵 | = 1.
(3) 𝑞0 ∉ 𝑄𝐵 (𝑞0, 𝑜𝑝1, . . . , 𝑜𝑝𝑛) or |𝐴| = 1.

We call a type that satisfies this property 𝑛-recording because

it records in its state information about the team that first updates

the object, if it is initialized to state 𝑞0.

We first prove some simple consequences of Definition 4.

Observation 5. For 𝑛 ≥ 2, if a deterministic type is 𝑛-recording,
then it is 𝑛-discerning.

To see why this is true, we can use the same choice of 𝐴, 𝐵, 𝑞0,

𝑜𝑝1, . . . , 𝑜𝑝𝑛 for both definitions. If, for some 𝑗 , there were an

(𝑟, 𝑞) ∈ 𝑅𝐴,𝑗 ∩ 𝑅𝐵,𝑗 then 𝑞 would also be in 𝑄𝐴 ∩𝑄𝐵 , which would

violate property 1 of the definition of 𝑛-recording. So we can con-

clude that 𝑅𝐴,𝑗 ∩ 𝑅𝐵,𝑗 must be empty, as required for the definition

of 𝑛-discerning.

Observation 6. For 𝑛 ≥ 3, if a deterministic type is 𝑛-recording,
then it is (𝑛 − 1)-recording.

If a type satisfies the definition of 𝑛-recording with teams 𝐴 and

𝐵, we can omit one process from the larger team to get a division of

𝑛 − 1 processes into non-empty teams 𝐴′ and 𝐵′. We use the same

initial state 𝑞0 and assign the same operation to each process to

satisfy the definition (𝑛 − 1)-recording.
We now summarize the results about deterministic, readable

types that we prove in the remainder of this section. Theorem

8 shows that any readable type that is 𝑛-recording is capable of

solving RC among 𝑛 processes. We prove in Theorem 14 that all

types that can solve RC among 𝑛 processes satisfy the (𝑛 − 1)-
recording property. (This is true even if the type is not readable.)

Given a specification of a shared type, it is fairly straightforward

to check whether it is 𝑛-recording. By determining the maximum

𝑛 for which a given readable object type 𝑇 is 𝑛-recording, we can

conclude that 𝑟𝑐𝑜𝑛𝑠 (𝑇 ) is either 𝑛 or 𝑛 + 1.

1 shared variables

2 Object𝑂 of type𝑇 , initially in state 𝑞0

3 Registers 𝑅𝐴 and 𝑅𝐵 , initially in state ⊥

4 Decide(𝑣) // code for process 𝑝𝑖 on team 𝐴

5 𝑅𝐴 ← 𝑣

6 𝑞 ← 𝑂

7 if 𝑞 = 𝑞0 then

8 apply 𝑜𝑝𝑖 to𝑂

9 𝑞 ← 𝑂

10 end if

11 if 𝑞 ∈ 𝑄𝐴 then return 𝑅𝐴

12 else return 𝑅𝐵

13 end if

14 end Decide

15 Decide(𝑣) // code for process 𝑝𝑖 on team 𝐵

16 𝑅𝐵 ← 𝑣

17 𝑞 ← 𝑂

18 if 𝑞 = 𝑞0 then

19 if |𝐵 | = 1 and 𝑅𝐴 ≠ ⊥ then

20 return 𝑅𝐴

21 else

22 apply 𝑜𝑝𝑖 to𝑂

23 𝑞 ← 𝑂

24 end if

25 end if

26 if 𝑞 ∈ 𝑄𝐴 then return 𝑅𝐴

27 else return 𝑅𝐵

28 end if

29 end Decide

Figure 2: Algorithm for recoverable team consensus (assum-
ing 𝑞0 ∉ 𝑄𝐵).

We also prove that an𝑛-discerning typemust be (𝑛−2)-recording
(Theorem 16), but not necessarily (𝑛−1)-recording (Proposition 19).
As a corollary of these results, we show that 𝑐𝑜𝑛𝑠 (𝑇 )−2 ≤ 𝑟𝑐𝑜𝑛𝑠 (𝑇 )
≤ 𝑐𝑜𝑛𝑠 (𝑇 ). Figure 1 summarizes these relationships. In Theorem 22,

we also show how the power of a collection of readable types to

solve RC is related to the power of each type when used in isolation.

3.1 Sufficient Condition
We use the algorithm in Figure 2 to show that recoverable team

consensus can be solved using a deterministic, readable object 𝑂

whose type is 𝑛-recording. The intuition for the algorithm has

already been described above, but we now describe the code in

more detail. The code assumes 𝑞0 ∉ 𝑄𝐵 ; if 𝑞0 ∈ 𝑄𝐵 , then 𝑞0 ∉ 𝑄𝐴

and we would reverse the roles of𝐴 and 𝐵 in the code. Each process

first writes its input in its team’s register. It then reads𝑂 . If𝑂 is not

in the initial state 𝑞0, then the process determines which team went

first based on the state of 𝑂 and returns the value written in that

team’s register (lines 11–12 and lines 26–27). Otherwise, it updates

𝑂 before reading the state again (lines 8–9 and 22–23) to determine

which team updated 𝑂 first. There is one exception: if team 𝐵 has

only one process, it yields to team 𝐴 (line 20) if it sees that some

process on team 𝐴 has already written its input value. This allows

for the case where 𝑞0 ∈ 𝑄𝐴 and |𝐵 | = 1: it could be that a process

on team 𝐴 updated 𝑂 first, and then other processes (including



the process on team 𝐵, in a previous run) performed updates that

returned 𝑂 to state 𝑞0. In this case, those processes would have

output team 𝐴’s input value, so we must ensure that the process on

team 𝐵 does not perform its update again, since that could cause

processes to output team 𝐵’s input value, violating agreement.

The next lemma will help us argue that the algorithm behaves

correctly in the tricky case where 𝑞0 ∈ 𝑄𝐴 and |𝐵 | = 1.

Lemma 7. Suppose 𝑞0, 𝐴, 𝐵, 𝑜𝑝1, . . . , 𝑜𝑝𝑛 satisfy the definition of
𝑛-recording for a deterministic type 𝑇 . Let 𝑋 ∈ {𝐴, 𝐵}. If 𝑞0 ∉ 𝑄𝑋

and 𝑖1, . . . , 𝑖𝛼 is a sequence of distinct process indices such that the
sequence of operations 𝑜𝑝𝑖1 , . . . , 𝑜𝑝𝑖𝛼 takes an object of type 𝑇 from
state 𝑞0 to state 𝑞0, then the indices of all processes of team 𝑋 appear
in the sequence.

Proof. To derive a contradiction, suppose the claim is false, i.e.,

𝑗 ∉ {𝑖1, . . . , 𝑖𝛼 } for some process 𝑝 𝑗 on team 𝑋 . If 𝑝𝑖1 were on team

𝑋 , then the fact that the sequence of operations 𝑜𝑝𝑖1 , . . . , 𝑜𝑝𝑖𝛼 take

the state of an object from 𝑞0 to 𝑞0 would imply that 𝑞0 ∈ 𝑄𝑋 ,

contrary to our assumption. Thus, 𝑝𝑖1 must be on the opposite

team 𝑋 . Let 𝑞 𝑗 be the state that results when 𝑜𝑝 𝑗 is applied to an

object in state 𝑞0. We have 𝑞 𝑗 ∈ 𝑄𝑋 since the sequence 𝑜𝑝 𝑗 takes an

object from state 𝑞0 to 𝑞 𝑗 . We also have 𝑞 𝑗 ∈ 𝑄𝑋
since the sequence

𝑜𝑝𝑖1 , . . . , 𝑜𝑝𝑖𝛼 , 𝑜𝑝 𝑗 takes an object of type 𝑇 from state 𝑞0 back to

state 𝑞0 and then to state 𝑞 𝑗 . Thus, 𝑞 𝑗 ∈ 𝑄𝑋 ∩𝑄𝑋
, which violates

condition 1 in the definition of 𝑛-recording. □

To gain some intuition, we describe why the following bad sce-

nario cannot occur when |𝐵 | = 1 and 𝑞0 ∈ 𝑄𝐴 . Suppose a process 𝑝1
on team 𝐵 begins, sees 𝑅𝐴 = ⊥, and is poised to update𝑂 at line 22.

Then, a process 𝑝2 on team 𝐴 runs to completion, updating 𝑂 and

deciding 𝑅𝐴 . Then, other processes update 𝑂 , returning 𝑂’s state

to 𝑞0. If 𝑝1 were still poised to update 𝑂 at line 22, then it would

decide 𝑅𝐵 , violating agreement. But this cannot happen: Lemma 7

ensures that 𝑝1 must have been among the processes that already

applied their operations on 𝑂 to return 𝑂 ’s state to 𝑞0.

We also describe why the condition |𝐵 | = 1 on line 19 is necessary.

If this test were missing, consider an execution where one process

𝑝1 on team 𝐵 begins, sees 𝑅𝐴 = ⊥ and is about to update𝑂 at line 22.

Then, a process 𝑝2 on team 𝐴 writes to 𝑅𝐴 . Next, another process

𝑝3 on team 𝐵 sees that 𝑅𝐴 ≠ ⊥ and decides 𝑅𝐴 (at line 20). Finally,

process 𝑝1 resumes and updates 𝑂 . Since it is the first process to

update 𝑂 , 𝑂 ’s state would then be in 𝑄𝐵 , so 𝑝1 would then read 𝑂

and decide 𝑅𝐵 , violating agreement. We avoid this scenario by the

test |𝐵 | = 1 of line 19: line 20 is executed only if 𝐵 contains just one

process (whereas two processes on team 𝐵 are needed for the bad

scenario described above).

Theorem 8. If a deterministic, readable type 𝑇 is 𝑛-recording,
then objects of type 𝑇 , together with registers, can be used to solve
recoverable consensus for 𝑛 processes.

Proof. If team recoverable consensus can be solved, then RC

can be solved. Processes on each team agree recursively on an input

value for their team, and then use team consensus to determine the

final output. See the full version [13] for details.

Thus, it suffices to show that the algorithm in Figure 2 solves

recoverable team consensus using a type 𝑇 that satisfies the con-

dition of the theorem. Since 𝑄𝐴 ∩ 𝑄𝐵 = ∅, we know that either

𝑞0 ∉ 𝑄𝐴 or 𝑞0 ∉ 𝑄𝐵 . Without loss of generality, assume 𝑞0 ∉ 𝑄𝐵 .

(If this is not the case, just swap the names of the two teams.)

Recoverable wait-freedom is clearly satisfied, since there are no

loops in the code. It remains to show that every execution of the

algorithm satisfies validity and agreement.

Lemma 9. Validity and agreement are satisfied in executions where
no process ever performs an update on 𝑂 .

Proof. In this case, 𝑂 remains in state 𝑞0 forever. Thus, no

process can reach line 11 or 26, since it would first have to update𝑂

at line 8 or 22, respectively. So, processes output only at line 20. By

the test on line 19, 𝑅𝐴 is written before a process outputs its value

on line 20. Thus, all outputs are the input value of team 𝐴. □

For the remainder of the proof of the theorem, consider execu-

tions where at least one update is performed on𝑂 . Let 𝑠 be the first

step in the execution that performs an update on 𝑂 .

Lemma 10. For 𝑋 ∈ {𝐴, 𝐵}, if a process on team 𝑋 performs 𝑠 and
𝑞0 ∉ 𝑄𝑋 , then 𝑂 ’s state is in 𝑄𝑋 at all times after 𝑠 .

Proof. We first show that no process performs more than one

update on 𝑂 . To derive a contradiction, suppose some process per-

forms two updates on 𝑂 . Let 𝑠 ′ be the first step in the execution

when a process performs its second update on 𝑂 and let 𝑝𝑖 be the

process that performs 𝑠 ′. Let 𝑟 ′ be 𝑝𝑖 ’s run of the code that per-

forms 𝑠 ′. Since 𝑟 ′ begins after 𝑝𝑖 ’s first update on𝑂 , 𝑟 ′ begins after 𝑠 .
By definition of 𝑠 ′, each process does at most one update on 𝑂 be-

fore 𝑠 ′. Thus, the state of 𝑂 is in 𝑄𝑋 at all times between 𝑠 and 𝑠 ′.
Since 𝑞0 ∉ 𝑄𝑋 , the state of 𝑂 is never 𝑞0 between 𝑠 and 𝑠 ′. This
contradicts the fact that 𝑟 ′ must read the state of𝑂 to be 𝑞0 between

𝑠 and 𝑠 ′; otherwise 𝑟 ′ would not perform 𝑠 ′.
Thus, each process performs at most one update on 𝑂 . By the

definition of 𝑄𝑋 , the state of 𝑂 is in 𝑄𝑋 at all times after 𝑠 . □

We next prove a similar lemma for the case where 𝑞0 ∈ 𝑄𝐴 . In

this case, the situation is a little more complicated. The state of

𝑂 might return to 𝑞0. If this happens, we show that each process

updates𝑂 at most once before the state returns to 𝑞0, and that only

processes of team 𝐴 can update 𝑂 after the state returns to 𝑞0 and

each process does so at most once. This is enough to ensure that

𝑂 ’s state remains in 𝑄𝐴 at all times.

Lemma 11. If 𝑠 is performed by a process of team 𝐴 and 𝑞0 ∈ 𝑄𝐴 ,
then 𝑂 ’s state is in 𝑄𝐴 at all times.

Proof. Since 𝑞0 ∈ 𝑄𝐴 , there is a unique process 𝑝 𝑗 on team 𝐵,

by condition 2 of the definition of 𝑛-recording.𝑂 ’s state is 𝑞0 ∈ 𝑄𝐴

at all times before 𝑠 . It remains to show that 𝑂’s state is in 𝑄𝐴 at

all times after 𝑠 . We consider two cases.

First, suppose𝑂 is never in state 𝑞0 after 𝑠 . Consider any process

𝑝𝑖 that performs an update on 𝑂 . Let 𝑠𝑖 be 𝑝𝑖 ’s first update on 𝑂 .

By definition, 𝑠𝑖 is either equal to 𝑠 or after 𝑠 . Any run by 𝑝𝑖 that

begins after 𝑠𝑖 (and hence after 𝑠) that reads 𝑂 on line 6 or 17 sees

a value different from 𝑞0, so it does not perform an update on 𝑂 .

Thus, no process performs more than one update on 𝑂 . It follows

from the definition of 𝑄𝐴 that 𝑂 ’s state is in 𝑄𝐴 at all times after 𝑠 .

Now, suppose𝑂 ’s state is equal to 𝑞0 at some time after 𝑠 . Let 𝑠 ′′

be the first step at or after 𝑠 that changes 𝑂’s state back to 𝑞0. We



next prove that no process performs two updates on 𝑂 between 𝑠

and 𝑠 ′′ (inclusive). To derive a contradiction, suppose some process

performs two such updates. Let 𝑠 ′ be the first step when any process
performs its second update on 𝑂 . By definition, 𝑠 ′ is between 𝑠 and
𝑠 ′′ (inclusive). Let 𝑝𝑖 be the process that performs 𝑠 ′ and let 𝑟 ′ be
the run by 𝑝𝑖 that performs 𝑠 ′. Since 𝑟 ′ begins after 𝑝𝑖 ’s first update
to 𝑂 , 𝑟 ′ begins after 𝑠 . Thus, 𝑟 ′ reads 𝑂 ’s state to be different from

𝑞0 at line 6 or 17, and therefore fails the test on line 7 or 18. This

contradicts the fact that 𝑟 ′ updates𝑂 . Hence, each process performs

at most one update on 𝑂 between 𝑠 and 𝑠 ′′ (inclusive).
It follows from the definition of 𝑄𝐴 that the state of 𝑂 is in 𝑄𝐴

at all times between 𝑠 and 𝑠 ′′. By Lemma 7, the unique process 𝑝 𝑗
on team 𝐵 updates 𝑂 between 𝑠 and 𝑠 ′′ (inclusive).

Next, we argue that the process 𝑝 𝑗 on team 𝐵 updates 𝑂 exactly

once in the entire execution. We have already seen that 𝑝 𝑗 updates

𝑂 exactly once between 𝑠 and 𝑠 ′′ (inclusive). Any run by process 𝑝 𝑗
that begins after that first update to 𝑂 by 𝑝 𝑗 (and therefore after 𝑠)

would see that 𝑅𝐴 ≠ ⊥, since the process on team 𝐴 that performs

𝑠 writes to 𝑅𝐴 before 𝑠 . That run by 𝑝 𝑗 would therefore pass the

test on line 19 and could not update 𝑂 on line 22.

Thus, any updates to 𝑂 after 𝑠 ′′ are by processes in 𝐴. If there

are no updates to𝑂 after 𝑠 ′′, then𝑂 remains in state 𝑞0 ∈ 𝑄𝐴 at all

times after 𝑠 ′′. If there is some update to 𝑂 after 𝑠 ′′, let 𝑠 ′′′ be the
first one. Since 𝑞0 ∉ 𝑄𝐵 and no process on team 𝐵 updates 𝑂 after

𝑠 ′′, the state of 𝑂 can never be 𝑞0 after 𝑠
′′′
, by Lemma 7. Consider

any process 𝑝𝑖 on team 𝐴 that performs an update on 𝑂 after 𝑠 ′′.
Let 𝑠𝑖 be 𝑝𝑖 ’s first update on 𝑂 after 𝑠 ′′. By the definition of 𝑠 ′′′, 𝑠𝑖
is either 𝑠 ′′′ or after 𝑠 ′′′. Any run by 𝑝𝑖 that begins after 𝑠𝑖 (and

therefore after 𝑠 ′′′) that reads 𝑂 on line 6 will see a value different

from 𝑞0, so it does not perform an update on 𝑂 . Thus, no process

performs more than one update on 𝑂 after 𝑠 ′′. It follows from the

definition of 𝑄𝐴 that 𝑂 ’s state is in 𝑄𝐴 at all times after 𝑠 ′′. □

Lemma 12. Any output produced by a process on team 𝐴 is the
input value of the team that first updated 𝑂 .

Proof. Consider a run 𝑟 of the code by a process in 𝐴 that

produces an output. If 𝑟 reads 𝑂 at line 6 before 𝑠 , then it will read

the value 𝑞0 and read 𝑂 again at line 9, which is after 𝑠 . Thus, the

value tested at line 11 is read from 𝑂 after 𝑠 .

If the first update to𝑂 is by a process on team𝐴, the value tested

is in 𝑄𝐴 , by Lemma 10 and 11. So, 𝑟 outputs the value of 𝑅𝐴 .

If the first update to𝑂 is by a process on team 𝐵, the value tested

is in𝑄𝐵 , by Lemma 10 and the fact that 𝑞0 ∉ 𝑄𝐵 . Since𝑄𝐴∩𝑄𝐵 = ∅,
the value tested will not be in 𝑄𝐴 . So, 𝑟 outputs the value of 𝑅𝐵 .

In both cases, the relevant register is written before 𝑠 , so 𝑟 outputs

the input value of the team that first updates 𝑂 . □

Lemma 13. Any output produced by a process on team 𝐵 is the
input value of the team that first updated 𝑂 .

Proof. Consider any run 𝑟 of the code by a process in 𝐵 that

produces an output. We consider three cases.

Case 1: a process from team 𝐴 performs 𝑠 . We first show 𝑟 returns

a value read from 𝑅𝐴 by considering two subcases.

(a) 𝑞0 ∈ 𝑄𝐴 . In this case |𝐵 | = 1, by condition 2 of the

definition of 𝑛-recording. By Lemma 11, 𝑂 ’s state is in

𝑄𝐴 at all times, so 𝑟 cannot return at line 27. Therefore,

𝑟 outputs the value it reads from 𝑅𝐴 at line 20 or 26.

(b) 𝑞0 ∉ 𝑄𝐴 . By Lemma 10, 𝑂’s state is in 𝑄𝐴 at all times

after 𝑠 . If 𝑟 reads𝑂 at line 17 before 𝑠 , it will see 𝑞0 and

execute the test at line 19. Then, it will either return

the value in 𝑅𝐴 at line 20, or read 𝑂 again at line 23

after 𝑠 , getting a value in 𝑄𝐴 and returning the value

in 𝑅𝐴 at line 26.

To derive a contradiction, suppose 𝑅𝐴 is still ⊥ when 𝑟

reads it at line 20 or 26. Then, 𝑟 returns before 𝑠 , since

𝑅𝐴 must be written before 𝑠 . So 𝑟 must have read 𝑞0 from

𝑂 at line 17. Thus, the test at line 18 is true and the test

at line 19 is false, so 𝑟 performs an update on 𝑂 before 𝑠 ,

contradicting the definition of 𝑠 .

Therefore, 𝑟 outputs team 𝐴’s input value, as required.

Case 2: A process from team 𝐵 performs 𝑠 and |𝐵 | > 1. Since 𝑞0 ∉

𝑄𝐵 , it follows from Lemma 10 that 𝑂 ’s state is in 𝑄𝐵 at all

times after 𝑠 . If 𝑟 reads 𝑂 at line 17 before 𝑠 , it will see 𝑞0
and execute the test at line 19, which fails because |𝐵 | > 1.

Then, it will read 𝑂 again at line 23 after 𝑠 , getting a value

in 𝑄𝐵 and return the value in 𝑅𝐵 at line 27. Since 𝑟 wrote

𝑅𝐵 at line 16, 𝑟 outputs team 𝐵’s input value, as required.

Case 3: A process from team 𝐵 performs 𝑠 and |𝐵 | = 1. Let 𝑝 𝑗 be

the unique process on team 𝐵. By Lemma 10 and the fact

that 𝑞0 ∉ 𝐵, the state of 𝑂 is in 𝑄𝐵 at all times after 𝑠 .

If 𝑟 is the run of 𝑝 𝑗 that performs 𝑠 , then 𝑟 sees 𝑅𝐴 = ⊥
on line 19; otherwise it would not execute line 22. So, if 𝑟

returns a value, it reads𝑂 at line 23 after 𝑠 and gets a value

in 𝑄𝐵 . It must then return a value at line 27.

Any run 𝑟 of 𝑝 𝑗 that ends before 𝑠 evaluates the test at line

18 to true and the test at line 19 to false, so it must crash

before reaching line 22 and does not produce an output.

If 𝑟 is a run of 𝑝 𝑗 that starts after 𝑠 , it reads a value in 𝑄𝐵

at line 17. Since 𝑞0 ∉ 𝑄𝐵 , it would return at line 27.

Thus, all outputs by 𝑝 𝑗 are read from 𝑅𝐵 at line 27, which

contains team 𝐵’s input value written at line 16.
□

Lemmas 12 and 13 prove validity and agreement when some

process updates 𝑂 , completing the proof of Theorem 8. □

3.2 Necessary Condition
In this section, we show that being (𝑛 − 1)-recording is a necessary
condition for a deterministic type to be capable of solving 𝑛-process

RC. This result holds whether the type is readable or not. The proof

uses a valency argument [17]. Assuming an algorithm exists, the

valency argument constructs an infinite execution in which no

process ever returns a value. Unfortunately, in the case of RC, it is

possible to have an infinite execution where no process returns a

value (if infinitely many crashes occur). Thus, the proof considers

a restricted set of executions where each execution must produce

an output value for some process within a finite number of steps,

and uses this restricted set to define valency. This technique was

used by Golab [20] to prove a necessary condition (weaker than the

2-recording property) for solving 2-process RC. Lo and Hadzilacos

[30] had previously used a similar technique of defining valency

using a pruned execution tree. Attiya, Ben-Baruch and Hendler

[3] also used a valency argument in the context of non-volatile



memory in their proof that a recoverable test-and-set object cannot

be built from ordinary test-and-set objects (and registers).

Theorem 14. For 𝑛 ≥ 3, if a deterministic type 𝑇 can be used, to-
gether with registers, to solve recoverable consensus among𝑛 processes,
then 𝑇 is (𝑛 − 1)-recording.

Proof. Assume there is an algorithm 𝐴 for RC among 𝑛 pro-

cesses 𝑝1, . . . , 𝑝𝑛 using objects of type 𝑇 and registers. Let E𝐴 be

the set of all executions of 𝐴 where 𝑝2, . . . , 𝑝𝑛 never crash, and in

any prefix of the execution, the number of crashes of 𝑝1 is less than

or equal to the total number of steps of 𝑝2, . . . , 𝑝𝑛 .

Consider a finite execution 𝛾 in E𝐴 . Define 𝛾 to be 𝑣-valent if
there is no decision different from 𝑣 in any extension of 𝛾 in E𝐴 . An
execution 𝛾 cannot be both 𝑣-valent and 𝑣 ′-valent if 𝑣 ≠ 𝑣 ′, since a
failure-free extension of 𝛾 must eventually produce a decision. We

call 𝛾 univalent if it is 𝑣-valent for some 𝑣 , or multivalent otherwise.
To see that a multivalent execution exists, consider an execution

with no steps where processes 𝑝1 and 𝑝2 have inputs 0 and 1. If 𝑝1
runs by itself, it must output 0; if 𝑝2 runs by itself it must output 1.

Next, we argue that there is a critical execution 𝛾 , i.e., a mul-

tivalent execution in E𝐴 such that every extension of 𝛾 in E𝐴 is

univalent. If there were not, we could construct an infinite exe-

cution of E𝐴 in which every prefix is multivalent, meaning that

no process ever returns a value. Such an execution could be con-

structed inductively by starting with a multivalent execution and,

at each step of the induction, extending it to a longer multivalent

execution. This would violate the termination property of RC, since

some process takes an infinite number of steps without crashing.

For 1 ≤ 𝑖 ≤ 𝑛, let 𝑣𝑖 be the value such that 𝛾 followed by the next

step of 𝑝𝑖 ’s algorithm is 𝑣𝑖 -valent. We show not all of 𝑣1, . . . , 𝑣𝑛 are

the same. To derive a contradiction, suppose they are all equal. Since

𝛾 is multivalent, some extension of 𝛾 in E𝐴 is 𝑣 ′-valent for some

𝑣 ′ ≠ 𝑣2. By assumption, the next step of each process’s algorithm

produces a 𝑣2-valent execution, so the 𝑣 ′-valent extension must

begin with a crash of 𝑝1. But the extensions of 𝛾 shown in Figure

3(a) are indistinguishable to 𝑝2. Thus, 𝑝2 returns the same value in

both, contradicting the fact that one extends a 𝑣2-valent execution

and the other extends a 𝑣 ′-valent execution, where 𝑣2 ≠ 𝑣 ′.
A standard argument shows that at the end of 𝛾 , each process

is about to perform a non-read operation on the same object 𝑂 of

type 𝑇 . For 𝑖 ∈ {1, . . . , 𝑛}, let 𝑜𝑝𝑖 be the update operation that 𝑝𝑖 is

poised to perform on 𝑂 after 𝛾 . Let 𝑞0 be 𝑂 ’s state at the end of 𝛾 .

We next prove a technical lemma that will be used several times

to complete the theorem’s proof. It captures a valency argument

we use: if two sequences of steps by distinct processes chosen from

𝑝1, . . . , 𝑝𝑛 after 𝛾 can take 𝑂 to the same state and process 𝑝1 can

crash after both of them, then the two extensions must have the

same valency. To ensure that 𝑝1 can crash, the hypothesis of the

lemma requires that neither sequence consists of a single step by 𝑝1.

Lemma 15. Suppose there is a sequence of distinct process ids
𝑖1, . . . , 𝑖𝛼 and another sequence of distinct ids 𝑗1, . . . , 𝑗𝛽 such that
each sequence contains an element of {2, . . . , 𝑛} and the sequences of
operations 𝑜𝑝𝑖1 , . . . , 𝑜𝑝𝑖𝛼 and 𝑜𝑝 𝑗1 , . . . , 𝑜𝑝 𝑗𝛽 both take object 𝑂 from
state 𝑞0 to the same state 𝑞. Then, 𝑣𝑖1 = 𝑣 𝑗1 .

Proof. The two executions in Figure 3(b) are in E𝐴 since one of

𝑝2, . . . , 𝑝𝑛 takes a step in each extension of 𝛾 before 𝑝1 crashes.𝑂 is
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Figure 3: Proof of Theorem 14. Circles represent states of the
system. Squares represent the state of 𝑂 .

in state 𝑞 before 𝑝1 crashes in both extensions, and no other shared

object changes between the end of 𝛾 and the crash of 𝑝1. Thus, the

extensions are indistinguishable to the last run 𝜙 of 𝐴 by 𝑝1. Since

one extension is 𝑣𝑖1 -valent and the other is 𝑣 𝑗1 -valent, 𝑣𝑖1 = 𝑣 𝑗1 . □

We now describe how to split 𝑛 − 1 of the processes into two

teams 𝐴 and 𝐵 according to their valency to satisfy the definition

of (𝑛 − 1)-recording. The following two cases describe how to

relabel the processes (if necessary) so that we can split processes

𝑝1, . . . , 𝑝𝑛−1 into the two required teams.

Case 1: Suppose there is an 𝑖 such that, for all 𝑗 ≠ 𝑖 , 𝑣𝑖 ≠ 𝑣 𝑗 .

Without loss of generality, assume that 𝑖 < 𝑛. (If 𝑖 = 𝑛, we



can swap the ids of 𝑝2 and 𝑝𝑛 to ensure 𝑖 < 𝑛, since 𝑛 ≥ 3.)

Let 𝐴 = {𝑝𝑖 } and 𝐵 = {𝑝1, . . . , 𝑝𝑛−1} − {𝑝𝑖 }.
Case 2: Suppose that for every 𝑖 , there is a 𝑗 ≠ 𝑖 such that 𝑣𝑖 = 𝑣 𝑗 .

If there is a sequence of distinct ids 𝑖1, . . . , 𝑖𝛼 chosen from

{1, . . . , 𝑛} such that the sequence of operations𝑜𝑝𝑖1 , . . . , 𝑜𝑝𝑖𝛼
take the object 𝑂 from state 𝑞0 back to 𝑞0, then let ℓ = 𝑖1.

Otherwise, let ℓ be any id. Without loss of generality, as-

sume ℓ < 𝑛. (If this is not the case, swap the labels of

processes 𝑛 − 1 and 𝑛 to make it true.) Again, without loss

of generality, assume 𝑣𝑛 ≠ 𝑣ℓ . (Since not all of 𝑣1, . . . , 𝑣𝑛
are the same, there is some ℓ ′ such that 𝑣ℓ′ ≠ 𝑣ℓ . By the as-

sumption of Case 2, we can choose such an ℓ ′ > 1. If ℓ ′ < 𝑛,

swap the ids of 𝑝ℓ′ and 𝑝𝑛 . This ensures that 𝑣𝑛 ≠ 𝑣ℓ .)

Then, define 𝐴 to be {𝑝𝑖 : 1 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑣𝑖 = 𝑣ℓ }
and 𝐵 to be {𝑝𝑖 : 1 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑣𝑖 ≠ 𝑣ℓ }. It follows
from the fact that not all of 𝑣1, . . . , 𝑣𝑛 are the same and the

assumption of Case 2, that both teams are non-empty.

By the definitions of𝐴 and 𝐵, in either case, 𝑝1, . . . , 𝑝𝑛−1 are par-
titioned into two non-empty teams with the following properties.

P1: 𝑣𝑖 ≠ 𝑣 𝑗 for all 𝑝𝑖 ∈ 𝐴 and 𝑝 𝑗 ∈ 𝐵, and
P2: 𝑣𝑖 ≠ 𝑣𝑛 for all 𝑝𝑖 ∈ 𝐴.

We check that𝑄𝐴 (𝑞0, 𝑜𝑝1, . . . , 𝑜𝑝𝑛−1) and𝑄𝐵 (𝑞0, 𝑜𝑝1, . . . , 𝑜𝑝𝑛−1)
satisfy the definition of (𝑛 − 1)-recording.

To derive a contradiction, suppose there is a state 𝑞 ∈ 𝑄𝐴 ∩𝑄𝐵 .

This means there is a sequence of distinct process ids 𝑖1, . . . , 𝑖𝛼
chosen from {1, . . . , 𝑛 − 1} with 𝑝𝑖1 ∈ 𝐴 and another sequence of

distinct process ids 𝑗1, . . . , 𝑗𝛽 chosen from {1, . . . , 𝑛−1}with 𝑝 𝑗1 ∈ 𝐵
such that the sequences 𝑜𝑝𝑖1 , . . . , 𝑜𝑝𝑖𝛼 and 𝑜𝑝 𝑗1 , . . . , 𝑜𝑝 𝑗𝛽 both take

object 𝑂 from state 𝑞0 to state 𝑞. Adding one more operation 𝑜𝑝𝑛
to the end of these sequences would leave 𝑂 in the same state 𝑞′.
(See Figure 3(c).) By Lemma 15, 𝑣𝑖1 = 𝑣 𝑗1 . This contradicts property

P1. Thus, condition 1 of the definition of (𝑛 − 1)-recording holds.
To derive a contradiction, suppose 𝑞0 ∈ 𝑄𝐴 . Then, there is a

sequence of distinct process ids 𝑖1, . . . , 𝑖𝛼 chosen from {1, . . . , 𝑛−1}
with 𝑝𝑖1 ∈ 𝐴 such that the sequence of operations 𝑜𝑝𝑖1 , . . . , 𝑜𝑝𝑖𝛼
takes object 𝑂 from state 𝑞0 back to state 𝑞0. The two sequences

of operations on 𝑂 shown in Figure 3(d) both leave 𝑂 in the same

state. Thus, 𝑣𝑖1 = 𝑣𝑛 , by Lemma 15, contradicting property P2. Thus,

condition 2 of the definition of (𝑛 − 1)-recording is satisfied.
To derive a contradiction, suppose 𝑞0 ∈ 𝑄𝐵 and |𝐴| > 1. Since

|𝐴| > 1, the teams must have been defined according to Case 2.

Since 𝑞0 ∈ 𝑄𝐵 , there is a sequence of distinct process ids 𝑗1, . . . , 𝑗𝛽
chosen from {1, . . . , 𝑛 − 1} with 𝑝 𝑗1 ∈ 𝐵 such that 𝑜𝑝 𝑗1 , . . . , 𝑜𝑝 𝑗𝛽
takes object𝑂 from state𝑞0 back to𝑞0. So, in Case 2 of the definition

of the teams, we chose ℓ = 𝑖1, where 𝑖1, . . . , 𝑖𝛼 is some sequence of

distinct process ids chosen from {1, . . . , 𝑛} such that 𝑜𝑝𝑖1 , . . . , 𝑜𝑝𝑖𝛼
also takes object𝑂 from state 𝑞0 back to 𝑞0. Since 𝑖1 = ℓ ≤ 𝑛−1, we
have 𝑝𝑖1 ∈ 𝐴. (We remark that this sequence’s existence does not

contradict the fact proved above that 𝑞0 ∉ 𝑄𝐴 (𝑞0, 𝑜𝑝1, . . . , 𝑜𝑝𝑛−1),
since this sequence may include the index 𝑛.)

Our goal is to show that 𝑣𝑖1 = 𝑣 𝑗1 , which will contradict property

P1. We use a case argument, showing that it is possible to apply

Lemma 15 in each case. Let 𝐼 = {𝑘 : 2 ≤ 𝑘 ≤ 𝑛 and 𝑣𝑘 = 𝑣𝑖1 } and let
𝐽 = {𝑘 : 2 ≤ 𝑘 ≤ 𝑛 and 𝑣𝑘 = 𝑣 𝑗1 }. A step by a process whose index

is in 𝐼 or 𝐽 extends the critical execution 𝛾 to a 𝑣𝑖1 - or 𝑣 𝑗1 -valent

execution, respectively. Moreover, a step by any process in 𝐼 or 𝐽

allows us to invoke Lemma 15 since the sets 𝐼 and 𝐽 do not include 1.

Case a: Suppose some 𝑘 ∈ 𝐽 does not appear in 𝑖1, . . . , 𝑖𝛼 . Then,

the two sequences of operations on 𝑂 in Figure 3(e) leave

𝑂 in the same state. Since 𝑘 ≥ 2, Lemma 15 implies that

𝑣𝑖1 = 𝑣𝑘 . By definition of 𝐽 , 𝑣𝑘 = 𝑣 𝑗1 . Thus, 𝑣𝑖1 = 𝑣 𝑗1 .

Case b: Suppose there is some 𝑘 ∈ 𝐼 that does not appear in

𝑗1, . . . , 𝑗𝛽 . By an argument symmetric to Case a, 𝑣𝑖1 = 𝑣 𝑗1 .

Case c: Suppose 𝐽 ⊆ {𝑖1, . . . , 𝑖𝛼 } and 𝐼 ⊆ { 𝑗1, . . . , 𝑗𝛽 }. We first

argue that 𝐼 is non-empty. If 𝑖1 > 1, then 𝑖1 ∈ 𝐼 . Otherwise,
𝑖1 = 1 and by the assumption of Case 2, there is some

other process id 𝑘 such that 𝑣𝑘 = 𝑣𝑖1 and this 𝑘 is in 𝐼 . A

symmetric argument can be used to show that 𝐽 is non-

empty. Thus, both of the sequences 𝑖1, . . . , 𝑖𝛼 and 𝑗1, . . . , 𝑗𝛽
contain at least one of the ids in {2, . . . , 𝑛}. Since both

sequences of operations shown in Figure 3(f) leave 𝑂 in

the same state 𝑞0, it follows from Lemma 15 that 𝑣𝑖1 = 𝑣 𝑗1 .

In all three cases, 𝑣𝑖1 = 𝑣 𝑗1 , contradicting Property P1. Thus, condi-

tion 3 of the definition of (𝑛 − 1)-recording holds. □

In proving that 𝑇 is (𝑛 − 1)-recording, we split 𝑛 − 1 of the pro-
cesses into two teams according to the valency induced by their

next step after the critical execution and assigned each process the

operation they perform in this step. To show that these choices sat-

isfy the definition of (𝑛 − 1)-recording, it was essential to have one

process 𝑝𝑛 “in reserve” that we could use to take one step in Figures

3(c) and 3(d). This step enables the crash of 𝑝1 needed to prove

Lemma 15, which shows that the two executions in those figures

lead to the same outcome, thereby deriving the necessary contra-

diction. This is the reason we show that being (𝑛 − 1)-recording
(rather than 𝑛-recording) is necessary for solving RC.

3.3 Relationship Between Consensus and
Recoverable Consensus

Next, we prove a relationship between the characterizations of

types that solve consensus and those that solve RC.

Theorem 16. For 𝑛 ≥ 4, if a deterministic type 𝑇 is 𝑛-discerning,
then it is (𝑛 − 2)-recording.

Proof. Let 𝑞0, 𝐴, 𝐵, 𝑜𝑝1, . . . , 𝑜𝑝𝑛 be chosen to satisfy the defi-

nition of 𝑛-discerning. Without loss of generality, assume that

{𝑝1, . . . , 𝑝𝑛−2} includes at least one process from each of 𝐴 and

𝐵, and that {𝑝𝑛−1, 𝑝𝑛} includes at least one process from each team

that contains more than one process. (The ids of the processes

can be permuted to make this true.) We partition the processes

{𝑝1, . . . , 𝑝𝑛−2} into two non-empty teams 𝐴′ = 𝐴 ∩ {𝑝1, . . . , 𝑝𝑛−2}
and 𝐵′ = 𝐵 ∩ {𝑝1, . . . , 𝑝𝑛−2}.

We prove 𝑄𝐴′ (𝑞0, 𝑜𝑝1, . . . , 𝑜𝑝𝑛−2) and 𝑄𝐵′ (𝑞0, 𝑜𝑝1, . . . , 𝑜𝑝𝑛−2)
satisfy the definition of (𝑛 − 2)-recording.

To derive a contradiction, assume𝑄𝐴′∩𝑄𝐵′ contains some state𝑞.

Then, there are sequences 𝑖1, . . . , 𝑖𝛼 and 𝑗1, . . . , 𝑗𝛽 , each of distinct

ids from {1, . . . , 𝑛−2}, such that 𝑝𝑖1 ∈ 𝐴, 𝑝 𝑗1 ∈ 𝐵 and the sequences

𝑜𝑝𝑖1 , . . . , 𝑜𝑝𝑖𝛼 and 𝑜𝑝 𝑗1 , . . . , 𝑜𝑝 𝑗𝛽 both take an object of type𝑇 from

state 𝑞0 to 𝑞. Operation 𝑜𝑝𝑛 takes the object from state 𝑞 to some

state 𝑞′ and returns some response 𝑟 . By adding 𝑜𝑝𝑛 to the end of

each of the two sequences, we see the pair (𝑟, 𝑞′) is in both 𝑅𝐴,𝑛



and 𝑅𝐵,𝑛 in the definition of 𝑛-discerning, a contradiction. Thus,

condition 1 of the definition of (𝑛 − 2)-recording is satisfied.
To derive a contradiction, assume 𝑞0 ∈ 𝑄𝐴′ and |𝐵′ | > 1. Since

|𝐵 | ≥ |𝐵′ | > 1, some process 𝑝 𝑗 is in 𝐵 ∩ {𝑝𝑛−1, 𝑝𝑛}. Operation
𝑜𝑝 𝑗 takes an object of type 𝑇 from 𝑞0 to some state 𝑞 and returns

some response 𝑟 . Thus, (𝑟, 𝑞) is in the set 𝑅𝐵,𝑗 of the definition of 𝑛-

discerning. Since 𝑞0 ∈ 𝑄𝐴′ , there is a sequence 𝑖1, . . . , 𝑖𝛼 of distinct

ids chosen from {1, . . . , 𝑛 − 2} such that 𝑝𝑖1 ∈ 𝐴 and the sequence

𝑜𝑝𝑖1 , . . . , 𝑜𝑝𝑖𝛼 takes an object of type 𝑇 from state 𝑞0 back to the

state 𝑞0. By adding 𝑜𝑝 𝑗 to the end of this sequence, we see that

the pair (𝑟, 𝑞) is also in 𝑅𝐴,𝑗 , contradicting the fact that 𝑅𝐴,𝑗 ∩ 𝑅𝐵,𝑗
must be empty, according to the definition of 𝑛-discerning. Thus,

condition 2 of the definition of (𝑛 − 2)-recording is satisfied.
The proof of condition 3 is symmetric. □

Corollary 17. A deterministic, readable object type 𝑇 with con-
sensus number at least 𝑛 can solve recoverable consensus among 𝑛 − 2
processes. Thus, 𝑐𝑜𝑛𝑠 (𝑇 ) − 2 ≤ 𝑟𝑐𝑜𝑛𝑠 (𝑇 ) ≤ 𝑐𝑜𝑛𝑠 (𝑇 ).

The first inequality in the corollary is a consequence of Theorem

8 and 16. The second inequality follows from the fact that any

algorithm that solves RC is also an algorithm that solves consensus.

For 𝑛 = 3, we can strengthen Theorem 16 and Corollary 17 as

follows. See the full version [13] for the proof.

Proposition 18. If a deterministic, readable type is 3-discerning,
then it is 2-recording. Thus, if 𝑐𝑜𝑛𝑠 (𝑇 ) = 3 then 2 ≤ 𝑟𝑐𝑜𝑛𝑠 (𝑇 ) ≤ 3.

The following example shows that Theorem 16 cannot be strength-

ened when 𝑛 > 3.

Proposition 19. For all 𝑛 ≥ 4, there is a type that is 𝑛-discerning,
but is not (𝑛 − 1)-recording.

A complete proof is in [13]. We sketch it here. We define a type

𝑇𝑛 whose set of states is {(𝑤𝑖𝑛𝑛𝑒𝑟, 𝑟𝑜𝑤, 𝑐𝑜𝑙) : 𝑤𝑖𝑛𝑛𝑒𝑟 ∈ {A,B}, 0 ≤
𝑟𝑜𝑤 < ⌈𝑛/2⌉ , 0 ≤ 𝑐𝑜𝑙 < ⌊𝑛/2⌋}∪ {(⊥, 0, 0)}.𝑇𝑛 has two operations

𝑜𝑝A and 𝑜𝑝B, and a read operation. Intuitively, if the object is initial-

ized to (⊥, 0, 0),𝑤𝑖𝑛𝑛𝑒𝑟 keeps track of whether the first update was
𝑜𝑝A or 𝑜𝑝B, while 𝑐𝑜𝑙 and 𝑟𝑜𝑤 store the number of times 𝑜𝑝A and

𝑜𝑝B have been applied. If 𝑜𝑝A is performed more than ⌊𝑛/2⌋ times

or 𝑜𝑝B is performed more than ⌈𝑛/2⌉ times, the object “forgets” all

the information it has stored by going back to state (⊥, 0, 0). It is
easy to verify that 𝑇𝑛 is 𝑛-discerning but not (𝑛 − 1)-recording.

It follows easily from Proposition 19 combined with Theorems 3

and 14 that there are readable types whose RC numbers are strictly

smaller than their consensus numbers.

Corollary 20. For all 𝑛 ≥ 4, there is a deterministic, readable
type 𝑇𝑛 such that 𝑟𝑐𝑜𝑛𝑠 (𝑇𝑛) < 𝑐𝑜𝑛𝑠 (𝑇𝑛) = 𝑛.

On the other hand, there are also types whose RC numbers are

equal to their consensus numbers. The next proposition also shows

that every level of the RC hierarchy is populated, since there are

types with consensus number 𝑛 for all 𝑛.

Proposition 21. For all 𝑛, there is a deterministic, readable type
𝑆𝑛 such that 𝑟𝑐𝑜𝑛𝑠 (𝑆𝑛) = 𝑐𝑜𝑛𝑠 (𝑆𝑛) = 𝑛.

A complete proof is in the full version [13]. We sketch it here.

We define a type 𝑆𝑛 whose set of possible states is {(𝑤𝑖𝑛𝑛𝑒𝑟, 𝑟𝑜𝑤) :
𝑤𝑖𝑛𝑛𝑒𝑟 ∈ {A,B}, 0 ≤ 𝑟𝑜𝑤 < 𝑛}. 𝑆𝑛 has two operations 𝑜𝑝A and

𝑜𝑝B, and a read operation. Intuitively, if the object is initialized

to (B, 0), and then accessed by update operations,𝑤𝑖𝑛𝑛𝑒𝑟 records

whether the first update was𝑜𝑝A or𝑜𝑝B and 𝑟𝑜𝑤 counts the number

of times 𝑜𝑝B has been applied. If 𝑜𝑝A is performed more than once

or if𝑜𝑝B is performedmore than𝑛−1 times, then the object “forgets”

all the information it has stored by going back to state (B, 0). It is
fairly straightforward to check that 𝑆𝑛 is 𝑛-recording, but is not

(𝑛 + 1)-discerning. Thus, 𝑛 ≤ 𝑟𝑐𝑜𝑛𝑠 (𝑆𝑛) ≤ 𝑐𝑜𝑛𝑠 (𝑆𝑛) ≤ 𝑛.

3.4 Recoverable Consensus Using Several
Types

The (recoverable) consensus number of a set T of object types is

the maximum number of processes that can solve (recoverable)

consensus using objects of those types, together with registers (or

∞ if there is no such maximum). A classic open question, orig-

inally formulated by Jayanti [27], is whether the standard con-

sensus hierarchy is robust for deterministic types, i.e., whether

𝑐𝑜𝑛𝑠 (T ) = max{𝑐𝑜𝑛𝑠 (𝑇 ) : 𝑇 ∈ T }. If so, it is possible to study the

power of a system equipped with multiple types by studying the

power of each type individually. See [16, Section 9] for some history

of the robustness question. Ruppert’s characterization (Theorem 3)

was used to show the consensus hierarchy is robust for the class of

deterministic, readable types. Similarly, our characterization allows

us to show how the power of a set of deterministic, readable types

to solve RC is related to the power of the individual types.

Theorem 22. Let T be a non-empty set of deterministic, readable
types and suppose 𝑛 = max{𝑟𝑐𝑜𝑛𝑠 (𝑇 ) : 𝑇 ∈ T } exists. Then, 𝑛 ≤
𝑟𝑐𝑜𝑛𝑠 (T ) ≤ 𝑛 + 1. (If max{𝑟𝑐𝑜𝑛𝑠 (𝑇 ) : 𝑇 ∈ T } does not exist, then
𝑟𝑐𝑜𝑛𝑠 (T ) = ∞.)

Proof. If max{𝑟𝑐𝑜𝑛𝑠 (𝑇 ) : 𝑇 ∈ T } does not exist, then for any

𝑛 there is an algorithm that solves RC using some type 𝑇𝑛 ∈ T .
It follows that 𝑟𝑐𝑜𝑛𝑠 (T ) = ∞. So for the remainder of the proof,

assume the maximum does exist.

It follows from the definition that 𝑟𝑐𝑜𝑛𝑠 (T ) ≥ 𝑟𝑐𝑜𝑛𝑠 (𝑇 ) for all
𝑇 ∈ T . Thus, 𝑟𝑐𝑜𝑛𝑠 (T ) ≥ max{𝑟𝑐𝑜𝑛𝑠 (𝑇 ) : 𝑇 ∈ T }.

We prove the other inequality by contradiction. Suppose (𝑛 + 2)-
process RC can be solved using types in T . As in the proof of

Theorem 14, there is a critical execution 𝛾 at the end of which each

process is about to update the same object 𝑂 of some type 𝑇 ∈ T .
As in that proof, 𝑇 is (𝑛 + 1)-recording. By Theorem 8, there is an

(𝑛 + 1)-process RC algorithm using objects of type 𝑇 and registers.

So, 𝑟𝑐𝑜𝑛𝑠 (𝑇 ) ≥ 𝑛 + 1 > 𝑛 ≥ 𝑟𝑐𝑜𝑛𝑠 (𝑇 ), a contradiction. □

4 THE SIGNIFICANCE OF RECOVERABLE
CONSENSUS

Herlihy’s universal construction [25] builds a linearizable, wait-free

implementation of any shared object using a consensus algorithm

as a subroutine. It creates a linked list of all operations performed

on the implemented object, and this list defines the linearization

ordering. Berryhill, Golab and Tripunitara [6] observed that this

result extends to the model with simultaneous crashes, simply by

placing the linked list in non-volatile memory and using RC in place

of consensus. Their model allows a part of shared memory to be

volatile. Using that volatile memory, their universal construction

provides strictly linearizable implementations. (Strict linearizability



[1] is similar to linearizability, with the requirement that an opera-

tion in progress when a process crashes is either linearized before

the crash or not at all.) Without volatile shared memory, the his-

tory satisfies only the weaker property of recoverable linearizability
(proposed in [6], with a correction to the definition in [29]).

Similarly, we observe that Herlihy’s universal construction also

extends to the independent crash model. To execute an operation

𝑜𝑝 , a process creates a node 𝑛𝑑 containing 𝑜𝑝 (including its pa-

rameters). Then, it announces 𝑜𝑝 by storing a pointer to 𝑛𝑑 in an

announcement array. Other processes can then help add 𝑜𝑝 to the

list, ensuring wait-freedom. Processes use an instance of consensus

to agree on the next pointer of each node in the list. A process exe-

cutes a routine Perform that traverses the list. At each visited node,

it proposes a value from the announcement array to the consensus

algorithm for the node’s next pointer, until it discovers its own

operation’s node 𝑛𝑑 has been appended. Processes choose which

announced value to propose so that each process’s announced

value is given priority in a round-robin fashion. This ensures each

announced node is appended within a finite number of steps.

In our setting, all shared variables are non-volatile, and we use

an algorithm for RC (such as the one in Section 3.1) in place of

consensus. For simplicity, we use a standard assumption (as in,

e.g., [2, 3, 10, 11, 15, 18, 19, 32]): when a process recovers from

a crash, it executes a recovery function. This assumption is not

restrictive; we could, alternatively, add the code of the recovery

function at the beginning of the universal algorithm, thus forcing

every process to execute this code before it actually starts executing

a new operation. If process 𝑝 crashes and recovers, the recovery

function checks if the last operation 𝑝 announced before crashing

has been appended to the list and if not, it calls Perform on 𝑝’s

last announced node to append it. See the full version [13] for

pseudocode of the recoverable universal construction RUniversal.
As in Herlihy’s construction, the helping mechanism of RUni-

versal ensures wait-freedom. The recoverable implementations ob-

tained using RUniversal satisfy nesting-safe recoverable linearizabil-
ity (NRL) [3], which requires that a crashed operation is linearized

within an interval that includes its crashes and recovery attempts.

NRL implies detectability [3] which ensures that a process can dis-

cover upon recovery whether or not its last operation took effect,

and guarantees that if it did, its response value was made persistent.

Other well-known safety conditions for the crash-recovery setting

include durable linearizability [26], which has been proposed for

the system-crash failures model and requires that the effects of

all operations that have completed before a crash are reflected in

the object’s state upon recovery, and persistent linearizability [24],

which has been proposed for a model where no recovery function

is provided and requires that an operation interrupted by a crash

can be linearized up until the invocation of the next operation by

the same process. With minor adjustments these conditions are

meaningful in our setting and RUniversal satisfies both of them.

RUniversal has the following nice property. Suppose an imple-

mentation 𝐼 uses a linearizable object 𝑋 in a system with halting

failures, but no crash-recovery failures. We can transform 𝐼 to an

implementation 𝐼 ′ by replacing every instance of 𝑋 in 𝐼 with an

invocation of RUniversal (that implements 𝑋 ). Then, every trace

produced by 𝐼 ′ in a system with crash and recovery failures is also

a trace of 𝐼 using a linearizable object 𝑋 in a system with halting

failures. Thus, any algorithm designed for the standard asynchro-

nous model with halting failures can be transformed to run in the

independent crash-recovery model, provided we can solve RC.

The traditional consensus hierarchy gives us information about

which implementations are possible (via universality), but also tells

us some implementations are impossible. This is another reason to

study the consensus hierarchy. Specifically, if 𝑐𝑜𝑛𝑠 (𝑇1) < 𝑐𝑜𝑛𝑠 (𝑇2),
then there is no wait-free implementation of object type 𝑇2 from

objects of type 𝑇1 for more than 𝑐𝑜𝑛𝑠 (𝑇1) processes [25]. We give

an analogous result for the RC hierarchy. For the proof, see [13].

Theorem 23. Let𝑛 ≤ 𝑟𝑐𝑜𝑛𝑠 (𝑇2). If there is a wait-free, persistently
linearizable implementation of𝑇2 from atomic objects of type𝑇1 (and
registers) in a system of 𝑛 processes with independent crashes, then
𝑟𝑐𝑜𝑛𝑠 (𝑇1) ≥ 𝑛.

Corollary 24. If 𝑟𝑐𝑜𝑛𝑠 (𝑇1) < 𝑟𝑐𝑜𝑛𝑠 (𝑇2) then there is no wait-
free, persistently linearizable implementation of 𝑇2 from atomic ob-
jects of type 𝑇1 and registers in a system of more than 𝑟𝑐𝑜𝑛𝑠 (𝑇1)
processes with independent crashes.

5 DISCUSSION
We studied solvability, without considering efficiency. Much re-

search has focused on designing efficient recoverable transactional

memory systems [4, 7–9, 32, 34]) and recoverable universal con-

structions [11, 15]. Wait-free solutions appear in [11, 15, 32]. Some

[11, 15] are based on existing wait-free universal constructions [12,

14] for the standard shared-memory model with halting failures.

All except [15] satisfy weaker consistency conditions than nesting-

safe recoverable linearizability. Attiya et al. [3] gave a recoverable
implementation of a Compare&Swap (CAS) object. Any concurrent

algorithm from read/write and CAS objects can become recoverable

by replacing its CAS objects with their recoverable implementa-

tion [3]. Capsules [5] can also be used to transform concurrent

algorithms that use only read and CAS primitives to their recov-

erable versions. Other general techniques [2, 18, 19] have been

proposed for making lock-free data structures recoverable.

Our work leaves open several questions. Is there a deterministic,

readable type𝑇 with 𝑟𝑐𝑜𝑛𝑠 (𝑇 ) = 𝑐𝑜𝑛𝑠 (𝑇 ) − 2? We saw in Corollary

17 that 𝑐𝑜𝑛𝑠 (𝑇 ) − 𝑟𝑐𝑜𝑛𝑠 (𝑇 ) can be at most 2 for deterministic, read-

able types. How big can this difference be for non-readable types?

It would be nice to close the gap between the necessary condition

of being (𝑛 − 1)-recording and the sufficient condition of being 𝑛-

recording for the solvability of RC using deterministic, readable

types. Perhaps a good starting point is to determine whether being

2-recording is actually necessary for solving 2-process RC. Finally,

it would be interesting to characterize read-modify-write types

capable of solving𝑛-process RC (as was done in [33] for the standard

consensus problem), and see whether the RC hierarchy is robust

for deterministic, readable types (or for all deterministic types).
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