
The Performance Power of Software Combining in
Persistence∗

Panagiota Fatourou
Université de Paris, LIPADE, F-75006

Paris, France
FORTH and University of Crete

Greece
faturu@csd.uoc.gr

Nikolaos D. Kallimanis
Institute of Computer Science,
Foundation for Research &

Technology - Hellas (FORTH)
Greece

nkallima@ics.forth.gr

Eleftherios Kosmas
Department of Computer Science,

University of Crete
Greece

ekosmas@csd.uoc.gr

Abstract
The availability of Non-Volatile Main Memory (known as
NVMM) enables the design of recoverable concurrent algo-
rithms. We study the power of software combining in achiev-
ing recoverable synchronization and designing persistent
data structures. Software combining is a general synchroniza-
tion approach, which attempts to simulate the ideal world
when executing synchronization requests (i.e., requests that
must be executed inmutual exclusion). A single thread, called
the combiner, executes all active requests, while the rest of
the threads are waiting for the combiner to notify them that
their requests have been applied. Software combining signifi-
cantly decreases the synchronization cost and outperforms
many other synchronization techniques in various cases.
We identify three persistence principles, crucial for per-

formance, that an algorithm’s designer has to take into con-
sideration when designing highly-efficient recoverable syn-
chronization protocols or data structures. We illustrate how
to make the appropriate design decisions in all stages of
devising recoverable combining protocols to respect these
principles. Specifically, we present two recoverable software
combining protocols, satisfying different progress properties,

∗This research is supported by the EU Horizon 2020, Marie Sklodowska-
Curie project with GA No 101031688, and by the Hellenic Foundation
for Research and Innovation (HFRI) under the “Second Call for HFRI Re-
search Projects to support Faculty members and researchers” (project num-
ber: 3684). For Eleftherios Kosmas, the research is co-financed by Greece
and the European Union (European Social Fund- ESF) through the Op-
erational Programme «Human Resources Development, Education and
Lifelong Learning» in the context of the project “Reinforcement of Post-
doctoral Researchers - 2nd Cycle” (MIS-5033021), implemented by the State
Scholarships Foundation (IKY).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9204-4/22/04. . . $15.00
https://doi.org/10.1145/3503221.3508426

that are many times faster and have much lower persistence
cost than a large collection of existing persistent techniques
for achieving scalable synchronization. We build fundamen-
tal recoverable data structures, such as stacks and queues,
based on these protocols that outperform by far existing re-
coverable implementations of such data structures. We also
provide the first recoverable implementation of a concur-
rent heap and present experiments to show that it has good
performance when the size of the heap is not very large.

CCSConcepts: •Theory of computation→Concurrent
algorithms; •Computingmethodologies→Concurrent
algorithms; • Information systems→ Data structures;
• Hardware→ Non-volatile memory.

Keywords: non-volatile memory, NVM-based computing,
persistence, recoverable algorithms and data structures, soft-
ware combining, concurrent data structures, stack, queue,
heap, synchronization, wait-freedom, performance princi-
ples, performance analysis

1 Introduction
Recent advances in memory technology have resulted in
byte-addressable Non-VolatileMainMemory (NVMM), which
attempts to combine the performance benefits of conven-
tional main memory with the strong persistence character-
istics of secondary storage. A program running in a tradi-
tional memory hierarchy system stores its operational data
in volatile data structures maintained in DRAM, whereas
its recovery data (such as transactional logs) are usually
stored in non-volatile secondary storage. In the event of
a failure, all in-memory data structures are lost and must
be re-constructed from recovery data to make the system
functional again. This poses major performance overheads.
The availability of NVMM enables the design of concurrent
algorithms, whose execution will be recoverable at no sig-
nificant cost. An algorithm is recoverable (also known as
persistent [14] or durable [52]) if its state can be restored
after recovery from a system-crash failure. Another impor-
tant property, known as detectability [6, 28, 38], is to be able
to determine, upon recovery, if an operation has been com-
pleted, and if yes, to find its response. Despite many efforts
for designing efficient recoverable synchronization protocols

https://doi.org/10.1145/3503221.3508426

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Panagiota Fatourou, Nikolaos D. Kallimanis, and Eleftherios Kosmas

and data structures (see Section 7), persistence comes at a
significant cost even for fundamental data structures, such
as stacks and queues.
When designing recoverable algorithms, the main chal-

lenge stems from the fact that data stored into registers and
caches are volatile. Thus, unless they have been flushed to
persistent memory, such data will be lost at a system crash.
Flushing to persistent memory occurs by including specific
persistence instructions, such as pwb, pfence and psync in the
code, which are however expensive in terms of performance.

In this paper, we reveal the power of software combining
in achieving recoverable synchronization and designing per-
sistent data structures. In software combining [22, 24, 31, 37,
42], each thread first announces its request, and then tries
to become the combiner by acquiring a lock. The combiner
applies several active requests, in addition to its own, before
it releases the lock. As long as the combiner serves active
requests, other threads perform local spinning, waiting for
the combiner to release the lock. As soon as the lock is re-
leased, waiting threads whose requests have been served by
the combiner, return the calculated responses, whereas the
rest compete again for the lock. Software combining [22, 24]
has been proved to outperform many other synchronization
techniques in various cases, and has been used to imple-
ment state-of-the-art fundamental concurrent data struc-
tures, such as queues and stacks [22, 24], that lie in the heart
of inter-thread communication mechanisms.
Although simple in their nature, combining protocols

should be designed carefully, as they encompass five design
decisions that all may have crucial impact in performance.
Existing combining protocols differ in these design decisions,
exhibiting different performance [22, 31, 37, 42].

Definition 1. Design decisions for combining protocols that
are crucial for performance:

1. the mechanism to decide which of the active threads will
act as the combiner (e.g., some combining protocols use
CAS [21, 23, 31], others use queue locks [22]);

2. the data structure to store the active requests;
3. how the updates are applied (e.g., directly on the shared

state or on a copy of it);
4. the mechanism for collecting the requests’ responses;
5. how to discover which requests have not been applied.

In this paper, we present two recoverable software com-
bining protocols, PBcomb which is blocking, and PWFcomb
which is wait-free. We designed all five stages of our proto-
cols taking into consideration three principles for reducing
persistence cost (motivated by our experiments; also dis-
cussed in [4, 5, 50, 54, 56]), that are presented in Definition 2.
Our experiments show that the resulting protocols are many
times faster than a large collection of existing persistent
techniques for achieving scalable synchronization.

Definition 2. Persistence principles crucial for performance:

1. The number of the persistence instructions should be
maintained as low as possible. This encompasses that an
implementation must store in NVMM only those vari-
ables (and persist those values of them) that are neces-
sary for recoverability.

2. The persistence instructions should be of low cost. Not all
persistence instructions have the same cost [5, 50, 56]. For
instance, reducing contention on non-volatile variables
can be beneficial for performance [5, 50].

3. Data to be persisted should be placed in consecutivemem-
ory addresses, so that they are persisted all together [54].

Combining is a promising approach for achieving persis-
tent synchronization at low cost, as having no more than the
combiner thread persisting updates on the state of the im-
plemented object is expected to reduce the number of persis-
tence instructions that are performed, as well as to decrease
contention on persisted data. However, the design decisions
of state-of-the-art combining protocols [22, 24, 31, 37] are
not fully in favor of supporting persistence in an efficient
way: All these protocols store the active requests in a dy-
namic linked list, and have the combiner traversing the list to
figure out which requests are active. Moreover, the combiner
applies the active requests on the shared state of the object,
and records responses in the list nodes. When attempting
to make these protocols recoverable without changing their
design decisions, the updated shared state, and the requests’
responses that the combiners calculate need to be persisted
for ensuring recoverability. These data are scattered in mem-
ory. This violates persistence principles 1 and 3, introduces
several complications that the designer needs to cope with
(see e.g., [47]), and results in high persistence overhead (see
Section 6).
Our algorithms differ from existing state-of-the-art com-

bining protocols (including the CC-Synch [22] algorithm
and flat-combining [31]), illustrating how all five design de-
cisions should take into consideration the three persistence
principles of Definition 2. This results in protocols that have
low persistence cost, in addition to being highly efficient
in terms of synchronization. Our experiments show that
both, PBcomb and PWFcomb, outperform by far, many pre-
vious recoverable Transactional Memory (TM) Systems [17,
18, 44, 45] and several generic mechanisms for designing
recoverable data structures [3, 4, 10, 50] proposed in the lit-
erature. Specifically, PBcomb is 4x faster and PWFcomb is
2.4x faster than the competitors. Our protocols satisfy de-
tectable recoverability [28], whereas most competitors (all
but [3, 10]) guarantee only weaker consistency properties,
such as durable linearizability [35].

We build recoverable queues and stacks using PBcomb and
PWFcomb. Our experiments illustrate that the recoverable
queues (PBqeue and PWFqeue) and stacks (PBstack and
PWFstack) that are built on top of PBcomb and PWFcomb,

The Performance Power of Software Combining in Persistence PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

have much better performance than state-of-the-art recover-
able implementations of such data structures, including the
specialized recoverable queue implementations in [28, 50].
Concurrent queues and stacks play a significant role in run-
time systems [1], high performance computing [2, 30], kernel
schedulers, network interfaces [43], etc. The proliferation of
NVMM and the availability of highly-efficient recoverable
stacks and queues could enable persistence in such settings.

Based on PBcomb, we were able to design the first recov-
erable concurrent heap (PBheap); experiments show that
PBheap has good performance when the heap is not too
large. PBheap is useful for implementing recoverable ver-
sions of algorithms that rely on priority queues when the
problem input size is small or medium. Implementations of
concurrent heaps often do not scale well due to contention
(mainly at the root node). This makes a heap implementation
a natural candidate for applying software combining.

Our contributions are summarized as follows.
• Wepresent two highly-efficient recoverable combining
protocols, which exhibit low persistence overhead and
small synchronization cost.
• Experiments show that our protocols outperform by
far state-of-the-art recoverable universal constructions
and software transactional systems (that often ensure
weaker consistency properties than our algorithms).
• We illustrate how to make the appropriate design de-
cisions in all stages of designing combining protocols
to respect the three persistence principles, crucial for
performance. Our experiments reveal the performance
power of respecting these principles.
• We built recoverable queues and stacks, based on our
combining protocols, which outperform by far previ-
ous recoverable implementations of stacks and queues,
including specialized recoverable implementations of
such data structures [28, 47, 50].
• We provide the first recoverable implementation of a
concurrent heap and present experiments to show that,
for small/medium heap sizes, it has good performance.

2 Preliminaries
We consider a standard asynchronous distributed system
with 𝑛 threads. The system supports the atomic execution
of base primitives, such as reads, writes, CAS, and LL/VL/SC
on single-word shared variables. A CAS(O, old, new) checks
if the state of object 𝑂 is equal to old and if so, it changes it
to new and returns true, otherwise the state of 𝑂 remains
unchanged and false is returned. An LL/SC object O sup-
ports the operations LL (which returns the current value of
O) and SC. By executing SC (𝑂, 𝑣), a thread p attempts to set
the value of O to 𝑣 . This change takes place only if no thread
has changed the value of O (by executing SC) since the ex-
ecution of p’s latest LL on it; then, the SC is successful and
returns true. Otherwise the SC returns false. We assume
the Total Store Order (TSO) model, supported by x86 and

SPARC, where writes by the same thread become visible in
program order.

Current architectures supporting non-volatile main mem-
ory (e.g., those supporting Intel Optane DC Persistent Mem-
ory) provide both DRAM and NVMM. System-wide crash
failures may occur at any point in time. When a failure oc-
curs, the values of all variables stored in volatile memory (e.g.,
in registers, caches, or DRAM) are lost (upon recovery, these
variables have their initial values), whereas values that have
been written back (or persisted) to NVMM are non-volatile.
Storing data in DRAM is desirable for good performance
(Persistence Principle 1).

We assume explicit epoch persistency [35]: a write-back to
persistent memory is triggered by a persistent write-back
(pwb) instruction. The order of pwbs is not necessarily pre-
served. When ordering is required, a pfence instruction can
be used to order preceding pwb instructions before all subse-
quent pwbs. A thread executing a psync instruction blocks
until all previous pwb instructions complete. For each shared
variable, pwbs preserve program order. We call pwb, pfence,
and psync, the persistence instructions.

Failed threads can be recovered by the system in an asyn-
chronous way. A recoverable (or persistent) implementation
provides, for each thread and for each supported operation
op, an associated recovery function. Upon recovery, op’s re-
covery function is invoked by the system for each thread
that was executing an instance of op at the time the system
crashed. If a crash occurs while the recovery function of op
is executed, the recovery function of op is re-invoked.
An execution is durably linearizable, if the effects of all

operations that have completed before a system crash are
reflected in the object’s state upon recovery (see [35] for a
formal definition). Detectability [6, 28, 38] ensures that it is
possible to determine, upon recovery, whether an operation
took effect, and its response value, if it did. Detectable recov-
erability ensures durable linearizability and detectability.

Detectable recoverability cannot be achieved without sys-
tem support [9]. As in [5, 9, 47], we assume that the system
persists the information that is needed for calling, for every
thread p, the recovery function for 𝑝 with the same argu-
ments as the instance of op that p was executing at crash
time. Moreover, for compatibility with previous work [28]
(and fair treatment of the algorithms in the experimental
analysis), we assume that each thread p has an associated
persistent sequence number seq which it increments each
time it invokes an operation op and passes it as a param-
eter to op. The system invokes the recovery function for
op passing the same value for seq as in the original invoca-
tion of op by p. We remark that our algorithms also work
with just passing to each operation of p a toggle bit (instead
of seq) whose values alternate from one invocation of the
thread to the next (i.e., just using the value of the last bit
of seq). Our algorithms can be adjusted to work also with
other assumptions for system support that have been made

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Panagiota Fatourou, Nikolaos D. Kallimanis, and Eleftherios Kosmas

in previous work [4, 9] for designing detectable implementa-
tions (see Section 7 for more details). Without any system
support, our algorithms ensure durable linearizability (but
not detectability).

A recoverable implementation is lock-free, if in every infi-
nite execution produced by the implementation, which con-
tains a finite number of system crashes, an infinite number
of operations complete. An execution is wait-free, if every
operation completes within a finite number of steps if it does
not experience any crash after some point of its execution.

3 Blocking Combining and Recoverability
Overview of PBcomb. PBcomb follows the general idea of
blocking software combining [22, 24, 31, 37, 42]. PBcomb
achieves low synchronization cost, while respecting all per-
sistence principles:

1. PBcomb implements the lock in volatile memory. We
have chosen a lock implementation which aims mainly
at reducing synchronization cost. Moreover, the lock
implementation allows a thread to leave the entry-
section without ever acquiring the lock, if it finds out
that its request has been served by a combiner.

2. PBcomb utilizes an array, Request, to store the threads’
requests in consecutive memory addresses. This array
is stored in volatile memory (i.e., it does not have to
be persisted). This results in lower persistence cost.

3. Each combiner creates a copy of the state of the im-
plemented object and applies the active requests on
this copy (and not on the shared state of the object).
This is one of the most crucial design decisions of PB-
comb in terms of performance. The combiner switches
a shared variable to index the copy it used, indicating
that it stores the current valid state of the implemented
object. The combiner should persist the copy it used
before trying to switch the pointer.
There is an interesting performance tradeoff between
the approach of performing updates directly on the
shared state and that of creating a copy of the state
to apply the updates on. In the first technique, the up-
dates are performed on data that are usually scattered
inmemory. Persisting the updated values is thus expen-
sive. This problem is avoided by the second technique
which persists data stored in the copy in consecutive
memory addresses. However, the second technique
works well mainly for objects of small or medium
size (or when the number of synchronization points
is small). In other cases, the cost of copying and per-
sisting the state may dominate the cost of persisting a
smaller amount of scattered data (part of the state).
A well-known limitation [21, 22, 24] of the combin-
ing technique is that using a single thread to apply all
active requests may restrict parallelism, if the size of
the object or the number of synchronization points

are large. PBcomb (similarly to previous persistent
algorithms [47] that are based on some combining pro-
tocol), inherits the limitations of the technique. Thus,
PBcomb works well mainly for implementing objects
of small and medium size or when the number of syn-
chronization points is small (as is the case with stacks
and queues). Subsequently, creating a copy of the state
significantly reduces the persistence cost without im-
posing any additional limitation to the algorithm.

4. Following persistence principle 3, PBcomb stores the
response values in an array, maintained together with
the state of the object (in consecutive memory ad-
dresses). The combiner persists the entire array of
return values together with the object’s state.

5. PBcomb uses two bits (activate and deactivate) for each
thread p, to identify whether the last request, initiated
by p, has been served. If the two bits are not equal,
p has a request which has not yet been served i.e.,
it is active. PBcomb persists just the deactivate bit of
p. Following persistence principle 3, PBcomb stores
the deactivate bits together with the object’s state, so
all data to be persisted are in consecutive memory
locations.

We define the combining degree, d, to be the average num-
ber of requests that a combiner serves. PBcomb executes
a small number of pwb instructions for every d requests.
Moreover, in PBcomb, threads other than the combiner do
not have to execute any persistence instructions. Addition-
ally, the combiner does not persist each of the requests it
applies separately; data to be persisted are stored in consec-
utive memory addresses and are persisted all together. Thus,
PBcomb respects the persistence principles, maintaining per-
sistence cost low. Additionally, PBcomb has significantly
lower synchronization cost than previous combining pro-
tocols [21, 22, 31], as well as than its competitors; this is
another major reason for its good performance.
Detailed Description. PBcomb appears in Algorithm 1.
Each element of Request stores a RequestRec record with
fields: i) a pointer func to a function to execute in order to
serve the request, ii) a set args of arguments to func, iii) a
bit activate used to identify whether the request has already
been served or not, and iv) a valid bit used for ensuring re-
coverability. A request that has not experienced a crash, has
its valid bit equal to 1, whereas at recovery time, this bit
is reinitialized to the value 0. At recovery time, this bit is
used to disallow a combiner to re-execute a request that has
already been executed before the crash. A request whose
valid bit is equal to 1 is called valid.
PBcomb maintains two records of type StateRec in array

MemState. It uses them to store copies of the object’s state.
The current state of the implemented object is stored in
the element of MemState indexed by the variable MIndex.
Each record of type StateRec comprises a field st storing the
object’s state, and two arrays. The first, ReturnVal, stores, for

The Performance Power of Software Combining in Persistence PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Algorithm 1: PBcomb – Code for thread 𝑝 ∈ {0, ..𝑛}
1 type RequestRec {

Function 𝑓 𝑢𝑛𝑐

Argument𝐴𝑟𝑔𝑠
Bit 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒
Bit 𝑣𝑎𝑙𝑖𝑑

}

type StateRec {
State 𝑠𝑡
ReturnValue 𝑅𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙 [0..𝑛 − 1]
Bit 𝐷𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 [0..𝑛 − 1]

}

⊲ Shared non-volatile variables:
StateRec𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [0..1], initially ⟨⊥, ⟨⊥, . . . ,⊥⟩, ⟨0, . . . , 0⟩⟩
Bit𝑀𝐼𝑛𝑑𝑒𝑥 , initially 0
⊲ Shared volatile variable:
RequestRec 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 [0..𝑛 − 1], initially ⟨⟨⊥,⊥, 0, 0⟩, . . . , ⟨⊥,⊥, 0, 0⟩⟩
Integer 𝐿𝑜𝑐𝑘 , initially 0
Integer 𝐿𝑜𝑐𝑘𝑉𝑎𝑙 , initially 0

Procedure ReturnValue PBcomb(Function 𝑓 𝑢𝑛𝑐 , Argument𝐴𝑟𝑔𝑠 , Integer 𝑠𝑒𝑞)
// Announce request

2 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 [𝑝] := ⟨𝑓 𝑢𝑛𝑐,𝐴𝑟𝑔𝑠, 1 − 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 [𝑝] .𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, 1⟩
3 return PerformReqest()

Procedure ReturnValue Recover(Function 𝑓 𝑢𝑛𝑐 , Argument𝐴𝑟𝑔𝑠 , Integer 𝑠𝑒𝑞)
4 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 [𝑝] := ⟨𝑓 𝑢𝑛𝑐, 𝑎𝑟𝑔𝑠, 𝑠𝑒𝑞 mod 2, 1⟩

// if request is not yet applied

5 if 𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [𝑀𝐼𝑛𝑑𝑒𝑥] .𝐷𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 [𝑝] ≠ 𝑠𝑒𝑞 mod 2 then
6 return PerformReqest()
7 return𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [𝑀𝐼𝑛𝑑𝑒𝑥] .𝑅𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙 [𝑝] // request is applied

Procedure ReturnValue PerformReqest()
8 Bit 𝑖𝑛𝑑 // local variable of 𝑝

9 Integer 𝑙𝑣𝑎𝑙 // local variable of 𝑝

10 while true do
11 𝑙𝑣𝑎𝑙 := 𝐿𝑜𝑐𝑘

12 if 𝑙𝑣𝑎𝑙 mod 2 = 0 then
13 if 𝐶𝐴𝑆 (𝐿𝑜𝑐𝑘, 𝑙𝑣𝑎𝑙, 𝑙𝑣𝑎𝑙 + 1) = true then break
14 𝑙𝑣𝑎𝑙 := 𝑙𝑣𝑎𝑙 + 1
15 wait until 𝐿𝑜𝑐𝑘 ≠ 𝑙𝑣𝑎𝑙

16 if 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 [𝑝] .𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 = 𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [𝑀𝐼𝑛𝑑𝑒𝑥] .𝐷𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 [𝑝]
then

17 if 𝐿𝑜𝑐𝑘𝑉𝑎𝑙 ≠ 𝑙𝑣𝑎𝑙 then wait until 𝐿𝑜𝑐𝑘 ≠ 𝑙𝑣𝑎𝑙 + 2
18 return𝑀𝑒𝑚𝑠𝑡𝑎𝑡𝑒 [𝑀𝐼𝑛𝑑𝑒𝑥] .𝑅𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙 [𝑝];
19 𝑖𝑛𝑑 := 1 −𝑀𝐼𝑛𝑑𝑒𝑥

20 𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [𝑖𝑛𝑑] := 𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [𝑀𝐼𝑛𝑑𝑒𝑥] // copy current state

21 for 𝑞 ← 0 to 𝑛 − 1 do
// if 𝑞 has a request that is not yet applied

22 if 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 [𝑞] .𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 ≠ 𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [𝑖𝑛𝑑] .𝐷𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 [𝑞] and
𝑅𝑒𝑞𝑢𝑒𝑠𝑡 [𝑞] .𝑣𝑎𝑙𝑖𝑑 = 1 then

23 apply 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 [𝑞] .𝑓 𝑢𝑛𝑐 with 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 [𝑞] .𝐴𝑟𝑔𝑠 on
𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [𝑖𝑛𝑑] .𝑠𝑡

24 compute return value, 𝑟𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙

25 𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [𝑖𝑛𝑑] .𝑅𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙 [𝑞] := 𝑟𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙

26 𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [𝑖𝑛𝑑] .𝐷𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 [𝑞] := 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 [𝑞] .𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒
27 pwb(&𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [𝑖𝑛𝑑])
28 pfence()
29 𝐿𝑜𝑐𝑘𝑉𝑎𝑙 := 𝐿𝑜𝑐𝑘

30 𝑀𝐼𝑛𝑑𝑒𝑥 := 𝑖𝑛𝑑

31 pwb(&𝑀𝐼𝑛𝑑𝑒𝑥)
32 psync()
33 𝐿𝑜𝑐𝑘 := 𝐿𝑜𝑐𝑘 + 1
34 return𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [𝑀𝐼𝑛𝑑𝑒𝑥] .𝑅𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙 [𝑝]

each thread, a response for the last request initiated by the
thread. The second is the deactivate bit vector.
To reduce the synchronization cost, the implementation

of the lock in PBcomb is different than in existing combin-
ing protocols [22, 24, 31, 37]. PBcomb uses an integer shared
variable Lock: an odd value stored in it indicates that the lock
is taken, whereas an even value indicates that the lock is free.
Implementing the lock in this way, allows a thread q to wait
on line 15, each time it executes it, only for the thread p that
was the current combiner the last time q accessed Lock. More-
over, q can leave the entry-section without executing CAS,
if it discovers that its request has been served. Additionally,
for each set of combined operations, a single successful CAS
is executed. Lock implementations in which every thread
should wait its turn to enter the critical-section before it
leaves the entry-section (e.g., that in [48]) may negatively
impact performance.

A thread p starts by recording its request, and (the reversed
value of) its activate bit, in Request [p]. Next, it checks if the
lock is acquired and if not, it tries to acquire it by executing
a CAS. If it succeeds, p becomes the combiner and starts
executing the combiner code (lines 19-33). Every thread q that
does not become the combiner busy waits until the current
combiner has released the lock. Then, q checks whether its
request has been served; this is true when q’s activate and

deactivate bits are equal. If so, q returns its response value.
The remaining threads contend again for the lock.

In the combining code, a combiner p chooses among the
two StateRec records of MemState the one, r , that is not in-
dexed byMIndex, to use for serving requests. Then, in line 20,
it copies the current state of the object into r . Next, it exe-
cutes a for loop (simulation phase), where for each thread
q: If there is an active, valid request by q, p a) applies the
request using r , ii) records the response into the appropriate
element of the ReturnVal array stored in r , and iii) changes
Deactivate[q] in r to make it equal to its activate bit. As soon
as p completes the simulation phase, it changes MIndex to
index r and unlocks Lock giving up its combining role.
We say that req has taken effect at some point t, if a com-

biner p a) has read req in Request by t, b) has performed
line 23 for q applying req, and c) has executed line 32 by t.
We discuss the correctness of PBcomb in [25]. To comply
with persistence principle 1, PBcomb stores a number of its
variables in DRAM. This results in improved performance.
The algorithm can be easily modified to work correctly even
if all data are stored in non-volatile memory.
Persistence. When Recover(func, args, seq) is called for a
thread p, p first executes line 4, where it recovers its own
entry in Request. This is necessary to appropriately set p’s
activate and valid bits. This way a combiner is disallowed
to re-execute (or to avoid execute) p’s request by seeing

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Panagiota Fatourou, Nikolaos D. Kallimanis, and Eleftherios Kosmas

an erroneous initial value in p’s activate bit after a crash.
Next, p checks whether the last bit of seq is the same as
MemState[MemIndex] .deactivate[p]. If yes, then the request
has been executed and its response is returned. Otherwise, p
re-invokes PBcomb(func, args, seq). Recall that we assume
that the system calls Recover, for each recovered operation,
with the same parameters as PBcomb.

We next explain the role of each of the persistence in-
structions of PBcomb. If the pwb instructions of lines 27
and 31 do not exist, a thread will have no way, at recovery
time, to find the current state of the object, or its response.
Additionally, a pfence (line 28) must exist between these
pwbs: Assume that a crash occurs just afterMIndex has been
persisted (line 31). If no pfence exists between the pwbs of
lines 27 and 31, then the pwb on MemState[MIndex] could
be delayed and thus, the contents of MemState[MIndex] .st
may be partially persisted, at the time of the crash. (Note
that MemState[MIndex] may be stored in more than one
cache line.) Consider a request req by a thread q that has
been served using MemState[MIndex] .st and assume that
the part of the state reflecting req’s updates, has not been
persisted before the crash. Assume that the Deactivate[q] bit
of MemState[MIndex] has been persisted before the crash.
Then, at recovery time, the value of the last bit of seq is the
same asMemState[MIndex] .Deactivate[p], and req responds
(line 7), thus violating durable linearizability.

Assume now that the psync of line 32 is missing. Consider
an execution where a request req by a thread q has been
applied by a combiner p. Assume that after p releases the
lock, q responds for req (line 18). Then, if a crash occurs, it
may happen that MIndex has not yet been persisted before
this crash. At recovery, the object returns in some earlier
state, thus violating durable linearizability.
The persistence of ReturnVal and deactivate, and the use

of seq, are required only to ensure detectability. Consider
a request req (initiated by thread q) that has taken effect,
and assume that the system crashes before req completes,
i.e., q should be able to find the response of req at recovery
time. If ReturnVal [q] was not persisted, q could not find req’s
response at recovery time, violating detectability.
The persistence of deactivate, as well as the use of seq,

allow q to determine whether req took effect before a crash.
In line 22, PBcomb compares q’s activate and deactivate bits
to determine whether req is still active. Note that persist-
ing the activate bits (in addition to deactivate) would not be
enough to determine whether req was still active when a
crash occurred. Assume that a thread q executes two con-
secutive requests, req1 and req2 of the same type with the
same arguments, and the system crashes just before req1
returns. Thread p cannot distinguish this situation from the
case where req2 has just been invoked, as these two bits will
be equal in both cases. However, in the first case, q should
return the response of req1, whereas in the second, it should
re-execute req2 . To be able to distinguish these two cases,

additional (system) support is required [9]. Following pre-
vious work [28], PBcomb makes use of the seq parameter.
To reduce persistence cost, PBcomb avoids persisting both
seq and Activate[q]. As seq is provided by the system, there
is no need for PBcomb to persist it; we let its last bit play
the role of the activate bit at recovery, so PBcomb does not
persist activate.

Note that in a durably linearizable version of PBcomb, the
only field of StateRec that needs to be persisted is st. This will
reduce the number of cache lines that need to be persisted
(by the pwb of line 27). Moreover, the durable linearizable
version of PBcomb has null recovery [35], i.e., no recovery
function is necessary. Detectable recoverability for PBcomb
is further discussed in [25].)

4 Wait-free Recoverable Combining
In PWFcomb (Algorithm 2), all threads pretend to be the com-
biner: they copy the state of the object locally and use this
local copy to apply all active requests they see announced.
Then, each of them attempts to change a pointer, S, to point
to its own local copy using SC. If a thread p manages to do
so, then p is indeed the thread that acted as the combiner.
PWFcomb borrows ideas from the universal constructions
in [21, 23, 33], and can serve as a highly efficient, persistent
version of these algorithms.

Similarly to PBcomb, PWFcomb uses a Request array and
a StateRec record that contains the state of the implemented
object, the array of deactivate bits and the array ReturnVal.
PWFcomb maintains 2 records of type StateRec for each
thread (in addition to two dummy such records, needed for
correct initialization). This is necessary as each thread pre-
tends to be the combiner: each thread has to use two StateRec
records of its own, to copy the state of the object locally. Be-
cause of this, achieving recoverability is more complicated
in PWFcomb than in PBcomb. The array Index of a StateRec
record aims at coping with some of these complications. To
ensure that persistence principles 1 and 2 (Definition 2) are
respected, we use the flush integer and the CombRound array
(more details below).

To execute a request req, a thread p announces req and
calls PerformReqest to serve active requests (including
its own). In PerformReqest, p reads S (line 12) and de-
cides which of the two StateRec records in its pool it will
use (line 13); this information is recorded in Index [p] of the
StateRec record pointed to by the value of S that p read. Next,
it makes a local copy of the StateRec record pointed to by S
(line 14). Making a local copy of the state is not atomic, thus
p validates on line 19 that its local copy is consistent. Then, p
proceeds to the simulation phase (which is similar to that of
PBcomb). Afterwards, it executes an SC in an effort to update
S to point to the StateRec on which it was working (line 32).
Since PWFcomb builds upon and extends PSim [21, 23] (see
Section 7), proving its correctness (in the absence of failures)
follows similar arguments as for PSim [23].

The Performance Power of Software Combining in Persistence PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Algorithm 2: PWFcomb - Code for thread 𝑝 ∈ {0, . . . , 𝑛 − 1}
1 type RequestRec {

Function 𝑓 𝑢𝑛𝑐

Argument 𝑎𝑟𝑔𝑠
Bit 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒
Bit 𝑣𝑎𝑙𝑖𝑑

}
type StateRec {

State 𝑠𝑡
ReturnValue 𝑅𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙 [0..𝑛 − 1]
Bit 𝐷𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 [0..𝑛 − 1]
Bit 𝐼𝑛𝑑𝑒𝑥 [0..𝑛 − 1]
{0, 1, .., 𝑛 − 1} 𝑝𝑖𝑑

}
⊲ Shared non-volatile variables:
StateRec𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [0..𝑛] [0..1], initially
⟨⊥, ⟨⊥, . . . ,⊥⟩, ⟨0, . . . , 0⟩, ⟨0, . . . , 0⟩, 0⟩
StateRec *𝑆 := &𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [𝑛] [0]
⊲ Shared volatile variables:
RequestRec 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 [0..𝑛 − 1], initially
⟨⟨⊥,⊥, 0, 0⟩, . . . , ⟨⊥,⊥, 0, 0⟩⟩
Integer 𝐹𝑙𝑢𝑠ℎ [0..𝑛 − 1], initially ⟨0, . . . , 0⟩
Integer𝐶𝑜𝑚𝑏𝑅𝑜𝑢𝑛𝑑 [0..𝑛 − 1] [0..𝑛 − 1], initially
⟨⟨0, . . . , 0⟩, . . . , ⟨0, . . . , 0⟩⟩

Procedure ReturnValue PWFcomb(Function 𝑓 𝑢𝑛𝑐 , Argument 𝑎𝑟𝑔𝑠 ,
Integer 𝑠𝑒𝑞)

// Announce request

2 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 [𝑝] := ⟨𝑓 𝑢𝑛𝑐, 𝑎𝑟𝑔𝑠, 1 − 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 [𝑝] .𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, 1⟩
3 Backoff()
4 return PerformReqest()

Procedure ReturnValue Recover(Function 𝑓 𝑢𝑛𝑐 , Argument 𝑎𝑟𝑔𝑠 ,
Integer 𝑠𝑒𝑞)

5 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 [𝑝] := ⟨𝑓 𝑢𝑛𝑐, 𝑎𝑟𝑔𝑠, 𝑠𝑒𝑞 mod 2, 1⟩
// if request is not yet applied

6 if 𝑆 → 𝐷𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 [𝑝] ≠ 𝑠𝑒𝑞 mod 2 then
7 return PerformReqest()

// request is applied

8 return 𝑆 → 𝑅𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙 [𝑝] .𝑟𝑒𝑡

Procedure ReturnValue PerformReqest()
9 StateRec *𝑙𝑠𝑃𝑡𝑟

10 Integer 𝑙𝑣𝑎𝑙
11 for 𝑙 ← 1 to 2 do
12 𝑙𝑠𝑃𝑡𝑟 := LL(𝑆)
13 Bit 𝑖𝑛𝑑 := 𝑙𝑠𝑃𝑡𝑟 → 𝐼𝑛𝑑𝑒𝑥 [𝑝]
14 𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [𝑝] [𝑖𝑛𝑑] := *𝑙𝑠𝑃𝑡𝑟 // copy current state

15 𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [𝑝] [𝑖𝑛𝑑] .𝑝𝑖𝑑 := 𝑝

16 𝑙𝑣𝑎𝑙 := 𝐹𝑙𝑢𝑠ℎ [𝑙𝑠𝑃𝑡𝑟 → 𝑝𝑖𝑑]
17 if 𝑙𝑣𝑎𝑙 mod 2 = 0 then 𝑙𝑣𝑎𝑙 := 𝑙𝑣𝑎𝑙 + 1
18 else 𝑙𝑣𝑎𝑙 := 𝑙𝑣𝑎𝑙 + 2
19 if VL(𝑆) = false then continue
20 for 𝑞 ← 0 to 𝑛 − 1 do

// if 𝑞 has a request that is not yet applied

21 if 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 [𝑞] .𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 ≠ 𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [𝑝] [𝑖𝑛𝑑] .𝐷𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 [𝑞] and
𝑅𝑒𝑞𝑢𝑒𝑠𝑡 [𝑞] .𝑣𝑎𝑙𝑖𝑑 = 1 then

22 apply 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 [𝑞] .𝑓 𝑢𝑛𝑐 with 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 [𝑞] .𝑎𝑟𝑔𝑠 on
𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [𝑝] [𝑖𝑛𝑑] .𝑠𝑡

23 compute return value, 𝑟𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙

24 𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [𝑝] [𝑖𝑛𝑑] .𝑅𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙 [𝑞] := 𝑟𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙

25 𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [𝑝] [𝑖𝑛𝑑] .𝐷𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 [𝑞] := 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 [𝑞] .𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒
26 𝐶𝑜𝑚𝑏𝑅𝑜𝑢𝑛𝑑 [𝑝] [𝑞] := 𝑙𝑣𝑎𝑙

27 if VL(𝑆) = true then
28 𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [𝑝] [𝑖𝑛𝑑] .𝐼𝑛𝑑𝑒𝑥 [𝑝] := 1 −𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [𝑝] [𝑖𝑛𝑑] .𝐼𝑛𝑑𝑒𝑥 [𝑝]
29 pwb(&𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [𝑝] [𝑖𝑛𝑑])
30 pfence()
31 𝐹𝑙𝑢𝑠ℎ [𝑝] := 𝑙𝑣𝑎𝑙

// Try to change 𝑆 content

32 if SC(𝑆,&𝑀𝑒𝑚𝑆𝑡𝑎𝑡𝑒 [𝑝] [𝑖𝑛𝑑]) = true then
33 pwb(&𝑆)
34 psync()
35 CAS (&𝐹𝑙𝑢𝑠ℎ [𝑝], 𝑙 𝑣𝑎𝑙, 𝑙𝑣𝑎𝑙 + 1)
36 return 𝑆 → 𝑅𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙 [𝑝]
37 BackoffCalculate();

38 𝑙𝑠𝑃𝑡𝑟 := 𝑆

39 𝑙𝑣𝑎𝑙 := 𝐹𝑙𝑢𝑠ℎ [𝑙𝑠𝑃𝑡𝑟 → 𝑝𝑖𝑑]
40 if 𝑙𝑣𝑎𝑙 mod 2 = 1 and 𝑙𝑣𝑎𝑙 = 𝐶𝑜𝑚𝑏𝑅𝑜𝑢𝑛𝑑 [𝑙𝑠𝑝𝑡𝑟 → 𝑝𝑖𝑑] [𝑝] then
41 pwb(&𝑆)
42 psync()
43 CAS (𝐹𝑙𝑢𝑠ℎ [𝑝], 𝑙 𝑣𝑎𝑙, 𝑙𝑣𝑎𝑙 + 1)
44 return 𝑆 → 𝑅𝑒𝑡𝑢𝑟𝑛𝑉𝑎𝑙 [𝑝]

The recovery function of PWFcomb is the same as that of
PBcomb. We focus on the persistence challenges that arise
due to the recycling of StateRec records. The fact that a thread
has two StateRec records and uses them alternatively, ensures
that no thread ever performs active requests on the StateRec
record pointed to by S. Thus, threads that read the currently
active state see consistent data. A variable for each thread p,
points to the StateRec record that p will use next. We store
these variables into the Index array of StateRec, so that p
persists them together with the StateRec it uses (at lines 29-
30), in accordance to persistence principle 3. Persisting Index
is necessary, since otherwise the following bad scenario may
happen. Assume that one of the SC instructions executed by
p is successful and let ind be the value that p reads on line 13,
before the execution of SC. Assume also that the system
crashes after p persists the new value of S and completes.
Upon recovery, p discovers that its last request has been
completed and invokes a new request. Then, it may happen
that p chooses again the same recordMemState[p] [ind], and

start serving new requests on the current state of the object.
Other active threads may, thus, read (on line 14) inconsistent
data.

Before a thread p, that has initiated a request req, responds,
p must persist the value of S. This should be done indepen-
dently of whether p has successfully executed the SC of
line 32, for the following reason. Assume that p responds for
req without persisting S and then the system crashes. Upon
recovery, S will point to a StateRec corresponding to some
previous state of the object than that in which p read req’s
response. This could violate detectable recoverability. For
the same reason, executing just the pwb of line 33 (or 41) is
not enough and the psync of line 34 (or 42) is also needed.

Experiments showed that having all threads performing a
pwb and a psync to persist the contents of S before complet-
ing, results in high persistence cost. This is not surprising
as this approach violates persistence principles 1 and 2. To
respect these principles, arrays Flush and CompRound are
used. Flush has one entry for each thread and it is used to

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Panagiota Fatourou, Nikolaos D. Kallimanis, and Eleftherios Kosmas

indicate whether S has already been persisted or not, as
described below. Consider a combiner p that successfully
updates S (executing the SC of line 32). Before executing
the corresponding SC, p changes Flush[p] to an odd value
(lines 16-18 and 31). Then, after (updating and) persisting
S, p updates Flush[p] to an even value (line 35), indicating
that this change of S has already been persisted. All other
threads persist S only if Flush[p] contains an odd value (first
condition of line 40), in which case, they update Flush[p] to
the next even value (line 43). The use of array CombRound
allows a thread q to persist only the change of 𝑆 performed
by the combiner p that served q’s request, as follows. For
each thread whose request it serves, p stores in its row of
CombRound the odd value that its Flush[p] integer has when
it executes the corresponding SC. Thread q persists S only
if Flush[p] contains CombRound [p] [q] (second condition of
line 40). These techniques contribute to preserving persis-
tence principles 1 and 2. To maintain persistence principle 1,
we store both Flush and CombRound in volatile memory.

5 Recoverable Data Stuctures
Here, we provide summaries of our recoverable data struc-
tures. More details and pseudocodes are provided in [25].
PBStack and PWFstack. The stack is implemented as a
linked list of nodes. Since the stack has a single point of
synchronization, the state of the stack maintained by our
algorithms is just the value of top, the pointer pointing to
the topmost element of the stack. A combiner p copies the
appropriate element of MemState, reads the current value of
top from it, and serves the active requests using the element,
𝑟 , ofMemState that p has chosen to work on. To serve a Push,
p has to additionally allocate a new node and set the next
pointer of it to point to the value of top it read. The combiner
persists the fields of all newly allocated nodes before persist-
ing e (see also memory management below). The combiner
applies elimination [32] to pair off concurrent Push and Pop
operations without accessing the state of the object. This has
small positive impact in performance (Figure 3a).
PBQueue. PBqeue uses a singly-linked list to store the
nodes of the queue. To increase parallelism and enhance
performance, we do not employ PBcomb in an automatic
way. We rather utilize two instances of PBcomb, one to syn-
chronize the enqueuers (IE), and another to synchronize the
dequeuers (ID); thus, combiners of IE serve only enqueue
requests, while combiners of ID serve only dequeue requests.
This results in increased parallelism: enqueues are executed
concurrently with dequeues (but sequentially to other en-
queues). IE stores just the queue’s tail pointer in the 𝑠𝑡 field of
its StateRec records, whereas ID stores just the head pointer.
Enqeue andDeqeue operations add and remove nodes di-
rectly to and from the linked list that implements the queue.
The first list node always plays the role of a dummy node.

The persistence scheme of PBcomb guarantees that the
head and the tail of the queue are persisted. PBqeue also

persists the modifications performed by the combiners on
the nodes of the linked list. This is necessary, since otherwise,
these modifications will not survive after a crash, which may
result in an inconsistent state and violate durable linearizabil-
ity. ADeqeue only updates the head of the simulated queue
and does not modify the nodes of the linked list. Therefore,
the effects of a dequeue combiner on the simulated state of
the queue are correctly persisted by the dequeue instance
of PBcomb. However, there is a subtlety that needs to be
addressed regarding the nodes of the linked list that can be
removed by the dequeue combiners. An enqueue combiner
simulates the active Enqeue requests by directly modify-
ing the nodes of the linked list and then persisting these
modifications. Thus, if no care is taken, a dequeue combiner
may remove list nodes that have been appended by an active
enqueue combiner but not yet persisted. This may jeopardize
detectable recoverability. To address this, PBqeue disallows
dequeue combiners to remove any node from the linked list
that has not yet been persisted. It achieves this by using a
shared volatile variable oldTail. An enqueue combiner up-
dates oldTail to point to the last node of the queue after it
persists its changes and before releasing the lock. A dequeue
combiner removes nodes from the linked list up until oldTail.
PWFQueue. PWFqeue combines ideas from PBqeue and
SimQueue [21, 23]. As in PBqeue, the queue is implemented
as a singly-linked list and PWFqeue uses two instances of
PWFcomb (IE and ID) to synchronize the enqueuers and the
dequeuers. A thread executing an Enqeue will also try to
serve Enqeues by other enqueuers. It does so by creating
a local list of new nodes that will eventually be appended
to the current state of the queue. So, at some point in time,
the linked list implementing the queue may be comprised
of two parts. To ensure consistency, all threads perform the
linking of these parts before they proceed to serve requests.
Also, the state maintained by IE is now comprised of three
pointers to support the linking of the two parts of the list.
Regarding persistence, some subtleties arise from the ne-

cessity to connect the two parts of the linked list representing
the queue. Before updating the queue’s tail, an enqueuer p
has to persist the pointers needed to connect the two parts
of the linked list, i.e., the current tail of the queue and the
pointer to the first node of its local list. If it does not do
so, then the system may crash just after p updates the tail
(and before it connects the two parts of the linked list), in
which case its local copy is lost and durable linearizability
may be jeopardized. Additionally, an enqueuer that connects
the linked list, has to persist the new values of the node it
updated (i.e., its pointer to the next element of the linked
list). Although dequeuers also help connecting the two parts
of the list, it is enough to persist only the head of the queue.

The code and a more detailed description of PBqeue and
PWFqeue are provided in [25].
PBHeap. PBheap is a persistent bounded min-heap imple-
mentation based on PBcomb. The state stored in StateRec

The Performance Power of Software Combining in Persistence PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

is the array of heap elements and two integers identifying
the bounds of the heap. PBheap supports the operations
HGetMin, HInsert, and HDeleteMin. It employs a single
instance of PBcomb and is implemented by enhancing a
sequential heap implementation with the code of PBcomb.
Memory Management. For ensuring persistence in allo-
cating new stack or queue nodes, we follow a standard tech-
nique [17, 45, 47] where each thread p pre-allocates a fixed-
size memory chunk in NVMM, and reserves nodes from this
chunk. Whenever this chunk is exhausted a new memory
chunk is allocated by p. If a garbage collection mechanism
(for collecting nodes) is not used, whenever p serves as the
combiner, it gets nodes in consecutive memory addresses (to
comply with the persistence principles).
For garbage collection, in PBqeue, each thread p has

its own free list and places there nodes it removes when
acting as combiner. It does so, after causing the removal
of these nodes to take effect. Whenever p needs to reserve
nodes while its free list is not empty, it uses nodes from this
list. Note that this does not ensure persistence principle 3,
as the nodes in its free list may belong to chunks of other
threads. We were able to implement an efficient garbage
collection scheme for PBstack (by exploiting its semantics).
We maintain a single free list for all threads, implemented as
a stack (recycling stack). Whenever p needs to reserve a node,
it pops a node from the recycling stack. This way recycled
nodes are re-inserted in the implemented data structure in
the same order as they have originally been reserved from the
memory chunk. This complies with persistence principle 3.

To support garbage collection in PWFstack, we extend the
scheme described for PBqeue with the simple validation
scheme of [11], which disallows a thread to access nodes
that have already been placed in a free list. For PWFqeue,
a solution would be more complicated, due to the fact that
there may be two parts that comprise the state of the queue.
We have left this for future work.

6 Performance Evaluation
We evaluate our algorithms on a 48-core machine (96 logical
cores) consisting of 2 Intel Xeon Platinum 8260M processors
with 24 cores each. Each core executes two threads concur-
rently. Our machine is equipped with a 1TB Intel Optane DC
persistent memory (DCPMM) and the system is configured
in AppDirect mode. We use the 1.9.2 version of the Persistent
Memory Development Kit [44], which provides the pwb and
psync persistency instructions. An 𝑥86_64 store fence in-
struction is used for implementing a pfence operation. The
operating system is Linux (kernel v3.4) and we use gcc v9.1.0.
Threads were bound in all experiments following a sched-
uling policy which distributes the running threads evenly
across the machine’s NUMA nodes [22, 23]. For our exper-
iments, we simulate an LL on an object 𝑂 with a read, and
an SC with a CAS on a timestamped version of 𝑂 to avoid
the ABA problem. We executed each experiment 10 times

(runs) and display averages. Each run simulates 107 atomic
operations in total, with each of the 𝑛 threads simulating
107/𝑛 operations. In the experiments for the stacks (queues),
each thread performs pairs of Push and Pop (Enqeue and
Deqeue) starting from an empty data structure. This ex-
periment is kind of standard [21–23, 28, 47, 50], as it avoids
performing unsuccessful (and thus cheap) operations. We
performed also experiments where each thread executed ran-
dom operations (50% of each type), as well as experiments
where the data structure was initially populated; as they
did not illustrate significant differences in the performance
trends of the tested algorithms, we do not report these ex-
periments.
Synthetic Benchmark.We first consider a synthetic bench-
mark (AtomicFloat) in which every thread, repeatedly, ex-
ecutes AtomicFloat(𝑂 , 𝑘) that reads the value 𝑣 of 𝑂 and
updates it to 𝑣 ∗ 𝑘 ; the thread returns the value read. To
avoid long runs and unrealistically low number of cache
misses [21, 22, 24, 40], we added a local workload between
consecutive executions of atomic operations, implemented
as a short loop of a random number (maximum 512) of
dummy iterations [21, 22]. In Figure 1a, we compare the
performance of AtomicFloat implementations based on PB-
comb and PWFcomb against state-of-the-art wait-free persis-
tent synchronization techniques:OneFile [45],CX-PUC [18],
CX-PTM [18], and RedoOpt [18], using the latest version of
code for these algorithms provided in [16]. These algorithms
satisfy durable linearizability (not detectable recoverability).
Figure 1a shows that PBcomb is more than 4x faster than
RedoOpt, which is the fastest among the competitors. Also,
PWFcomb is more than 2.8x faster than RedoOpt. Figure 1b
shows that both PBcomb and PWFcomb perform (on average)
a small number of pwb instructions per operation. Figure 1c
shows that the impact of psync is negligible in our experi-
ments. This experiment illustrates that the main persistence
cost in our algorithms comes from the pwb instructions, and
reveals the importance of keeping the number of pwbs (and
their cost) low, thus respecting persistence principles 1 and 2,
when designing persistent synchronization protocols and
concurrent data structures.

Note that PBcomb causes almost the same number of pwbs
as RedoOpt [18]. RedoOpt uses ideas from PSim [21], and
thus it employs some form of combining. Because of this,
RedoOpt executes a low number of low cost pwb instruc-
tions. However, RedoOpt employs a shared queue, stored
in volatile memory, to impose an order to the executed op-
erations, which results in high synchronization overhead.
PBcomb achieves the same number of pfences and psyncs
as RedoOpt and does not cause any noteworthy increase to
the number of pwbs. Interestingly, this is achieved at a much
lower synchronization cost (see Figure 2c, discussed below).
PBcomb performs better than PWFcomb in all experi-

ments. The main reasons are that 1) the synchronization cost
of PBcomb is lower than PWFcomb (see Figure 4), and 2)

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Panagiota Fatourou, Nikolaos D. Kallimanis, and Eleftherios Kosmas

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 12 24 36 48 60 72 84 96

m
ill

io
n

op
s/

se
c

threads

PBcomb
PWFcomb
RedoOpt
Redo
OneFile
CX-PTM

(a)

 0.1

 1

 10

 100

 1000

 10000

1 12 24 36 48 60 72 84 96

pw
bs

 p
er

 o
pe

ra
tio

n

threads

PBcomb
PWFcomb
RedoOpt
Redo
OneFile
CX-PTM

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 12 24 36 48 60 72 84 96

m
ill

io
n

op
s/

se
c

threads

PBcomb
PWFcomb
PBcomb-(Psync=off)
PWFcomb-(Psync=off)

(c)
Figure 1. Simulation of a persistent AtomicFloat object on
Intel Xeon: (a) throughput, (b) pwb instructions per operation,
and (c) throughput with no psync instructions.

PWFcomb has higher persistence cost, as all threads should
ensure that 𝑆 is persisted before returning. These costs are
paid to ensure the wait-free property of PWFcomb.
Persistent queues. Figure 2a compares the performance of
PBqeue and PWFqeuewith persistent queue implementa-
tions based on the persistence techniques studied in Figure 1a.
It also compares PBqeue and PWFqeue with the special-
ized persistent queue implementation in [28] (FHMP), and
those recently published in [50] (OptLinkedQ and OptUn-
linkedQ), as well as the persistent queue implementations

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 12 24 36 48 60 72 84 96

m
ill

io
n

op
s/

se
c

threads

PBqueue
PWFqueue
PBqueue-no-rec
RedoOpt
RedoTimed
OneFile
CX-PTM

CX-PUC
NormOpt
FHMP
RomulusLR
RomulusLog
OptLinkedQ
OptUnlinkedQ

(a)

 0.1

 1

 10

 100

 1000

1 12 24 36 48 60 72 84 96

pw
bs

 p
er

 o
pe

ra
tio

n

threads

PBqueue
PWFqueue
RedoOpt
Redo
OneFile
CX-PTM
OptLinkedQ
OptUnlinkedQ

(b)

 0

 2

 4

 6

 8

 10

 12

1 12 24 36 48 60 72 84 96

m
ill

io
n

op
s/

se
c

threads

PBqueue
PWFqueue
RedoOpt
Redo
OneFile
CX-PTM
OptLinkedQ
OptUnlinkedQ

(c)
Figure 2. Persistent queue implementations on Intel Xeon:
(a) throughput , (b) pwb instructions per operation, and (c)
throughput with no pwb instructions.

based on Capsules-Normal [10] (NormOpt), and persis-
tent queue implementations based on Romulus [17] (i.e., Ro-
mulusLR and RomulusLog). Figure 2a shows that PBqeue
achieve superior performance by being 2x faster than the
OptUnlinkedQ, which is the best competitor. Figure 2b
shows the number of pwbs in different queue implementa-
tions; trends are similar to Figure 1b. In Figure 2c, we have
replaced the pwb instructions with simple NOP operations
and we measure the throughput of the different algorithms.
The figure shows that the synchronization cost of PWFcomb

The Performance Power of Software Combining in Persistence PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

and PBcomb is much lower compared to its competitors. A
comparison of Figure 2b with Figure 2c shows the perfor-
mance impact of persistence.
Persistent Stacks. Figure 3a illustrates that the performance
of PBstack and PWFstack is much better than the following
algorithms: the persistent stack implementations based on
OneFile [45] and Romulus [17], and a persistent stack based
on flat-combining (DFC) [47], which is the best competitor.
Similarly to our stack implementations, DFC uses an an-

nounce array where threads can announce their requests.
In contrast to our algorithms, DFC does not avoid the cost
of persisting this array. DFC has each thread persisting its
own element in the announce array. To ensure durable lin-
earizability, a combiner serves only those requests whose
announcements have been persisted. This requires an addi-
tional mechanism in order for a thread to inform the com-
biner that it has persisted its announcement. Another major
difference of DFC from our approach is that in DFC the
combiners perform updates directly on the state of the ob-
ject. This introduces several difficulties for achieving per-
sistence when designing the stack. Finally, DFC stores the
return value for each thread in the announce array. This
requires that the combiner persists each return value sepa-
rately. These design decisions result in high persistence cost
and synchronization overhead, as reflected in the figure.

DFC applies elimination for reducing its persistence cost.
However, the DFC design decision of performing updates di-
rectly on the shared state complicates its elimination scheme
and its recovery code. We also applied elimination to our
algorithms. Figure 3a (comparing the diagrams PBstack and
PWFstack with PBstack-no-elim and PWFstack-no-elim,
respectively) shows the positive impact of elimination in our
stack implementations. As our implementations apply up-
dates on copies of the state, the positive impact stems mainly
from reducing their persistence cost (e.g., the number of
newly allocated nodes that need to be persisted).
Memory Management. Diagrams PBstack-no-rec and
PWFstack-no-rec, in Figure 3a, illustrate the impact of re-
moving the scheme for recycling list nodes in our stacks.
Comparing them with PBstack and PWFstack shows that
our memory management scheme for stacks is very effi-
cient. On the contrary, Figure 2a shows that the performance
of PBqeue is negatively affected by the simple recycling
scheme for nodes we apply in this case (Section 5).
Persistent Heaps. Figure 3b shows the throughput of PB-
heap for small and medium heap sizes (i.e., 64 − 1024 keys).
Initially, the heap is half-full. To make the experiment realis-
tic, we avoid to have a full (or empty) heap by performing
an equal number of HInsert and HDeleteMin operations.
Figure 3b shows that even for heaps of medium size, the per-
formance of PBheap is good, illustrating that more complex
persistent data-structures than stacks and queues can easily
be implemented on top of our algorithms, and perform well
when their size is not very large.

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 12 24 36 48 60 72 84 96

m
ill

io
n

op
s/

se
c

threads

PBstack
PBstack-no-rec
PBstack-no-elim
PWFstack
PWFstack-no-rec
PWFstack-no-elim
OneFile
PMDK
DFC
RomulusLog

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 12 24 36 48 60 72 84 96

m
ill

io
n

op
s/

se
c

threads

PBheap-1024
PBheap-512
PBheap-256
PBheap-128
PBheap-64

(b)

Figure 3. Experiments on Intel Xeon: (a) throughput of per-
sistent stack implementations and (b) throughput of persis-
tent heap implementations based on PBcomb for different
heap-sizes (64 - 1024).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 16 32 48 64 80 96 112 128

m
ill

io
n

op
s/

se
c

threads

PBcomb
H-Synch
CC-Synch
PSim
MCS
lock-free
C-BO-MCS

Figure 4. Throughput of implementations while simulating
a volatile AtomicFloat object on AMD Epyc.

Performance in systemswith volatilememory.We study
the performance of the volatile version of PBcomb in a sys-
tem without NVMM: a 64-core AMD Epyc consisting of 2
Epyc 7501 processors, which provides 64 cores (8 NUMA
nodes, 128 logical cores); we saw similar performance be-
havior on the Intel Xeon machine. In Figure 4, the synthetic

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Panagiota Fatourou, Nikolaos D. Kallimanis, and Eleftherios Kosmas

(per operation) Bcomb H-Synch CC-Synch PSim
cache-misses 2.8 6.3 5.5 10

stores on cache-lines in shared state 0.0012 1.0 1.0 1.0
reads on cache-lines in shared state 0.034 1.8 1.6 1.3

Table 1. Performance counters using Perf for 128 threads.

benchmark runs using H-Synch [22, 36], CC-Synch [22, 36],
PSim [21, 36], MCS queue spin-locks [40], a simple lock-free
implementation [21, 23], and an hierarchical lock (C-BO-
MCS) [20]. Figure 4 shows that a volatile version of PBcomb
exhibits much better performance than all other algorithms.
In Table 1, we present results for 1) cache-misses per op-
eration, 2) stores on cache-shared locations per operation,
and 3) reads on cache-shared locations per operation. (More
experiments are provided in [25].)

7 Related Work
A lot of work has been devoted to design persistent transac-
tional memory systems (e.g., [8, 13, 14, 34, 39, 44, 45, 53, 55]).
Such systems often rely on some kind of logging technique
employing either redo logs [34, 45, 53] or undo logs [13, 14,
44]. Logging causes serious performance penalties as the log
is usually stored in persistent memory. Our algorithms avoid
logging to reduce both synchronization and persistence cost.

PMDK [44] attempts to reduce the logging cost by aggre-
gating all updates performed on an object in a single transac-
tion. Romulus [17] follows a different approach for achieving
the same goal. Romulus comes in two flavors, RomulusLog
which is blocking, and RomulusLR which supports wait-free
read-only transactions (and blocking update transactions).
OneFile [45] is a redo-log based persistent transactional

system whose main characteristic is that its transactions
do not maintain read-sets. However, it serializes all update
transactions and all transactions (read-only and update) have
to help update transactions to complete. OneFile comes in
two versions, one lock-free and another wait-free. The wait-
free version shares some ideas with PSim, thus integrating
some form of combining, but it inherits the helping and
logging mechanisms from the lock-free version. ONLL [15]
is a log-based persistent universal construction which en-
sures durable linearizability [35] and lock-freedom. ONLL
performs one persistent fence for each update operation and
avoids performing persistence fences for read operations.
A persistent wait-free universal construction (CX-PUC)

and a persistent transactional memory system (CX-PTM) are
presented in [18]. Both algorithms are based on the universal
construction provided in [19]. The algorithms store 2𝑛 repli-
cas of the data structure in NVMM, and use a shared queue,
stored in volatile memory, to impose an order to the executed
operations. Threads synchronize using consensus objects in
order to decide the order in which the operations will be
applied on the data structure. A thread chooses one of the
persistent copies of the data structure to work on and may

require to execute all operations that precede its operation
in the queue, in order to ensure consistency.
RedoOpt, presented also in [18], is a persistent, durably

linearizable, wait-free universal construction that uses ideas
from PSim to achieve lower persistence cost and better per-
formance than CX-PUC and CX-PTM. RedoOpt employs the
shared queue used by CX-PUC and CX-PTM, and therefore
it does not avoid the synchronization overheads of them.
All these algorithms satisfy weaker consistency than de-

tectable recoverability ensured by PBcomb and PWFcomb.
Capsules [10] can be used to transform concurrent algo-

rithms that use only read and CAS primitives to their persis-
tent versions. The programmer has to partition the code into
parts, called capsules, each containing a single CAS. This CAS
has to be replaced with its recoverable version [6]. We use an
optimized version of Capsules, which can be applied only to
normalized implementations [51], to our experiments, as it
achieved better performance. Recent generic approaches for
designing lock-free data structures appear in [27, 29]; they
are not detectable recoverable and they do not experiment
with stacks and queues.

The first hand-tuned durable queues were provided in [28].
One of them, namely the log-queue, ensured detectable re-
coverability, whereas the other two guaranteed durable lin-
earizability [35] and buffered durable linearizability [35], re-
spectively. Their design is based on the lock-free queue
(MSQueue) presented by Michael and Scott [41]. A recent
paper [50] presents hand-tuned durably linearizable queue
implementations that outperform those in [28] and other pre-
vious persistent queue implementations. These implementa-
tions are designed based on the observation that minimizing
accesses to flushed content could be beneficial for perfor-
mance. Our experiments show that PBqeue outperforms
the queues in [50] as the number of threads increases.
PBcomb and PWFcomb borrow and extend ideas from

PSim [21, 23], a state-of-the-art wait-free practical software
combining protocol, which is built upon the simple idea
presented by Herlihy in [33]. A thread p first announces
its request and informs other threads that it has an active
request by applying a Fetch&dAdd instruction on an integer
variable that implements a bit vector. Next, it finds out which
other requests are active by reading this integer variable,
and applies these requests to a local copy of the simulated
object. Finally, it tries to change the shared pointer to the
simulated object’s state to point to this local copy. Similarly,
PWFqeue is the persistent version of SimQueue. SimQueue
allows the enqueuers and dequeuers to run independently by
employing two instances of PSim. It also employs a linked list
that is comprised of two parts for implementing the queue
and have all threads performing appropriate actions to link
these parts before serving requests.
All detectable algorithms we are aware of assume some

system support to ensure detectability. Those in [3, 5, 9, 47]
assume that for every thread 𝑝 , the system calls the recovery

The Performance Power of Software Combining in Persistence PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

function of the request 𝑟𝑒𝑞 that 𝑝 was executing at crash
time, with the same arguments as 𝑟𝑒𝑞. We follow the same
assumption in this paper. They also assume that 𝑝 has a
non-volatile private variable that recoverable operations and
recovery functions use for managing check-points in their
execution flow; the system sets the value of this variable to 0
just before 𝑝 initiates the execution of a new request. Instead,
we assume that 𝑝 has a toggle bit which the system toggles
each time 𝑝 invokes a request and passes it as a parameter
to the request (recall that we implement this mechanism
through the use of seq). Our algorithms can be adjusted to
work using check-pointing variables, as in [3, 5, 9, 47]. This
may require to persist private non-volatile variables for each
thread, which is expected to be of low cost [5]. The detectable
algorithms in [10, 28] assume, as here, the use of a sequence
number which is passed to recoverable operations via their
arguments. Other detectable algorithms [6] also assume that
the system persists some of the threads’ state. Ben-Baruch
et al. [9] prove that detectability cannot be achieved without
system support. Specifically, they prove that for a specific
class of objects (which include FIFO queues, considered in
this paper), any obstruction-free detectable implementation
must receive auxiliary state.
For our experiments, we tested code which is publicly

available [16, 36, 46, 49], and we focus on persistent syn-
chronization techniques, transactional memory systems and
universal constructions, whose experimental platforms pro-
vide persistent stack and queue implementations.

8 Discussion
We present PBcomb and PWFcomb, highly-efficient recov-
erable software combining protocols that are many times
faster than state-of-the-art recoverable universal construc-
tions and software transactional systems. We identify three
persistence principles, crucial for performance, and we il-
lustrate how to make the appropriate design decisions to
respect them when designing recoverable software combin-
ing protocols. Both PBcomb and PWFcomb can be used to
derive recoverable implementations of any data structure
from its sequential implementation. Thus, it is possible to
develop a software-combining API that automatically trans-
forms any data structure to fit our schemes by using a single
instance of the corresponding algorithm. Our recoverable
implementations of stacks, and the heap implementation, in-
deed follow this approach, using a single instance of PBcomb
or PWFcomb. To increase parallelism and achieve better
performance, PWFqeue (and PBqeue) employs a similar
approach as SimQueue [21, 23] utilizing two instances of
PWFcomb (PBcomb, respectively). Although this choice is
not fundamentally necessary and made the queue implemen-
tations more complicated than using a single instance, it
results in superior performance.

Coming up with a wait-free recoverable heap using PWF-
comb is a relatively easy task. We are currently working on
this direction, as well as on implementing a simple garbage
collection scheme for PWFqeue. We will include the result-
ing algorithms in future versions of our library.

Software combining restricts parallelism by executing se-
quentially all requests. Thus, PBcomb and PWFcomb, al-
though applicable, are not necessarily the best choices for im-
plementing e.g., recoverable tree-like data structures, where
threads may work on different subtrees without interfer-
ence. Experiments for PBheap illustrate that PBcomb and
PWFcomb may perform well in this case, only if the data
structure size is small or medium. In [5], we present a generic
approach for obtaining efficient recoverable such data struc-
tures, independently of their size, from their concurrent im-
plementations.
In [26], more than one instance of PSim is used to ef-

ficiently implement an extendible hashing scheme. Using
more instances of PBcomb and PWFcomb for efficiently im-
plementing recoverable hashing, or recoverable tree-like data
structures is an interesting open problem.

The performance of state-of-the-art combining protocols
[22, 31] is still far from the ideal [24]; the ideal performance
is measured in [24] by calculating the time that it takes to
a single thread to execute the total number of synchroniza-
tion requests (sidestepping the synchronization protocol)
and perform the total amount of local work that follows its
own synchronization requests. [24] proposes a technique,
called Osci, that enables batching of the synchronization
requests initiated by threads running on the same (oversub-
scribed) core. It studies the impact on performance of this
technique, when it is combined with cheap context switching
and shows that it is remarkable. Osci has performance which
is very close to the ideal. Klaftenegger et al. [37] proposes
a technique, similar to futures [7], where a thread does not
block waiting the combiner to serve its request; it rather
executes subsequent computation and may block when it
needs to access some of the variables that are updated by the
request. This technique increases parallelism and enhances
performance. The paper [37] also focuses on the case where
some of the requests do not require any response and shows
that avoiding recording of responses could have a positive
impact on performance. Examining whether the techniques
presented in [24, 37] can be extended and combined with
our results to get more efficient recoverable protocols is a
potential path for future work.
A collection of arguments to support correctness of our

protocols are provided in [25]. Using model checking or
verification techniques for further checking correctness [12]
would be a valid path to consider.

Acknowledgments
We would like to thank all the anonymous reviewers for
their helpful comments.

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Panagiota Fatourou, Nikolaos D. Kallimanis, and Eleftherios Kosmas

References
[1] Spiros N Agathos, Nikolaos D Kallimanis, and Vassilios V Dimakopou-

los. 2012. Speeding up OpenMP tasking. In European Conference on
Parallel Processing. Springer, 650–661.

[2] Abdelhalim Amer, Charles Archer, Michael Blocksome, Chongxiao
Cao, Michael Chuvelev, Hajime Fujita, Maria Garzaran, Yanfei Guo,
Jeff R Hammond, Shintaro Iwasaki, et al. 2019. Software combining
to mitigate multithreaded MPI contention. In Proceedings of the ACM
International Conference on Supercomputing. 367–379.

[3] Hagit Attiya, Ohad Ben-Baruch, Panagiota Fatourou, Danny Hendler,
and Eleftherios Kosmas. 2020. Tracking in Order to Recover - De-
tectable Recovery of Lock-Free Data Structures (SPAA ’20). Asso-
ciation for Computing Machinery, New York, NY, USA, 503–505.
https://doi.org/10.1145/3350755.3400257

[4] Hagit Attiya, Ohad Ben-Baruch, Panagiota Fatourou, Danny Hendler,
and Eleftherios Kosmas. 2021. Tracking in Order to Recover: Re-
coverable Lock-Free Data Structures. CoRR abs/1905.13600 (2021).
http://arxiv.org/abs/1905.13600

[5] Hagit Attiya, Ohad Ben-Baruch, Panagiota Fatourou, Danny Hendler,
and Eleftherios Kosmas. 2022. Detectable Recovery of Lock-Free Data
Structures. In Proceedings of the 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (Seoul, South Korea)
(PPoPP ’22). Association for Computing Machinery, New York, NY,
USA, to appear.

[6] Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. 2018. Nesting-
Safe Recoverable Linearizability: Modular Constructions for Non-
Volatile Memory. In Proceedings of the 2018 ACM Symposium on Prin-
ciples of Distributed Computing, PODC 2018, Egham, United Kingdom,
July 23-27, 2018. 7–16. http://doi.acm.org/10.1145/3212734.3212753

[7] Henry C. Baker and Carl Hewitt. 1977. The Incremental Garbage Col-
lection of Processes. In Proceedings of the 1977 Symposium on Artificial
Intelligence and Programming Languages. Association for Computing
Machinery, New York, NY, USA, 55–59. https://doi.org/10.1145/800228.
806932

[8] H. Alan Beadle, Wentao Cai, Haosen Wen, and Michael L. Scott. 2020.
Nonblocking Persistent Software Transactional Memory. In Proceed-
ings of the 25th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming (San Diego, California) (PPoPP ’20). As-
sociation for Computing Machinery, New York, NY, USA, 429–430.
https://doi.org/10.1145/3332466.3374506

[9] Ohad Ben-Baruch, Danny Hendler, and Matan Rusanovsky. 2020. Up-
per and Lower Bounds on the Space Complexity of Detectable Ob-
jects. In Proceedings of the 39th Symposium on Principles of Distributed
Computing (Virtual Event, Italy) (PODC ’20). Association for Comput-
ing Machinery, New York, NY, USA, 11–20. https://doi.org/10.1145/
3382734.3405725

[10] Naama Ben-David, Guy E. Blelloch, Michal Friedman, and Yuanhao
Wei. 2019. Delay-Free Concurrency on Faulty Persistent Memory. In
The 31st ACM Symposium on Parallelism in Algorithms andArchitectures
(Phoenix, AZ, USA) (SPAA ’19). Association for Computing Machinery,
New York, NY, USA, 253–264. https://doi.org/10.1145/3323165.3323187

[11] Guy E. Blelloch and Yuanhao Wei. 2020. Brief Announcement: Con-
current Fixed-Size Allocation and Free in Constant Time. In 34th In-
ternational Symposium on Distributed Computing (DISC 2020) (Leibniz
International Proceedings in Informatics (LIPIcs)), Hagit Attiya (Ed.),
Vol. 179. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 51:1–51:3. https://doi.org/10.4230/LIPIcs.DISC.2020.51

[12] A. Bouajjani, M. Emmi, C. Enea, and S.O. Mutluergil. 2017. Proving
Linearizability Using Forward Simulations. In In: Majumdar R., Kuncak
V. (eds) Computer Aided Verification. (CAV ’17), Vol. 10427. Lecture
Notes in Computer Science, Springer, Cham., New York, NY, USA.
https://doi.org/10.1007/978-3-319-63390-9_28

[13] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014.
Atlas: Leveraging Locks for Non-Volatile Memory Consistency. SIG-
PLAN Not. 49, 10 (Oct. 2014), 433–452. https://doi.org/10.1145/2714064.
2660224

[14] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-
jesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps:
Making Persistent Objects Fast and Safe with next-Generation, Non-
Volatile Memories. SIGARCH Comput. Archit. News 39, 1 (March 2011),
105–118. https://doi.org/10.1145/1961295.1950380

[15] Nachshon Cohen, Rachid Guerraoui, and Igor Zablotchi. 2018. The
Inherent Cost of Remembering Consistently. In Proceedings of the 30th
on Symposium on Parallelism in Algorithms and Architectures (Vienna,
Austria) (SPAA ’18). Association for Computing Machinery, New York,
NY, USA, 259–269. https://doi.org/10.1145/3210377.3210400

[16] Andreia Correia, Pascal Felber, and Pedro Ramalhete. [n.d.]. The Code
for RedoDB. https://github.com/pramalhe/RedoDB. https://github.
com/pramalhe/RedoDB

[17] Andreia Correia, Pascal Felber, and Pedro Ramalhete. 2018. Romulus:
Efficient Algorithms for Persistent Transactional Memory. In Proceed-
ings of the 30th on Symposium on Parallelism in Algorithms and Ar-
chitectures (Vienna, Austria) (SPAA ’18). Association for Computing
Machinery, New York, NY, USA, 271–282. https://doi.org/10.1145/
3210377.3210392

[18] Andreia Correia, Pascal Felber, and Pedro Ramalhete. 2020. Persistent
Memory and the Rise of Universal Constructions. In Proceedings of the
Fifteenth European Conference on Computer Systems (Heraklion, Greece)
(EuroSys ’20). Association for Computing Machinery, New York, NY,
USA, Article 5, 15 pages. https://doi.org/10.1145/3342195.3387515

[19] Andreia Correia, Pedro Ramalhete, and Pascal Felber. 2020. A Wait-
Free Universal Construction for Large Objects. In Proceedings of the
25th ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming (San Diego, California) (PPoPP ’20). Association
for Computing Machinery, New York, NY, USA, 102–116. https:
//doi.org/10.1145/3332466.3374523

[20] David Dice, Virendra J Marathe, and Nir Shavit. 2012. Lock cohorting:
a general technique for designing NUMA locks. ACM SIGPLAN Notices
47, 8 (2012), 247–256.

[21] Panagiota Fatourou and Nikolaos D. Kallimanis. 2011. A Highly-
Efficient Wait-Free Universal Construction. In Proceedings of the
Twenty-Third Annual ACM Symposium on Parallelism in Algorithms
and Architectures (San Jose, California, USA) (SPAA ’11). Association
for Computing Machinery, New York, NY, USA, 325–334. https:
//doi.org/10.1145/1989493.1989549

[22] Panagiota Fatourou and Nikolaos D. Kallimanis. 2012. Revisiting the
Combining Synchronization Technique. In Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(New Orleans, Louisiana, USA) (PPoPP ’12). Association for Computing
Machinery, New York, NY, USA, 257–626. https://doi.org/10.1145/
2145816.2145849

[23] Panagiota Fatourou and Nikolaos D Kallimanis. 2014. Highly-efficient
wait-free synchronization. Theory of Computing Systems 55, 3 (2014),
475–520.

[24] Panagiota Fatourou and Nikolaos D Kallimanis. 2018. Lock Oscilla-
tion: Boosting the Performance of Concurrent Data Structures. In 21st
International Conference on Principles of Distributed Systems (OPODIS
2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[25] Panagiota Fatourou, Nikolaos D. Kallimanis, and Eleftherios Kosmas.
2021. Persistent Software Combining. CoRR abs/2107.03492 (2021).
arXiv:2107.03492 https://arxiv.org/abs/2107.03492

[26] Panagiota Fatourou, Nikolaos D. Kallimanis, and Thomas Ropars. 2018.
An Efficient Wait-Free Resizable Hash Table. In Proceedings of the 30th
on Symposium on Parallelism in Algorithms and Architectures (Vienna,
Austria) (SPAA ’18). Association for Computing Machinery, New York,
NY, USA, 111–120. https://doi.org/10.1145/3210377.3210408

https://doi.org/10.1145/3350755.3400257
http://arxiv.org/abs/1905.13600
http://doi.acm.org/10.1145/3212734.3212753
https://doi.org/10.1145/800228.806932
https://doi.org/10.1145/800228.806932
https://doi.org/10.1145/3332466.3374506
https://doi.org/10.1145/3382734.3405725
https://doi.org/10.1145/3382734.3405725
https://doi.org/10.1145/3323165.3323187
https://doi.org/10.4230/LIPIcs.DISC.2020.51
https://doi.org/10.1007/978-3-319-63390-9_28
https://doi.org/10.1145/2714064.2660224
https://doi.org/10.1145/2714064.2660224
https://doi.org/10.1145/1961295.1950380
https://doi.org/10.1145/3210377.3210400
https://github.com/pramalhe/RedoDB
https://github.com/pramalhe/RedoDB
https://doi.org/10.1145/3210377.3210392
https://doi.org/10.1145/3210377.3210392
https://doi.org/10.1145/3342195.3387515
https://doi.org/10.1145/3332466.3374523
https://doi.org/10.1145/3332466.3374523
https://doi.org/10.1145/1989493.1989549
https://doi.org/10.1145/1989493.1989549
https://doi.org/10.1145/2145816.2145849
https://doi.org/10.1145/2145816.2145849
http://arxiv.org/abs/2107.03492
https://arxiv.org/abs/2107.03492
https://doi.org/10.1145/3210377.3210408

The Performance Power of Software Combining in Persistence PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

[27] Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E. Blelloch,
and Erez Petrank. 2020. NVTraverse: In NVRAM Data Structures, the
Destination is More Important than the Journey. In Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (London, UK) (PLDI 2020). Association for Computing
Machinery, New York, NY, USA, 377–392. https://doi.org/10.1145/
3385412.3386031

[28] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Pe-
trank. 2018. A persistent lock-free queue for non-volatile memory.
ACM SIGPLAN Notices 53, 1 (2018), 28–40.

[29] Michal Friedman, Erez Petrank, and Pedro Ramalhete. 2021. Mirror:
Making Lock-Free Data Structures Persistent. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (Virtual, Canada) (PLDI 2021). Association
for Computing Machinery, New York, NY, USA, 1218–1232. https:
//doi.org/10.1145/3453483.3454105

[30] Richard L. Graham, Timothy S. Woodall, and Jeffrey M. Squyres. 2006.
OpenMPI: A Flexible High Performance MPI. In Parallel Processing and
Applied Mathematics. Springer Berlin Heidelberg, Berlin, Heidelberg,
228–239.

[31] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. 2010. Flat
combining and the synchronization-parallelism tradeoff. In Proceed-
ings of the twenty-second annual ACM symposium on Parallelism in
algorithms and architectures. 355–364.

[32] Danny Hendler, Nir Shavit, and Lena Yerushalmi. 2004. A Scalable
Lock-Free Stack Algorithm. In Proceedings of the Sixteenth Annual ACM
Symposium on Parallelism in Algorithms and Architectures (Barcelona,
Spain) (SPAA ’04). Association for Computing Machinery, New York,
NY, USA, 206–215. https://doi.org/10.1145/1007912.1007944

[33] Maurice Herlihy. 1993. A methodology for implementing highly con-
current data objects. ACM Transactions on Programming Languages
and Systems (TOPLAS) 15, 5 (nov 1993), 745–770.

[34] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016. Failure-
Atomic Persistent Memory Updates via JUSTDO Logging. SIGPLAN
Not. 51, 4 (March 2016), 427–442. https://doi.org/10.1145/2954679.
2872410

[35] Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. 2016.
Linearizability of Persistent Memory Objects Under a Full-System-
Crash FailureModel. In Proceedings of the 30th International Symposium
of Distributed Computing (Vienna, Austria) (DISC ’16), Vol. LNCS 9888.
Springer, 313–327.

[36] Nikolaos D. Kallimanis. [n.d.]. Synch: A framework for concurrent
data-structures and benchmarks. https://github.com/nkallima/sim-
universal-construction. https://github.com/nkallima/sim-universal-
construction

[37] David Klaftenegger, Konstantinos Sagonas, and Kjell Winblad. 2018.
Queue Delegation Locking. IEEE Transactions on Parallel and Dis-
tributed Systems 29, 3 (2018), 687–704.

[38] Nan Li and Wojciech Golab. 2021. Brief Announcement: Detectable Se-
quential Specifications for Recoverable Shared Objects. In Proceedings
of the 2021 ACM Symposium on Principles of Distributed Computing (Vir-
tual Event, Italy) (PODC’21). Association for Computing Machinery,
New York, NY, USA, 557–560. https://doi.org/10.1145/3465084.3467943

[39] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L. Scott, Sam H.
Noh, and Changhee Jung. 2018. IDO: Compiler-Directed Failure
Atomicity for Nonvolatile Memory. In Proceedings of the 51st Annual
IEEE/ACM International Symposium on Microarchitecture (Fukuoka,
Japan) (MICRO-51). IEEE Press, 258–270. https://doi.org/10.1109/
MICRO.2018.00029

[40] John M Mellor-Crummey and Michael L Scott. 1991. Algorithms for
scalable synchronization on shared-memory multiprocessors. ACM
Transactions on Computer Systems (TOCS) 9, 1 (1991), 21–65.

[41] Maged MMichael and Michael L Scott. 1996. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. In Proceed-
ings of the fifteenth annual ACM symposium on Principles of distributed
computing. 267–275.

[42] Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa. 1999. Execut-
ing parallel programs with synchronization bottlenecks efficiently. In
Proceedings of International Workshop on Parallel and Distributed Com-
puting for Symbolic and Irregular Applications (PDSIA ’99). 182–204.

[43] Manolis Ploumidis, Nikolaos D. Kallimanis, Marios Asiminakis, Nikos
Chrysos, Pantelis Xirouchakis, Michalis Gianoudis, Leandros Tzanakis,
Nikolaos Dimou, Antonis Psistakis, Panagiotis Peristerakis, Giorgos
Kalokairinos, Vassilis Papaefstathiou, and Manolis Katevenis. 2019.
Software and Hardware Co-design for Low-Power HPC Platforms.
In High Performance Computing. Springer International Publishing,
88–100.

[44] PMDK. [n.d.]. The Persistent Memory Development Kit.
https://github.com/pmem/pmdk/. https://github.com/pmem/pmdk/

[45] Pedro Ramalhete, Andreia Correia, Pascal Felber, and Nachshon Cohen.
2019. OneFile: A wait-free persistent transactional memory. In 2019
49th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE, 151–163.

[46] Matan Rusanovsky, Ohad Ben-Baruch, Danny Hendler,
and Pedro Ramalhete. [n.d.]. The Code for DFC.
https://github.com/matanr/detectable_flat_combining. https:
//github.com/matanr/detectable_flat_combining

[47] Matan Rusanovsky, Ohad Ben-Baruch, Danny Hendler, and Pedro
Ramalhete. 2020 (version submited at 23 December, 2020). A Flat-
Combining-Based Persistent Stack for Non-Volatile Memory. CoRR
abs/2012.12868 (2020 (version submited at 23 December, 2020)).
arXiv:2012.12868 https://arxiv.org/abs/2012.12868

[48] Thomas R.W. Scogland and Wu-chun Feng. 2015. Design and Eval-
uation of Scalable Concurrent Queues for Many-Core Architectures.
In Proceedings of the 6th ACM/SPEC International Conference on Per-
formance Engineering (Austin, Texas, USA) (ICPE ’15). Association for
Computing Machinery, New York, NY, USA, 63–74. https://doi.org/
10.1145/2668930.2688048

[49] Gal Sela and Erez Petrank. [n.d.]. The Code for Durable Queues.
https://github.com/galysela/DurableQueues. https://github.com/
galysela/DurableQueues

[50] Gal Sela and Erez Petrank. 2021. Durable Queues: The Second Amend-
ment. In Proceedings of the 33rd ACM Symposium on Parallelism in
Algorithms and Architectures. Association for Computing Machinery,
New York, NY, USA, 385–397. https://doi.org/10.1145/3409964.3461791

[51] Shahar Timnat and Erez Petrank. 2014. A practical wait-free simulation
for lock-free data structures. InACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’14, Orlando, FL, USA,
February 15-19, 2014. 357–368. http://doi.acm.org/10.1145/2555243.
2555261

[52] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and
Roy H. Campbell. 2011. Consistent and Durable Data Structures for
Non-Volatile Byte-Addressable Memory. In 9th USENIX Conference
on File and Storage Technologies, San Jose, CA, USA, February 15-17,
2011. 61–75. http://www.usenix.org/events/fast11/tech/techAbstracts.
html#Venkataraman

[53] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011.
Mnemosyne: Lightweight Persistent Memory. SIGPLAN Not. 46, 3
(March 2011), 91–104. https://doi.org/10.1145/1961296.1950379

[54] Kai Wu, Jie Ren, Ivy Peng, and Dong Li. 2021. ArchTM: Architecture-
Aware, High Performance Transaction for Persistent Memory.
(Feb. 2021), 141–153. https://www.usenix.org/conference/fast21/
presentation/wu-kai

https://doi.org/10.1145/3385412.3386031
https://doi.org/10.1145/3385412.3386031
https://doi.org/10.1145/3453483.3454105
https://doi.org/10.1145/3453483.3454105
https://doi.org/10.1145/1007912.1007944
https://doi.org/10.1145/2954679.2872410
https://doi.org/10.1145/2954679.2872410
https://github.com/nkallima/sim-universal-construction
https://github.com/nkallima/sim-universal-construction
https://doi.org/10.1145/3465084.3467943
https://doi.org/10.1109/MICRO.2018.00029
https://doi.org/10.1109/MICRO.2018.00029
https://github.com/pmem/pmdk/
https://github.com/matanr/detectable_flat_combining
https://github.com/matanr/detectable_flat_combining
http://arxiv.org/abs/2012.12868
https://arxiv.org/abs/2012.12868
https://doi.org/10.1145/2668930.2688048
https://doi.org/10.1145/2668930.2688048
https://github.com/galysela/DurableQueues
https://github.com/galysela/DurableQueues
https://doi.org/10.1145/3409964.3461791
http://doi.acm.org/10.1145/2555243.2555261
http://doi.acm.org/10.1145/2555243.2555261
http://www.usenix.org/events/fast11/tech/techAbstracts.html#Venkataraman
http://www.usenix.org/events/fast11/tech/techAbstracts.html#Venkataraman
https://doi.org/10.1145/1961296.1950379
https://www.usenix.org/conference/fast21/presentation/wu-kai
https://www.usenix.org/conference/fast21/presentation/wu-kai

PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea Panagiota Fatourou, Nikolaos D. Kallimanis, and Eleftherios Kosmas

[55] Yi Xu, Joseph Izraelevitz, and Steven Swanson. 2021. Clobber-NVM:
Log Less, Re-Execute More. In Proceedings of the 26th ACM Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Virtual, USA) (ASPLOS 2021). Asso-
ciation for Computing Machinery, New York, NY, USA, 346–359.
https://doi.org/10.1145/3445814.3446730

[56] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steve Swanson. 2020. An Empirical Guide to the Behavior and Use
of Scalable Persistent Memory. In 18th USENIX Conference on File and
Storage Technologies (FAST 20). USENIX Association, Santa Clara, CA,
169–182. https://www.usenix.org/conference/fast20/presentation/
yang

A Artifact
The artifact contains the source code and scripts to repro-
duce the experimental results for our algorithms. The code
for our algorithms can be found in the following GitHub
repository:
https://github.com/ConcurrentDistributedLab/PersistentCombining

A.1 Requirements
The following libraries are required in order to compile and
run the code:

1. A modern 64-bit multi-core machine supporting non-
volatime main memory.

2. A recent Linux distribution.
3. The gcc (version 4.8 or greater is recommended).
4. Building requires the development versions of the fol-

lowing packages:
• libnuma,
• libpapi, if the SYNCH_TRACK_CPU_COUNTERS flag
is enabled in libconcurrent/config.h,
• libvmem, necessary for building the collection of
persistent objects, and
• libpmem, necessary for building the collection of
persistent objects.

Depending on the directory in which these packages
are installed, the appropriate environment variable
(e.g., the LD_LIBRARY_PATH variable for Linux) should
contain the path to them.

A.2 Algorithms
Table 2 presents a summary of the persistent concurrent data
structures included in this artifact.

Persistent Algorithm Provided Implementations
Persistent Synchronization Protocols PBcomb, PWFcomb
Persistent Queues PBqueue, PWFqueue
Persistent Stacks PBstack, PWFstack
Persistent Heaps PBheap

Table 2. Persistent concurrent data structures in the artifact.

A.3 Reproduce experimental results
To compile the executables, the figures_pcomb_compile.sh
script should be executed. Then, to run the experiments and

produce the results of each figure in Section 6, regarding our
algorithms, the figures_pcomb_run.sh should be executed; it
creates the output files in the results directory. The folder
Expected Results contains the expected outcomes of our al-
gorithms, i.e., numbers for the average throughput (million
operations per second) or the average number of pwbs per
operation, as the number of threads increases. Table 3 pro-
vides a summary of these outcomes (as presented in the
experiments of Section 6).

Figures Experiment Description
1a throughput for PBcomb and PWFcomb
1b number of pwbs for PBcomb and PWFcomb
1c similar with 1a & versions of PBcomb and PWFcomb that do not

execute any psync
2a throughput for PBqueue (with and without recycling) and for

PWFqueue
2b number of pwbs for PBqueue and PWFqueue
3a throughput for PBqueue and PWFqueue that do not execute any pwb
3b throughput for PBstack and PWFstack (with and without recycling

or elimination)
4 throughput for PBheap with heap size 64, 128, 256, 512, and 1024

Table 3. Description of each figure presented in Section 6.

A.4 Memory reclamation (stacks and queues)
We incorporate a pool mechanism (see includes/pool.h) that
efficiently allocates and de-allocates memory for the pro-
vided concurrent stack and queue implementations. By de-
fault, memory-reclamation is enabled. It can be disabled by
selecting the SYNCH_POOL_NODE_RECYCLING_DISABLE
option in config.h.

Table 4 shows the memory reclamation characteristics of
the provided persistent objects.

Persistent Object Provided Implementations Memory Reclamation
Persistent Queues PBqueue supported

PWFqueue not supported
Persistent Stacks PBstack, PWFstack supported
Persistent Heaps PBheap supported

Table 4. Memory reclamation support.

A.5 License
This code is provided under the LGPL-2.1 License.

https://doi.org/10.1145/3445814.3446730
https://www.usenix.org/conference/fast20/presentation/yang
https://www.usenix.org/conference/fast20/presentation/yang
https://github.com/ConcurrentDistributedLab/PersistentCombining

	Abstract
	1 Introduction
	2 Preliminaries
	3 Blocking Combining and Recoverability
	4 Wait-free Recoverable Combining
	5 Recoverable Data Stuctures
	6 Performance Evaluation
	7 Related Work
	8 Discussion
	Acknowledgments
	References
	A Artifact
	A.1 Requirements
	A.2 Algorithms
	A.3 Reproduce experimental results
	A.4 Memory reclamation (stacks and queues)
	A.5 License

