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Abstract
This paper presents a generic approach for deriving de-
tectably recoverable implementations of many widely-used
concurrent data structures. Such implementations are appeal-
ing for emerging systems featuring byte-addressable non-
volatile main memory (NVMM), whose persistence allows to
efficiently resurrect failed threads after crashes. Detectable
recovery ensures that after a crash, every executed operation
is able to recover and return a correct response, and that the
state of the data structure is not corrupted.

Our approach, called Tracking, amends descriptor objects
used in existing lock-free helping schemes with additional
fields that track an operation’s progress towards comple-
tion and persists these fields in order to ensure detectable
recovery. Tracking avoids full-fledged logging and tracks the
progress of concurrent operations in a per-thread manner,
thus reducing the cost of ensuring detectable recovery.

We have applied Tracking to derive detectably recoverable
implementations of a linked list, a binary search tree, and
an exchanger. Our experimental analysis introduces a new
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way of analyzing the cost of persistence instructions, not by
simply counting them but by separating them into categories
based on the impact they have on the performance. The anal-
ysis reveals that understanding the actual persistence cost
of an algorithm in machines with real NVMM, is more com-
plicated than previously thought, and requires a thorough
evaluation, since the impact of different persistence instruc-
tions on performance may greatly vary. We consider this
analysis to be one of the major contributions of the paper.

CCS Concepts: • Theory of computation→ Concurrent
algorithms; •Computingmethodologies→Concurrent
algorithms; • Information systems→ Data structures;
• Hardware→ Non-volatile memory.

Keywords: non-volatile memory, NVM-based computing,
persistence, recoverable algorithms and data structures, con-
current data structures, linked-list, tree, exchanger, synchro-
nization, lock-freedom, persistence cost analysis

1 Introduction
The availability of byte-addressable non-volatile main mem-
ory (NVMM) has increased the interest in the crash-recovery
model, in which failed threads may be resurrected after the
system crashes. Of particular interest is the design of re-
coverable concurrent objects (also called persistent [10, 12]
or durable [46]), whose operations can recover from crash-
failures. It is also important to be able to tell after recovery
whether an operation was completed and if so, what its
response was, a property called detectable recovery [3, 25].
This is because, in some applications, re-executing completed
operations may result in undesirable outcomes. Moreover,
detectable recovery allows a programmer to easily predict
which operations’ responses are correct in systems with
crashes, enhancing ease of programming in such systems.
As in database systems, detectable recovery can be sup-

ported by precisely logging the progress of computations
to non-volatile storage, and replaying the log during recov-
ery. However, logging imposes significant overheads in time
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and space. In the context of concurrent data structures, full-
fledged logging is not needed and the progress of an opera-
tion can be tracked individually. Moreover,many lock-free im-
plementations already encompass such tracking mechanisms,
which can be easily adapted to support detectable recovery.
This leads to the Tracking approach for designing recoverable
objects, based on explicitly maintaining information tracking
an operation’s progress as it executes, stored in non-volatile
memory. This information allows a thread to decide, upon
recovery, whether the operation’s effect has become visible
to other threads, and if it did, determine the response of the
operation. (See Section 3.)

In many cases, Tracking requires small changes to the orig-
inal code. It significantly saves on the cost (in both time and
memory) by simply tracking specific stages of the execution
of an operation. Even more, this can often be piggybacked
on information already tracked by lock-free concurrent data
structures, within operation descriptors. This means that oper-
ations efficiently maintain and persist sufficient information
for recovery, and that the corresponding recovery code in-
fers whether the operation took effect before the failure,
in which case its response value is computed and returned.
These properties are what make our approach attractive.

Tracking is widely applicable—it can be used to derive
recoverable versions of a large collection of concurrent data
structures. We have applied it to derive a linked list (based
on [29], in Section 4), a binary search tree (based on [19]), and
an exchanger object (based on [43]). Tracking informs how
persistence instructions [32] (such as pwb, pfence and psync,
which are implemented with flushes and fences) should be
inserted for ensuring an implementation’s correctness in an
efficient manner, when cache memories are volatile and their
content is lost upon a failure [32] (see Section 3).
We provide an experimental analysis (Section 5) which

compares the performance of Tracking with all other generic
schemes we are aware of that can be used for deriving de-
tectable recoverable data structures, as well as with many pre-
vious, publicly-available, schemes that ensure only durable
linearizability [15, 16, 41]. For our experimental analysis,
we took on the challenge of implementing (in C++) a hand-
tuned, highly-optimized version of detectably recoverable
linked lists using Capsules [6]. Capsules is a general transfor-
mation for achieving detectability, which can be applied to a
concurrent algorithm that uses only read andCAS operations
in order to make it detectably recoverable. The optimized
version (Capsules-Opt) we implemented exhibits the best
performance among the competitors. Experiments show that
in most cases, Tracking performs better than Capsules-Opt
and all other competitors. However, closer inspection re-
vealed that Tracking executes more persistence instructions
than Capsules-Opt. This came as a surprise and caused us
to perform a more comprehensive experimental analysis to
understand the reasons. The analysis revealed the follow-
ing interesting points: 1) The impact of persistence fences

(psync and pfence) in the machine with Intel Optane we are
working on is negligible; after removing all such instructions
from our algorithms, we do not see any important impact in
performance. 2) Different flush instructions have different
impact in performance. Specifically, those flushes that are ap-
plied on a private non-volatile variable of a thread (such vari-
ables are usually used by the thread for tracking its progress
and flushing them is necessary for ensuring detectability),
or on newly allocated data that is not yet shared, are cheap,
whereas others that access shared highly-contended vari-
ables are expensive.
Our experimental analysis categorizes code lines of per-

sistence instructions based on the impact they have in per-
formance at different interleavings. By doing so, we see that
the persistence instructions in Tracking are mostly cheap,
whereas Capsules performs mostly expensive persistence
instructions. This results in a higher persistence cost for
Capsules than for Tracking. Our analysis reveals that to fully
understand the performance of a persistent algorithm, ex-
periments providing quantitative data (i.e., measuring the
number of flushes and fences) are not enough. More work
is necessary to figure out from which specific flush instruc-
tions the actual persistence cost comes and try to avoid them
whenever possible. We consider the above insights and the
experimental scheme we propose to be major contributions
of the paper.

Summarizing, the main contributions of this paper are:
• We propose Tracking, a new transformation for deriv-
ing detectably recoverable implementations of concur-
rent data structures.

• We show how persistence instructions can be added in
systemswith volatile caches in amanner that enhances
efficiency and scalability.

• We apply Tracking to get new detectably recoverable
implementations of several data structures.

• We provide an experimental analysis to compare with
all existing detectably recoverable transformations we
are aware of. Tracking exhibits better performance
than all its competitors in most cases.

• The experimental analysis reveals that the persistence
instructions should be categorized based on the impact
they have in performance. We provide a novel experi-
mental scheme to do so and explore the characteristics
of persistence instructions in different categories.

2 System Model
We consider a system of asynchronous crash-prone threads
which communicate through base objects supporting atomic
read, write, and Compare&Swap (CAS) primitive operations.

We assume that the main memory is non-volatile, whereas
the data in the cache or registers are volatile. Thus, writes
can be persisted to the non-volatile memory using explicit
flush instructions, or when a cache line is evicted. Under
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explicit epoch persistency [32], a write-back to persistent stor-
age is triggered by a persistent write-back (pwb) instruction; a
pwb flushes all fields fitting in a cache line. The order of pwbs
is not necessarily preserved. A pfence instruction orders
preceding pwbs before all subsequent pwbs. A psync instruc-
tion waits until all previous pwbs complete the write backs.
For each location, persistent write-backs preserve program
order. We assume the Total Store Order (TSO) model, sup-
ported by the x86 and SPARC architectures, where writes
become visible in program order.
At any point during the execution of an operation, a

system-wide crash-failure (or simply a crash) resets all volatile
variables to their initial values. Failed threads are recovered
by the system asynchronously, independently of each other;
the system may recover only a subset of these threads before
another crash occurs.

A thread q invokes Op to start its execution; Op completes
by returning a response value, which is stored to a local vari-
able of q (and thus it is lost if a crash occurs before q persists
it). A recoverable operation Op has an associated recovery
function, denoted Op.Recover, which the system calls when
recovering q after a system-failure that occurred while it was
executing Op. The recovery code is responsible for finishing
Op’s execution and returning its response. Thread 𝑞 may in-
cur multiple crashes while executing Op and/or Op.Recover.
We assume that the system invokes Op.Recover with the
same arguments as those with which Op was invoked when
the crash occurred. For each thread q, we also use a non-
volatile private variable CP𝑞 , that recoverable operations
and recovery functions use for managing check-points in
their execution flow.1 When 𝑞 invokes a recoverable opera-
tion Op, the system sets CP𝑞 to 0 just before Op’s execution
starts. CP𝑞 can be read and written by recoverable opera-
tions (and their recovery functions). CP𝑞 is used by q in order
to persistently report that the execution reached a certain
point. The recovery function can use this information in or-
der to correctly recover and to avoid re-execution of critical
instructions such as CAS.

Op is completed either directly or when, after one or more
crashes, the execution of the last instance of Op.Recover
invoked for q is complete. An execution is durably lineariz-
able [33], if the effects of all operations that have completed
before a crash are reflected in the object’s state upon recovery.
In addition to durable linearizability, we ensure detectabil-
ity [25]: it is possible to determine, upon recovery, whether
the operation took effect, and if it did, its response value.
Detectable recoverability ensures durable linearizability and
detectability.

A recoverable implementation is lock-free, if in every infi-
nite execution produced by the implementation, which con-
tains a finite number of system crashes, an infinite number
of operations complete.
1System support is necessary for designing detectable algorithms [5].

3 The Tracking Approach
Consider an implementation of a data structure that is rep-
resented as a set of nodes, each with data fields and pointers
to other nodes in the data structure. Figure 1(a) provides
an example of a sorted linked list with two sentinel nodes
implementing the set {3, 8, 15, 27}.
We first provide an overview of how Tracking works.

Each operation Op is associated with an operation descriptor,
tracking the information needed to complete Op. Moreover,
each node is augmented with a special info field, containing
a pointer to an operation descriptor, which may be tagged.
Intuitively, when an operation Op tags a node, it is like if it
puts a “soft” lock on it to ensure that it will not be updated
by other operations until Op completes. The node may be
later untagged, thus releasing the soft lock on it.
Briefly, in Tracking, the execution of an operation Op,

initiated by a thread 𝑞, takes place in phases. The first phase
is the gather phase, where 𝑞 searches in the data structure to
find the nodes that may be affected by Op, i.e., those nodes
that Op will attempt to update or delete, nodes that need
to be tagged for performing these updates and deletions, as
well as nodes that contain values the operation will return or
are needed to determine the operation’s response. This set
of nodes is called the AffectSet of Op. In our example linked
list, a successful insert (or delete) affects the last two nodes
it accesses during its search, and a Find (or an unsuccessful
update) affects only the last node it accesses.

Thread𝑞 then performsOp’s helping phase, where it checks
if any node nd in Op’s AffectSet is already tagged by another
operation Op′. If this is so, 𝑞 uses the information in Op′’s
operation descriptor to help Op′ complete. Next, 𝑞 proceeds
to the tagging phase of Op, where it attempts to tag each of
the nodes in AffectSet, storing a pointer to Op’s descriptor in
the info fields of these nodes (using CAS). After a successful
tagging phase, Op can proceed to its update phase, where
all its updates are applied. Next, Op’s response is recorded
in Op’s descriptor, and finally, the nodes in Op’s AffectSet
are untagged (cleanup phase). The tagging phase may not
succeed if some node nd in Op’s AffectSet is already tagged
by another operation Op′. Then, 𝑞 untags all nodes it has
already tagged and re-starts the execution of Op.
To support detectable recovery, when 𝑞 recovers from a

crash that occurred while executing Op, its recovery code
must be able to access Op’s descriptor. This is achieved by al-
locating, for every thread 𝑞, a designated persistent recovery
data variable, 𝑅𝐷𝑞 , that stores a reference to the descriptor
of its last operation. To ensure detectable recovery, thread q,
and every thread helping Op, sets the result in the descrip-
tor before untagging the relevant nodes. Upon recovery, 𝑞
reads a reference to its last descriptor from 𝑅𝐷𝑞 and uses
it to complete its last operation Op. If the result field of the
descriptor is set, Op took effect, and 𝑞 returns its value. Oth-
erwise, Op did not take effect and it can be restarted. Even
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Algorithm 1: Tracking - Op and Op-Recover (code
for thread 𝑞)

Procedure Op (args)
1 Info *opInfo := new Info ()
2 𝑅𝐷𝑞 := Null
3 pbarrier (𝑅𝐷𝑞 )
4 𝐶𝑃𝑞 := 1
5 pwb (𝐶𝑃𝑞 ); psync
6 while true do
7 Gather Phase
8 Traverse the data structure gathering pairs

⟨nd, ndinfo⟩ of pointers to those nodes (and to
their info fields) that Op will affect, e.g. will try to
update or delete, as well as nodes that contain
the values the operation will return (the info field
of each node is gathered on the first access to it)

9 AffectSet := list of all such pairs

10 Helping Phase
11 if there is a tagged ndinfo field in a pair of AffectSet

then
12 Help(ndinfo)
13 continue

14 WriteSet := list of structs of type Update containing
those fields of nodes from AffectSet that have to
change, together with an old and a new value for each
of them to perform the change using CAS

15 NewSet := list of newly allocated nodes that are
necessary to execute the operation, tagged with opInfo

16 ∗opInfo := ⟨Op,AffectSet,WriteSet,NewSet,⊥⟩ // ⊥
for result

17 if WriteSet = ∅ and AffectSet contains only one element
then

18 opInfo → result := response determined based on
opInfo

19 pbarrier (*opInfo, NewSet)
20 𝑅𝐷𝑞 := opInfo
21 pwb (𝑅𝐷𝑞 ); psync
22 if WriteSet = ∅ and AffectSet contains only one element

then
23 return opInfo→result
24 Help(opInfo)
25 if opInfo→result ≠ ⊥ then return opInfo→result
26 opInfo := new Info ()

Procedure Op-Recover (args)
27 Info *opInfo := RD𝑞

28 if CP𝑞 = 0 or opInfo = Null then Re-invoke Op (args)
29 Help(opInfo)
30 if opInfo→result ≠ ⊥ then return opInfo→result
31 else re-invoke Op

if Op performed changes that have been later obliterated by
other operations, the result field of Op would still be set.

Many lock-free implementations of data structures (e.g., [4,
18, 19, 23, 48]) follow a similar tracking approach to enable

Algorithm 2: Tracking - Help (code for thread 𝑞)

Procedure Help (Info *opInfo)
32 Tagging Phase
33 ⟨nd, ndinfo⟩ := head of opInfo→AffectSet
34 while nd ≠ Null do
35 res := CAS(nd→info, ndinfo, getTagged(opInfo))
36 pwb (nd→info)
37 if res ≠ ndinfo and res ≠ getTagged(opInfo) then
38 Backtrack Phase
39 ⟨nd, ndinfo⟩ := previous element in

AffectSet
40 while nd ≠ Null do
41 CAS(nd→info, getTagged(opInfo),

getUntagged(opInfo))
42 pwb (nd→info)
43 ⟨nd, ndinfo⟩ := previous element in

AffectSet

44 psync

45 return

46 ⟨nd, ndinfo⟩ := next element in AffectSet

47 psync

48 Update Phase
49 foreach Update structure st in WriteSet do
50 perform the update by executing CAS based on

information contained in st
51 pwb (updated field)

52 opInfo→result := response of the operation described by
opInfo

53 pwb (opInfo→result); psync
54 Cleanup Phase
55 foreach node nd in (AffectSet ∪ NewSet) which is still

part of the data structure do
56 CAS(nd→info, getTagged(opInfo),

getUntagged(opInfo))
57 pwb (nd→info)

58 psync

helping and ensure global progress. They associate an op-
eration descriptor with each update operation, tracking the
progress of the update by storing sufficient information to
allow its completion by concurrent operations. This scheme
goes a long way towards making a data structure recover-
able: updates are idempotent and not susceptible to the ABA
problem, since they must ensure that an update is done ex-
actly once, even if several threads attempt to concurrently
help it complete. Tracking takes advantage of such helping
mechanisms to provide detectable recovery: it piggybacks
the data needed for persistence within the descriptors that
are already used by the helping mechanism. This saves in
cost and results in small changes to the original code.
Detailed description. High-level pseudocode for Tracking
appears in Algorithms 1 and 2; code in blue, dealing with
recoverability, and code in red, dealing with an optimization
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for read-only operations, are explained below.We implement
tagging by setting the least significant bit of info. The node
pointer to the descriptor is tagged when it is first installed
in nd. A node is tagged if its info field is tagged. GetTagged
(getUntagged) returns a tagged (untagged) version of its ar-
gument without changing its value.

An execution of an operationOp by a thread𝑞 goes through
one or more attempts, each of which is an iteration of a while
loop, until one of them is successful and Op returns. In each
attempt, Op first executes its gather phase, computing its
AffectSet, which is a set of pairs, each comprised of a pointer
to a node and the value of its info field.
Op then proceeds to its helping phase. If an info field

ndInfo (of a node nd) in AffectSet is tagged, then Help is
used to complete the operation that tagged the node, before
starting a new attempt. After the helping phase, theWriteSet
and the NewSet—needed to complete Op—are created. The
WriteSet contains those fields of nodes from AffectSet that
need to change, together with an old and a new value for
each of them (needed to perform the change using CAS).
The NewSet contains all newly allocated nodes by Op that
are necessary for applying its updates (all these nodes are
initially tagged with a pointer to Op’s descriptor). Then, the
type ofOp, itsAffectSet, itsWriteSet, itsNewSet, and the value
⊥ (which is the initial value for the result field) are stored in
Op’s descriptor. Next,Help is called with parameter opInfo, a
pointer to Op’s descriptor, to complete Op itself. When Help
returns, if the result field of Op’s descriptor is not equal to
⊥, then Op has been performed and its result is returned;
otherwise, a new attempt is started.

Help applies CAS to try to install opInfo in every node of
AffectSet, in order. If any of these CAS fails or the associated
info field is tagged by another operation, then a backtrack
phase untags the nodes in AffectSet, in reverse order. After
backtracking, Help returns. If every node of AffectSet is suc-
cessfully tagged with opInfo, then all changes to theWriteSet
are being performed and the result field is updated. Finally,
the cleanup phase untags every node of AffectSet and NewSet
still in the data structure.

If Help completes the tagging phase, it returns only after
Op takes effect: all CAS operations are applied to itsWriteSet,
its result is updated and the cleanup phase is done. Otherwise,
Op does not take effect.
Figure 1(b) shows how the example linked list looks like

after the tagging phase of a Delete(15) operation completes
successfully. The operation descriptor of Delete(15) con-
tains its AffectSet and itsWriteSet (the NewSet is empty since
a delete does not allocate any new node, so it is not shown
in the figure). The AffectSet contains two pairs, containing
information for nodes 8 and 15, respectively. The WriteSet
contains a triple, containing the next field of node 8, its old
value which is a pointer to node 15, and its new value which
is a pointer to node 27 . The result field of the descriptor has
not yet been set. Figure 1(c) shows the state of the linked list

Figure 1. Example of how Tracking works on a sorted linked
list.

after the cleanup phase of Delete(15) is over. The next field
of node 8 has been updated to point to node 27 , so node 15
has been deleted. The info fields of nodes 8 and 15 still point
to the operation descriptor of Delete(15) but node 8 is now
untagged, whereas node 15 will remain tagged forever. The
result field of the descriptor now contains the value true.
We make the following assumptions on the original imple-

mentation: (a) It does not store the same value into a shared
variable more than once, and therefore it handles the ABA
problem. (b) The nodes in the AffectSet or WriteSet are ac-
cessed in the same order. This order can be imposed in many
ways and is not necessarily fixed at the beginning of the
execution. For example, in a binary search tree, ordering can
be determined by inorder or other traversal orders. (c) Help
is idempotent, i.e., its changes are applied exactly once in-
dependently of how many times they are performed. This
assumption is reasonably general, as many existing concur-
rent data structures satisfy it (e.g., [8, 19, 22, 38]).

Help succeeds in updating theWriteSet, unless some other
thread has started the cleanup phase for Op, implying that
the WriteSet has already been updated. Thus, Op succeeds
after q collects a consistent set of nodes, which do not change
until updates on the WriteSet are completed. We linearize
Op at the beginning of the update phase. At this point, Op is
guaranteed to complete, and other operations accessing any
node in the AffectSet must first help Op to complete.

To support detectable recovery, a pointer to the descriptor
used in each attempt is stored in RD𝑞 before Help is called.
If the check-point is not set or RD𝑞 is still Null, Op has
made no changes and can simply be restarted. Otherwise,
the descriptor pointed to by RD𝑞 , opInfo, indicates whether
the last attempt of Op was successful, and if not, whether it
crashed while making changes. Since Help is idempotent,
recovery can call Help(opInfo) to complete Op, in case it is
still in progress. When Help returns, either Op took effect
and result stores its response, or it did not and result is ⊥;
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in the latter case, Op can be re-invoked. It is necessary to
call Help first, to deal with the case in which result has been
written but the operation still needs to clean up, in order to
keep the data structure in a consistent state, without nodes
tagged by Op. Linearizability and lock-freedom for Tracking
are discussed in [2].
Persistence instructions. After setting the check-point,
allocating a descriptor and storing a reference to it in 𝑅𝐷𝑞 , a
pwb followed by a psync ensures that the data is accessible
upon recovery. A pbarrier after initializing 𝑅𝐷𝑞 ensures
that pwbs are executed in program order. We also insert pwb
after every CAS and write in Help. A psync at the end of
every phase persists its changes before the next phase.
An attempt to execute the changes of an operation Op,

with a descriptor opInfo, happens after tagging is complete
and persisted in Help(opInfo). A crash before tagging ends
may result in an old copy for the info field of some nodes,
but in this case, no thread started the update phase using
the lost opInfo. Thus, upon recovery, the initiator of Op will
call Help(opInfo) to tag again. Nodes are updated only af-
ter all nodes in AffectSet and NewSet are tagged and per-
sisted. Every operation affected by these nodes first com-
pletesHelp(opInfo). A node is untagged in the cleanup phase,
after all changes of Op and its result field are persisted.
A crash during cleanup may cause an untagged node nd

to be tagged, although another operation Op′ might have
tagged nd in the meantime. Then, the tagging phase by Op′

is yet to be completed, and both Op and Op′ invoke Help at
recovery time. Therefore, Op must first untag nd before Op′
can tag it again.
Optimizing for read-only operations. Read-only oper-
ations are supported by many concurrent data structures,
e.g., Find in those implementing dictionaries, where the
AffectSet contains just a single element; moreover, they de-
termine their response values based on node fields that are
immutable. Under these conditions, Tracking can be opti-
mized so that a thread q executing such a read-only opera-
tion Op is performed without executing Help for Op, i.e., by
skipping the last three phases of Tracking. Supporting this
optimization requires small additions in Algorithm 1 (code
in red). However, they affect the way we assign lineariza-
tion points to read-only operations: A read-only operation
Op (that satisfies the optimization condition) is linearized
at the point that the info field of the single node added in
the AffectSet is read in Op’s last attempt. More details are
provided in [2].

4 Detectably Recoverable Linked List
We illustrate how to apply Tracking (Algorithms 1 and 2)
to get a detectably recoverable linked list. As in our exam-
ple, the list is sorted in increasing order of keys, with two
sentinel nodes, head and tail, holding keys −∞ and +∞. A
node nd may be tagged either for update (indicating its next

type Node {
𝐾𝑒𝑦 ∪ {∞,−∞} key
Node *next
Info *info

}
type Info {

{Delete, Insert, Find} opType
Set AffectSet;
SetWriteSet;
Set NewSet;
boolean result

}
⊲ Initialization:

Shared Node: *head with key −∞, *tail with key ∞.
head → next points to tail, tail → next points to Null.
Both info fields are Null.

Figure 2. Recoverable Linked List types and initialization.

field is about to change), in which case it is untagged after
the update completes, or for deletion (indicating it is to be
deleted), in which case it remains tagged forever. When nd
is tagged, its descriptor contains information necessary to
complete the operation that tagged nd. A field opType in the
descriptor indicates the operation type (Insert or Delete).
The data types, shared variables, and initialization values of
the algorithm appear in Figure 2.
An instance 𝑂𝑝 of Insert(𝑘) (Algorithm 3), executed by

a thread 𝑞, calls Search during its gather phase (Lines 9-10)
to get pointers pred and curr to the nodes between which
𝑘 should be added, and their info fields. If 𝑂𝑝 is successful,
these are the nodes contained in 𝑂𝑝’s AffectSet. Thus, the
helping phase (Lines 14-18) simply checks whether these
two nodes are tagged and calls Help if needed.
If the key 𝑘 to be inserted is already in the list, 𝑂𝑝 is

read-only and behaves like a Find. In this case, the AffectSet
includes just the last node accessed by its search, and we
apply the optimization for read-only operations (Lines 21-23,
31). Otherwise, 𝑂𝑝 calls Help of Algorithm 2 (Line 32), after
recording the appropriate AffectSet, WriteSet, and NewSet in
𝑂𝑝’s 𝐼𝑛𝑓 𝑜 (Lines 12-13, and 25-27).

Delete is simpler than Insert since it does not allocate
new nodes. Algorithm 4 provides the pseudocode forDelete
and Find. Find(𝑘) is read-only and computes its response
based on immutable fields. Moreover, its AffectSet contains
just the node pointed by 𝑐𝑢𝑟𝑟 . Therefore, Find is optimized to
avoid installing a descriptor. Recovery is achieved in exactly
the same way as in Algorithm 1.

5 Evaluation
Evaluated Implementations. For our experiments, we use
the Harris’ ordered linked list [29, 30] as our example data
structure. We compare our general approach (described in
Algorithms 1 and 2) with capsules [6]. Capsules partition
their code into capsules, each containing a single CAS oper-
ation, and replace each CAS with a recoverable version of
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Algorithm 3: Recoverable Linked List - Insert and
auxiliary function Search (code for thread 𝑞)

Procedure boolean Insert (T key)
1 Node *newcurr := new Node (⊥,Null,Null)
2 Node *newnd := new Node (key, newcurr, Null)
3 Info *opInfo := new Info ()
4 𝑅𝐷𝑞 := ⊥
5 pbarrier (𝑅𝐷𝑞 )
6 CP𝑞 := 1 // check-point; 𝑅𝐷𝑞 is initialized

7 pwb (CP𝑞 ); psync
8 while true do
9 Gather Phase // search for location to insert
10 ⟨pred, curr, predInfo, currInfo⟩ := Search(key)
11 if curr→key = key then
12 AffectSet := { ⟨curr,currInfo⟩ }
13 else AffectSet:= { ⟨pred,predInfo⟩, ⟨curr,currInfo⟩ }
14 Helping Phase // help other if necessary
15 if isTagged(predInfo) then
16 Help (predInfo); continue
17 else if isTagged(currInfo) then
18 Help (currInfo); continue

19 newcurr := ⟨curr → key, curr → next,
getTagged(opInfo)⟩

20 newnd → info := getTagged(opInfo)
21 if curr → key = key then // key in list
22 WriteSet:= NewSet:= ∅;
23 opInfo → result := false

24 else
25 WriteSet:= { ⟨pred→next, curr, newnd ⟩ }
26 NewSet:= {newnd, newcurr }
27 *opInfo := ⟨Insert, AffectSet, WriteSet, NewSet, ⊥⟩
28 pbarrier (newcurr, newnd, *opInfo)
29 𝑅𝐷𝑞 := opInfo // info for current attempt

30 pwb (𝑅𝐷𝑞 ); psync
31 if curr → key = key then return false

32 Help(opInfo)
33 if opInfo → result ≠ ⊥ then return opInfo → result
34 opInfo := new Info ()

Procedure ⟨Node∗, Node∗, Info∗, Info∗⟩ Search (T
key)

35 Node *pred, *curr
36 Info *predInfo, *currInfo
37 curr := head
38 currInfo := head →info
39 while curr→key < key do
40 pred := curr
41 predInfo := currInfo
42 curr := curr → next
43 currInfo := curr → info

44 return ⟨pred, curr, predInfo, currInfo⟩

it [3]. In general, a single operation may be partitioned to
multiple capsules, but for the restricted case of a normalized
implementation [45], capsules can be optimized so that each

Algorithm 4: Recoverable Linked List: Delete and
Find (code for thread 𝑞)

Procedure boolean Delete (T key)
45 Info *opInfo := new Info ()
46 𝑅𝐷𝑞 := Null
47 pbarrier (𝑅𝐷𝑞 )
48 CP𝑞 := 1 // check-point; 𝑅𝐷𝑞 is initialized

49 pwb (CP𝑞 ); psync
50 while true do
51 Gather Phase // search for node to delete
52 ⟨pred, curr, predInfo, currInfo⟩ := Search(key)
53 if curr→key ≠ key then
54 AffectSet := { ⟨curr,currInfo⟩ }
55 else AffectSet:= { ⟨pred,predInfo⟩, ⟨curr,currInfo⟩ }
56 Helping Phase // help other if necessary
57 if isTagged(predInfo) then
58 Help(predInfo)
59 continue
60 else if isTagged(currInfo) then
61 Help(currInfo)
62 continue

63 if curr→ key ≠ key then
64 WriteSet:= ∅
65 opInfo → result := false

66 else
67 WriteSet:= { ⟨pred→next, curr, curr → next ⟩ }
68 *opInfo := ⟨Delete, AffectSet, WriteSet, ∅, ⊥⟩
69 pbarrier (*opInfo)
70 𝑅𝐷𝑞 := opInfo // info for current attempt

71 pwb (𝑅𝐷𝑞 ); psync
72 if curr→ key ≠ key then return false

73 Help(opInfo, true)
74 if opInfo → result ≠ ⊥ then return opInfo → result
75 opInfo := new Info ()

Procedure boolean Find (T key)
76 Info *opInfo := new Info ()
77 while true do
78 Gather Phase
79 ⟨−, curr,−, currInfo⟩ := Search (key)
80 AffectSet:= { ⟨curr,currInfo⟩ }
81 Helping Phase
82 if IsTagged(currInfo) then
83 Help(currInfo)
84 continue

85 result := (curr → key = key)
86 opInfo → result := result
87 pbarrier (*opInfo)
88 𝑅𝐷𝑞 := opInfo
89 pwb (𝑅𝐷𝑞 ); psync
90 return result

operation is partitioned to only two capsules. In our exper-
iments, the normalized variant consistently outperformed
the general variant, so we only present the results of the
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former. We use the term capsules to refer to its normalized
implementation below. Determining the capsules boundaries
can be done automatically [6]. However, to appropriately
add persistence instructions to capsules without jeopardiz-
ing their applicability, it is proposed in [6] to use a general
durability transformation [32] (which adds pwb and pfence
after each access to shared memory). As our experiments
show this results in prohibitive cost.
We compare the detectably recoverable linked list im-

plementation of Section 4, which we call Tracking, with
a linked list implementation, called Capsules, we imple-
mented by applying the capsules transformation (plus the
durability transformation of [32]) to Harris’ ordered linked
list [29, 30].We also compare with Romulus [15], a detectably
recoverable transactional memory system (which is block-
ing). We also measured the performance of CX-PUC [16],
CX-PTM [16], and the Redo family of algorithms (i.e. Redo,
RedoTimed, RedoOpt), presented in [16], as well as that of
OneFile [41] (which are wait-free). RedoOpt constantly out-
performed OneFile and all other algorithms in [16], so we
present the diagrams only for RedoOpt, Capsules, and Ro-
mulus, below.
We have also undertaken the challenging task of adding

persistence instructions in a manual, hand-tuned way to
the Capsules implementation we produced. This resulted in
Capsules-Opt, in which we avoid to persist most accesses
to shared memory while traversing the list. Specifically, in
Capsules-Opt, a thread executing an operation Op with
parameter k, persists only the marked nodes it visits during
Op’s execution, as well as the nodes in the neighborhood
of Op’s target node, i.e. the two nodes preceding the first
node of the list containing a key equal to or greater than k.
If a node is logically deleted (i.e., if it is marked), all threads
traversing it must persist it. Otherwise, the following bad
scenario may happen: a thread executing Find, searching for
a node containing a key k, which has been logically deleted
without persisting its marked bit, may run to completion and
return false. Then, a crash may cause the logically deleted
node to appear in the linked list as unmarked. A subsequent
Find would then return true, which is incorrect. Persisting
the nodes in the neighborhood of an operation’s target node
is also necessary to avoid similar inconsistencies. We did not
experiment with tree-like (or other) data structures, as that
would require to produce Capsules-based implementations
for them, which is a highly challenging task.
Experimental setting and benchmarks. We used a 48-
core machine with 2 Intel Xeon Platinum 8260M 2.40GHz
CPUs, with 24 cores each, and each core executing two hard-
ware threads concurrently (for a total of 96 hardware threads).
Our machine is equipped with a 1TB Intel Optane DC per-
sistent memory (DCPMM) and the system is configured in
AppDirect mode. We use the 1.9.2 version of the Persistent
Memory Development Kit [40], which provides the pwb and

psync persistence instructions. We implement a pfence us-
ing a psync, since our machine does not support a pfence
instruction. The machine runs Linux with kernel version
3.4. Code is written in C++ and compiled using g++ (ver-
sion 4.8.5) with O3 optimizations. Each experiment lasts 10
seconds and each data point is the average of 10 experiments.
For the experiments, keys are chosen uniformly at ran-

dom from the range [1, 500]. (Experiments for other ranges
can be found in [2]; they exhibit the same trends as the dia-
grams here.) The list is initially populated by performing 250
Inserts of random keys, resulting in an almost 40%-full list.
We present update-intensive (30% finds) and read-intensive
(70% finds) benchmarks. Results for other operation type
distributions were similar.
Experimental Analysis. Throughput evaluation results are
shown in Figures 3a and 4a. The throughput of Capsules
is extremely low due to the overhead imposed by applying
the transformation in [32]. Tracking exhibits much better
performance (despite that, for preserving generality, we did
not perform any hand-tuning to optimize its performance).
We next compare Tracking with Capsules-Opt. Recall

that Capsules-Opt has been optimized in a hand-tuned
manner, whereas we did not apply any hand-tuned persis-
tence optimization to Tracking. Figures 3a and 4a show
that Tracking has better performance than Capsules-Opt
when the number of threads is large. Diagrams Tracking[no
pwbs] and Capsules-Opt[no pwbs] in Figures 3f and 4f,
show the performance of the algorithms when persistence
instructions are excluded from their code. The performance
of Capsules-Opt is better than that of Tracking, in the
absence of persistence instructions. It follows that the persis-
tence cost of Tracking is lower than that of Capsules-Opt.

We conducted a comprehensive experimental analysis to
understand in detail the persistence overhead of the two
algorithms. Figures 3b and 4b show that Tracking performs
more psync instructions than Capsules-Opt. To measure
the actual overhead of these psync instructions, we removed
psync (and thus also pfence) instructions from the code
of both algorithms (Figures 3c and 4c). Despite the large
attention that previous work [14–16, 24, 47] has paid on
reducing the number of psync instructions that are incurred
by recoverable implementations, Figures 3c and 4c show that
this overhead is negligible. Specifically, the red and purple
diagrams for Tracking are almost identical, and the same is
true for the blue and gray diagrams of Capsules-Opt. These
results show that it is not the number of psync instructions
that greatly affects the performance of the tested algorithms.
The reason for this is that a CAS on an Intel Xeon machine
serializes all outstanding store operations (that is, it waits for
them to complete) [31, Section 8.1.2.2]. Thus, a CAS behaves
like if it executes an sfence. Since a psync instruction is
implemented using sfence in our Intel machine, this has as
a result, many psync instructions to be applied on empty
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Figure 3. Throughput, number of psyncs, throughput without psyncs, number of pwbs, categorization of pwbs, and throughput
of pwb categories, for evaluated implementations, with keys in the range [1, 500] for read-intensive benchmark.

Figure 4. Throughput, number of psyncs, throughput without psyncs, number of pwbs, categorization of pwbs, and combined
impact of pwb categories, for evaluated implementations with keys in the range [1, 500] for update-intensive benchmark.
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(or nearly empty) store buffers, thus incurring negligible
performance cost.
We next focus on the pwb instructions, as it should be

those that cause the better performance of Tracking over
Capsules-Opt. Counter-intuitively, Figures 3d and 4d, show
that Tracking performs a larger number of pwb instructions
than Capsules-Opt, for all the tested benchmarks. So, we de-
cided to conduct additional experiments to measure the over-
head of each single pwb instruction. To do so, we removed
all code lines containing persistence instructions from each
persistent implementation to get its persistence-free version,
and then we measured the impact of adding each of the pwb
code lines in the persistence-free version. For simplicity of
presentation, we categorize the code lines containing pwb
instructions into three categories according to their impact
on performance, namely those with low, medium, or high
performance impact. A pwb code line has low impact, if it
results in at most 10% performance loss when inserting it.
The insertion of a code line in the second category (medium
impact) results in performance loss between 10% and 30%,
whereas if we insert a code line of the third category (high
impact), we will see more than 30% performance loss. Note
that each code line may be executed many times in an exe-
cution and thus its performance impact expresses the total
performance loss that the execution of all its instances cause.

Thus, we have three sets of code lines, namely L,M and H ,
containing the code lines that have low, medium, and high
performance impact, respectively. Figures 3e and 4e, show
that Tracking mostly performs low-cost pwbs. Just a few of
them are of medium cost, whereas no pwbs belong in the high-
cost category. In contrast, almost 50% (and in some cases up
to 70%) of the executed pwbs in Capsules-Opt are of high
cost, and the rest are mainly of low cost and some of them (up
to almost 10%) are of medium cost. Remarkably, Tracking
performs at least four low performance impact pwbs per
update operation (to persist the values of variables CP and
RD, as well as the newly allocated data). This increases the
number of pwbs that Tracking executes, without however
resulting in high performance overheads.

By inspection of the algorithms’ codes, we observed that
a low-cost pwb is applied either on a private non-volatile
variable used by a thread to track its own progress or on
newly-allocated data that has not yet become shared.We also
observed that a pwb that incurs high performance penalty is
executed on a shared variable (cache line) that is accessed by
many other threads, as such pwbs will result in a high number
of cache misses (and in increased traffic on the memory con-
troller). In particular, when pwbs precede a CAS instruction
on the same variable (or more generally, on the same cache
line), the execution time of both the pwb and the CAS can be
increased. This is because the same cache line may have to
be moved between the cache and the NVMM multiple times
(depending on the degree of contention). Specifically, the
CAS will wait for outstanding store operations to complete,

which will cause the cache line affected by the pwb to be
flushed and invalidated in cache. Then, this cache line is re-
fetched for executing the actual update of the CAS, resulting
in performance overhead. In case many threads issue first a
pwb instruction and then a CAS, on the same cache line, the
above scenario will occur repeatedly. Similar performance
overheads may arise when pwbs are executed (by different
threads) after a CAS (on the same cache line), as these pwbs
will cause cache misses (and increased traffic on the memory
controller). A psync (or pfence) instruction following pwbs
executed by different threads on the same cache line will
also cause performance overhead.

Let X be any of the three sets, L, M , or H . We say that the
X -caused performance loss is the performance loss we see
when all code lines in X are added in the persistence-free ver-
sion. Figures 5 and 6 shows the X -caused performance loss
for Tracking and Capsules-Opt, respectively, for all three
values of X . These experiments reveal that the X -caused per-
formance loss is at least as high as the impact of each code
line of category X . However, the X -caused performance loss
is not necessarily the sum of the impacts of the code lines in
X . Depending on contention, it may be higher or lower than
this sum. Thus, it is not enough to measure just the impact
of each single pwb code line. Experiments to figure out their
combined impact are also needed.

Figures 3f and 4f, illustrate this combined impact. In these
figures, we start from the original persistent algorithm, and
remove one by one the different categories of pwbs, starting
from L, continuing with M, and finally removing H, study-
ing the increase in performance that the removal of each
category causes. Not surprisingly, the diagrams show that
the removal of the pwbs of category L (low performance
impact) do not have any significant impact, since the total
persistence cost is dominated by the cost incurred by the
pwbs of the other categories. Moreover, we observe that the
removal of the pwbs of the category H has the biggest impact
in the performance of Capsules-Opt. Thus, the diagrams
show that Tracking owes its good performance to the fact
that it executes just a few medium-cost pwbs. On the con-
trary, Capsules-Opt performs a lot of high-cost pwbs. The
cost of the pwbs of category M is the dominant persistence
cost in Tracking. Capsules-Opt performs less pwbs of this
category and their combined impact is not high.
Summarizing, our results suggest that in a machine with

Intel Optane, measuring only the number of pwbs is not
enough to fully understand the persistence cost of a recov-
erable algorithm. A thorough evaluation is required since
the impact of different pwbs on performance may greatly
vary. Specifically, a categorization of the persistence instruc-
tions may be necessary to better understand their impact
on performance. This categorization, together with experi-
ments like those presented in Figures 5 and 6, reveal useful
information about the persistence cost of an algorithm. Thus,
they may provide good insights to algorithms’ designers for
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Figure 5. Impact of pwb categories on performance of
Tracking.

improving the persistence cost of their algorithms. Addition-
ally, experiments like those presented in Figures 3f and 4f,
are more useful for performing an in depth comparison of
the persistence cost of different algorithms.
Although in the algorithms we study, the psync instruc-

tions do not have any significant impact in performance, to
fully understand the performance of other recoverable al-
gorithms, a thorough evaluation may be required for psync
as well (recall e.g., that a psync instruction following pwbs
executed by different threads on the same cache line may
cause performance overhead).

6 Detectably Recoverable Versions of
Additional Data Structures

We briefly discuss additional data structures that can become
detectably recoverable by applying the Tracking approach.

Figure 6. Impact of pwb categories on performance of
Capsules-Opt.

Detectably Recoverable Binary Search Tree. The algo-
rithm in [19] (LF-BST) implements a leaf-oriented (external)
binary search tree. It uses CAS to flag an internal node when-
ever a child pointer of it is to be changed, and to mark it
whenever it is to be deleted. A thread 𝑝 , executing an update
𝑂𝑝 , allocates a descriptor where it records the information
needed by other threads to help 𝑂𝑝 complete. Each internal
node contains an update field which stores a reference to a
descriptor and a 2-bits 𝑠𝑡𝑎𝑡𝑢𝑠 field which indicates whether
the node is flagged for insertion, flagged for deletion,marked,
or clean. Each successful flag or mark CAS installs a pointer
to the descriptor of the relevant operation in the update field
of the node it is applied on.
We employ Tracking (Algorithms 1 and 2) to make LF-

BST detectably recoverable. The data types, shared variables,
and initialization values of the detectably recoverable binary
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type Internal { ⊲ subtype of Node
𝐾𝑒𝑦 ∪ {∞1,∞2 } key
Node *left, *right
Info *info

}
type Leaf { ⊲ subtype of Node

𝐾𝑒𝑦 ∪ {∞1,∞2 } 𝑘𝑒𝑦
}
⊲ Initialization:
Internal *Root := pointer to new Internal node with key field∞2,

info field Null, and pointers to new Leaf nodes with keys∞1
and ∞2, respectively, as left and right fields.
⊲ Assume the set contains two special values,∞1 < ∞2, such that
every other key k, ∞1 < k < ∞2

Figure 7. BST type definitions and initialization.

search tree implementation appear in Figure 7. Algorithms 5
and 6 present the code for Insert and Delete.
Consider an operation 𝑂𝑝 and let 𝑙 , 𝑝 and 𝑔𝑝 be pointers

to the leaf 𝑂𝑝’s search arrives at, to its parent and to its
grandparent, respectively. If 𝑂𝑝 is an Insert, it replaces the
node pointed to by 𝑙 with a subtree of three nodes. Thus,
𝑂𝑝’s AffectSet contains a pointer to 𝑙 and a pointer to 𝑝 (as
its child pointer will change to point from 𝑙 to the root of
the new subtree).𝑂𝑝’sWriteSet contains 𝑝 , and𝑂𝑝’s NewSet
contains the three new nodes of the subtree that replaces 𝑙 . If
𝑂𝑝 is a Delete,𝑂𝑝 changes the appropriate child pointer of
𝑔𝑝 to point to the sibling of 𝑙 . For applying Tracking, we need
to create a copy of this sibling, to avoid the ABA problem.
Therefore, 𝑂𝑝’s AffectSet contains 𝑙 , 𝑝 , 𝑔𝑝 , and a pointer to
𝑙 ’s sibling; itsWriteSet contains 𝑔𝑝 and its NewSet contains
the new node that replaces 𝑙 ’s sibling. The AffectSet of a Find
contains only 𝑙 (code is provided in [2]). Finds can be further
optimized to have their AffectSet be equal to the empty set.
Threads can use the 𝑢𝑝𝑑𝑎𝑡𝑒 field that already exists in

the tree nodes and the descriptors used in LF-BST, to imple-
ment Tracking without any significant memory overhead.
Also, the tagging mechanism is provided for free through
the flagging and marking mechanisms of LF-BST.
Detectably Recoverable Exchanger. An Exchanger [30,
43] allows two threads to pair-up their operations and ex-
change values. The first thread, 𝑝 , that arrives to an Ex-
changer, finds it free and captures it by atomically writing to
it its value. Then, 𝑝 busy-waits until another thread 𝑞 collides
with it: if 𝑞 arrives while 𝑝 is waiting, it reads 𝑝’s value in
the Exchanger, and tries to atomically write its value to it
and inform 𝑝 of a successful collision.

We employ Tracking to achieve recoverability: we imple-
ment the exchanger as a pointer, 𝑠𝑙𝑜𝑡 , that points to a node.
This node stores the current state of the exchanger, the value
of the last thread accessing it and a pointer to a descriptor.
Every time a thread 𝑝 wants to initiate an exchange, it al-
locates a new node 𝑛𝑑 ′ containing its value, and access the
node 𝑛𝑑 pointed to by 𝑠𝑙𝑜𝑡 to find the current state of the
exchanger. If 𝑛𝑑 is not tagged, then 𝑝 attempts to install its

Algorithm 5: Recoverable BST: Insert and Search

Procedure boolean Insert (𝐾𝑒𝑦 k)
1 Leaf *new := new Leaf node whose key field is k
2 Info *opInfo := new Info ()
3 𝑅𝐷𝑞 := ⊥
4 pbarrier (𝑅𝐷𝑞 )
5 CP𝑞 := 1 // check-point; 𝑅𝐷𝑞 is initialized

6 pwb (CP𝑞 ); psync
7 while true do
8 Gather Phase // search for location to insert
9 ⟨−, p, l,−, pInfo⟩ := Search(𝑘)

10 AffectSet := { ⟨p,pInfo⟩ }
11 Helping Phase // help other if necessary
12 if isTagged(pInfo) then
13 Help (pInfo); continue

14 newSibling := a new Leaf whose key is l.key // make

a duplicate of l
15 newInternal := a new Internal node with key field

max(k, l.key) , and with two child fields equal to new
and newSibling (the one with the smaller key is the
left child)

16 if l = p → left then
17 WriteSet := { ⟨p → left, l, newInternal⟩ }
18 else WriteSet := { ⟨p → 𝑟𝑖𝑔ℎ𝑡, l, newInternal⟩ }
19 NewSet := {newInternal }
20 *opInfo := pointer to a new operation descriptor ⟨

Insert, AffectSet, WriteSet, NewSet, ⊥⟩
21 newInternal → info := getTagged(opInfo)
22 if 𝑙 → key = k then // key 𝑘 is in the tree
23 opInfo → result := false

24 pbarrier (newSibling, newInternal, *opInfo)
25 𝑅𝐷𝑞 := opInfo // info for current attempt

26 pwb (𝑅𝐷𝑞 ); psync
27 if 𝑙 → key = k then return false

28 Help(opInfo, true)
29 if opInfo → result ≠ ⊥ then return opInfo → result

Procedure ⟨Internal*, Internal*, Leaf*, Info*, Info*⟩
Search (𝐾𝑒𝑦 k)
⊲ Used by Insert, Delete and Find to traverse a branch of
the BST

30 Internal *gp, *p
31 Node *l := Root
32 Info *gpInfo, *pInfo
33 while l points to an internal node do
34 gp := p // remember grandparent

35 p := l // remember parent

36 gpInfo := pInfo // remember info field of gp
37 pInfo := p → info // remember info field of p
38 if k < l → key then l := p → left else l := p → 𝑟𝑖𝑔ℎ𝑡

// move down to appropriate child

39 return ⟨gp, p, l, gpInfo, pInfo⟩

own descriptor into it. Otherwise, another thread 𝑞 has al-
ready attempted to perform an exchange, so 𝑝 has to help 𝑞
to finish the exchange. The code is provided in [2].
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Algorithm 6: Recoverable BST: Delete

Procedure boolean Delete (𝐾𝑒𝑦 k)
40 Info *opInfo := new Info ()
41 𝑅𝐷𝑞 := ⊥
42 pbarrier (𝑅𝐷𝑞 )
43 CP𝑞 := 1 // check-point; 𝑅𝐷𝑞 is initialized

44 pwb (CP𝑞 ); psync
45 while true do
46 Gather Phase // search for node to delete
47 ⟨gp, p, l, gpInfo, pInfo⟩ := Search(𝑘)
48 AffectSet := { ⟨gp,gpInfo⟩ ⟨p,pInfo⟩ }
49 Helping Phase // help other if necessary
50 if isTagged(gpInfo) then
51 Help (gpInfo); continue
52 if isTagged(pInfo) then
53 Help (pInfo); continue

54 if l = p → left then other := p → 𝑟𝑖𝑔ℎ𝑡

55 else other := p → left
56 if p = gp → left then
57 WriteSet := { ⟨gp → left, p, other ⟩ }
58 else WriteSet := { ⟨gp → right, p, other ⟩ }
59 *opInfo := pointer to a new operation descriptor ⟨

Delete, AffectSet, WriteSet, ∅, ⊥⟩
60 if 𝑙 → key ≠ k then
61 opInfo → result := false

62 pbarrier (*opInfo)
63 𝑅𝐷𝑞 := opInfo // info for current attempt

64 pwb (𝑅𝐷𝑞 ); psync
65 if 𝑙 → key ≠ k then return false

66 Help(opInfo, true)
67 if opInfo → result ≠ ⊥ then return opInfo → result

7 Related Work and Discussion
We present the Tracking approach for detectable recovery
of concurrent data structures and apply it to several well-
known concurrent data structures. Our approach is general
and it yields recoverable implementations from their non-
recoverable counterparts, preserving their efficiency. Spe-
cific recoverable concurrent implementations of data struc-
tures were presented, such as mutual exclusion locks [27, 28],
stacks and queues [20, 21, 25, 34, 42, 44], heaps [21], hash
maps (see e.g., [36, 52]), and B-trees (see e.g., [11, 37, 46]),
with optimizations exploiting specific aspects of the objects.

Tracking ensures nesting-safe recoverable linearizability
(NRL) [3] and durable linearizability (DL) [32]. Operation
descriptors were used in DL implementations of several data
structures [12, 39, 49], and other transformations that avoid
logging [17, 32], but none of these ensures detectability.
The recoverable log queue [25] augments queue nodes

with tracking information, which is used after a system-
wide crash to synchronously try and complete all pending
operations from the previous phase before starting a new
phase. Other recoverable queues [25, 44] are not detectable.

Tracking shares some similarities with SiloR [51], but there
are several important differences. Tracking does not main-
tain a history of records, whereas SiloR maintains such a
history starting from the last checkpoint. In Tracking, each
thread logs a record about its last operation only and these
records are used for ensuring not only persistence but also
lock-freedom. They may be installed into nodes by any ac-
tive thread, so there is no need for designated threads (as
is the case in SiloR). Finally, Tracking proposes an efficient
scheme for flushing writes to byte-addressable NVM, which
is different from optimizing block-writes to disk.
We present a methodology for in-depth understanding

of the (individual and combined) cost incurred by persis-
tence instructions. Some of our observations were also made
in [44], e.g., that accesses to flushed content are of high cost.
Our experimental analysis enriches these observations by
providing new insights, which lead to a detailed scheme for
measuring the persistence cost of recoverable algorithms.
An NRL implementation can be obtained from any algo-

rithm using only read, write and CAS primitives by replacing
each primitive with its (NRL) recoverable version (see [3]).
Implementations using only read and CAS can be made re-
coverable and detectable using capsules [6] (see Section 5).
A recent paper [26] follows a similar approach in order

to transform any lock-free implementation into a recover-
able one that satisfies durable linearizability. Another re-
cent work [24] presents a transformation of lock-free imple-
mentations to their durable linearizable versions; the trans-
formation can be applied on a specific class of concurrent
data structures, called traversal data structures. These trans-
formations, published after the preliminary version of our
work [1, 2], yield non-detectable implementations.

A recoverable lock-free universal implementation [14] re-
quires only one round trip to NVMM per operation, which
is optimal. This construction (as well as [24, 26]) makes the
strong assumption that a single recovery function is exe-
cuted upon recovery, consistently reconstructing the data
structure, whereas we allow failed threads to be recovered by
the system in an asynchronous manner. Other logging-based
approaches are [9, 13, 35, 50].
Romulus [15] is a transactional memory algorithm that

provides durability and detectability. However, it is blocking,
satisfying only starvation-freedom for update transactions.

Our recoverable implementations—as well as the original,
non-recoverable implementations—rely on garbage collec-
tors that correctly recycle memory once it becomes unreach-
able. This naturally motivates the question of implementing
lock-free recoverable memory managers [7, 41], which we
hope to investigate in future work.
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A Artifact
The artifact contains the source code and scripts to repro-
duce the experimental results of this paper. The code for our
algorithms, together with additional recoverable implemen-
tations we have produced, can be found in the following
GitHub repository:
https://github.com/ConcurrentDistributedLab/Tracking

A.1 Requirements
The following libraries are required in order to be able to
compile and run our code:

1. A modern 64-bit multi-core machine supporting non-
volatile main memory.
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2. A recent Linux distribution.
3. The g++ (version 4.8.5 or greater) compiler.
4. Building requires the development versions of the fol-

lowing packages:
• libatomic,
• libnuma,
• libvmem, necessary for building the persistent ob-
jects, and

• libpmem, necessary for building the persistent ob-
jects.

Depending on the directory in which these packages
are installed, the appropriate environment variable (for
instance, the LD_LIBRARY_PATH variable in Linux)
should contain the path to them.

A.2 Reproduce experimental results
To compile the executables, the figures_compile.sh script
should be executed. Then, to run the experiments and pro-
duce the results of each figure in Section 5, regarding our
algorithms, the figures_run.sh should be executed; it creates
the output files in the results directory. Finally, to plot the
figures the figures_plot .py python script should be executed.
The folder Expected Results contains the expected results

and figures for our algorithm (Tracking). After compiling
the executables, a custom experiment can be run by calling:
./⟨executable⟩ ⟨algorithm⟩ [threads_number] [duration(seconds)]

A.3 License
This code is provided under the LGPL-2.1 License.
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