
SING: Sequence Indexing Using GPUs

Botao Peng

LIPADE, Université de Paris

Institute of Computing Technology,

Chinese Academy of Sciences

botao.peng@parisdescartes.fr

Panagiota Fatourou

FORTH ICS

Dept. of Comp. Science, Univ. of Crete

faturu@csd.uoc.gr

Themis Palpanas

LIPADE, Université de Paris

French University Institute (IUF)

themis@mi.parisdescartes.fr

Abstract—Data series similarity search is a core operation for
several data series analysis applications across many domains.
This has attracted lots of interest that led to the development of
several indexing techniques. Nevertheless, these techniques fail to
deliver the similarity search time performance that is needed for
interactive exploration, or analysis of large data series collections.
We propose SING, the first data series index designed to take
advantage of Graphics Processing Units (GPUs). SING is an in-
memory index that uses CPU+GPU co-processing (as well as
SIMD, multi-core and multi-socket architectures), in order to
accelerate similarity search. Our experimental evaluation with
synthetic and real datasets shows that SING is up to 5.1x
faster than the state-of-the-art parallel in-memory approach, and
up to 62x faster than the state-of-the-art parallel serial scan
algorithm. SING achieves exact similarity search query times as
low as 32msec on 100GB datasets, which enables interactive data
exploration on very large data series collections.

Index Terms—Data series, Indexing, Modern hardware, GPU

I. INTRODUCTION

[Motivation] Several applications across many diverse do-

mains, such as in finance, astrophysics, neuroscience, engi-

neering, multimedia, and others [1]–[4], continuously produce

big collections of data series1, which need to be processed and

analyzed [5]–[11].Often times, this is part of an exploratory

process, where users ask a query, review the results, and then

decide what their subsequent queries, or analysis steps should

be [4]. The most common type of query that different analysis

applications need to answer on these collections of data series

is similarity search [1], [12]–[14]. The continued increase in

the rate and volume of data series production, with collections

that grow to several petabytes in size [1], [3], [4], renders tradi-

tional, serial-execution data series indexing technologies [15]–

[21] inadequate [12], [22], [23]. For this reason, several recent

efforts have focused on the development of parallel [24]–[26]

and distributed [27]–[30] indexing techniques. In this work, we

will not consider distributed solutions. However, the study of

techniques that combine parallelization (in a single node) and

distribution (across nodes) is an interesting research direction.

In this work, we focus on designing an efficient parallel in-

dexing and exact query answering scheme for in-memory data

series processing. The necessity for fast in-memory data series

computation appears in real scenaria, e.g., in Airbus [26].

1A data series, or data sequence, is an ordered sequence of data points.
If the ordering dimension is time then we talk about time series, though,
series can be ordered over other measures. (e.g., angle in astronomical radial
profiles, frequency in infrared spectroscopy, mass in mass spectroscopy, etc.).

Although Airbus stores petabytes of data series, reasoning

about the behavior of aircraft components or pilots [31]

requires experts to run analytics on subsets of the data (e.g.,

relevant to landings from Air France pilots) that fit in memory.

[State-of-the-Art Solutions] ParIS+ [24], [25] is a recently-

designed disk-based data series indexing scheme that takes

advantage of modern hardware parallelization. However, its

performance is dominated by the I/O cost it encounters for

processing the disk-resident data. This cost is too high (e.g.,

15sec for answering an 1-Nearest Neighbor exact query on a

100GB dataset) for keeping the user’s attention (i.e., 10sec),

let alone for supporting interactivity in the analysis process

(i.e., 100msec) [32]. MESSI [26] is an in-memory parallel

index, built upon the lessons learned from ParIS+, achieving

for the first time interactive exact query answering times (at

∼50msec), being 6-11x faster than ParIS+.

The performance improvements of ParIS+ and MESSI were

achieved by exploiting the parallelism opportunities offered by

the multi-socket, multi-core, and SIMD architectures. How-

ever, these indices did not take advantage of the parallel

computation power of Graphics Processing Units (GPUs). This

is the research direction that we study here.

[Challenges] We note that the programming approach for

GPU algorithms is distinct from that of CPU, and requires

different design and techniques in order to achieve the desired

performance improvement. The following constraints of a

GPU determine the algorithmic choices we need to make.

First, the on-board GPU memory is rather limited, and cannot

hold the entire dataset. Note that the GPU we use in this

work has 12GB of RAM, while our datasets are one order of

magnitude larger, occupying 100GB; much larger data series

collections are very common in practice [3], [4], [12], [13].

Second, the solution of moving at query time all, or subsets

of the raw data into the GPU (e.g., in batches, or streaming)

for further processing is also challenging because of the slow

interconnect speeds: in our system (detailed in Section IV-A)

that uses a PCI-Express 3.0 x16 bus, this speed was measured

at 10GB/sec. Given that query answering times are in the order

of 50-100msec, the above data transfer rate means that not only

can we not afford to move the entire dataset to the GPU (that

would need 10sec), but even moving small ad hoc subsets

of data required by queries (i.e., those not pruned) incurs a

prohibitively high time cost (e.g., the raw data for an average

0.4% of a 100GB dataset would need >40msec).

The above considerations imply that existing tree-based

approaches (such as the state-of-the-art MESSI [26]), or simple

GPU adaptations of those, cannot outperform modern multi-

core parallel solutions. In fact, we point out that previous

GPU solutions for query answering and similarity search only

compared to CPU baselines with up to 2 cores, and without

the use of SIMD [33]–[35].

[Our Approach and Contributions] In this work, we de-

scribe SING (Sequence Indexing Using GPUs), the first (in-

memory2) data series index that uses the GPU’s parallelization

opportunities, as well as the SIMD, multi-core and multi-

socket architectures of modern hardware, in order to accelerate

exact similarity search.

SING provides a novel similarity search algorithm that runs

on top of the MESSI tree index [26]. This algorithm ensures

effective CPU+GPU co-processing (i.e., collaboration of both

the CPU and GPU resources of the system) to produce the

exact query answers. Overall, SING reduces considerably not

only the amount of work that needs to be performed, but also

the execution time required to complete the necessary work.

Our experimental evaluation shows that SING outperforms by

a large margin the current state-of-the-art parallel (i.e., SIMD

and multi-core) solutions in a variety of settings, and continues

to do so even when we use all 16 cores of our system.

II. PRELIMINARIES

[Data Series] A data series, S = {p1, ..., pn}, is defined as a

sequence of points, where each point pi = (vi, ti), 1 ≤ i ≤ n,

is associated to a real value vi and a position ti. The position

corresponds to the order of this value in the sequence. We call

n the size, or length of the data series. We note that all the

discussions in this paper are applicable to high-dimensional

vectors, in general.

[Similarity Search] Analysts perform a wide range of data

mining tasks on data series including clustering [36], classifi-

cation and deviation detection [37], [38], and frequent pattern

mining [39]. Existing algorithms for executing these tasks rely

on performing fast similarity search across the different series.

Thus, efficiently processing nearest neighbor (NN) queries is

crucial for speeding up the above tasks.

NN queries are formally defined as follows: given a query

series Sq of length n, and a data series collection S of

sequences of the same length, n, we want to identify the series

Sc ∈ S that has the smallest distance to Sq among all the series

in the collection S . (In the case of streaming series, we first

create subsequences of length n using a sliding window, and

then index those.)

In this work, we use Euclidean Distance (ED) [40]; though,

Dynamic Time Warping (DTW) [41] can be easily supported,

as well, with no changes to the index structure [26].

[iSAX] The iSAX representation (or summary) is based on

the Piecewise Aggregate Approximation (PAA) representa-

tion [42], which divides the data series in segments of equal

2For disk-resident data, previous work has shown that the computations are
disk I/O bound [25].

(a) raw data series

(b) PAA representation

10

00

11
11

10

01

00

N
 (

0
,

1
)

(c) iSAX representation

ExactSearch worker

query

1-NN answer

Root

node

1 00 1 1 01 1

1 0 1

ExactSearch worker

insert leaf node
if node LBD<BSF

LB_dist
LB_dist
LB_dist
LB_dist

R_dist

R_dist

leaf

BSF

… …

Priority Queues

get BSF
(Approx.
Search)

ra
w

 d
a

ta

tree
index

(d) MESSI index

Fig. 1. The iSAX representation, and the MESSI index

length, and uses the mean value of the points in each segment

in order to summarize a data series. Figure 1(b) depicts an

example of PAA representation with w = 3 segments (depicted

with the black horizontal lines), for the data series depicted in

Figure 1(a).

Based on PAA, the indexable Symbolic Aggregate approX-

imation (iSAX) representation was proposed [43] (and later

used in several different data series indices [21], [24], [37],

[44], [45]). This method first divides the (y-axis) space in

different regions, and assigns a bit-wise symbol to each region.

In practice, the number of symbols is small: iSAX achieves

very good approximations with as few as 256 symbols, the

maximum alphabet cardinality, |alphabet|, which can be rep-

resented by eight bits [19]. It then represents each one of the w

segments of the series with the symbol of the region the PAA

falls into, forming the word 102002112 shown in Figure 1(c)

(subscripts denote the number of bits used to represent the

symbol of each segment).

[MESSI Index] Based on the iSAX summary [43], the MESSI

index was developed [46], which proposed techniques and

algorithms specifically designed for modern hardware and in-

memory data [26]. MESSI makes use of variable cardinalities

for the iSAX summaries (i.e., variable degrees of precision for

the symbol of each segment) in order to build a hierarchical

tree index (see Figure 1(d)), consisting of three types of nodes:

(i) the root node points to several children nodes, 2w in

the worst case: when the series in the collection cover all

possible iSAX summaries (following previous work [46], we

use w = 16); (ii) each inner node contains the iSAX summary

of all the series below it, and has two children; and (iii)

each leaf node contains the iSAX summaries of all the series

inside it, and pointers to the raw data (in order to be able

to prune false positives and produce exact, correct answers),

GPU

Search

Search

remove node from

priority queue(s)

check LBD values in FmapC,

calculate real distances

tree

index

update BSF,

use new BSF to prune better

Priority

Queues

FMapGiSAX array

Calculate LBDs

CPUquery

traverse index, insert

leaf nodes in priority queue(s)

perform approximate search,

compute BSF

LB_dist
LB_dist

LB_dist

LB_dist

LB_dist

LB_dist

LB_dist
LB_dist

LB_dist
LB_dist

LB_dist
LB_dist

1-NN answer

raw data array

FMapC

LB_dist
LB_dist

LB_dist

LB_dist

LB_dist

LB_dist

LB_dist

LB_dist

LB_dist
LB_dist

LB_dist
LB_dist

Fig. 2. M+G flowchart for query answering.

which reside on disk. When the number of series in a leaf

node becomes greater than the maximum leaf capacity, the leaf

splits: it becomes an inner node and creates two new leaves,

by increasing the cardinality of the iSAX summary of one of

the segments (the one that will result in the most balanced

split of the contents of the node to its two new children [19],

[21]). The two refined iSAX summaries (new bit set to 0 and

1) are assigned to the two new leaves. In our example, the

series of Figure 1(c) will be placed in the outlined leaf node

of the index (Figure 1(d)). We define the distance of a query

series to a node as the distance between the query (raw values,

or iSAX summary) and the iSAX summary of the node.

III. THE SING DATA SERIES INDEX

SING adjusts the tree index that is created by MESSI. It

also uses a iSAX array which is produced as the iSAX array in

ParIS+. SING then transfers the iSAX array (or an appropriate

part of it) in the GPU memory, so that it is already in the GPU

at query answering time. We first present our basic solution,

called M+G, and then we present SING.

A. The M+G Solution

To answer a query in M+G, a CPU thread performs an

approximate search in order to get a first estimate of the answer

(refer to Figure 2). This estimate is stored in a variable, called

Best-So-Far (BSF). Then, the PAA of the query and BSF are

transferred in the GPU and the GPU threads are instructed

to calculate the distance between the iSAX summary of each

entry of SAX and the PAA of the query. The GPU outputs a

float map (i.e., an array of float values) containing the lower

bound distance for those iSAX summaries stored in the iSAX

array. This float map is output to the CPU threads using

streaming. Specifically, it is split into chunks and as soon

as the data in a chunk becomes ready, the chunk is output

to the CPU threads. The element of each row of the float

map corresponds to the same-numbered row of the raw data

array. This computation comprises the lower bound distance

calculation phase and it is executed entirely in GPU.

At the same time (i.e. concurrently to the lower bound

distance calculation phase), several CPU threads traverse the

tree and create a number of priority queues the same way it is

done in MESSI. Then, the CPU threads wait until the lower

bound distance calculation has finished. Afterwards, the CPU

threads start processing the priority queues. Specifically, each

thread chooses a priority queue to work on and repeatedly

deletes the node with the highest priority from it. If the node

cannot be pruned, then for each element of the node, the thread

checks the lower bound distance stored in the float map for

this element. In this way, the CPU thread does not have to

calculate the lower bound distance by itself as is the case in

MESSI. If the lower bound distance is larger than the current

value of BSF, the data series is pruned. Otherwise, the real

distance computation is performed. If any of these real distance

computations results in a value smaller than the current value

of BSF, then the BSF is updated to store the smaller value.

This process continues until all nodes in the priority queues

have either been processed or be pruned.

B. The SING Solution

SING is an optimized version of M+G. Below, we describe

the different design decisions made in SING.

SING follows a different strategy for building the iSAX

array than M+G. Specifically, as soon as the tree index is

constructed, SING performs a recursive traversal of the tree,

which visits the tree leaves from the leftmost to the rightmost

(in this order)3 and stores in the iSAX array, the iSAX

summaries of all the data series stored in the leaves (in order).

This allows SING to access consecutive elements of the float

map computed by the GPU instead of performing random

accesses in it. This reduces the number of cache misses caused

during the priority queue processing phase that the float map

is accessed in order to check whether the elements contained

in deleted nodes of the priority queues can be pruned. This is

so since the elements of a node are examined in order, and

therefore, it is beneficial to have the lower bound distances for

those elements stored in the float map in this order.

Based on previous experiments [26], a big number of root

subtrees can be pruned. SING query answering approach

exploits this idea to apply an initial pruning technique which

determines which part of the iSAX array is actually necessary

to be processed by the GPU. This is done as follows. Before

instructing the GPU to calculate lower bound distances, the

CPU threads compute the lower bound distances between the

query PAA and each of the tree root children. In this way,

they identify a collection of consecutive subtrees that cannot

3An inorder traversal of the root subtrees from the leftmost subtree to the
rightmost subtree would accomplish this task.

be pruned. Note that the iSAX summaries of the data series

stored in the leaves of each sequence of consecutive subtrees

of this collection reside in one or more consecutive chunks

of the iSAX array. The GPU is then instructed to calculate

lower bound distances for each of these chunks. Therefore,

the GPU threads calculate lower bounds only for the series in

the subtrees that cannot be pruned. Consequently, the number

of lower bound distance calculations that are performed by

the GPU in SING is much smaller than in M+G, and thus, the

GPU execution time is also reduced.

Experiments show that, even after the optimization de-

scribed above, the GPU computation time is often higher than

the time the CPU threads require to create the priority queues.

Thus, in M+G, the search workers (CPU threads) wait for

the GPU to complete its computation which is wasteful in

terms of computational resources. To overcome this problem,

in SING, the search workers start processing the elements

in the priority queues they create without waiting for the

GPU computation to complete. As soon as a search worker

discovers that the priority creation phase has been completed

by all CPU threads, it proceeds immediately to the priority

queue processing phase. It chooses a priority queue to work

on and calls DeleteMin() to process the root element, i.e. the

highest priority element in the queue. It first checks if the GPU

computation has already performed the lower bound distance

calculations for the elements of this node. If not, the search

worker calculates these lower bounds itself, and then moves

on to the next node to work on. If yes, the search worker uses

the lower bound distances calculated by the GPU to prune if

possible, decides whether further examination of the elements

of the node is necessary (by calculating real distances), and

moves on to the next node to work on.

To achieve this overlap of the queue processing phase with

the GPU computation, the float map used by the GPU is split

into chunks, and the GPU outputs each chunk to the CPU

threads as soon as the lower bound distance calculations of

the elements stored in the chunk have been performed. We

denote by Nl the total number of chunks that the iSAX array

(and the corresponding GPU float map) comprise.

IV. EXPERIMENTAL EVALUATION

A. Setup

We used a server with 2x Intel Xeon Gold 6134 CPUs with

8 cores each, 320GB RAM and a Titan Xp GPU with 3840

NVIDIA CUDA Cores (12GB RAM). All algorithms were

implemented in C and C++, and compiled using GCC v7.4.0

and NVCC 10.1 on Ubuntu Linux v18.04. We use NVCC to

compile the GPU part of the code as a lib file; we then link

this lib to the main function of the program.

[Algorithms] We compared SING to the following algorithms:

(i) MESSI [26], the state-of-the-art modern hardware data

series index.

(ii) UCR Suite-P, our parallel implementation of the state-

of-the-art optimized serial scan technique, UCR Suite [41].

In UCR Suite-P, every thread is assigned a part of the in-

memory data series array, and all threads concurrently and

independently process their own parts, performing the real

distance calculations in SIMD, and only synchronize at the

end to produce the final result. (We do not consider the non-

parallel UCR Suite in our study, since it is ∼300x slower.)

(iii) UCR Suite GPU [47], an extension of UCR Suite, where

all computations take place in the GPU.

(iv) Finally, we compare to M+G, our baseline solution based

on MESSI, described in Section III.

SING and M+G use both the CPU and GPU, while MESSI

and UCR Suite-P can only use the CPU. All algorithms

operated exclusively in memory: the index tree and raw data

were already loaded in the main memory of the system, and

the SAX array was already loaded in the GPU memory (for

SING and M+G). The code for all algorithms is online [48].

[Datasets] In order to evaluate the performance of the pro-

posed approach, we use several synthetic datasets (produced

by a random walk data series generator [12], [13], [49]) for

a fine grained analysis, and two real datasets from diverse

domains. Unless otherwise noted, the series have a size of

256 points, which is a standard length used in the literature,

and allows us to compare our results to previous work. All our

datasets are Z-normalized4. For our first real dataset, Seismic,

we used the IRIS Seismic Data Access repository [52] to

gather 100M series representing seismic waves from various

locations, for a total size of 100GB. The second real dataset,

SALD, includes neuroscience MRI data series [53], for a total

of 200M series of size 128, of size 100 GB. Note that in

all cases, the raw data and the index are stored in the CPU

memory, while the iSAX representations for all series in the

dataset are stored in the GPU memory5.

In both cases, we used as queries 100 series that were not

part of the datasets (produced using our synthetic series gener-

ator, since these datasets do not come with query workloads).

In all cases, we repeated the experiments 10 times and we

report the average values. We omit reporting the error bars,

since all runs gave results that were very similar (less than 3%

difference). Queries were always run in a sequential fashion,

one after the other, in order to simulate an exploratory analysis

scenario, where users formulate new queries after having seen

the results of the previous one.

We note that in all cases, the answers produced by our

algorithms are the exact, correct answers; the same is true

for the competitors we compare against.

B. Results

Figures 3 and 4 report the execution times of MESSI,

M+G and SING, as we vary the number of cores up to 8

4Z-normalization transforms a series so that it has a mean value of zero,
and a standard deviation of one. This allows similarity search to be effective,
irrespective of shifting (i.e., offset translation) and scaling [50]. Therefore,
similarity search can return results with similar trends, but different absolute
values. Moreover, minimizing the Euclidean distance on Z-normalized data
is equivalent to maximizing their Pearson’s correlation coefficient [51]. For
these reasons, Z-normalization is extensively used in both the literature [12],
[13], [49] and in practice [3], [4].

5For a 100GB dataset, the iSAX summaries occupy less than 2GB of
GPU memory. This means that our 12GB GPU memory could support query
answering using SING for datasets as large as 600GB.

0
2

0
0

4
0

0
6

0
0

2 4 8

T
im

e
 (

M
il

li
e
c
o

n
d

s)

Number of cores

MESSI

M+G

SING

Fig. 3. Query answering time,
varying cores (1 socket; 100GB
Synthetic).

0
2
0
0

4
0
0

6
0
0

8
0
0

2 4 8 16

T
im

e
 (

M
il

li
e
c
o
n
d
s)

Number of cores

MESSI

M+G

SING

Fig. 4. Query answering time, varying
cores (2 sockets; 100GB Synthetic).

10

100

1000

10000

100000

SALD Seismic Synthetic

T
im

e
 (

M
il

li
se

co
n

d
s)

Datasets

UCR Suite GPU UCR Suite-P MESSI M+G SING

Fig. 5. Query answering time, varying datasets (16 cores, 2 sockets; 100GB).

in one socket, and up to 16 in two sockets. We observe

that the performance of all algorithms improves when we

use more cores. This improvement is more pronounced for

MESSI, which starts from much higher execution times for

small numbers of cores. M+G can only beat the performance

of MESSI when using a small number of cores (in either 1,

or 2 sockets). In these cases, having the GPU calculate the

lower bounds removes a heavy burden from the CPU, and

translates to execution time savings. On the other hand, SING

consistently outperforms the competitors across the board.

SING is 5.1x faster than MESSI for 2 cores in 2 sockets.

Even when we use all 16 cores of our system, SING is still

2.8x faster than MESSI. SING only needs 32ms to answer an

exact similarity search query on a 100GB dataset.

Finally, we report the results of the comparison to the

state-of-the-art parallel serial scan algorithm, UCR Suite-P6.

Figure 5 (log-scale y-axis) reports the query answering time

for three different datasets, with SING being up to 62x faster

than UCR Suite-P. UCR Suite GPU is significantly slower, due

to the cost of transferring the raw data in the GPU (recall that

the raw data size is much bigger than the GPU memory).

V. RELATED WORK

There has been a flurry of activity, especially during the last

years, related to the development of scalable data series simi-

larity search techniques [15], [17]–[21], [24]–[29], [45], [46],

[54]. Nevertheless, none of these techniques considered the use

of GPUs for performing part of the computations. Note that

in this work, we focus on indexing structures specialized to

6Note that this algorithm was developed for subsequence matching, while
in our case we are solving the problem of whole matching [12].

data series, since other techniques cannot provide comparable

performance in this high-dimensional context [12].

Changkyu Kim et al. [55] have designed a tree base index on

GPU but only for single dimension, integer key data. Gieseke

et al. [56] propose the Buffer k-d Tree to process NN queries

on a GPU. The goal of this approach is to efficiently process

together large batches of queries. In contrast, we focus on

exploratory search, where queries arrive one by one: the results

of an analyst’s query determine what the next query will be.

The use of GPUs in order to support spatio-temporal queries

has been examined in the past [33], [57]. Doraiswamy et

al. [57]. In a more recent work, Li et al. [33], design an update-

efficient GPU accelerated grid index for k-NN queries for

road networks. We note that all the works addressing spatio-

temporal queries propose and use indices designed for a 2-

dimensional space, and there is no straight-forward way to

apply it on data series.Moreover, earlier studies have shown

that the indices used in these cases (such as grid-based, Rtrees,

or Kd-Trees) do not perform well for the high-dimensional

data series collections [12], [21]. Previous work has considered

the use of GPUs for speeding up similarity search using

Locality Sensitive Hashing (LSH) [34], [58], [59]. However,

all these works only support approximate query answering. In

our work, we focus on exact query answering that is required

by several applications [4]. Zhu et al. [35], [60], present a GPU

implementation of Matrix Profile, an algorithm used to identify

data series motifs (i.e., frequent subsequences). Zimmerman

et al. [61] extend the above work by describing a solution

that operates on a cluster of distributed GPUs. We observe

that Matrix Profile is used to reason about short subsequences

within a long data series, while we are interested in similarity

search between a query series and a dataset containing a large

number of data series. Doruk Sart et al. [47] implement a GPU-

based brute force similarity search algorithm that we compare

against (i.e., UCR Suite GPU).

VI. CONCLUSIONS

Data series similarity search remains an important and

challenging problem. We propose SING, the first data series

index that answers similarity search queries with CPU+GPU

co-processing. In our experiments with several synthetic and

real datasets, SING extends considerably the scalability of

similarity search: it is up to 5.1x faster at query answering

time than the state-of-the-art parallel in-memory approach, up

to 62x faster than the state-of-the-art parallel serial scan algo-

rithm, and achieves exact similarity search times at interactive

speeds: as low as 32msec on 100GB datasets.

[Acknowledgements] Supported by Chinese Scholarship

Council, FMJH Program PGMO, EDF, Thales, HIPEAC 4,

and NVIDIA Corporation for donating a Titan Xp GPU. Part

of work performed while P. Fatourou was visiting LIPADE,

and while B. Peng was visiting CARV, FORTH ICS.

REFERENCES

[1] T. Palpanas, “Data series management: The road to big sequence
analytics,” SIGMOD Record, 2015.

[2] K. Zoumpatianos and T. Palpanas, “Data series management: Fulfilling
the need for big sequence analytics,” in ICDE, 2018.

[3] A. J. Bagnall, R. L. Cole, T. Palpanas, and K. Zoumpatianos, “Data
series management,” Dagstuhl Reports, 9(7), 2019.

[4] T. Palpanas and V. Beckmann, “Report on the first and second inter-
disciplinary time series analysis workshop (ITISA),” SIGREC, 48(3),
2019.

[5] K. Kashino, G. Smith, and H. Murase, “Time-series active search for
quick retrieval of audio and video,” in ICASSP, 1999.

[6] L. Ye and E. Keogh, “Time series shapelets: a new primitive for data
mining,” in SIGKDD. ACM, 2009.

[7] P. Huijse, P. A. Estevez, P. Protopapas, J. C. Principe, and P. Zegers,
“Computational intelligence challenges and applications on large-scale
astronomical time series databases,” CIM, 2014.

[8] U. Raza, A. Camerra, A. L. Murphy, T. Palpanas, and G. P. Picco,
“Practical data prediction for real-world wireless sensor networks,”
TKDE, 2015.

[9] P. Boniol, M. Linardi, F. Roncallo, and T. Palpanas, “Automated
Anomaly Detection in Large Sequences,” in ICDE, 2020.

[10] P. Boniol and T. Palpanas, “Series2Graph: Graph-based Subsequence
Anomaly Detection for Time Series,” PVLDB, 2020.

[11] M. Linardi, Y. Zhu, T. Palpanas, and E. J. Keogh, “Matrix Profile Goes
MAD: Variable-Length Motif And Discord Discovery in Data Series,”
in DAMI, 2020.

[12] K. Echihabi, K. Zoumpatianos, T. Palpanas, and H. Benbrahim, “The
Lernaean Hydra of Data Series Similarity Search: An Experimental
Evaluation of the State of the Art,” PVLDB, 2018.

[13] ——, “Return of the Lernaean Hydra: Experimental Evaluation of Data
Series Approximate Similarity Search,” PVLDB, 2019.

[14] K. Echihabi, K. Zoumpatianos, and T. Palpanas, “Scalable machine
learning on high-dimensional vectors: From data series to deep network
embeddings,” in WIMS, 2020.

[15] D. Rafiei and A. Mendelzon, “Similarity-based queries for time series
data,” in SIGMOD, 1997.

[16] I. Assent, R. Krieger, F. Afschari, and T. Seidl, “The ts-tree: efficient
time series search and retrieval,” in EDBT, 2008.

[17] J. Shieh and E. Keogh, “isax: disk-aware mining and indexing of massive
time series datasets,” DMKD, 2009.

[18] P. Schäfer and M. Högqvist, “Sfa: a symbolic fourier approximation
and index for similarity search in high dimensional datasets,” in EDBT,
2012, pp. 516–527.

[19] A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and E. Keogh,
“Beyond One Billion Time Series: Indexing and Mining Very Large
Time Series Collections with iSAX2+,” KAIS, vol. 39, no. 1, 2014.

[20] Y. Wang, P. Wang, J. Pei, W. Wang, and S. Huang, “A data-adaptive
and dynamic segmentation index for whole matching on time series,”
VLDB, 2013.

[21] K. Zoumpatianos, S. Idreos, and T. Palpanas, “Ads: the adaptive data
series index,” VLDB J., 2016.

[22] A. Gogolou, T. Tsandilas, T. Palpanas, and A. Bezerianos, “Progressive
similarity search on time series data,” in EDBT, 2019.

[23] A. Gogolou, T. Tsandilas, K. Echihabi, A. Bezerianos, and T. Palpanas,
“Data Series Progressive Similarity Search with Probabilistic Quality
Guarantees,” in SIGMOD, 2020.

[24] B. Peng, T. Palpanas, and P. Fatourou, “Paris: The next destination for
fast data series indexing and query answering,” IEEE BigData, 2018.

[25] ——, “Paris+: Data series indexing on multi-core architectures,” TKDE,
2020.

[26] ——, “Messi: In-memory data series indexing,” in ICDE, 2020.

[27] D. E. Yagoubi, R. Akbarinia, F. Masseglia, and T. Palpanas, “Dpisax:
Massively distributed partitioned isax,” in ICDM, 2017.

[28] D.-E. Yagoubi, R. Akbarinia, F. Masseglia, and T. Palpanas, “Massively
distributed time series indexing and querying,” TKDE (to appear), 2018.

[29] J. Wu, P. Wang, N. Pan, C. Wang, W. Wang, and J. Wang, “Kv-match:
A subsequence matching approach supporting normalization and time
warping,” in ICDE, 2019.

[30] O. Levchenko, B. Kolev, D. E. Yagoubi, D. E. Shasha, T. Palpanas,
P. Valduriez, R. Akbarinia, and F. Masseglia, “Distributed algorithms to
find similar time series,” in ECML/PKDD, 2019.

[31] A. Guillaume, “Head of Operational Intelligence Department Airbus.
Personal communication.” 2017.

[32] J.-D. Fekete and R. Primet, “Progressive analytics: A computation
paradigm for exploratory data analysis,” CoRR, 2016.

[33] C. Li, Y. Gu, J. Qi, J. He, Q. Deng, and G. Yu, “A gpu accelerated update
efficient index for knn queries in road networks,” in ICDE. IEEE, 2018.

[34] J. Zhou, Q. Guo, H. Jagadish, L. Krcal, S. Liu, W. Luan, A. K.
Tung, Y. Yang, and Y. Zheng, “A generic inverted index framework
for similarity search on the gpu,” in ICDE. IEEE, 2018.

[35] Y. Zhu, Z. Zimmerman, N. S. Senobari, C.-C. M. Yeh, G. Funning,
A. Mueen, P. Brisk, and E. Keogh, “Matrix profile ii: Exploiting a novel
algorithm and gpus to break the one hundred million barrier for time
series motifs and joins,” in ICDM. IEEE, 2016.

[36] T. Rakthanmanon, E. J. Keogh, S. Lonardi, and S. Evans, “Time series
epenthesis: Clustering time series streams requires ignoring some data,”
in ICDM, 2011, pp. 547–556.

[37] J. Shieh and E. Keogh, “iSAX: disk-aware mining and indexing of
massive time series datasets,” DMKD, no. 1, 2009.

[38] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
CSUR, 2009.

[39] A. Mueen, E. J. Keogh, Q. Zhu, S. Cash, M. B. Westover, and N. B.
Shamlo, “A disk-aware algorithm for time series motif discovery,”
DAMI, 2011.

[40] R. Agrawal, C. Faloutsos, and A. N. Swami, “Efficient similarity search
in sequence databases,” in FODO, 1993.

[41] T. Rakthanmanon, B. J. L. Campana, A. Mueen, G. E. A. P. A. Batista,
M. B. Westover, Q. Zhu, J. Zakaria, and E. J. Keogh, “Searching
and mining trillions of time series subsequences under dynamic time
warping,” in SIGKDD, 2012.

[42] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Dimensionality
reduction for fast similarity search in large time series databases,” KAIS,
2001.

[43] J. Shieh and E. Keogh, “i sax: indexing and mining terabyte sized time
series,” in SIGKDD, 2008.

[44] H. Kondylakis, N. Dayan, K. Zoumpatianos, and T. Palpanas, “Co-
conut: A scalable bottom-up approach for building data series indexes,”
PVLDB, 2018.

[45] M. Linardi and T. Palpanas, “Scalable, variable-length similarity search
in data series: The ulisse approach,” PVLDB, 2019.

[46] T. Palpanas, “Evolution of a Data Series Index,” CCIS, vol. 1197, 2020.
[47] D. Sart, A. Mueen, W. Najjar, E. Keogh, and V. Niennattrakul, “Acceler-

ating dynamic time warping subsequence search with gpus and fpgas,”
in ICDM, 2010.

[48] http://helios.mi.parisdescartes.fr/ themisp/sing/, 2020.
[49] K. Zoumpatianos, Y. Lou, I. Ileana, T. Palpanas, and J. Gehrke, “Gen-

erating data series query workloads,” VLDB J., 2018.
[50] E. J. Keogh and S. Kasetty, “On the need for time series data mining

benchmarks: A survey and empirical demonstration,” DAMI, 2003.
[51] A. Mueen, S. Nath, and J. Liu, “Fast approximate correlation for massive

time-series data,” in SIGMOD, 2010.
[52] “Incorporated Research Institutions for Seismology – Seismic Data

Access,” http://ds.iris.edu/data/access/, 2016.
[53] “Southwest university adult lifespan dataset (sald),” http://fcon 1000.

projects.nitrc.org/indi/retro/sald.html, 2018.
[54] M. Linardi and T. Palpanas, “Scalable data series subsequence matching

with ulisse,” VLDBJ, 2020.
[55] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey,

V. W. Lee, S. A. Brandt, and P. Dubey, “Fast: fast architecture sensitive
tree search on modern cpus and gpus,” in SIGMOD, 2010.

[56] F. Gieseke, J. Heinermann, C. Oancea, and C. Igel, “Buffer kd trees:
processing massive nearest neighbor queries on gpus,” in ICML, 2014.

[57] H. Doraiswamy, H. T. Vo, C. T. Silva, and J. Freire, “A gpu-based index
to support interactive spatio-temporal queries over historical data,” in
ICDE, 2016.

[58] J. Pan and D. Manocha, “Fast gpu-based locality sensitive hashing for
k-nearest neighbor computation,” in SIGSPATIAL, 2011, pp. 211–220.

[59] ——, “Bi-level locality sensitive hashing for k-nearest neighbor com-
putation,” in IEEE ICDE, 2012, pp. 378–389.

[60] Y. Zhu, Z. Zimmerman, N. S. Senobari, C.-C. M. Yeh, G. Funning,
A. Mueen, P. Brisk, and E. Keogh, “Exploiting a novel algorithm and
gpus to break the ten quadrillion pairwise comparisons barrier for time
series motifs and joins,” KAIS, 2018.

[61] Z. Zimmerman, K. Kamgar, N. S. Senobari, B. Crites, G. Funning,
P. Brisk, and E. Keogh, “Matrix profile xiv: Scaling time series motif
discovery with gpus to break a quintillion pairwise comparisons a day
and beyond,” in SoCC, 2019, pp. 74–86.

