
Space and Time Bounded
Multiversion Garbage Collection

Naama Ben-David, Guy E. Blelloch, Panagiota Fatourou, Eric Ruppert,
Yihan Sun, and Yuanhao Wei

1DISC’21

Introduction

• Multiversioning widely used:
• Database systems

• Software Transactional Memory [Fernandes et al. PPoPP’11] [Lu et al. DISC’13]

• Concurrent data structures [Fatourou et al. SPAA’19] [Wei et al. PPoPP’21]

• High space usage ⇒ obsolete versions must be reclaimed
• Multiversion garbage collection problem (MVGC)

• Observed to be a bottleneck in modern database systems
[Lee et al. SIGMOD’16] [Böttcher et al. VLDB’19]

DISC’21 2

Research Question

DISC’21 3

How do you garbage collect
efficiently for multiversioning?

Main results

A general MVGC scheme with:
• Progress: wait-free

• Time: O(1) per reclaimed version, on average

• Space: constant factor more versions than needed, plus an
additive term

DISC’21 4

Previous solutions either use:
• unbounded space [Wei et al. PPoPP’21] [Fernandes et al. PPoPP’11] , or

• O(P) time per reclaimed version [Lu et al. DISC’13] [Böttcher et al. VLDB’19]

• P: number of processes

Main results

A general MVGC scheme with:
• Progress: wait-free

• Time: O(1) per reclaimed version, on average

• Space: constant factor more versions than needed, plus an
additive term

DISC’21 5

• Components of independent interest:
• Range tracking data structure [for identifying obsolete versions]

• Concurrent doubly-linked-list [for removing obsolete versions]

Multiversioning

DISC’21 6

val: A

time: 0

val: D

time: 2

val: D

time: 5

Time

X

Y

ObjectsVersions

val: A

time: 0

val: B

time: 4

val: C

time: 6

Read-only operation begins

with timestamp 3

val: D

time: 2

val: A

time: 0

val: D

time: 5

val: B

time: 4

val: C

time: 6

Multiversion Garbage Collection (MVGC)

• How do we know which versions obsolete?

• How do we safely reclaim them?

DISC’21 7

X

Y

ObjectsVersions

Maintaining all old versions ⇒ high memory usage

Which Versions are Needed?

DISC’21 8

Time

X

Y

ObjectsVersions

Timestamps of read-only operations

Most recent versions needed
Versions needed by

read-only operations

Related Work – Epoch-Based Solutions

• Reclaim versions overwritten before the start of the oldest read-only
operation

• Most commonly used

• Pros: Fast, easy to implement

DISC’21 9

X

Operations started before

this point have completed

Safe to collect

Related Work – Epoch-Based Solutions

• Cons: High space usage
• Unable to collect newer obsolete versions

• Particularly bad with long read-only operations

• E.g. database scans, large range queries

• Paused process can lead to unbounded space usage

DISC’21 10

X

Related Work – Other Solutions

• Techniques have been developed to address shortcomings of
epoch-based solutions

• GMV [Lu et al. DISC’13], Hana [Lee et al. SIGMOD’16], Steam [Böttcher et al.
VLDB’19]

• Require Ω(P) time, on average, to collect each version in worst case
executions,

• Keep up to P times more versions than necessary
• P: number of processes

DISC’21 11

Overview

Step 1: Identify obsolete versions

Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions

DISC’21 12

Overview

Step 1: Identify obsolete versions

Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions
DISC’21 13

X

Y

Pool of old

versions

Periodically returns a set

of obsolete versions

Range tracking data structure

Overview

Step 1: Identify obsolete versions
Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions
DISC’21 14

X

Y

n

Obsolete Need parent to unlink

Concurrent

removes

We present a wait-free, amortized
O(1) algorithm for remove()

Overview

Step 1: Identify obsolete versions

Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions

DISC’21 15

Xn

P1
• n is not safe to reclaim right away because a process (P1) could be paused on it

• Using Hazard Pointers (HP) or Concurrent Reference Counting (CRC) would solve this
problem, but

• HP sacrifices wait-freedom

• CRC sacrifices space bounds

• We design a new safe reclamation scheme specifically for our doubly linked version list

Step 1: Identifying Obsolete Versions

DISC’21 16

Range tracker:

X

Y

x1 x4 x6

y2
y4

x7

y8

x5

y3

x2

y1

x3

y7

x6

Triplet [version, beginTS, endTS]

Step 1: Identifying Obsolete Versions

DISC’21 17

Range tracker:

x1 x4 x6

y2
y4

x5

y3

x2

y1

x3

y7

3 7

Announcement Array

Triplet [version, startTS, endTS]

deprecate(z5, startTS, endTS)

z5

Add new triplet &

return obsolete

versions

Amortized O(1) time

Observation: Triplets added by the same
process have increasing endTS.

Step 1: Identifying Obsolete Versions

DISC’21 18

0 3 4 5 9 20Sorted

Announcement

Array

z5

Question: Given a triplet T and a sorted announcement array,
how long does it take to check if T is obsolete?

length = P (i.e. number of processes)

Triplet Z5, 7, 12=

Binary search

for endTS

Compare

with startTS

O(log P) time

Step 1: Identifying Obsolete Versions

DISC’21 19

1 3 4 5 9 20Sorted

Announcement

Array

Question: What if you were given a batch of O(P) triplets
sorted by end timestamp?

length = P (i.e. number of processes)

Batch of O(P)

Triplets
Z5, 2, 8 X3, 7, 12 … Y7, 10, 18

Binary search

for all end points

using merge()

O(P) time

Takes O(P) time

Obsolete

O(P log P)

O(P log P) time

Takes O(P log P)

time

Batch of O(P log P)

Triplets

Range Tracker: Implementation

DISC’21 20

P1

Local list

of triplets

Shared Queue

7 3 20 9 5 Announcement Array

…

Push()

Size at most O(P log P)

Pop() x2

Merge

Scan &

Sort

Needed

Obsolete

Returned by

deprecate

Overview

Step 1: Identify obsolete versions
Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions
DISC’21 21

X

Y

n

Obsolete

Concurrent

removes

Concurrent Removes

DISC’21 22

A B C D

A B C D

Remove(B) Remove(C)

Linked list structure corrupted

Linked List Remove

DISC’21 25

4 3 4 2 4 3 44 1 3 4 2 4 3

Implicitly

defined tree

Version list

Depth

4

1

2 2

3 3 3 3

4 4 4 4 4 4 4 4

x y z
4

Marked for deletion

3 44

3

Amortized O(1) time

Worst case O(log L) time

L = # of nodes appended to version list

Space Overhead

DISC’21 26

4 3 4 2 41 3 4 2 4 3

Implicitly

defined tree

Version list 4

1

2 2

3 3 3

4 4 4 4 4 4

3 2 1 2 3

Marked for deletion
O(log L) factor space overhead!

L = # of nodes appended to version list

Splicing Out Internal Nodes

SpliceUnmarkedLeft(Y): requires X > Y > Z and X unmarked

DISC’21 27

SpliceUnmarkedRight(Y): requires X < Y < Z and Z unmarked

X
Y

Z

May or may not

be marked

X
Y

Z

X
Y

Z

X
Y

Z

Splicing Out Internal Nodes

SpliceUnmarkedLeft(Y): requires X > Y > Z and X unmarked

DISC’21 28

May or may not

be marked

X
Y

Z

No concurrent splice on X or Z because:

• X is not marked

• Z is an internal node and Y is marked

X
Y

Z

X cannot be marked for entire
duration of the splice on Y

Splicing Out Internal Nodes

DISC’21 29

3 4 2 1 2 3

Implicitly

defined tree

Version list 4

1

2 2

3 3

4 4

3 2 1 2 3

SpliceUnmarkedRight

SpliceUnmarkedLeft

Splicing Out Internal Nodes

DISC’21 30

4 1

Implicitly

defined tree

Version list 4

1

4 4

1

Some nodes can’t be

removed by new rules.

At most a constant fraction

of nodes are like this.

Doubly Linked List

DISC’21 31

TryAppend

(worst-case)

Remove

(amortized)

Remove

(worst-case)

Space

Our Results O(1) O(1) O(log L),

Wait-free

O(S + c log L)

L = # of successful TryAppends

S = # of nodes appended but not removed

c = # of ongoing remove operations

Overview

Step 1: Identify obsolete versions

Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions

DISC’21 32

Xn

P1
• n is not safe to reclaim right away because a process (P1) could be paused on it

• Using Hazard Pointers (HP) or Concurrent Reference Counting (CRC) would solve this
problem, but

• HP sacrifices wait-freedom

• CRC has bad worst case space bounds

• We design a new safe reclamation scheme specifically for our doubly linked version list

Overall Results

DISC’21 34

X

• Time bounds:
• O(1) time, on average, to identify, remove, and reclaim a version

• Wait-free

• Space bounds:
• Number of unreclaimed versions ∈ O(# required versions) + additive term

Space Bounds

• Number of unreclaimed versions ∈ O(N + P2 log P + P log L)
• N: high watermark number of needed versions throughout execution

• P: number of processes

• L: maximum number of versions added to a single version list

• In large data structures, N > P2 log P + P log L

DISC’21 35

Conclusion

• We present a theoretically efficient solution to the MVGC problem

• Developed new techniques for all 3 steps:
1. Identify obsolete versions

2. Unlink from version list

3. Reclaim memory of unlinked versions

• Currently working on a practical version of this algorithm,
preliminary results look promising

DISC’21 36

