%ﬁ@%Bounded

Garbége Collection

~ Naama Ben-Davab . Blelloch, Panagiota Fatourou, Eric Ruppert,
- — Yihan Sun, and Yuanhao Wei

g = - \
'ﬁ e o -
N N =y T —

_-y

DISC’21

\Q

Introduction TFAD WP AUO
« Multiversioning widely used: [(/) | %
- Database systems &% Peloton - memSQl SQL Server

« Software Transactional Memory [Fernandes et al. PPoPP’11] [Lu et al. DISC’13]
« Concurrent data structures [Fatourou et al. SPAA’19] [Wei et al. PPoPP’21]

* High space usage = obsolete versions must be reclaimed
« Multiversion garbage collection problem (MVGC)

* Observed to be a bottleneck in modern database systems
[Lee et al. SIGMOD’16] [Bottcher et al. VLDB’19]

DISC’21

Research Question

How do you garbage collect
efficiently for multiversioning?

DISC’21

Main results

A general MVGC scheme with:
* Progress: walit-free

* Time: O(1) per reclaimed version, on average

« Space: constant factor more versions than needed, plus an
additive term

Previous solutions either use:
 unbounded space [Wei et al. PPoPP’21] [Fernandes et al. PPoPP’11] , OF

* O(P) time per reclaimed version [Lu et al. DISC'13] [Boticher et al. VLDB19]
* P: number of processes

DISC’21

Main results

A general MVGC scheme with:
* Progress: walit-free

* Time: O(1) per reclaimed version, on average

« Space: constant factor more versions than needed, plus an
additive term

« Components of independent interest:
- Range tracking data structure [for identifying obsolete versions]
» Concurrent doubly-linked-list [for removing obsolete versions]

DISC’21

Multiversioning

Versions Objects
I
val: A | ' val: B I val: C :
time: 0 | | time: 4 | time: 6 [X
I
I
:
val: A | ' val: D L val: D : v
time: O time: 2 time: 5
l ime I l ime | i l -
I
I
|

Read-only operation begins
with timestamp 3

“

DISC’21

Multiversion Garbage Collection (MVGC)

Versions Objects

X

Y

Maintaining all old versions = high memory usage

« How do we know which versions obsolete? T
 How do we safely reclaim them? “:

DISC’21

Which Versions are Needed?

Versions Obijects

< < »a
< < <

Versions needed bI/ // T

read-only operations Most recent versions lneeded
/ \\

<\/

Timestamps of read-only operations

“

DISC’21

Related Work — Epoch-Based Solutions

« Reclaim versions overwritten before the start of the oldest read-only
operation

« Most commonly used

r
X

Safe to collect Operations started before
this point have completed

* Pros: Fast, easy to implement

DISC’21

Related Work — Epoch-Based Solutions

X

1%

» Cons: High space usage
« Unable to collect newer obsolete versions
 Particularly bad with long read-only operations
- E.g. database scans, large range queries
» Paused process can lead to unbounded space usage

DISC’21

10

Related Work — Other Solutions

* Technigues have been developed to address shortcomings of
epoch-based solutions

e GMV [Lu et al. DISC’13], Hana [Lee et al. SIGMOD’16], Steam [Bottcher et al.
VLDB’19]

« Require Q(P) time, on average, to collect each version in worst case
executions,

« Keep up to P times more versions than necessary
* P: number of processes

DISC’21

11

Overview

Step 1: Identify obsolete versions
Step 2: Unlink from version list
Step 3: Reclaim memory of unlinked versions

DISC’21 12

Range tracking data structure

Overview

Pool of old
versions

Step 1: Identify obsolete versions

Periodically returns a set
of obsolete versions

& & & & & A P \
- < < <« < /‘ <« \
& < & <

Step 2: Unlink from version list
Step 3: Reclaim memory of unlinked versions

DISC’21

13

Overview

Step 1: Identify obsolete versions
Step 2: Unlink from version list

Obsolete Need parent to unlink
! /

We present a wait-free, amortized
O(1) algorithm for remove()

Step 3: Reclaim memory of unlinked versions

DISC’21

14

Overview

Step 1: Identify obsolete versions
Step 2: Unlink from version list
Step 3: Reclaim memory of unlinked versions

P PR < < N < > P > I
- : N ' q_rxl/: | | fl | | V I

P1

* nis not safe to reclaim right away because a process (P1) could be paused on it

» Using Hazard Pointers (HP) or Concurrent Reference Counting (CRC) would solve this
problem, but

» HP sacrifices wait-freedom
* CRC sacrifices space bounds

* We design a new safe reclamation scheme specifically for our doubly linked version list
DISC’21 15

Step 1: Identifying Obsolete Versions

Triplet [version, beqinTS, endTS
Range tracker: Plet| | |

DISC’21

Step 1: Identifying Obsolete Versions

Observation: Triplets added by the same
process have increasing endTS.

Amortized O(1) time

2ndTS] /

deprecate(z, startTS, endTS)

VRN

o N\ / ;

X1 =0 | X5 O X3 0| X4 4| X5 ¢ | Xg | Add new triplet &

return obsolete
versions

Y1 ®|Y2—o| V3 o |Ya——0 V7o

3 7

Announceme\nt Array

DISC’21

17

Step 1: Identifying Obsolete Versions

Question: Given a triplet T and a sorted announcement array,
how long does it take to check if T is obsolete?

O(log P) time

Triplet Zs — = Zc, 1, 12

Compare

with startTS Binary search

for endTS

Sorted O 3 4 5 9]20
Announcement
Array | Y |

length = P (i.e. number of processes)
DISC’21 18

Step 1: Identifying Obsolete Versions
O(P log P)

Question: What if you were given a batch of Q(EE triplets
sorted by end timestamp? O(P log P) time

Batch of O(P log P) O(P) time Obsolete
Triplets //\\/
Baich of OP) | 7,,2,8 X, 7,12 .. (Y;,10,18)
Triplets ~——
Takes O(P log P)

Binary search _
J time

for all end points :
Takes O(P) time
using merge() < (P)

Sorted 1 3 4 5 9 20
Announcement
\ J

Array ¥
length = P (i.e. number of processes)

DISC’21 19

Range Tracker: Implementation

Size at most O(P log P)

A

_ f \ Push()
Local list —
of triplets A
Pl
Pop() x2
PO Shared Queue

Needed ‘ Merge
Obsolete

l 7| 3 20 5 | Announcement Array

Returned by
deprecate

DISC’21

Scan &
Sort

20

Overview

Step 1: Identify obsolete versions
Step 2: Unlink from version list

Obsolete

—————————————

Concurrent
removes

Step 3: Reclaim memory of unlinked versions

DISC’21

Concurrent Removes

DISC’21

Remove(B)

A

N

+—(g

M

Remove(C)

“—{CF=iD.

l Linked list structure corrupted

C

0@

S

22

Amortized O(1) time

Worst case O(log L) time
L = # of nodes appended to version list

Linked List Remove

Implicitly
defined tree

Version list)32} D)er

DISC’21 25

Space Overhead

O(log L) factor space overhead!
L = # of nodes appended to version list

Implicitly
defined tree

Version list 4 J-3)-14J-12}) o1 |l

DISC’21 o

Splicing Out Internal Nodes

May or may not
be marked

SpliceUnmarkedLeft(Y): requires X >Y > Z and X unmarked

X [«

P

I

X

/Z

/

SpliceUnmarkedRight(Y): requires X <Y <Z and Z unmarked

X

DISC’21

—a

Yq\‘

>

X

—

27

Splicing Out Internal Nodes

May or may not
be marked

SpliceUnmarkedLeft(Y): requires X >Y > Z and X unmarked

«— & 3
Vg E— —Y
X [
No concurrent splice on X or Z because: \
X is not marked X cannot be marked for entire

« Zis an internal node and Y is marked

DISC’21

duration of the splice on Y

28

Splicing Out Internal Nodes

SpliceUnmarkedLeft

\

SpliceUnmarkedRight

Implicitly
defined tree

Version list 3J4)12) {1} {(2)}—{3}~{4

DISC’21 29

Splicing Out Internal Nodes

Some nodes can’t be
removed by new rules.
— At most a constant fraction

Implicitly of nodes are like this.

defined tree

Version list 4 1) "4

DISC’21 30

Doubly Linked List

TryAppend |Remove Remove Space
(worst-case) |(amortized) | (worst-case)

Our Results O(1) O(1) O(log L), O(S+clogl)
Wait-free

L = # of successful TryAppends
S = # of nodes appended but not removed
c = # of ongoing remove operations

DISC’21 31

Overview

Step 1: Identify obsolete versions
Step 2: Unlink from version list
Step 3: Reclaim memory of unlinked versions

P PR < < n N < > P > I
o ‘ - ' q_x/: | | fl | | V I

P1

* nis not safe to reclaim right away because a process (P1) could be paused on it

» Using Hazard Pointers (HP) or Concurrent Reference Counting (CRC) would solve this
problem, but

» HP sacrifices wait-freedom
* CRC has bad worst case space bounds

* We design a new safe reclamation scheme specifically for our doubly linked version list
DISC’21 32

Overall Results

 Time bounds:
* O(1) time, on average, to identify, remove, and reclaim a version
« Wait-free

« Space bounds:
* Number of unreclaimed versions € O(# required versions) + additive term

\

g— X @" ‘
=

X

DISC’21 34

Space Bounds

* Number of unreclaimed versions € O(N + P2 log P + P log L)
» N: high watermark number of needed versions throughout execution
* P: number of processes
 L: maximum number of versions added to a single version list

* In large data structures, N > P?log P + P log L

DISC’21

35

Conclusion

* We present a theoretically efficient solution to the MVGC problem

* Developed new techniques for all 3 steps:
1. ldentify obsolete versions
2. Unlink from version list
3. Reclaim memory of unlinked versions

 Currently working on a practical version of this algorithm,
preliminary results look promising

