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Introduction

• Multiversioning widely used:
• Database systems 

• Software Transactional Memory [Fernandes et al. PPoPP’11] [Lu et al. DISC’13]

• Concurrent data structures [Fatourou et al. SPAA’19] [Wei et al. PPoPP’21] 

• High space usage ⇒ obsolete versions must be reclaimed
• Multiversion garbage collection problem (MVGC)

• Observed to be a bottleneck in modern database systems                  
[Lee et al. SIGMOD’16] [Böttcher et al. VLDB’19] 
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Research Question
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How do you garbage collect 
efficiently for multiversioning?



Main results

A general MVGC scheme with:
• Progress: wait-free

• Time: O(1) per reclaimed version, on average

• Space: constant factor more versions than needed, plus an 
additive term
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Previous solutions either use: 
• unbounded space [Wei et al. PPoPP’21] [Fernandes et al. PPoPP’11] , or

• O(P) time per reclaimed version [Lu et al. DISC’13] [Böttcher et al. VLDB’19]

• P: number of processes



Main results

A general MVGC scheme with:
• Progress: wait-free

• Time: O(1) per reclaimed version, on average

• Space: constant factor more versions than needed, plus an 
additive term
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• Components of independent interest:
• Range tracking data structure   [for identifying obsolete versions]

• Concurrent doubly-linked-list [for removing obsolete versions]



Multiversioning
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Multiversion Garbage Collection (MVGC)

• How do we know which versions obsolete?

• How do we safely reclaim them?
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Which Versions are Needed?
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Related Work – Epoch-Based Solutions

• Reclaim versions overwritten before the start of the oldest read-only 
operation

• Most commonly used

• Pros: Fast, easy to implement
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Related Work – Epoch-Based Solutions

• Cons: High space usage
• Unable to collect newer obsolete versions

• Particularly bad with long read-only operations

• E.g. database scans, large range queries

• Paused process can lead to unbounded space usage
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Related Work – Other Solutions

• Techniques have been developed to address shortcomings of 
epoch-based solutions

• GMV [Lu et al. DISC’13], Hana [Lee et al. SIGMOD’16], Steam [Böttcher et al. 
VLDB’19]

• Require Ω(P) time, on average, to collect each version in worst case 
executions,

• Keep up to P times more versions than necessary
• P: number of processes
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Overview

Step 1: Identify obsolete versions

Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions
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Overview

Step 1: Identify obsolete versions

Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions
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Overview

Step 1: Identify obsolete versions
Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions
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Overview

Step 1: Identify obsolete versions

Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions

DISC’21 15

Xn

P1
• n is not safe to reclaim right away because a process (P1) could be paused on it

• Using Hazard Pointers (HP) or Concurrent Reference Counting (CRC) would solve this 
problem, but

• HP sacrifices wait-freedom

• CRC sacrifices space bounds

• We design a new safe reclamation scheme specifically for our doubly linked version list



Step 1: Identifying Obsolete Versions
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Step 1: Identifying Obsolete Versions
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Step 1: Identifying Obsolete Versions
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Step 1: Identifying Obsolete Versions
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Range Tracker: Implementation
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Overview

Step 1: Identify obsolete versions
Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions
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Concurrent Removes
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Linked List Remove
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Space Overhead
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Splicing Out Internal Nodes

SpliceUnmarkedLeft(Y):  requires X > Y > Z  and X unmarked
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Splicing Out Internal Nodes

SpliceUnmarkedLeft(Y): requires X > Y > Z  and X unmarked
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Splicing Out Internal Nodes
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Splicing Out Internal Nodes
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Doubly Linked List
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Overview

Step 1: Identify obsolete versions

Step 2: Unlink from version list

Step 3: Reclaim memory of unlinked versions
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Xn

P1
• n is not safe to reclaim right away because a process (P1) could be paused on it

• Using Hazard Pointers (HP) or Concurrent Reference Counting (CRC) would solve this 
problem, but

• HP sacrifices wait-freedom

• CRC has bad worst case space bounds

• We design a new safe reclamation scheme specifically for our doubly linked version list



Overall Results
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X

• Time bounds:
• O(1) time, on average, to identify, remove, and reclaim a version

• Wait-free

• Space bounds:
• Number of unreclaimed versions ∈ O(# required versions) + additive term



Space Bounds

• Number of unreclaimed versions ∈ O(N + P2 log P + P log L)
• N: high watermark number of needed versions throughout execution

• P: number of processes

• L: maximum number of versions added to a single version list

• In large data structures, N > P2 log P + P log L
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Conclusion

• We present a theoretically efficient solution to the MVGC problem

• Developed new techniques for all 3 steps:
1. Identify obsolete versions

2. Unlink from version list

3. Reclaim memory of unlinked versions

• Currently working on a practical version of this algorithm, 
preliminary results look promising
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