
Constant-Time Snapshots with
Applications to Concurrent Data

Structures
Yuanhao Wei, Naama Ben-David, Guy E. Blelloch, Panagiota Fatourou,

Eric Ruppert, and Yihan Sun

1PPoPP'21

Concurrent Data Structures

• Important topic with applications to Database Systems, Key-
Value Stores, Big Data Processing, etc

• Lots of concurrent data structures have been developed for
stacks, queues, trees, etc

• Most work focuses on single-item operations (insert, delete,
lookup, …)

• Many applications also require multi-point queries (range
queries, snapshotting, multi-search, …)

• Lots of recent work on multi-point queries, especially range
queries

2PPoPP'21

Our Results

Concurrent
Data Structure

Snapshottable
Data Structure

3PPoPP'21

Works with lots of lock-free data structures:

• Linked List [Harris’01]

• Queue [MichaelScott’96]

• BST [EllenFatourouRuppertBreugel’10]

• Chromatic Tree [BrownEllenRuppert’14]

• …

Our Results

Concurrent
Data Structure

Snapshottable
Data Structure

4PPoPP'21

Lock-free BST [EFRB’10]

Insert

Delete

Lookup

Lock-free Snapshottable BST

Insert

Delete

Lookup

Snapshot

Range Query

K-Successors

Multi-lookup

Etc..

Simple, General, Efficient!

E.g.

Preserves parallelism

and time bounds

O(1) time, a single CAS

Wait-free,

Linearizable

Comparison with Existing Techniques

5PPoPP'21

Generality

E
ff
ic

ie
n
c
y

LFCA [WSJ’18]

KiWi [BBBGHKS’17]

PNB-BST [FPR’19]

SnapTree [BCCO’10] Epoch RQs [AB’18]

SnapCollector [PT’13]

STM [FC’11]

This Paper

Overview of our Approach

6PPoPP'21

CAS Object Versioned CAS (VCAS) Object

Lock-free BST
[EFRB’10]

Lock-free Snapshottable BST

takeSnapshot

Supports:

• vRead

• vCAS

• readVersion

Versioned CAS

7PPoPP'21

Time Complexity:

• vRead(X)

• vCAS(X, old, new)

• takeSnapshot()

• readVersion(X, S)

O(1) time,

small constant

wait-free

.takeSnapshot() returns S1

vCAS(X, 1, 3)

vCAS(Y, 0, 5)

.takeSnapshot() returns S2

readVersion(X, S1) returns 1

readVersion(Y, S2) returns 5

1 0

X Y

3 5

X Y

S2

1 0

X Y

S1

3 5

Versioned CAS Object

Versioned CAS Implementation

PPoPP'21 8

VCAS Object

val: A

time: 0

val: B

time: 2

val: A

time: 4

Head

• VCAS objects are represented internally using version lists.

• Version lists are commonly used for MVCC in database

[R’78][NMK’15] and STM [CR’05][FC’11] systems

• Existing lock-free implementations are expensive

• Difficulty is in atomically inserting a new version and, at the

same time, assigning it an up-to-date timestamp

Versioned CAS Implementation

PPoPP'21 9

VCAS Object

val: A

time: 0

val: B

time: 2

val: A

time: 4

Head

5

Current

Time

vCAS(X, old, new)

• Link in new node with

timestamp TBD

• Update its timestamp

vRead(X)

• Help update timestamp of

most recent version

• Return its value

takeSnapshot()

• Increment current time

• Return its previous

value

readVersion(X, t)

• Help update timestamp

• Find newest version

with time ≤ t

val: C

time: TBD

val: C

time: 5

6

Versioned CAS

PPoPP'21 10

A

B C

D E

A

5 54

B’ B

3

CC’

5

D

5

E

root

root

21

A’

Snapshottable BST Expanding out

VCAS objects

Versioned CAS Object

n Version List Node

CAS Object

Timestamps

Multi-point Queries (EFRB-BST)

PPoPP'21

A

B C

D E

takeSnapshot

root

Snapshottable BST

Versioned CAS Object

A

B C

D E

root

Sequential algorithms for

rangeQuery, k-successors, etc,

can be used on this snapshot.

of version list

nodes traversed

Time complexity of multi-point query: O(seq. time + contention)

≤ # of inserts/deletes

concurrent with the

multi-point query

Snapshot

accessed via

readVersion()

Multi-point Queries

• In general, it is not always possible to compute linearizable
multi-point queries from low-level snapshots

• In our paper, we formally define the conditions a data structure
needs to satisfy for this approach to work

• Most lock-free data structures satisfy this condition

PPoPP'21 12

Our Results

Concurrent
Data Structure

Snapshottable
Data Structure

14PPoPP'21

Lock-free BST [EFRB’10]

Insert

Delete

Lookup

Lock-free Snapshottable BST

Insert

Delete

Lookup

Snapshot

Range Query

K-Successors

Multi-lookup

Etc..

E.g.

Preserves parallelism

and time bounds

O(1) time, a single CAS

Wait-free,

Linearizable

Practical Optimizations

• Avoiding Indirection

• Using exponential backoff to reduce contention on global
timestamp

• Removing redundant versions from the version list

• Garbage collecting old versions

• Our experiments include all the above optimizations

PPoPP'21 15

Avoiding Indirection

PPoPP'21 16

A

B C

D E

A

5 54

B’ B

3

CC’

5

D

5

E

root

root

21

A’

Snapshottable BST Expanding out

VCAS objects

Without

indirection

A, 2

B, 5 C, 5

D, 5 E, 5

root

A’, 1

B’, 4 C’, 3

Merge version list and

data structure nodes

Experimental Evaluation

• Goals:
1. Understand how much overhead our approach adds to the original

data structure

2. Compare performance of our approach with state-of-the-art range
queryable data structures

• Machine: 72-core (4-socket) Intel machine with 2-way
hyperthreading

• Evaluated performance in both C++ and Java

PPoPP'21 17

Experimental Evaluation (C++)

PPoPP'21 18

Workload: 36 update threads, 36 RQ threads, run on a tree of size 100,000

(A) Update Throughput (B) Range Query Throughput
(log scale)

(C) Memory Usage

BST with non-atomic range queries [AB’18]

BST with atomic range queries [AB’18]

BST using Versioned CAS objects

to support atomic range queries

7x

Experimental Evaluation (Java)

• Data Structures:
• PNB-BST [FPR’19] – Persistent BST supporting range queries

• KiWi [BBBGHKS’17] – Key-Value store supporting range queries

• LFCA [WSJ’18] – Lock-free Contention Adapting Search Tree

• KST [BH’11] – K-ary Search Tree

• SnapTree [BCCO’10] – Lock-based BST supporting snapshots

• Our Implementations:
• VcasBST – snapshottable version of EFRB-BST [EFRB’10]

• VcasCT – snapshottable version of ChromaticTree [BER’14]

PPoPP'21 19

* Data structures in blue are balanced

Experimental Evaluation (Java)

PPoPP'21 20

Workload: 36 update threads, 36 RQ threads, run on a tree of size 100,000.

(A) Update Throughput (B) Range Query Throughput
(log scale)

(C) Memory Usage

Experimental Evaluation (Summary)

• More experiments/workloads can be found in our paper

• Overall, we find that our approach adds very little overhead to
the original data structure

• Furthermore, our general-purpose approach is often as fast as,
or faster than, state-of-the-art lock-free structures supporting
range queries.

PPoPP'21 21

Conclusion

• We presented an approach for adding snapshotting and multi-
point queries to existing concurrent data structures

• Easy-to-use: simply replace CAS with Versioned CAS

• Efficient: both theoretically and practically

• General: supports a wide range of data structures and multi-point
queries

• Our code is available on GitHub:
https://github.com/yuanhaow/vcaslib

PPoPP'21 22

https://github.com/yuanhaow/vcaslib

