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Motivation

• Multiversioning widely used:
• Database systems 

• Software Transactional Memory [Fernandes et al. PPoPP’11] [Lu et al. DISC’13]

• Concurrent data structures [Fatourou et al. SPAA’19] [Wei et al. PPoPP’21] 

[Kobus et al. PPoPP’22] [Sheffi et al. OPODIS’22]

• High space usage ⇒ obsolete versions must be reclaimed
• Observed to be a bottleneck in modern database systems                  

[Lee et al. SIGMOD’16] [Böttcher et al. VLDB’19] 
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Multiversioning
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Multiversion Garbage Collection (MVGC)
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ObjectsVersions

Timestamps of ongoing read transactions

Most recent versions needed
Versions needed by read 
transactions
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Timestamps of future 
read transactions

Challenge: Identify and remove obsolete versions



Multiversion Data Structures

• Lock-free Multiversion Tree 
[PPoPP’21]

• Supports linearizable
range queries

• Used in our experiments
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Previous Work (MVGC)

Epoch Based Solutions

HyPer [SIGMOD’15]

VCAS [PPoPP’21]

Bundled References 
[PPoPP’22]

...

Scan Based Solutions

GMV [DISC’13]

Hana [SIGMOD’16]

Steam [VLDB’19]

Range Tracker 
Based Solutions

BBF+ [DISC’21]
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Space efficientTime efficient

Our Contributions

HyPer [SIGMOD’15]

VCAS [PPoPP’21]

Bundled References 
[PPoPP’22]

…

Steam [VLDB’19] BBF+ [DISC’21]

• 2 new MVGC schemes + apples-to-apples comparison

DL-RT [this paper]

SL-RT [this paper]

Time + Space Efficient
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Epoch Based Solutions Scan Based Solutions Range Tracker Based 
Solutions



Epoch Based Solutions

• Track oldest ongoing read transaction

• Reclaim any version overwritten before it

X

Oldest read transaction

Safe to reclaim

Y
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• Pros: Fast, easy to implement

• Cons: unable to reclaim  
intermediate versions



Experiment Results (Java): Epoch Based

rtx = read transaction
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Workload: Tree initialized with 10M keys
80 range query threads
40 update threads



Scan Based Solutions

• Steam [VLDB’19]: Whenever a new version is added -> scan and 
compact its version list

X

Y

• Locks entire version list when compacting

• We improved Steam with a new lock-free singly-linked version list 
(Steam+LF)
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Experiment Results: Steam+LF
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Range Tracker Based Solutions BBF+ [Ben-David et al., DISC’21]

Range Tracker

O(1) amortized time
O(needed) space 

Old Versions

Active Read 
Transactions

Obsolete Versions

X

Y

BBF+ uses doubly-linked version lists to allow removal of obsolete versions
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Experiment Results: BBF+
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New MVGC Schemes

• Use range tracker to get good space efficiency

• Time efficiency: BBF+ is over optimized for worst-case

Concurrent remove()s

• DL-RT: Range tracker + new doubly-linked version list

• SL-RT: Range tracker + scan + new singly-linked version list
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Practical Doubly-Linked Version List

• To remove a node:
1. Mark it as deleted by setting a flag

2. Traverse in both directions until you find an unmarked node on each side

3. Make them point to each other (using compare_and_swap)

• Algorithm simple, correctness subtle

zyzwvu

Remove(v) Remove(w)
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Practical Doubly-Linked Version List (DL-RT)
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Range Tracker + Scan Based Solutions

Range Tracker

O(1) amortized time
O(needed) space 

Old Versions

Active Read 
Transactions

Version lists with 
Obsolete Versions

X

Y
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New lock-free, singly-linked version list



Range Tracker + Scan (SL-RT)
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New MVGC schemes 



Worst-case Space Bounds

• DL-RT and SL-RT maintain O(needed) versions  => robust to workload

• Better worst-case memory usage than EBR and Steam
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5x less 
memory

10x less 
memory



Conclusion

• Two new MVGC schemes: DL-RT and SL-RT

• Fast and space efficient in practice

• Strong space bounds in theory

• New lock-free doubly-/singly- linked version lists

• Experimental comparison between MVGC schemes 

• Our code is available on GitHub: 
https://github.com/cmuparlay/ppopp23-mvgc
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https://github.com/cmuparlay/ppopp23-mvgc

