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e Database systems
* Software Transactional Memory [Fernandes et al. PPoPP’11] [Lu et al. DISC’13]

e Concurrent data structures [Fatourou et al. SPAA9] [Wei et al. PPoPP’21]
[Kobus et al. PPoPP’22] [Sheffi et al. OPODIS’22]

* High space usage = obsolete versions must be reclaimed

* Observed to be a bottleneck in modern database systems
[Lee et al. SIGMOD’16] [Bottcher et al. VLDB’19]
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Multiversioning

Versions Objects
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Multiversion Garbage Collection (MVGC)

Challenge: Identify and remove obsolete versions

Versions Objects

l
- = — < < < — l

| X
Versions needed by read , [
. Most recent versions needed 1
transactions :

~

/ — l |

= < < < < < < < - I Y
I
I

\/’ —

Timestamps of ongoing read transactions Timestamps ?f future
read transactions

PPoPP’23



Multiversion Data Structures

e Lock-free Multiversion Tree
[PPoPP’21] Timestamps Root

e Supports linearizable
range queries

* Used in our experiments

Current version
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Previous Work (MVGC)

Epoch Based Solutions Scan Based Solutions
HyPer [SIGMOD’15] GMV

VCAS [PPoPP’21] Hana

Bundled References Steam

[PPOPP’22]

Range Tracker
Based Solutions

BBF+



Our Contributions

2 new MVGC schemes + apples-to-apples comparison

Time efficient Space efficient
Epoch Based Solutions Scan Based Solutions Range Tracker Based
Solutions
HyPer [SIGMOD’15] Steam [VLDB'19] BBF+ [DISC’21]

VCAS [PPoPP’21]

Bundled References )
[PPoPP’22] DL-RT [this paper]

SL-RT [this paper]

Time + Space Efficient
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Epoch Based Solutions

* Pros: Fast, easy to implement

* Track oldest ongoing read transaction e Cons: unable to reclaim

e Reclaim any version overwritten before it intermediate versions
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Experiment Results (Java): Epoch Based
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Scan Based Solutions

e Steam [VLDB'19]: Whenever a new version is added -> scan and
compact its version list
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* Locks entire version list when compacting

* We improved Steam with a new lock-free singly-linked version list
(Steam+LF)

PPoPP’23 10



Experiment Results: Steam+LF
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Range Tracker Based Solutions  ssf+senoavidecal, piscail
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BBF+ uses doubly-linked version lists to allow removal of obsolete versions
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Experiment Results: BBF+
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New MVGC Schemes

e Use range tracker to get good space efficiency
* Time efficiency: BBF+ is over optimized for worst-case
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Concurrent remove()s

* DL-RT: Range tracker + new doubly-linked version list
* SL-RT: Range tracker + scan + new singly-linked version list

PPoPP’23
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Practical Doubly-Linked Version List

* To remove a node:
1. Mark it as deleted by setting a flag
2. Traverse in both directions until you find an unmarked node on each side
3. Make them point to each other (using compare_and_swap)

Head
z /
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/. AN
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* Algorithm simple, correctness subtle



Practical Doubly-Linked Version List (DL-RT)
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Range Tracker + Scan Based Solutions

Old Versions » Range Tracker

Version lists with
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Range Tracker + Scan (SL-RT) tewGC chemes
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Worst-case Space Bounds

* DL-RT and SL-RT maintain O(needed) versions => robust to workload

e Better worst-case memory usage than EBR and Steam
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Conclusion

* Two new MVGC schemes: DL-RT and SL-RT
* Fast and space efficient in practice
e Strong space bounds in theory
* New lock-free doubly-/singly- linked version lists

* Experimental comparison between MVGC schemes

e Qur code is available on GitHub:
https://github.com/cmuparlay/ppopp23-mvqgc
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https://github.com/cmuparlay/ppopp23-mvgc

