
Practically and Theoretically
Efficient Garbage Collection for

Multiversioning
Yuanhao Wei, Guy E. Blelloch, Panagiota Fatourou, and Eric Ruppert

Motivation

• Multiversioning widely used:
• Database systems

• Software Transactional Memory [Fernandes et al. PPoPP’11] [Lu et al. DISC’13]

• Concurrent data structures [Fatourou et al. SPAA’19] [Wei et al. PPoPP’21]

[Kobus et al. PPoPP’22] [Sheffi et al. OPODIS’22]

• High space usage ⇒ obsolete versions must be reclaimed
• Observed to be a bottleneck in modern database systems

[Lee et al. SIGMOD’16] [Böttcher et al. VLDB’19]

PPoPP’23 2

Multiversioning

val: A
time: 0

val: D
time: 2

val: E
time: 5

Time

X

Y

ObjectsVersions

val: A
time: 0

val: B
time: 4

val: C
time: 6

Read transaction with timestamp 3

val: D
time: 2

val: A
time: 0

val: E
time: 5

val: B
time: 4

val: C
time: 6

PPoPP’23 3

6

Current Time

Multiversion Garbage Collection (MVGC)

X

Y

ObjectsVersions

Timestamps of ongoing read transactions

Most recent versions needed
Versions needed by read
transactions

PPoPP’23 4

Timestamps of future
read transactions

Challenge: Identify and remove obsolete versions

Multiversion Data Structures

• Lock-free Multiversion Tree
[PPoPP’21]

• Supports linearizable
range queries

• Used in our experiments

A, 5

B, 5 C, 5

D, 5 E, 5

Root

A’, 3

B’, 2B’’, 1

Old versions

Timestamps

PPoPP’23 5

D’, 1 E’, 1

Current version

Previous Work (MVGC)

Epoch Based Solutions

HyPer [SIGMOD’15]

VCAS [PPoPP’21]

Bundled References
[PPoPP’22]

...

Scan Based Solutions

GMV [DISC’13]

Hana [SIGMOD’16]

Steam [VLDB’19]

Range Tracker
Based Solutions

BBF+ [DISC’21]

PPoPP’23 6

Space efficientTime efficient

Our Contributions

HyPer [SIGMOD’15]

VCAS [PPoPP’21]

Bundled References
[PPoPP’22]

…

Steam [VLDB’19] BBF+ [DISC’21]

• 2 new MVGC schemes + apples-to-apples comparison

DL-RT [this paper]

SL-RT [this paper]

Time + Space Efficient

PPoPP’23 7

Epoch Based Solutions Scan Based Solutions Range Tracker Based
Solutions

Epoch Based Solutions

• Track oldest ongoing read transaction

• Reclaim any version overwritten before it

X

Oldest read transaction

Safe to reclaim

Y

PPoPP’23 8

• Pros: Fast, easy to implement

• Cons: unable to reclaim
intermediate versions

Experiment Results (Java): Epoch Based

rtx = read transaction

PPoPP’23 9

Workload: Tree initialized with 10M keys
80 range query threads
40 update threads

Scan Based Solutions

• Steam [VLDB’19]: Whenever a new version is added -> scan and
compact its version list

X

Y

• Locks entire version list when compacting

• We improved Steam with a new lock-free singly-linked version list
(Steam+LF)

PPoPP’23 10

Experiment Results: Steam+LF

PPoPP’23 11

Range Tracker Based Solutions BBF+ [Ben-David et al., DISC’21]

Range Tracker

O(1) amortized time
O(needed) space

Old Versions

Active Read
Transactions

Obsolete Versions

X

Y

BBF+ uses doubly-linked version lists to allow removal of obsolete versions

PPoPP’23 12

Experiment Results: BBF+

PPoPP’23 13

New MVGC Schemes

• Use range tracker to get good space efficiency

• Time efficiency: BBF+ is over optimized for worst-case

Concurrent remove()s

• DL-RT: Range tracker + new doubly-linked version list

• SL-RT: Range tracker + scan + new singly-linked version list

PPoPP’23 14

Practical Doubly-Linked Version List

• To remove a node:
1. Mark it as deleted by setting a flag

2. Traverse in both directions until you find an unmarked node on each side

3. Make them point to each other (using compare_and_swap)

• Algorithm simple, correctness subtle

zyzwvu

Remove(v) Remove(w)

PPoPP’23 15

Head
v w

Practical Doubly-Linked Version List (DL-RT)

PPoPP’23 16

Range Tracker + Scan Based Solutions

Range Tracker

O(1) amortized time
O(needed) space

Old Versions

Active Read
Transactions

Version lists with
Obsolete Versions

X

Y

PPoPP’23 17

New lock-free, singly-linked version list

Range Tracker + Scan (SL-RT)

PPoPP’23 18

New MVGC schemes

Worst-case Space Bounds

• DL-RT and SL-RT maintain O(needed) versions => robust to workload

• Better worst-case memory usage than EBR and Steam

PPoPP’23 19

5x less
memory

10x less
memory

Conclusion

• Two new MVGC schemes: DL-RT and SL-RT

• Fast and space efficient in practice

• Strong space bounds in theory

• New lock-free doubly-/singly- linked version lists

• Experimental comparison between MVGC schemes

• Our code is available on GitHub:
https://github.com/cmuparlay/ppopp23-mvgc

PPoPP’23 20

https://github.com/cmuparlay/ppopp23-mvgc

