Practically and Theoretically
Efficient Garbage Collection for
Multiversioning

Yuanhao Wei, Guy E. Blelloch, Panagiota Fatourou, and Eric Ruppert

\Q

Motivation FD AR QYO
(/) 4
 Multiversioning widely used: memsQL $B Server

e Database systems
* Software Transactional Memory [Fernandes et al. PPoPP’11] [Lu et al. DISC’13]

e Concurrent data structures [Fatourou et al. SPAA9] [Wei et al. PPoPP’21]
[Kobus et al. PPoPP’22] [Sheffi et al. OPODIS’22]

* High space usage = obsolete versions must be reclaimed

* Observed to be a bottleneck in modern database systems
[Lee et al. SIGMOD’16] [Bottcher et al. VLDB’19]

PPoPP’23

Multiversioning

Versions Objects

I
val: A | ' val: B I val: C :

time:0 | l time: 4 | time: 6 [X
I
I
I
I

val: A | ' val: D I‘ val: E I y
time:0 | time:2 | time: 5 1
D | time:2 J D .
I
I
|

Read transaction with timestamp 3

“ 6
Current Time

PPoPP’23

Multiversion Garbage Collection (MVGC)

Challenge: Identify and remove obsolete versions

Versions Objects

l
- = — < < < — l

| X
Versions needed by read , [
. Most recent versions needed 1
transactions :

~

/ — l |

= < < < < < < < - I Y
I
I

\/’ —

Timestamps of ongoing read transactions Timestamps ?f future
read transactions

PPoPP’23

Multiversion Data Structures

e Lock-free Multiversion Tree
[PPoPP’21] Timestamps Root

e Supports linearizable
range queries

* Used in our experiments

Current version

PPoPP’23 5

Previous Work (MVGC)

Epoch Based Solutions Scan Based Solutions
HyPer [SIGMOD’15] GMV

VCAS [PPoPP’21] Hana

Bundled References Steam

[PPOPP’22]

Range Tracker
Based Solutions

BBF+

Our Contributions

2 new MVGC schemes + apples-to-apples comparison

Time efficient Space efficient
Epoch Based Solutions Scan Based Solutions Range Tracker Based
Solutions
HyPer [SIGMOD’15] Steam [VLDB'19] BBF+ [DISC’21]

VCAS [PPoPP’21]

Bundled References)
[PPoPP’22] DL-RT [this paper]

SL-RT [this paper]

Time + Space Efficient

PPoPP’23

Epoch Based Solutions

* Pros: Fast, easy to implement

* Track oldest ongoing read transaction e Cons: unable to reclaim

e Reclaim any version overwritten before it intermediate versions

I
I
= < < < < = < < I

/v [X
I
Safe to reclaim I
I

\ ~ ¢ < < < < < I Y
N . . [
I
I

Oldest read transaction

PPoPP’23

Experiment Results (Java): Epoch Based

—&— EBR

E Rtx throughput g Update throughput Memory usage

N A —~8

3) o

2 400- — 101 V6

_— -] (@)]

4—1 o ©

- = wn

2 5 24

22001 o 5 -

2 = £ 2

S v o

5 g =

g 0210 516 520 24 =3 0210 516 520 24 0'210 516 520 524
Size of rtxs Size of rtxs Size of rtxs

'\/'

Workload: Tree initialized with 10M keys _
rtx = read transaction

80 range query threads
40 update threads

PPoPP’23

Scan Based Solutions

e Steam [VLDB'19]: Whenever a new version is added -> scan and
compact its version list

"_1: < < »
X =20

> & »
< <

* Locks entire version list when compacting

* We improved Steam with a new lock-free singly-linked version list
(Steam+LF)

PPoPP’23 10

Experiment Results: Steam+LF

—#— EBR Steam+LF

Rtx throughput

Update throughput

™=

) w
3 3
S— —
w wn
Q o
S 15
£ 400 = 10]
- g
Q o
N -
2200+ o 3
[®) L
= —
- Q
-+ 4+
© (o]
. E 4
g 0210 216 220 224 % 0210 216 220 224

Size of rtxs Size of rtxs

PPoPP’23

Range Tracker Based Solutions ssf+senoavidecal, piscail

Old Versions »
Active Read
Transactions

Range Tracker

O(1) amortized time ‘ Obsolete Versions

O(needed) space

A
A
A\
A
A 4
A
\ 4
A
A 4
A
A 4
\ 4
A
\ 4
A
J
\ 4
A
I N N B S .

BBF+ uses doubly-linked version lists to allow removal of obsolete versions

PPoPP’23 5

Experiment Results: BBF+

—=— EBR Steam+LF BBF+

Memory usage

m 8
e
V6
o
(1]
=
> /
S 5lm E—
s
045 16 50 54
2 2 2 2

Size of rtxs

PPoPP’23 13

New MVGC Schemes

e Use range tracker to get good space efficiency
* Time efficiency: BBF+ is over optimized for worst-case

» < » < » < » < » <
» < > < > < » < > <

Concurrent remove()s

* DL-RT: Range tracker + new doubly-linked version list
* SL-RT: Range tracker + scan + new singly-linked version list

PPoPP’23

14

Practical Doubly-Linked Version List

* To remove a node:
1. Mark it as deleted by setting a flag
2. Traverse in both directions until you find an unmarked node on each side
3. Make them point to each other (using compare_and_swap)

Head
z /

u Y W z y
/. AN
Remove(v) Remove(w)

* Algorithm simple, correctness subtle

Practical Doubly-Linked Version List (DL-RT)

—=— EBR Steam+LF BBF+ —e— DL-RT
Memory usage

= 8]
e
V6
(@)]
©
wn
D4
> [
Qo
€ 2]
)]
=

0_

N
=
o

216 220 224
Size of rtxs

PPoPP’23 16

Range Tracker + Scan Based Solutions

Old Versions » Range Tracker

Version lists with

O(1) amortized time Obsolete Versions
O(needed) space

Active Read
Transactions

I

—— I X
_— o I
/ I
v I
)) - I

/ @ ‘ - I Y

New lock-free, singly-linked version list

PPoPP’23 17

Range Tracker + Scan (SL-RT) tewGC chemes

—#— EBR 4— Steam+LF BBF+ —eo— DL-RT —a— SL-RT
":”16001 Rtx throughput T”:; Update throughput Memory usage
" P b —8
% § ’_—‘\:\' C)
£ 400 = 10n .. ~~ 26
3 g 3
o3 o 24
K = =3 =3
=200 @ 2 s |/
o = £ 2
o Q 7]
© © =
o O T 0 0
qu) 210 216 220 224 % 210 216 220 224 210 216 220 224

Size of rtxs Size of rtxs Size of rtxs

PPoPP’23 18

Worst-case Space Bounds

* DL-RT and SL-RT maintain O(needed) versions => robust to workload

e Better worst-case memory usage than EBR and Steam

Memory usage Memory usage
— E o
515_ QUJU p-
= 10x less ©0.15 N
% 1.0 a
2+ memory -
> 3?0-10'
o 0.5 o
E ED.OS-. : J =

0.01® -— 0.00L.
28 21{} 212 214 216 2.-8 28 21[} 212 214 215 213
Size of rtxs Size of rtxs

—&— EBR 4— Steam+LF BBF+ —e— DL-RT —<— S|-RT

PPoPP’23

5x less
memory

19

Conclusion

* Two new MVGC schemes: DL-RT and SL-RT
* Fast and space efficient in practice
e Strong space bounds in theory
* New lock-free doubly-/singly- linked version lists

* Experimental comparison between MVGC schemes

e Qur code is available on GitHub:
https://github.com/cmuparlay/ppopp23-mvqgc

PPoPP’23 20

https://github.com/cmuparlay/ppopp23-mvgc

