
NOISY GAMES: A STUDY ON THE EFFECT OF NOISE ON GAME
SPECIFICATIONS

A PREPRINT

Constantinos Varsos
Centrum Wiskunde & Informatica

(CWI)
Konstantinos.Varsos@cwi.nl

Giorgos Flouris
Foundation for Research and Technology-Hellas

(FORTH)
fgeo@ics.forth.gr

Marina Bitsaki
Institute of Computer Science, University of Crete

ecbitsaki@gmail.com

ABSTRACT

We consider misinformation games, i.e., multi-agent interactions where the players are misinformed
with regards to the game that they play, essentially having an incorrect understanding of the game
setting, without being aware of their misinformation. In this paper, we introduce and study a new
family of misinformation games, called Noisy games, where misinformation is due to structured
(white) noise that affects additively the payoff values of players. We analyse the general properties of
Noisy games and derive theoretical formulas related to “behavioural consistency”, i.e., the probability
that the players behaviour will not be significantly affected by the noise. We show several properties
of these formulas, and present an experimental evaluation that validates and visualises these results.

1 Introduction

A common assumption in game theory [17, 18] is that the abstract formulation of the game (number of players, strategies
available to the players and payoffs depending on the chosen strategies) are publicly available to all players. Even for
games with incomplete information [26], the fact that knowledge is incomplete, and the exact form of incompleteness,
is embedded in the game specification.

However, in several scenarios, it could be the case that the players may have wrong information regarding the game
setup, and at the same time being unaware of the fact that their information is wrong, thus being misinformed. The
agents, being unaware of their misinformation, may make choices that are unexpected and seem irrational from the
external viewpoint, leading to unexpected results. These games are called misinformation games [25] (see also Figure
1).

The main defining characteristic of misinformation games is that the players have no reason to believe that they have
the wrong payoff information, and will play the game under the misconceived definition (payoffs) that they have.
Nevertheless, the payoff that they will get is the one provisioned by the actual game. This makes the concept of
misinformation games quite different from other types of games that have been defined in the literature, in particular
games that incorporate uncertainty in their payoffs (e.g., Bayesian games [26]); in games with incomplete information,
although uncertainty makes the players unsure as to their actual payoff for each different strategy, the players are
well-aware of that, and they accommodate their strategies accordingly, in order to make the best out of the uncertainty
that they have. On the contrary, in misinformation games the players believe the information that was given, and do not
consider mitigation measures “just in case” the information is wrong.

In previous works [25, 19], various different causes of misinformation are identified, including deception and misleading
reports, human errors, deliberate attempts by the game designer to channel players into different behaviours, erroneous
sensor readings and random effects. In this paper, we focus on a special case of misinformation, attributed to noise and
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Figure 1: Visualisation of a misinformation/noisy game

signal errors, a situation often occurring in distributed multiagent systems. This class of misinformation games will be
called noisy games.

Specifically, in distributed multiagent systems, agents1 are equipped with an internal logic that allows them to
autonomously solve problems of a given nature. However, at deployment time, the precise specification of these
problems is often unknown; instead, the details are communicated as needed at operation time, during the so-called
“online phase” [8]. In such cases, unexpected communication errors, malfunctions in the communication module or
noise may cause the agents to operate under a distorted problem specification, leading to unexpected behaviour.

For example, consider the scenario where we have two autonomous self-interested agents, already deployed in an
unfriendly environment. At some point in time, the human controller asks each of the agents to choose among two
actions, also specifying the payoffs for each combination of choices. If the communication goes through as expected,
then the behaviour of the agents is predictable by the well-known results of game theory. However, if one (or both) of
the agents’ communication module malfunctions, or if there is unexpected noise in the communication channel, the
signal may arrive distorted. This could lead agents to receive an erroneous payoff matrix, essentially causing them to
believe that they play a game different than the one communicated to them, with unpredictable results (Figure 1).

Note that, if, at deployment time, the designer had foreseen the possibility for the agents to receive an erroneous game
specification, then the agents would have been programmed to treat all signals as uncertain (i.e., true under a certain
probability). In this case, the possibility of error is integrated in the agents’ logic (even when no communication error
occurs), and their behaviour can be modelled using the rich results on Bayesian games and games with incomplete
information [26]. On the other hand, if such a scenario had not been foreseen at deployment time, then the agents will
operate under the payoff matrices received, without considering the possibility that the payoff matrices are not the
correct ones. This is quite different, as the agents’ decisions will be totally misled by the erroneous setting, and will not
consider mitigation measures “just in case” the specification that they received is wrong.

The aim of this paper is to provide the theoretical machinery necessary to study scenarios of this kind. In particular, the
main research question to be addressed is: given a game and a specific noise pattern affecting the players’ perceived
payoff matrices, compute the probability that players’ behaviour (i.e., chosen strategies) will be as close as possible (in
a manner to be formally defined later) to the behaviour that they would have in the absence of noise.

In summary, the main contributions of this paper are the following:

1. The provision of motivation for the need to define misinformation in the context of noisy games, by positioning
our work with respect to other similar efforts in the literature, in particular related to games with uncertainty,
and games where the players have some kind of misconception related to the game’s payoffs (Section 2).

2. The definition of a formal model for the description of misinformation in noisy games (Section 4).
3. The computation of the probability that the players’ behaviour is not significantly affected by random noise, a

feature that we call behavioural consistency (Section 5).
4. A thorough analysis of the properties of these probabilities (Section 6).
5. Experimentation to visualize and validate our results (Section 7).

2 Related Work

The works most related to the concept of noisy games are those of games with misspecified views (e.g., [7], [12], [22]).
Despite the fact that Bayesian techniques are very popular in this stream of works, there is no consideration about the

1Note that we use the terms “agent” and “player” interchangeably throughout the paper.
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structure of misinformation that results in these views. As opposed to Bayesian games, where there is a rich literature
that studies the influence of the structure of uncertainty in the knowledge of the players to their strategic behaviour.
Thus, conceptually we are closer to the first group of works. On the other hand though, we study too the effect of
distributions in the knowledge of the players as to their strategic behaviour, thus our results can be related to the latter
stream of works.

Bayesian games and games with incomplete information [26] have been introduced to handle uncertainty about players’
payoffs. This uncertainty is represented by probabilities over the alternative payoff matrices. Also, there are cases
where some payoffs are simply unknown. In all cases, the players are aware of the fact that the information they have is
incomplete, and their strategies are adapted to cater for this incompleteness. This is the main difference with regards to
misinformation games, where information is complete, but incorrect. That is, players are unaware of the fact that the
information they have is incorrect, and thus, their strategic choices are entirely based on it.

The works [13, 14, 15] are also relevant to ours. In these studies, the authors consider non-atomic routing games, and
suggest that the players experience their own cost functions, which are potentially different from the actual ones (e.g.,
to model player-specific biases). This setting is similar to a misinformation game, except that, in our methodology, each
player has a potentially different view of the entire game (including the payoffs of the other players), not just her own
payoffs, and plays according to that view. In addition, the two approaches have a quite different motivation: in [13]
authors assume that players modify their payoffs from the objective ones, by themselves, for personal reasons (bias or
some kind of personal preference); in our case, the modifications are accidental, caused by communication errors.

In [4], the authors consider the impact of small fluctuations in the cost functions or in players’ perceptions of the cost
structure in congestion and load balancing games, and study its effect on players’ behaviour. A fluctuation is a departure
from the classical viewpoint that treats payoffs as a number; under [4], the payoff is a range of values “close” to the
actual payoff. An extension of [4] considered normal-form games, aiming to define a new notion of equilibrium that
maximizes the worst case outcome over possible actions by other players [1] in the presence of fluctuations, whereas a
further extension ([5]) studied the robustness of this equilibrium solution, utilizing the notion of approximations of
payoffs using a fuzziness to the values of payoff matrices. There are several differences of the concept of fluctuation
as compared to misinformation. First, the players are aware of the fluctuations and, thus, take them into account
while deciding on their strategic choices. Second, fluctuations affect all players and all payoffs uniformly. Third,
fluctuations have a limited effect, whereas the noise considered in our work may have unlimited effect (subject to a
certain probability function).

Further, in [8] the authors study how resilient is the strategic behaviour of players when an unexpected communication
loss occurs, and explore game settings in which communication failures can/cannot cause harm in the strategic behaviour
of players. They introduce the notion of proxy payoffs in order to funnel communication failures and show that, in several
settings, loss of information may cause arbitrary strategic behaviours. Our work has a similar contribution as both
works prove that in the presence of communication inefficiencies any strategic behaviour is possible. Though, authors
in [8] focus on how the agents choose policies so as to cope with communication failures, in this study we analyse the
impact of disorder in the strategic behaviour of the players. Also, we model communication failure using probabilities,
and provide formulas that quantify the probability of arbitrariness in strategic behaviours, when information is degraded
due to noise.

Moreover, there is another stream of works considering random payoff matrices, (i.e. [9, 24, 23, 21, 6, 10]) where the
focus is on the distribution of pure Nash equilibria. A tweak of this methodology is presented in [20] where authors
study the distribution of players’ average social utility.

3 Preliminaries

3.1 A brief refresher on probability theory

We provide here some basic knowledge on probability theory that will be useful in the following sections. The interested
reader is referred to [2] for further details.

A random variable X is characterised by its probability density function (pdf), denoted by fX , which represents the
“intensity” of the probability in each given point. The pdf can be used to compute the probability that X falls within a
given range, say [a, b], for any a ≤ b. Formally, fX is such that:

P[a ≤ X ≤ b ] =

∫ b

a

fX(x)dx
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We denote by FX the cumulative distribution function (cdf) of a random variable X , which equals the probability that
the value of X is at most x. Formally:

FX(x) =

∫ x

−∞
fX(t)dt = P[X ≤ x ]

In this paper, we focus on random variables X following the normal distribution, denoted by X ∼ N
(
µ, d2

)
(for some

mean µ ∈ R and standard deviation2 d > 0). For the special case where µ = 0, d = 1 (i.e., when X ∼ N (0, 1)), we
get the standard normal distribution, with the following pdf (ϕ) and cdf (Φ):

ϕ(x) = 1√
2π

e−
x2

2 , Φ(x) = 1√
2π

∫ x

−∞
e−

t2

2 dt (1)

For the general case, where X ∼ N
(
µ, d2

)
, the pdf and cdf are:

fX(x) =
1

d
ϕ

(
x− µ

d

)
= 1

d
√
2π

e
−
(

x−µ

d
√
2

)2

FX(x) = Φ

(
x− µ

d

)
= 1√

2π

∫ x−µ
d

−∞
e−

t2

2 dt

(2)

It has been shown that, if Xi ∼ N
(
µi, d

2
i

)
, c0, ci ∈ R, then:

c0 +
∑

ciXi ∼ N
(
c0 +

∑
ciµi,

∑
c2i d

2
i

)
(3)

Given two events A,B, the symbol P[A|B ] denotes the conditional probability of A given B, which amounts to the
probability that A is true under the condition that B is true.

When combining events, the following are true:

General Conjunction Rule:
P[A ∧B ] = P[B ] · P[A|B ] = P[A ] · P[B|A ]

Restricted Conjunction Rule:
P[A ∧B ] = P[A ] · P[B ] (when A,B are mutually exclusive)

General Disjunction Rule:
P[A ∨B ] = P[A ]+ P[B ]− P[A ∧B ]

Restricted Disjunction Rule:
P[A ∨B ] = P[A ]+ P[B ] (when A,B are mutually exclusive)

(4)

3.2 Normal-form games

Normal-form games [17, 18] is the most commonly-studied class of games. A game in normal-form is represented by a
payoff matrix that defines the payoffs of all players for all possible combinations of pure strategies. Formally:
Definition 1 (Normal-form games). A normal-form game G is a tuple G = ⟨N,S, P ⟩, where:

• N = {1, 2, . . . , n} is the set of players.

• S = S1 × · · · × Sn, Si is the set of pure strategies of player i ∈ N .

• P = (P1; . . . ; Pn), Pi ∈ R|S1|×...×|Sn| is the payoff matrix of player i ∈ {1, 2, . . . , n}.

In this paper we focus on 2× 2 bimatrix games, a popular class of games defined as follows:
Definition 2 (2× 2 bimatrix games). A 2× 2 bimatrix game G is a normal-form game G = ⟨N,S, P ⟩, such that:

2In probability theory, standard deviation is typically denoted by σ. To avoid confusion with the strategies of normal form games
which use the same symbol (see Subsection 3.2), we use d as a symbol for standard deviation in this paper.
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• N = {r, c} is the set of players

• S = Sr × Sc, where Sr = Sc = {s1, s2}

• P = (Pr; Pc), Pr, Pc ∈ R2×2

Let us now fix some player x ∈ {r, c}. A strategy of x is a pair σx = (σx,1, σx,2), where (σx,1, σx,2) form a discrete
probability distribution over Sx (i.e., σx,1, σx,2 ∈ [0, 1], σx,1 + σx,2 = 1). When σx,1, σx,2 ∈ (0, 1) the strategy is
called a mixed strategy; otherwise, it is called a pure strategy. The support of a strategy σx, denoted by supp(σx), is the
set of pure strategies (from Sx) that are played with positive probability on σx (thus, supp(σx) ⊆ Sx). We denote by
Σx the set of all possible strategies of player x. Apparently, for 2× 2 bimatrix games, Σx = {(p, 1− p) | 0 ≤ p ≤ 1}.

A strategy profile is a pair σ = (σr, σc), for σr ∈ Σr, σc ∈ Σc. We denote by Σ the set of all strategy profiles, i.e.,
Σ = Σr × Σc. A strategy profile is called pure if it consists of pure strategies only, mixed if it consists of mixed
strategies only, and hybrid if it consists of a pure and a mixed strategy.

The payoff function of player x, under a given strategy profile σ = (σr, σc), ux : Σ → R, is defined as:

ux(σr, σc) = σT
r Pxσc

where σT
r represents the transposition of vector σr.

For x ∈ {r, c}, we denote by x̄ the other player, i.e., r̄ = c, c̄ = r. Given a strategy σx of x ∈ {r, c}, the best response
of x̄ is the strategy σx̄ that maximizes her payoff, given σx. A Nash equilibrium is a strategy profile for which any
unilateral change in the strategy of any given player would not produce a better payoff for that player. In other words,
a Nash equilibrium is a strategy profile where each player plays her best response, given the other player’s strategic
choice. For bimatrix games, this notion can be formalised as follows:
Definition 3 (Nash equilibrium [16]). A strategy profile σ∗ = (σ∗

r , σ
∗
c ) is a Nash equilibrium if and only if, for any

σ̂r ∈ Σr, σ̂c ∈ Σc,
σ∗
r
TPrσ

∗
c ≥ σ̂T

r Prσ
∗
c and σ∗

r
TPcσ

∗
c ≥ σ∗

r
TPcσ̂c

It has been shown that all games possess at least one Nash equilibrium [16]. If σ∗ = (σ∗
r , σ

∗
c ) is a Nash equilibrium,

then σ∗
r , σ

∗
c are called Nash equilibrium strategies. We denote by NE(G) the set of all Nash equilibria for a game G,

and by NEx(G) the Nash equilibrium strategies of player x in G.

A 2× 2 bimatrix game is called degenerate if and only if there is a pure strategy that has two pure best responses.

In the seminal work of [11], the authors defined a metric, the Price of Anarchy (PoA), that measures the efficiency of a
system with non-cooperative players. Let SW (σ) be the social welfare function defined as the sum of players’ payoffs
for the strategy profile σ, and opt the socially optimal strategy profile, i.e., opt = argmaxσ SW (σ). Then, PoA is
defined as follows:
Definition 4. Given a normal-form game G, the Price of Anarchy (PoA) is defined as:

PoA =
SW (opt)

minσ∈ne SW (σ)
(5)

3.3 Notational conventions and shorthands

To avoid confusion caused by the use of multiple indices in subsequent sections, we will use the notation A[i, j] to refer
to the element in the ith row and jth column of a matrix A, i.e., if A = (aij), then A[i, j] = aij .

We will use boldface to indicate tables whose elements are all equal to a certain value. For example [b]n×m represents
the n × m table B, such that B[i, j] = b for all i, j. The n × m subscript will be omitted when obvious from the
context.

For three tables A,M,D of the same dimensions, we write A ∼ N (M,D) to indicate that A[i, j] ∼
N
(
M [i, j], D[i, j]

)
for all i, j.

Analogously, we extend the notation used in limits (x → a) for tables. In particular, for two tables X,A of the
same dimension, we write X → A to denote X[i, j] → A[i, j] ∀i, j. We extend the notation to include infinity, e.g.,
X → [+∞] is equivalent to X[i, j] → +∞ for all i, j.

We define operators on payoff matrices as follows. Consider a 2×2 bimatrix game G = ⟨N,S, P ⟩, where P = (Pr; Pc).
Then:

5
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• For 2 × 2 tables Mr,Mc, Dr, Dc, the expression G ∼ N
(
(Mr; Mc), (Dr; Dc)

)
indicates that Pr ∼

N (Mr, Dr) , Pc ∼ N (Mc, Dc)

• For a 2× 2 bimatrix A = (Ar; Ac) and λ ∈ R, the result of the operation λG+A is the 2× 2 bimatrix game
G′ = ⟨N ′, S′, P ′⟩, where N ′ = N,S′ = S, P ′ = λP +A

4 Misinformation Games and Noisy Games

4.1 Basic Definitions

Misinformation games have been originally defined in [25]. In this section, we extend the main definitions and concepts
for the case of noisy games.

Misinformation games have been defined to capture the idea that different players may have a different view of the
game they play (see Figure 1). This leads to the following definition:
Definition 5 (Misinformation game). A misinformation normal-form game (or simply misinformation game) is a tuple
mG = ⟨G0, G1, . . . , Gn⟩, where all Gi are normal-form games and G0 contains n players.

In the above definition, G0 is called the actual game (corresponding to the game actually being played), whereas Gi is
the game of player i (corresponding to the game that player i thinks that it is being played).

In [25], it was shown that, without loss of generality, we only need to concentrate ourselves in the special class of
canonical misinformation games. A misinformation game ⟨G0, G1, . . . , Gn⟩ is called canonical if and only if:

• In G0, all players have an equal number of pure strategies
• For any x ∈ {1, . . . , n}, G0, Gx differ only in their payoff matrices

Noisy games are a special class of misinformation games, where misinformation is due to a random distortion in the
original payoff matrix. Formally:
Definition 6 (Noisy game). A noisy game is a canonical misinformation game mG = ⟨G0, G1, . . . , Gn⟩, where
Gi = G0 +∆i for some matrix ∆i whose elements follow a certain probability distribution.

Note that the restriction of a noisy game being canonical implies that noise affects only the payoff matrix. In a more
general scenario, noise could also affect the number of players and/or the strategies that a player understands (knows)
regarding a game. However, as shown in [25], we can restrict ourselves to canonical games for simplicity.

In this paper, we concentrate on noisy games whose actual game is a 2× 2 bimatrix game, and where each element of
∆i follows the normal distribution. We call such games normal noisy games. Therefore:
Definition 7 (Normal noisy game). A normal noisy game is a tuple mG = ⟨G0, Gr, Gc⟩, where:

• G0, Gr, Gc are 2× 2 bimatrix games

• For x ∈ {r, c}, Gx = G0 + ∆x, where ∆x is a bimatrix whose elements follow the normal distribution
(possibly for a different mean and standard deviation)

For M = (Mr; Mc), D = (Dr; Dc), we write mG ∼ G0 + N (M,D) to indicate a normal noisy game mG =
⟨G0, Gr, Gc⟩, where Gx = G0 + ∆x, ∆x ∼ N (Mx, Dx). Formula 3 implies that, when mG ∼ G0 + N (M,D),
then Gx ∼ N

(
G0 +Mx, Dx

)
.

4.2 Strategies, strategy profiles and equilibria in misinformation games

We define strategies and equilibrium concepts for the case of normal noisy games of two players. Our formulation can
be extended to apply to arbitrary misinformation games.

Consider a canonical normal noisy game mG. A misinformed strategy σx for player x in mG is a strategy in Gx. A
misinformed strategy profile results by the agglomeration of misinformed strategies for the individual game, and is
defined as a pair σ = (σr, σc), where σx is a misinformed strategy of x ∈ {r, c}. Pure/mixed misinformed strategies,
and pure/mixed/hybrid strategy profiles are defined analogously to their standard counterparts (see Subsection 3.2).
Since mG is canonical, a misinformed strategy (and misinformed strategy profile) is also a strategy (strategy profile) in
G0. Thus, we simply use Σx to denote the set of misinformed strategies of player x in mG, and Σ to denote the set of
misinformed strategy profiles of mG.
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It is important to note that, although the decisions of a player are made based on his own payoff matrix (the one in
Gx), payoffs are computed on the basis of the actual payoff matrix (the one in G0). This is reflected in the definition of
payoffs and equilibria below.

Let P 0 = (P 0
r ; P

0
c ), P

r = (P r
r ; P

r
c ), P

c = (P c
r ; P

c
c ) be the payoff matrices of G0, Gr, Gc respectively. Then:

• The actual payoff function of player x, under a given strategy profile σ = (σr, σc), ux : Σ → R, is defined as:

ux(σr, σc) = σT
r P

0
xσc

• The misinformed payoff function of player x, under the viewpoint of player y and the strategy profile σ =
(σr, σc), uy

x : Σ → R, is defined as:
uy
x(σr, σc) = σT

r P
y
xσc

Note that the actual payoff function represents the payoff that player x will receive as a response to her strategic choices.
On the contrary, the misinformed payoff function represents the payoff that player x believes that she will receive, under
the (erroneous) view of the game that player y has.

A notion of equilibrium, defined in [25], considers misinformed equilibrium simply as the agglomeration of the Nash
equilibrium strategies of each player in her own game:
Definition 8 (Natural misinformed equilibrium (nme)). A misinformed strategy, σ∗

x, of player x, is a natural misinformed
equilibrium strategy, if and only if it is a Nash equilibrium strategy for x in Gx. A misinformed strategy profile σ∗ is
called a natural misinformed equilibrium (nme) if it consists of natural misinformed equilibrium strategies.

The natural misinformed equilibrium will occur in one-off settings, i.e., when each player just picks a (seemingly
optimal) strategy based on his own viewpoint. It is easy to see that at least one natural misinformed equilibrium exists
in any misinformation game.

Inspired by [11], the authors of [25] defined a metric to measure the effect of misinformation compared to the social
optimum, based on a social welfare function SW . This metric is called Price of Misinformation (PoM), and is defined
as follows:
Definition 9. Given a misinformation game mG, the Price of Misinformation (PoM) is defined as:

PoM =
SW (opt)

minσ∈nme SW (σ)
(6)

Apparently, if PoM = 1, the players adopt optimal behaviour, due to misinformation. Moreover, interesting results can
be derived by comparing the PoA of G0 with the PoM of mG: if PoM < PoA, then misinformation has a beneficial
effect on social welfare, as the players are inclined (due to their misinformation) to choose socially better strategies; on
the other hand, if PoM > PoA, then misinformation leads to a worse outcome, from the perspective of social welfare.

4.3 Behavioural Consistency and ε-closeness

The misinformed equilibria of a normal noisy game may be different than the Nash equilibria of the actual game. We
define a metric to quantify the distance among these equilibria and their respective strategies, essentially measuring
the effect of noise on the behaviour of the players. For the definition, we use the infinite norm distance for vectors;
formally, for a vector v⃗ = (v1, v2), the infinite norm distance ∥v⃗∥∞ = max{v1, v2}. The notion of ε-closeness is now
defined as follows:
Definition 10 (ε-closeness). Let σ = (σ1, σ2), σ′ = (σ′

1, σ
′
2) be two strategies and ε ≥ 0. Then we say that σ, σ′ are

ε-close if and only if supp(σ) = supp(σ′) and ∥σ − σ′∥∞ ≤ ε. For strategy σ, the set of strategies that are ε-close to
it, is denoted by Clε(σ).

Intuitively, the definition states that two strategies are ε-close if and only if they have identical supports and the
allocation imposed by the players’ strategies does not differ by more than ε in any dimension. The fact that ε-closeness
requires identical supports is based on the idea that adding (or removing) a pure strategy to (from) the support of a
strategy is considered a major change in the player’s behaviour.

Note also that the above definition applies on strategies in general, and, thus, allows us to apply it also to check
ε-closeness among strategies and/or misinformed strategies, as long as in each strategy profile each player has the same
number of pure strategies.

We extend Definition 10 to (misinformed and non-misinformed) strategy profiles (and equilibria), in the obvious manner:
σ = (σr, σc) is ε-close to σ′ = (σ′

r, σ
′
c) if and only if σr is ε-close to σ′

r and σc is ε-close to σ′
c. We denote by Clε(σ)

7



Noisy Games: A Study on the Effect of Noise on Game Specifications

the strategy profiles that are ε-close to σ. For a set of strategy profiles Σ∗, we set Clε(Σ∗) =
⋃

σ∈Σ∗ Clε(σ), i.e., the
strategy profiles that are ε-close to at least one of the strategy profiles in Σ∗.

The definition of ε-closeness gives formal substance to the idea of the behaviour of the players (expressed as an
equilibrium) being “similar”: two equilibria that are ε-close are “similar” (and vice-versa). This notion allows us to
formally define the behavioural consistency of players in the presence of noise, which amounts to checking whether the
equilibria of the noisy game are similar (i.e., ε-close) to the “expected” ones under the actual game. Formally:
Definition 11. Consider a normal noisy game mG and some tolerance ε ≥ 0. Then,

• mG is ε-misinformed iff for every natural misinformed equilibrium σ∗ of mG, there is a Nash equilibrium σ0

of G0, such that σ∗ ∈ Clε(σ0).

• mG is inverse-ε-misinformed iff for every Nash equilibrium σ0 of G0, there is a natural misinformed
equilibrium σ∗ of mG, such that σ∗ ∈ Clε(σ0).

4.4 Running example

The following example will be used as a running example for the rest of the paper to illustrate our results.
Example 1.1 (Running example). We consider two autonomous robotic agents r, c, deployed in a remote environment.
At some point in time, the human controller asks each of the agents to choose among two actions s1, s2, also specifying
the payoffs for each combination of choices, as shown in matrix P 0 below.

P 0 =

(
(3, 2) (0, 0)
(0, 0) (2, 3)

)
The above payoff matrix corresponds to the well-known Battle of the Sexes (BoS) game3, which has three Nash equilibria,
namely σ0

1 = ((1, 0), (1, 0)), σ0
2 = ((0, 1), (0, 1)), σ0

3 = ((0.6, 0.4), (0.4, 0.6)).

However, one of the components of the central communication module has received damage, unknowingly to the agents
or the human controller, causing it to introduce a random noise (δ ∼ N (0, 1)) to each of the values in P 0 during

transmission. The above setting can be modelled as a normal noisy game mG = ⟨G0, Gr, Gc⟩ ∼ G0 +N
(
Mx

y , D
x
y

)
,

where the payoff matrix of G0 is P 0, and Mx
y = [0]2×2, D

x
y = [1]2×2 for all x, y ∈ {r, c}.

Our objective here is to compute the probability that the robotic agents will exhibit behavioural consistency (Definition
11), despite the noise caused by the malfunction. This question will be addressed in Section 5 below.

5 Probabilities for behavioural consistency

In this section, we will compute the probabilities for a normal noisy game being (inverse-)ε-misinformed. For better
readability, we split our analysis in 3 subsections. In Subsection 5.1, we recast some known results from game theory
in a way that is more suitable for our analysis, whereas in Subsection 5.2, we develop some results that determine
necessary and sufficient conditions for a misinformation game to be (inverse-)ε-misinformed. These results are then
employed in Subsection 5.3 to compute the required probabilities. The respective results are summarized in Table 1 (for
Subsection 5.1), Table 2 (for Subsection 5.2) and Tables 3, 4 and 5 (for Subsection 5.3).

5.1 Determining Equilibrium Strategies

For a 2× 2 bimatrix game G, we denote by UGAING(x, i) the utility gain of strategy s1 (compared to s2) for player
x ∈ {r, c} when her opponent plays si, in game G. The reference to G will be omitted when obvious from the context.
Note that UGAIN(x, i) is determined by the elements of the payoff matrix of G (say P = (Pr; Pc)) as follows:

• For x = r, UGAIN(r, i) = Pr[1, i]− Pr[2, i]

• For x = c, UGAIN(c, i) = Pc[i, 1]− Pc[i, 2]

Intuitively, UGAIN(x, i) > 0 would mean that player x would play s1, if her opponent chooses to play si, i.e., that
s1 is the best response (for x) to si. Similarly, UGAIN(x, i) < 0 would mean that player x would play s2, if her
opponent chooses to play si, i.e., that s2 is the best response (for x) to si. Finally, when UGAIN(x, i) = 0, then player
x is indifferent as to whether to play s1 or s2, i.e., it has two pure best responses for her opponent’s pure strategy si,
indicating that the game is degenerate.

3See https://en.wikipedia.org/wiki/Battle_of_the_sexes_(game_theory).
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Example 1.2 (Running example). From Example 1.1 we have that, for G0, the following hold: UGAIN(r, 1) = 3,
UGAIN(r, 2) = −2, UGAIN(c, 1) = 2, and UGAIN(c, 2) = −3.

Some well-known results from game theory for bimatrix games can be recast using the concept of UGAIN(x, i). For
example, the following proposition gives an equivalent formulation of the degeneracy criterion for 2 × 2 bimatrix
games4:
Proposition 1. A 2× 2 bimatrix game G is degenerate if and only if UGAIN(x, i) = 0 for some x ∈ {r, c}, i ∈ {1, 2}.

When a non-degenerate 2×2 bimatrix game has a mixed Nash equilibrium, then its value is determined by UGAIN(x, i):
Proposition 2. Consider a non-degenerate 2× 2 bimatrix game G = ⟨N,S, P ⟩, for P = (Pr; Pc). If (p, 1− p) ∈
NEx(G) for some 0 < p < 1, x ∈ {r, c}, then:

p =
UGAIN(x̄, 2)

UGAIN(x̄, 2)− UGAIN(x̄, 1)

Now consider a non-degenerate 2× 2 bimatrix game G and some player x ∈ {r, c}. From classical results in game
theory, we know that there are 4 possible cases for NEx(G), namely NEx(G) = {(1, 0)}, NEx(G) = {(0, 1)},
NEx(G) = {(p, 1− p)} for some 0 < p < 1 and NEx(G) = {(1, 0), (0, 1), (p, 1− p)} for some 0 < p < 1. If the
game is degenerate, then there is one additional possibility, namely that NEx(G) = {(p, 1− p) | 0 ≤ p ≤ 1} = Σx.

For non-degenerate games, the value of NEx(G) can be determined using the following:

• NEx(G) = {(1, 0)} if and only if s1 is dominant for x, or si is dominant for x̄ and s1 is the best response for
x on si.

• NEx(G) = {(0, 1)} if and only if s2 is dominant for x, or si is dominant for x̄ and s2 is the best response for
x on si.

• NEx(G) = {(p, 1− p)} for some 0 < p < 1 if and only if no strategy is dominant for either player and no
pure Nash equilibrium exists.

• NEx(G) = {(1, 0), (0, 1), (p, 1 − p)} for some 0 < p < 1 if and only if no strategy is dominant for either
player and two pure Nash equilibria exist.

The above conditions can also be expressed in terms of UGAIN(x, i), as shown in Table 1. In the table, the various
(mutually exclusive) cases are visualised for player r and for a non-degenerate game. The small figure in the rightmost
column shows the depicted condition in terms of the relative order among the elements of Pr (blue lines) or Pc (yellow
lines), which is determined by the sign (positive or negative) of UGAIN(x, i). The first column provides a reference to
the formulation of Proposition 3, where the above are formally stated and proved.

Before showing Proposition 3, for brevity, we introduce the following predicates to refer to the different cases with
regards to the value of NEx(G):

• Only-pure: OPGx (i), which is true if and only if the only equilibrium strategy for player x in game G is to play
si, i.e.:

OPGx (1) iff NEx(G) = {(1, 0)} and OPGx (2) iff NEx(G) = {(0, 1)}

• Only-mixed: OMG
x (p), which is true if and only if the only equilibrium strategy for player x in game G is

(p, 1− p) (where 0 < p < 1), i.e.:

OMG
x (p) iff NEx(G) = {(p, 1− p)}

• Pure-and-mixed: PMG
x (p), which is true if and only if player x has 3 equilibrium strategies in game G, two

pure and one mixed, and the mixed one is (p, 1− p) (where 0 < p < 1), i.e.:

PMG
x (p) iff NEx(G) = {(1, 0), (0, 1), (p, 1− p)}

• Ranged-only-mixed: ROMG
x (ω1, ω2), which is true if and only if OMG

x (p) is true for some ω1 < p < ω2, i.e.:

ROMG
x (ω1, ω2) iff NEx(G) = {(p, 1− p)} for some p such that ω1 < p < ω2

4Proofs for all results appear in the Appendix.
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• Ranged-pure-and-mixed: RPMG
x (ω1, ω2), which is true if and only if PMG

x (p) is true for some ω1 < p < ω2,
i.e.:

RPMG
x (ω1, ω2) iff NEx(G) = {(1, 0), (0, 1), (p, 1− p)} for some p such that ω1 < p < ω2

• Infinite-Nash: ING
x , which is true if and only if player x has an infinite number of equilibrium strategies,

namely the entire Σx (note that this is possible only for degenerate games), i.e.:

ING
x iff NEx(G) = Σx

When the game G is obvious from the context, we will omit the superscript G from the above. Now we can formally
state Proposition 3, which formalises the intuition of Table 1:
Proposition 3. For any non-degenerate 2× 2 bimatrix game the following hold:

1. OPx(1) if and only if either one of the following is true:

(a) (UGAIN(x, 1) > 0)
∧
(UGAIN(x, 2) > 0)

(b) (UGAIN(x, 1) > 0)
∧
(UGAIN(x, 2) < 0)

∧
(UGAIN(x̄, 1) > 0)

∧
(UGAIN(x̄, 2) > 0)

(c) (UGAIN(x, 1) < 0)
∧
(UGAIN(x, 2) > 0)

∧
(UGAIN(x̄, 1) < 0)

∧
(UGAIN(x̄, 2) < 0)

2. OPx(2) if and only if either one of the following is true:

(a) (UGAIN(x, 1) < 0)
∧
(UGAIN(x, 2) < 0)

(b) (UGAIN(x, 1) < 0)
∧
(UGAIN(x, 2) > 0)

∧
(UGAIN(x̄, 1) > 0)

∧
(UGAIN(x̄, 2) > 0)

(c) (UGAIN(x, 1) > 0)
∧
(UGAIN(x, 2) < 0)

∧
(UGAIN(x̄, 1) < 0)

∧
(UGAIN(x̄, 2) < 0)

3. OMx(p) if and only if p = UGAIN(x̄,2)
UGAIN(x̄,2)−UGAIN(x̄,1) and either one of the following is true:

(a) (UGAIN(x, 1) > 0)
∧
(UGAIN(x, 2) < 0)

∧
(UGAIN(x̄, 1) < 0)

∧
(UGAIN(x̄, 2) > 0)

(b) (UGAIN(x, 1) < 0)
∧
(UGAIN(x, 2) > 0)

∧
(UGAIN(x̄, 1) > 0)

∧
(UGAIN(x̄, 2) < 0)

4. PMx(p) if and only if p = UGAIN(x̄,2)
UGAIN(x̄,2)−UGAIN(x̄,1) and either one of the following is true:

(a) (UGAIN(x, 1) > 0)
∧
(UGAIN(x, 2) < 0)

∧
(UGAIN(x̄, 1) > 0)

∧
(UGAIN(x̄, 2) < 0)

(b) (UGAIN(x, 1) < 0)
∧
(UGAIN(x, 2) > 0)

∧
UGAIN(x̄, 1) < 0)

∧
(UGAIN(x̄, 2) > 0)

An analogous set of conditions determines whether the “ranged” versions of the above predicates are true:
Corollary 1. Given a non-degenerate 2× 2 bimatrix game G, the following hold:

1. ROMx(ω1, ω2) if and only if ω1 < UGAIN(x̄,2)
UGAIN(x̄,2)−UGAIN(x̄,1) < ω2 and either one of the following is true:

(a) (UGAIN(x, 1) > 0)
∧
(UGAIN(x, 2) < 0)

∧
(UGAIN(x̄, 1) < 0)

∧
(UGAIN(x̄, 2) > 0)

(b) (UGAIN(x, 1) < 0)
∧
(UGAIN(x, 2) > 0)

∧
(UGAIN(x̄, 1) > 0)

∧
(UGAIN(x̄, 2) < 0)

2. RPMx(ω1, ω2) if and only if ω1 < UGAIN(x̄,2)
UGAIN(x̄,2)−UGAIN(x̄,1) < ω2 and either one of the following is true:

(a) (UGAIN(x, 1) > 0)
∧
(UGAIN(x, 2) < 0)

∧
(UGAIN(x̄, 1) > 0)

∧
(UGAIN(x̄, 2) < 0)

(b) (UGAIN(x, 1) < 0)
∧
(UGAIN(x, 2) > 0)

∧
(UGAIN(x̄, 1) < 0)

∧
(UGAIN(x̄, 2) > 0)

Example 1.3 (Running example). Continuing Example 1.1, we note that the signs of the various UGAIN(x, i) (as
computed in Example 1.2) indicate that case (4a) of Table 1 holds. Thus, the actual game G0 has both pure and
mixed Nash equilibria. Given that UGAIN(c,2)

UGAIN(c,2)−UGAIN(c,1) = 0.6, it follows that PMr(0.6) is true. Analogously, since
UGAIN(r,2)

UGAIN(r,2)−UGAIN(r,1) = 0.4, it follows that PMc(0.4) is true.

5.2 Misinformation Games

In this subsection, we provide necessary and sufficient conditions for a misinformation game to be (inverse-)ε-
misinformed. These are given in Propositions 4, 5, and use the notation previously introduced. Note that the propositions
apply for all canonical misinformation games, not just noisy games. The results of this subsection are summarized in
Table 2.
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Table 1: Visualising the cases of Proposition 3, for x = r.
Case (from Value of UGAIN(x, i), for: Nash equilibrium Schematic
Proposition x = r x = r x = c x = c strategies for x = r depiction

3) i = 1 i = 2 i = 1 i = 2 (NEr(G)) of the case

(1a) >0 >0 <>0 <>0 {(1, 0)}

(1, 1) (1, 2)

(2, 1) (2, 2)

> >

<>

<>

(1b) >0 <0 >0 >0 {(1, 0)}

(1, 1) (1, 2)

(2, 1) (2, 2)

> <

>

>

(1c) <0 >0 <0 <0 {(1, 0)}

(1, 1) (1, 2)

(2, 1) (2, 2)

< >

<

<

(2a) <0 <0 <>0 <>0 {(0, 1)}

(1, 1) (1, 2)

(2, 1) (2, 2)

< <

<>

<>

(2b) <0 >0 >0 >0 {(0, 1)}

(1, 1) (1, 2)

(2, 1) (2, 2)

< >

>

>

(2c) >0 <0 <0 <0 {(0, 1)}

(1, 1) (1, 2)

(2, 1) (2, 2)

> <

<

<

(3a) >0 <0 <0 >0
{(p, 1− p)}

p = UGAIN(c,2)
UGAIN(c,2)−UGAIN(c,1)

(1, 1) (1, 2)

(2, 1) (2, 2)

> <

<

>

(3b) <0 >0 >0 <0
{(p, 1− p)}

p = UGAIN(c,2)
UGAIN(c,2)−UGAIN(c,1)

(1, 1) (1, 2)

(2, 1) (2, 2)

< >

>

<

(4a) >0 <0 >0 <0
{(1, 0), (0, 1), (p, 1− p)}
p = UGAIN(c,2)

UGAIN(c,2)−UGAIN(c,1)

(1, 1) (1, 2)

(2, 1) (2, 2)

> <

>

<

(4b) <0 >0 <0 >0
{(1, 0), (0, 1), (p, 1− p)}
p = UGAIN(c,2)

UGAIN(c,2)−UGAIN(c,1)

(1, 1) (1, 2)

(2, 1) (2, 2)

< >

<

>
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Table 2: Scenarios for ε-misinformed and inverse-ε-misinformed
Condition on
G0

Condition on Gx

For ε-misinformed For inverse-ε-misinformed
OPG

0

x (i) OPG
x

x (i) OPG
x

x (i)
∨

RPMGx

x (0, 1)

OMG0

x (p0) ROMGx

x (ω1, ω2) ROMGx

x (ω1, ω2)
∨

RPMGx

x (ω1, ω2)

PMG0

x (p0) RPMGx

x (ω1, ω2)
∨

ROMGx

x (ω1, ω2)
∨

OPG
x

x (1)
∨

OPG
x

x (2)

RPMGx

x (ω1, ω2)

ING0

x Always true If ε < 0.5: always false
If ε ≥ 0.5: RPMGx

x (ω′
1, ω

′
2)

In all the above:
0 < p0 < 1,
ω1 = max{0, p0 − ε}, ω2 = min{1, p0 + ε},
ω′
1 = max{0, 1− ε}, ω′

2 = min{1, ε}

Proposition 4. Consider a canonical misinformation game mG = ⟨G0, Gr, Gc⟩, where G0 is a 2× 2 bimatrix game
and Gr, Gc are non-degenerate. Then, mG is ε-misinformed if and only if, for all x ∈ {r, c}, one of the following is
true:

1. OPG
0

x (i) and OPG
x

x (i) for some i ∈ {1, 2}

2. OMG0

x (p0) for some 0 < p0 < 1 and ROMGx

x (ω1, ω2), where ω1 = max{0, p0 − ε}, ω2 = min{1, p0 + ε}

3. PMG0

x (p0) for some 0 < p0 < 1 and OPG
x

x (1)
∨

OPG
x

x (2)
∨

ROMGx

x (ω1, ω2)
∨

RPMGx

x (ω1, ω2), where ω1 =
max{0, p0 − ε}, ω2 = min{1, p0 + ε}

4. ING0

x

Proposition 5. Consider a canonical misinformation game mG = ⟨G0, Gr, Gc⟩, where G0 is a 2× 2 bimatrix game
and Gr, Gc are non-degenerate. Then, mG is inverse-ε-misinformed if and only if, for all x ∈ {r, c}, one of the
following is true:

1. OPG
0

x (i) and OPG
x

x (i)
∨

RPMGx

x (0, 1) for some i ∈ {1, 2}

2. OMG0

x (p0) for some 0 < p0 < 1 and ROMGx

x (ω1, ω2)
∨

RPMGx

x (ω1, ω2), where ω1 = max{0, p0 − ε},
ω2 = min{1, p0 + ε}

3. PMG0

x (p0) for some 0 < p0 < 1 and RPMGx

x (ω1, ω2), where ω1 = max{0, p0 − ε}, ω2 = min{1, p0 + ε}

4. ING0

x and ε > 0.5 and RPMGx

x (ω′
1, ω

′
2), where ω′

1 = max{0, 1− ε}, ω′
2 = min{1, ε}

5.3 Probabilities

We will now exploit the results of the previous subsections, in order to compute the probabilities associated to various
events, eventually leading up to the computation that a given normal noisy game mG is (inverse-)ε-misinformed. The
results are summarized in Table 5, whereas intermediate results necessary to compute the above probabilities appear in
Tables 3 and 4.

For a normal noisy game mG ∼ G0 +N (M,D), we define the family of random variables U(y, x, i), such that, for
any x, y ∈ {r, c}, i ∈ {1, 2}:

U(y, x, i) = UGAINGy

(x, i)

12



Noisy Games: A Study on the Effect of Noise on Game Specifications

Table 3: Formulas related to U(y, x, i) for a given mG ∼ G0 +N (M,D).
Results related to U(y, x, i)

µU(y,r,i) =(P 0
r [1, i] +My

r [1, i])− (P 0
r [2, i] +My

r [2, i])

dU(y,r,i) =
√
(Dy

r [1, i])2 + (Dy
r [2, i])2

µU(y,c,i) =(P 0
c [i, 1] +My

c [i, 1])− (P 0
c [i, 2] +My

c [i, 2])

dU(y,c,i) =
√
(Dy

c [i, 1])2 + (Dy
c [i, 2])2

fU(y,x,i)(u) =
1

dU(y,x,i)
ϕ

(
u− µU(y,x,i)

dU(y,x,i)

)

FU(y,x,i)(u) =Φ

(
u− µU(y,x,i)

dU(y,x,i)

)
P[U(y, x, i) < 0 ] =FU(y,x,i)(0)

P[U(y, x, i) > 0 ] =1− FU(y,x,i)(0)

P[U(y, x, i) = 0 ] =0

Applying formula (3) from Subsection 3.1, we observe that U(y, x, i) ∼ N
(
µU(y,x,i), dU(y,x,i)

)
for µU(y,x,i), dU(y,x,i)

as shown in Table 3. The cdf and pdf of U(y, x, i) (as resulting from formula (2) in Subsection 3.1), as well as the
probabilities for U(y, x, i) taking certain values are also shown in the same table.
Example 1.4 (Running example). Continuing our running example (Example 1.1), we can now compute the distribution
followed by the random variables U(y, x, i) for x, y ∈ {r, c}, i ∈ {1, 2}, using Table 3. Indeed, by Table 3, µU(y,x,i) =

UGAIN(x, i) and dU(y,x,i) =
√
2 for all x, y ∈ {r, c}, i ∈ {1, 2}.

As a more specific example, let us consider U(r, r, 1), which corresponds to the random variable representing the utility
gain of strategy s1 (as opposed to s2), for player r under the viewpoint of player r. By Table 3, and the values for M,D
(Example 1.1), we conclude that µU(r,r,1) = 3, dU(r,r,1) =

√
2. Analogously, we can compute the rest.From this, and

formulas 2 in subsection 3.1, we get that the pdf and cdf of U(r, r, 1) are:

fU(r,r,1)(x) =
1

2
√
π
e
−
(

x−3
2

)2

and FU(r,r,1)(x) =
1√
2π

∫ x−3√
2

−∞
e−

t2

2 dt

Propositions 1 and 3 can now be employed to determine the probability that NEx(G
x) takes a certain value, based on

the probabilities that U(y, x, i) take certain values. More precisely, Lemma 6 is the counterpart of Proposition 1:
Proposition 6. In any normal noisy game mG = ⟨G0, Gr, Gc⟩, the probability that Gx is degenerate (for x ∈ {r, c})
is 0.

To formulate the counterpart of Proposition 3, the following lemma will prove helpful:
Lemma 1. Consider two independent random variables X ∼ N (µX , dX) , Y ∼ N (µY , dY ), with pdfs fX , fY
respectively, and some Ω1,Ω2 ∈ R ∪ {−∞} such that −∞ ≤ Ω1 < Ω2 ≤ 0. Then:

P[Ω1 ≤ X

Y
≤ Ω2, X < 0, Y > 0 ] =

∫ +∞

0

(∫ Ω2y

Ω1y

fX(x) dx

)
fY (y)

y
dy

P[Ω1 ≤ X

Y
≤ Ω2, X > 0, Y < 0 ] =

∫ 0

−∞

(∫ Ω2y

Ω1y

fX(x) dx

)
fY (y)

y
dy

The next proposition determines the probability that NEx(G
x) will have each of its possible values (see also Table 4):

Proposition 7. Consider a normal noisy game mG ∼ G0 +N (M,D), and some x ∈ {r, c}. Then, the probabilities
P[OPG

x

x (1) ], P[OPG
x

x (2) ], P[ROMGx

x (ω1, ω2) ], P[RPMGx

x (ω1, ω2) ] and P[ INGx

x ] are as shown in Table 4.
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Table 4: Various probabilities pertaining to a given mG ∼ G0 +N (M,D) (see also Proposition 7).
Results related to NEx(G

x) (Proposition 7)

P[OPG
x

x (1) ] =(1− FU(x,x,1)(0)) · (1− FU(x,x,2)(0))+

(1− FU(x,x,1)(0)) · FU(x,x,2)(0) · (1− FU(x,x̄,1)(0)) · (1− FU(x,x̄,2)(0))+

FU(x,x,1)(0) · (1− FU(x,x,2)(0)) · FU(x,x̄,1)(0) · FU(x,x̄,2)(0)

P[OPG
x

x (2) ] =FU(x,x,1)(0) · FU(x,x,2)(0)+

FU(x,x,1)(0) · (1− FU(x,x,2)(0)) · (1− FU(x,x̄,1)(0)) · (1− FU(x,x̄,2)(0))+

(1− FU(x,x,1)(0)) · FU(x,x,2)(0) · FU(x,x̄,1)(0) · FU(x,x̄,2)(0)

P[ROMGx

x (ω1, ω2) ] =

(1− FU(x,x,1)(0)) · FU(x,x,2)(0) ·
∫ +∞

0

∫ ω2−1
ω2

u2

ω1−1
ω1

u2

fU(x,x̄,1)(u1) du1

 fU(x,x̄,2)(u2)

u2
du2+

FU(x,x,1)(0) · (1− FU(x,x,2)(0)) ·
∫ 0

−∞

∫ ω2−1
ω2

u2

ω1−1
ω1

u2

fU(x,x̄,1)(u1) du1

 fU(x,x̄,2)(u2)

u2
du2

P[RPMGx

x (ω1, ω2) ] =

(1− FU(x,x,1)(0)) · FU(x,x,2)(0) ·
∫ 0

−∞

∫ ω2−1
ω2

u2

ω1−1
ω1

u2

fU(x,x̄,1)(u1) du1

 fU(x,x̄,2)(u2)

u2
du2 +

FU(x,x,1)(0) · (1− FU(x,x,2)(0)) ·
∫ +∞

0

∫ ω2−1
ω2

u2

ω1−1
ω1

u2

fU(x,x̄,1)(u1) du1

 fU(x,x̄,2)(u2)

u2
du2

P[ INGx

x ] =0

Table 5: Probabilities for ε-misinformed and inverse-ε-misinformed (Pmis
r · Pmis

c and Pinv
r · Pinv

c respectively – see
also Theorems 8, 9).

Condition on
G0

(value of
NEx(G

0))

Probability Pmis
x (x ∈

{r, c}) for ε-misinformed
(Theorem 8)

Probability Pinv
x (x ∈ {r, c})

for inverse-ε-misinformed
(Theorem 9)

OPG
0

x (i) P[OPG
x

x (i) ] P[OPG
x

x (i) ] +
P[RPMGx

x (0, 1) ]

OMG0

x (p0) P[ROMGx

x (ω1, ω2) ] P[ROMGx

x (ω1, ω2) ] +
P[RPMGx

x (ω1, ω2) ]

PMG0

x (p0) P[RPMGx

x (ω1, ω2) ] +
P[ROMGx

x (ω1, ω2) ] +
P[OPG

x

x (1) ] +
P[OPG

x

x (2) ]

P[RPMGx

x (ω1, ω2) ]

ING0

x 1 If ε ≤ 0.5: 0
If ε > 0.5:
P[RPMGx

x (ω′
1, ω

′
2) ]

In all the above:
i ∈ {1, 2}, 0 < p0 < 1,
ω1 = max{0, p0 − ε}, ω2 = min{1, p0 + ε},
ω′
1 = max{0, 1− ε}, ω′

2 = min{1, ε}
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Example 1.5 (Running example). Continuing Example 1.1, we can now compute the probabilities that each of the
robotic agents will believe that they play a game with pure, mixed or pure and mixed strategies. We start with the
computation of the relevant FU(y,x,i)(0) quantities for x, y ∈ {r, c}, i ∈ {1, 2}, which are based on the respective
pdf/cdf that were computed in Example 1.4:

• For the r agent:

FU(r,r,1)(0) = 0.017, FU(r,r,2)(0) = 0.921, FU(r,c,1)(0) = 0.078, FU(r,c,2)(0) = 0.983

• For the c agent:

FU(c,c,1)(0) = 0.078, FU(c,c,2)(0) = 0.983, FU(c,r,1)(0) = 0.921, FU(c,r,2)(0) = 0.016

Regarding the two double integrals in the third and fourth formulas in Table 4 our computations yield the values 0.001
and 0.229 for r respectively. Similarly, for c we take the values 0.001 and 0.189.

Using the above results it is now easy to compute the following quantities, using the formulas of Table 4:

• For the r agent:

P[OPG
r

r (1) ] = 0.091, P[OPG
r

r (2) ] = 0.085, P[ROMGr

r (0.5, 0.7) ] = 0.001, P[RPMGr

r (0.5, 0.7) ] =
0.207

• For the c agent:

P[OPG
c

c (1) ] = 0.091, P[OPG
c

c (2) ] = 0.085, P[ROMGc

c (0.3, 0.5) ] = 0.001, P[RPMGc

c (0.3, 0.5) ] =
0.171

Not unexpectedly, the largest probability is that the agents retain the behaviour predicted by the original game (i.e.,
playing pure and mixed), but not significantly so.

Proposition 7 (and the respective Table 4), combined with Proposition 4 (and the respective Table 2) easily leads to the
following theorems (summarized in Table 5):
Theorem 8. Consider a normal noisy game mG ∼ G0 +N (M,D). Then:

P[mG : ε-misinformed ] = Pmis
r · Pmis

c

where, for x ∈ {r, c}, Pmis
x is determined by the second column of Table 5.

Theorem 9. Consider a normal noisy game mG ∼ G0 +N (M,D). Then:

P[mG : inverse-ε-misinformed ] = Pinv
r · Pinv

c

where, for x ∈ {r, c}, Pinv
x is determined by the third column of Table 5.

Example 1.6 (Running example). Returning to our running example (Example 1.1), let us now compute the probability
for the respective noisy game to be (inverse-)ε- misinformed, for ε = 0.1. To do so, we plug in the formulas from Table 5
into Theorems 8-9, and, using the previously computed probabilities from Example 1.5, we take:

Pmis
r = 0.386, Pinv

r = 0.207, Pmis
c = 0.349, Pinv

c = 0.171

Thus,

P[mG : ε-misinformed ] = 0.135

P[mG : inverse-ε-misinformed ] = 0.035.

Thus, the conclusion of this analysis is that, the “Battle of the Sexes” (BoS) game, when receiving noise that follows
the standard normal distribution (N (0, 1)) in each of its payoffs and for each player, will be 0.1-misinformed with
probability 13.5% and inverse-0.1-misinformed with probability 3.5%.

Note that the original BoS game has 3 Nash equilibria, two pure and one mixed. Thus, the above results imply that, by
defining closeness using ε = 0.1:

• With probability 13.5%, all (misinformed) equilibrium points of the noisy game will be close to one of the
expected equilibria (in BoS). Thus, under this probability, the agents will have one or more natural misinformed
equilibria, all of which will be close to one of the BoS’ Nash equilibria. This means that, with probability
13.5%, the agents’ behaviour (no matter which of their equilibrium points they choose) will be close to the
expected one.
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Table 6: Effect of tolerance on behavioural consistency (monotonicity).
Condition on G0 Monotonicity properties

(value of NE(G0)) For ε-misinformed For
inverse-ε-misinformed

OPG
0

r (i) ∧ OPG
0

c (j)
for some
i, j ∈ {1.2}

Constant for all ε ≥ 0

OMG0

r (p0) ∧
OMG0

c (q0) for
some
0 < p0 < 1, 0 <
q0 < 1

Strictly increasing for 0 ≤ ε ≤ max{p0, q0, 1− p0, 1− q0},
constant otherwise

PMG0

r (p0) ∧
PMG0

c (q0) for some
0 < p0 < 1, 0 <
q0 < 1

Strictly increasing for 0 ≤ ε ≤ max{p0, q0, 1− p0, 1− q0},
constant otherwise

ING0

r ∨ ING0

c Constant for all ε ≥ 0
Strictly increasing for
0.5 ≤ ε ≤ 1, constant

otherwise

• With probability 3.5%, for each of the three equilibria of BoS, there will be at least one (misinformed)
equilibrium point that is close to it. Thus, under this probability, there will be at least 3 natural misinformed
equilibria, although the agents may also have other (misinformed) equilibria as well that are not close to any
Nash equilibrium of BoS. This means that, with probability 3.5%, all equilibria of BoS are within the valid
options (modulo the closeness assumption) for the agents.

6 Results for noisy games

The results of Section 5 provide the formulas to compute the probability of a given normal noisy game to be (inverse-)ε-
misinformed (i.e., behaviourally consistent). In this section, we explore the properties of these formulas, to understand
better their behaviour.

To do so, we first observe that the probability of a normal noisy game mG ∼ G0 +N (M,D) being behaviourally
consistent is essentially a function of:

• The tolerance ε.
• The payoff matrix of the actual game of mG. This affects the probabilities in two ways: first, because it

determines the equilibria of G0, and, thus, the case to consider in Table 5; second, because it affects µU(y,x,i)

(see Table 3).
• The noise pattern, determined by the matrices M,D.

In the following subsections, we study the effect of each of these parameters on the probability of mG being (inverse-
)ε-misinformed.

6.1 Effect of modifying tolerance (ε)

With regards to tolerance (ε), we expect that larger values of tolerance would translate to higher probability of
behavioural consistency. Although this is true, we also observe that there are several cases where increasing tolerance
does not affect the probability of behavioural consistency. The following proposition clarifies the situation:
Proposition 10. Consider some mG ∼ G0 +N (M,D) and ε1, ε2, such that 0 ≤ ε1 < ε2. Then:

1. If NE(G0) contains a single pure strategy, then:

• P[mG : ε1-misinformed ] = P[mG : ε2-misinformed ]
• P[mG : inverse-ε1-misinformed ] = P[mG : inverse-ε2-misinformed ]
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Table 7: Minimal and maximal values for the probabilities of mG being (inverse-)ε-misinformed (resulting by
multiplying Pmis

r with Pmis
c and Pinv

r with Pinv
c respectively)

Condition on
G0

(value of
NEx(G

0))

Minimal value for proba-
bility
Px (x ∈ {r, c}) for ε-
misinformed

Minimal value for probability
Px (x ∈ {r, c}) for inverse-ε-
misinformed

OPG
0

x (i) for
some
i ∈ {1, 2}

P[OPG
x

x (i) ] P[OPG
x

x (i) ] + P[RPMGx

x (0, 1) ]

OMG0

x (p0) for
some
0 < p0 < 1

0 0

PMG0

x (p0) for
some
0 < p0 < 1

P[OPG
x

x (1) ] +
P[OPG

x

x (2) ]
0

ING0

x 1 0

(a) Minimal values

Condition on
G0

(value of
NEx(G

0))

Maximal value for prob-
ability
Px (x ∈ {r, c}) for ε-
misinformed

Maximal value for probability
Px (x ∈ {r, c}) for inverse-ε-
misinformed

OPG
0

x (i) for
some
i ∈ {1, 2}

P[OPG
x

x (i) ] P[OPG
x

x (i) ] + P[RPMGx

x (0, 1) ]

OMG0

x (p0)
for some
0 < p0 < 1

P[ROMGx

x (0, 1) ] P[ROMGx

x (0, 1) ] +
P[RPMGx

x (0, 1) ]

PMG0

x (p0) for
some
0 < p0 < 1

1 P[RPMGx

x (0, 1) ]

ING0

x 1 P[RPMGx

x (0, 1) ]

(b) Maximal values

2. If NE(G0) is finite and ((p0, 1− p0), (q0, 1− q0)) ∈ NE(G0) for some 0 < p0 < 1, 0 < q0 < 1, then:

(a) If max{p0, q0, 1− p0, 1− q0} ≤ ε1, then:
• P[mG : ε1-misinformed ] = P[mG : ε2-misinformed ]
• P[mG : inverse-ε1-misinformed ] = P[mG : inverse-ε2-misinformed ]

(b) If max{p0, q0, 1− p0, 1− q0} > ε1, then:
• P[mG : ε1-misinformed ] < P[mG : ε2-misinformed ]
• P[mG : inverse-ε1-misinformed ] < P[mG : inverse-ε2-misinformed ]

3. If NE(G0) is infinite, then:

(a) If ε1 ≥ 1 or ε2 ≤ 0.5, then:
• P[mG : ε1-misinformed ] = P[mG : ε2-misinformed ]
• P[mG : inverse-ε1-misinformed ] = P[mG : inverse-ε2-misinformed ]

(b) If ε1 < 1 and ε2 > 0.5, then:
• P[mG : ε1-misinformed ] = P[mG : ε2-misinformed ]
• P[mG : inverse-ε1-misinformed ] < P[mG : inverse-ε2-misinformed ]
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Proposition 10 has several interesting consequences. First, we note that the probability for a given mG to be (inverse-
)ε-misinformed is non-decreasing with respect to ε. When there is a pure Nash equilibrium, the choice of ε is irrelevant
to the value of these probabilities. When there is a mixed Nash equilibrium (case 2 of the proposition), there is a limit
above which ε does not affect the value of the related probability; this limit depends on the actual mixed equilibrium,
but it is always equal to, or larger than 0.5, and smaller than 1. Finally, in the case where there is an infinite number of
equilibria, ε affects the probabilities only for certain values (between 0.5 and 1, and only for the inverse-ε-misinformed
case), as detailed in case 3 of Proposition 10. These are summarised in Table 6.

Our results (and Table 6) indicate that the minimal value for the probability of mG being (inverse-)ε-misinformed is
given for ε = 0. Its maximal value is taken for an appropriate ε (depending on the case); in all cases ε = 1 would
also give that maximal value. These maximal/minimal values can be easily deduced by Table 5 for the above choices
of ε, and are given in Table 7 for convenience. Note that the actual result for the minimal/maximal values results by
multiplying Pmis

r with Pmis
r , and Pinv

r with Pinv
r for ε-misinformed and inverse-ε-misinformed respectively.

Another important result (albeit relatively obvious) is that the probability of mG being (inverse-)ε-misinformed,
viewed as a function of ε, is continuous. This is a direct consequence of the results in Tables 3, 4, 5. An important
consequence of this fact, by well-known results of calculus, is that, for any given target value for the probabilities of
(inverse-)ε-misinformed (within the bounds shown in Table 7), there exists some ε whose application would result to
that value for the respective probability.

6.2 Effect of changing the game (G0) and the mean (M )

Consider a misinformation game mG ∼ G0 + N (M,D), and let us informally ponder on the effect of bias in the
noise of a game. A biased noise is noise whose mean M is non-zero, i.e., M ̸= [0]. Let us consider only player r,
for simplicity. In such a scenario, we know that Gr ∼ G0 +N (Mr, Dr). Observe that this is the same as writing
Gr ∼ (G0 +Mr) +N

(
[0], Dr

)
. Using this simple reasoning, the computation of the probabilities of behavioural

consistency for mG for biased noise can be reduced to computations related to some mG with unbiased noise (M = [0]),
whose actual game will be the sum of G0 and Mx.

However, there are two caveats here. First, since Mr may be different than M c, our original misinformation game
is essentially reduced to two different misinformation games (say mGr,mGc), i.e., one per player. Second, in the
case where the equilibria of G0 are different than the equilibria of G0 + Mx, care should be taken to consult the
proper line in Table 5 while computing the probability of mG being (inverse-)ε-misinformed. In particular, the line to
consider should be the one related to the equilibria of G0, not G0 +Mx. This means that the probability of mG being
(inverse-)ε-misinformed may not be the same as the respective probability for mGr,mGc.

To prove the above ideas formally, we start with the following proposition:

Proposition 11. Consider two noisy games mG ∼ G0 +N (M,D), mG ∼ G0 +N
(
M,D

)
. Suppose that there

exists a ∈ R, x ∈ {r, c} such that G0 +Mx = G0 +Mx + [a]. Then:

• For any i ∈ {1, 2},
P[OPG

x

x (i) ] = P[OPG
x

x (i) ]

• For any 0 ≤ ω1 ≤ ω2 ≤ 1,
P[ROMGx

x (ω1, ω2) ] = P[ROMGx

x (ω1, ω2) ]

• For any 0 ≤ ω1 ≤ ω2 ≤ 1,
P[RPMGx

x (ω1, ω2) ] = P[RPMGx

x (ω1, ω2) ]

Proposition 11 implies that, given a noisy game mG ∼ G0 +N (M,D) and a player x ∈ {r, c}, we can generate some
other noisy game (say mG), whose probabilities related to the various outcomes (equilibria) of the game Gx of mG are
identical to the respective ones for Gx (in mG). As a matter of fact, there is an infinite number of noisy games that
satisfy this property: for any given G0 we can find an infinite number of M that do this, and for any given M we can
find an infinite number of G0 that do this. This observation motivates us to consider some interesting special cases,
formalised as corollaries below.

The first interesting case is when M = [0]. Given a noisy game mG, the following corollary shows that the probabilities
related to the various outcomes (equilibria) of the game Gx in mG can be predicted by looking at a properly defined
noisy game mG where the noise is unbiased (i.e., M = [0]). Formally:
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Corollary 2. Consider a noisy game mG ∼ G0 + N (M,D), and some x ∈ {r, c}. Set G0 = G0 + Mx, and
mG ∼ G0 +N

(
[0], D

)
. Then:

• For any i ∈ {1, 2},
P[OPG

x

x (i) ] = P[OPG
x

x (i) ]

• For any 0 ≤ ω1 ≤ ω2 ≤ 1,
P[ROMGx

x (ω1, ω2) ] = P[ROMGx

x (ω1, ω2) ]

• For any 0 ≤ ω1 ≤ ω2 ≤ 1,
P[RPMGx

x (ω1, ω2) ] = P[RPMGx

x (ω1, ω2) ]

Combining Corollary 2 with Theorems 8, 9, it is easy to compute the probability that mG is (inverse-)ε-misinformed,
using the respective probabilities for mG. This is one of the main results of this subsection, as it allows us to restrict
our study to noisy games with unbiased noise only.

An interesting observation is that Corollary 2 applies for some x ∈ {r, c}. Thus, we need to define two different mG
(one for each player x ∈ {r, c}) in order to compute the probability that mG is (inverse-)ε-misinformed. The following
corollary holds for both x ∈ {r, c} (and thus foregoes this need), but applies only when Mr = M c, i.e., when the noise
received by the two players has the same bias:

Corollary 3. Consider a noisy game mG ∼ G0 + N (M,D), where M = (M∗; M∗). Set G0 = G0 +M∗, and
mG ∼ G0 +N

(
[0], D

)
. Then:

• For any i ∈ {1, 2} and x ∈ {r, c},
P[OPG

x

x (i) ] = P[OPG
x

x (i) ]

• For any 0 ≤ ω1 ≤ ω2 ≤ 1 and x ∈ {r, c},

P[ROMGx

x (ω1, ω2) ] = P[ROMGx

x (ω1, ω2) ]

• For any 0 ≤ ω1 ≤ ω2 ≤ 1 and x ∈ {r, c},

P[RPMGx

x (ω1, ω2) ] = P[RPMGx

x (ω1, ω2) ]

Proposition 11 and Corollary 2 provide the probability of the different events to occur (e.g., the probability that
Gx has a certain equilibrium), but do not directly provide the probability for mG being (inverse-)ε-misinformed.
Indeed, since G0 and G0 may have different equilibria, the computation of the probabilities for mG and mG being
(inverse-)ε-misinformed may use different rows in Table 5. This is unnecessary only when the two games have the
same equilibria:
Corollary 4. Consider a noisy game mG ∼ G0 +N (M,D). Set:

G0 = G0 +Mr, Ĝ0 = G0 +M c, mG ∼ G0 +N
(
[0], D

)
, m̂G ∼ Ĝ0 +N

(
[0], D

)
If NE(G0) = NE(G0) = NE(Ĝ0) then:

• P[mG : ε-misinformed ] = Pmis
r · P̂mis

c

• P[mG : inverse-ε-misinformed ] = Pinv
r · P̂inv

c

where Pmis
r , Pinv

r , P̂mis
c , P̂inv

c are the probabilities of Table 5 for mG, m̂G respectively.

Note that, in Corollary 4, the computation of the probability for mG to be (inverse-)ε-misinformed, occurs via the
combination of quantities from two different noisy games (mG, m̂G). As with Corollary 2, this can be avoided when
the noise received by the two players has the same bias, in which case we get a direct computation of the related
probability:

Corollary 5. Consider the noisy game mG ∼ G0 +N (M,D), where M = (M∗; M∗). Set G0 = G0 +M∗ and
mG ∼ G0 +N

(
[0], D

)
. If NE(G0) = NE(G0) then:
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• P[mG : ε-misinformed ] = P[mG : ε-misinformed ]

• P[mG : inverse-ε-misinformed ] = P[mG : inverse-ε-misinformed ]

Corollary 5 is the most specific result, as it gives us a method of computing the probabilities of a noisy game being
(inverse-)ε-misinformed using the respective probabilities of another noisy game, under specific assumptions.

The last proposition of this subsection follows easily from Proposition 11, and shows an elegant, and expected, property
of noisy games. In particular, changing the payoff matrix of a game by adding any fixed constant number to all payoffs,
does not modify the probability of the respective noisy game to be (inverse-)ε-misinformed (for a fixed noise pattern).
This is expected, because the addition of a fixed number in the payoffs does not change the structure of the game, and,
thus, the two games are considered “equivalent” in standard game theory. The proposition below proves a more complex
version of this statement, showing that the same is true for the noise pattern: adding a fixed amount of bias across the
board does not modify the respective probabilities. Formally:
Proposition 12. Consider a noisy game mG ∼ G0 + N (M,D), and constant numbers aG, ar, ac ∈ R. Set

G0 = G0+[aG] and M = (Mr; M c), where Mx = Mx+[ax] for x ∈ {r, c}. Moreover, set mG ∼ G0+N
(
M,D

)
.

Then:

• P[mG : ε-misinformed ] = P[mG : ε-misinformed ]

• P[mG : inverse-ε-misinformed ] = P[mG : inverse-ε-misinformed ]

6.3 Effect of modifying noise intensity (D)

Although adding a fixed constant number to the game’s payoffs does not modify the respective probabilities (Proposition
12), this is not the case when changing the “scale” of a game (by multiplying all its payoffs by a constant number,
say λ > 0). In particular, changing the scale of a game will affect its “resilience” to noise, without changing the
game’s properties and behaviour, because it increases the “amount of noise” necessary to change the sign of the various
UGAIN(y, x)i. As a matter of fact, multiplying the payoffs by a sufficiently large number would minimize the effect of
the noise, as its effects on the payoffs would be, comparatively smaller (analogously, using a sufficiently small positive
number would maximize the effect of the noise).

In Proposition 13 (and especially in Corollary 6), we quantify this effect, by showing that we need to multiply the noise
intensity (standard deviation) by λ2 in order for the noise to have the same effect on a game scaled by λ. Formally:

Proposition 13. Consider a normal noisy game mG ∼ G0 +N (M,D) and some λ > 0. Set: G0 = λG0, M = λM

and D = λ2D, and consider the normal noisy game mG = G0 +N
(
M,D

)
. Then:

• P[mG : ε-misinformed ] = P[mG : ε-misinformed ]

• P[mG : inverse-ε-misinformed ] = P[mG : inverse-ε-misinformed ]

An obvious and interesting corollary of Propositions 12 and 13 is the following:

Corollary 6. Consider a normal noisy game mG ∼ G0 +N
(
[0], D

)
and some λ > 0, k ∈ R. Set: G0 = λG0 + k

and D = λ2D, and consider the normal noisy game mG = G0 +N
(
[0], D

)
. Then:

• P[mG : ε-misinformed ] = P[mG : ε-misinformed ]

• P[mG : inverse-ε-misinformed ] = P[mG : inverse-ε-misinformed ]

From the previous theoretical results, the effect of noise in the outcome of an abstract 2 × 2 bimatrix game has the
following characteristics: for small values of the noise intensity (standard deviation), players almost surely have the
same behaviour as in the actual game, whereas for large noise intensity, the behaviour of players cannot be predicted as
their games will be almost random. Also, observe that the formulas giving the probabilities for (inverse)-ε-misinformed
are continuous with respect to the standard deviation. Given the above, one would expect that, by increasing the standard
deviation, we would monotonically transit from the first extreme to the second. However, this does not always hold, as
the following counter-example shows.
Example 2. Consider as actual game the classical Prisoner’s Dilemma (see Figure 3a), which has a pure Nash
equilibrium with strategy profile ((0, 1), (0, 1)). We produce a noisy game, in which the noise only affects the
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Figure 2: Example showing that P[mG : ε-misinformed ] (blue), P[mG : inverse-ε-misinformed ] (orange) (vertical
axis) have non-monotonic dependence to noise (horizontal axis).

(
(2, 2) (0, 3)
(3, 0) (1, 1)

)
(a) Prisoners’ Dilemma

(
(1,−1) (−1, 1)
(−1, 1) (1,−1)

)
(b) Matching Pennies

(
(2, 1) (0, 0)
(0, 0) (1, 2)

)
(c) Battle of the Sexes

(
(3, 2) (4, 4)
(1, 1) (2, 3)

)
(d) Win-Win

Figure 3: Games to be used for the experimental evaluation.

upper left elements of the actual payoff matrix, where we add noise according to a random variable following
the normal distribution N

(
0, d2

)
. From Theorems 8, 9, we can compute the probabilities for this game to be

(inverse-)ε-misinformed. The result is shown in Figure 2, where we plot P[mG : ε-misinformed ] (blue line) and
P[mG : inverse-ε-misinformed ] (orange line), for d ∈ (0, 10). As is obvious by this figure, these functions are not
monotonic with respect to d.

7 Discussion and experiments

In this section we report on experiments that validate our basic results, and we investigate the effect of noise on the
players’ decisions, for the four 2 × 2 bimatrix games shown in Figure 3. The games were chosen to capture the
following cases: i) dominant equilibrium (Prisoner’s Dilemma), ii) unique mixed Nash equilibrium (Matching Pennies),
iii) multiple Nash equilibria (Battle of the Sexes), and iv) dominant equilibrium that coincides with the optimal outcome
(Win-Win).

7.1 Theoretical and Experimental Computation of the Probability that a Game is (Inverse-)ε-misinformed

We consider that the actual game undergoes an additive noise that follows the normal distribution N ([0], [d2]) where
d ∈ {0.001, 0.5, 1, . . . , 10}.

We compare the theoretical values of probabilities that we get from Theorems 8, 9, with the respective values calculated
through Monte Carlo simulations. The Monte Carlo simulations were conducted as follows: we generate a game
G0, which can be one of the four games shown in Figure 3. Then, for each of the above values for d, we create the
respective noisy game mG = G0 +N

(
[0], [d2]

)
. To be more precise, we generate a misinformation game, where the

misinformation stems from the incorporation of additive noise stemming from one random experiment that follows the
above distribution (N

(
[0], [d2]

)
). We derive the natural misinformed equilibrium and check about ε-closeness. We

perform 3, 000 repetitions of the above process and calculate:

a) the percentage of games that are ε-misinformed (i.e., all nmes of mG are ε-close to one Nash equilibrium of
G0, according to the first bullet of Definition 11),

b) the percentage of games that are inverse ε-misinformed (i.e., all Nash equilibria of G0 are ε-close to one nme
of mG, according to the second bullet of Definition 11).
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(a) ε misinformed. (b) Inverse ε misinformed.

Figure 4: Monte Carlo (MC) simulation and probabilistic formulas for Prisoner’s Dilemma and Win-Win games.
Vertical axis: (4a) P[mG : ε-misinformed ], (4b) P[mG : inverse-ε-misinformed ]. Horizontal axis: noise intensity d.

We repeat the simulations for two different values of ε (ε ∈ {10−2, 10−3}). The results are shown in Figures 4-6. As the
Prisoner’s Dilemma and the Win-Win games both have a unique pure Nash equilibrium, their behavioural consistency
is similar. Hence, Figure 4 shows both cases. In all subplots, we have plots of two colours. The blue ones depict the
computations for ε = 10−2, whereas the red ones depict the computations for ε = 10−3.

In part (a) of the figures, the horizontal axis depicts the different values for the standard deviation d of the noise, and
the vertical axis depicts the probability of a game being ε-misinformed according to Theorem 8 (solid line) or the
probability of a game being ε-misinformed according to the Monte Carlo simulations (dotted lines). The same hold
for part (b) of the figures, but for the inverse-ε-misinformed case (Theorem 9). In both subfigures, a high value of
the probability calculated in the vertical axis implies a small effect of noise on players’ decisions. As expected, the
theoretical results are very close to the experimental ones.

These figures give rise to various remarks concerning the influence of noise to players’ strategic choices. Although
some general patterns emerge, the effect of noise in the behavioural consistency of the game greatly depends on the
type and number of Nash equilibria that it has, so we split our analysis in 3 different cases.

Case 1: Unique Pure Nash equilibrium

The case of a unique pure Nash equilibrium appears in the Prisoner’s Dilemma and Win-Win games, whose behaviour
is depicted in Figure 4.

For Prisoner’s Dilemma, we observe that, for small values of the standard deviation (d ≪ 1), the nme of mG will usually
be the same as the NE of the original game (G0). Thus, both probabilities Pemis[mG; ε ] and Pinvemis[mG; ε ] will
have values close to 1. As d increases, noise will produce misinformation games Gr, Gc with different Nash equilibria
than that of the actual game (different means non-close, by definition, in this case) with an increasing probability,
thereby reducing the probability for behavioural consistency.

As d increases further, each of the different possible sets of equilibria will appear with almost equal probability in
Gr, Gc, leading to a convergence in the plots of Figure 4. In particular, Pemis[mG; ε ] converges to approximately
14%, whereas Pinvemis[mG; ε ] converges to approximately 25%. This can be theoretically predicted by observing
Table 1. For a large enough noise, the original orderings among the elements of the payoff matrix become increasingly
irrelevant, and the actual orderings in each of Gr, Gc become totally random. As a result, the equilibrium strategy
for r in Gr will be a pure one with a probability of 6/8 (3/8 for each strategy), a mixed one with 1/8 probability, and
pure-and-mixed with 1/8 probability. The same is true of course for c in Gc. Combining these observations with Table
5 and Theorems 8, 9, we get the above numbers for the convergence of Pemis[mG; ε ], Pinvemis[mG; ε ].

Similar remarks hold for the Win-Win game that has one pure Nash equilibrium strategy profile (namely, ((1, 0), (0, 1))).

Case 2: Unique Mixed Nash equilibrium
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(a) ε misinformed. (b) Inverse ε misinformed.

Figure 5: Monte Carlo (MC) simulation and probabilistic formulas for Matching Pennies. Vertical axis: (5a) P[mG :
ε-misinformed ], (5b) P[mG : inverse-ε-misinformed ]. Horizontal axis: noise intensity d.

(a) ε misinformed. (b) Inverse ε misinformed.

Figure 6: Monte Carlo (MC) simulation and probabilistic formulas for Battle of the Sexes. Vertical axis: (6a)
P[mG : ε-misinformed ], (6b) P[mG : inverse-ε-misinformed ]. Horizontal axis: noise intensity d.

The case of a unique mixed Nash equilibrium appears in the Matching Pennies game, which has one Nash equilibrium
strategy profile ((1/2, 1/2), (1/2, 1/2)), and whose behaviour is depicted in Figure 5.

As in case 1, we observe that for small values of the standard deviation (d ≪ 1), mG will have the same nme as the
NE in G0. Thus, both probabilities Pemis[mG; ε ] and Pinvemis[mG; ε ] will have values close to 1. As d increases,
noise will produce games Gr, Gc with different Nash equilibria than that of the actual game G0, and the respective
probabilities fall sharply (much faster compared to the Prisoner’s Dilemma case), converging to a value close to 0
for large values of the standard deviation. This is explained by the fact that, although a mixed nme is achieved in
some of the produced games, this is often not close to the actual mixed one, leading to games that are (usually) not
(inverse-)ε-misinformed. For example, for ε = 10−2, the function Pemis[mG; ε ] convergences at around 0.03%.

Case 3: Multiple Nash equilibria

The case of two pure and one mixed Nash equilibrium appears in the Battle of the Sexes game, whose behaviour is
depicted in Figure 6. The Nash equilibrium strategy profiles of Battle of the Sexes are: {((1, 0), (1, 0)), ((0, 1), (0, 1)),
((2/3, 1/3), (1/3, 2/3))}.

Unlike other games, we observe that the Battle of the Sexes has zero probability of being ε-misinformed for small
values of d. This is explained by the fact that, for small values of d, Gr, Gc will be very similar to G0, each giving
3 equilibrium strategies (for the respective player). Thus, there are 9 nmes, one for each combination of equilibrium
strategies (see Definition 8), so some of them will not be ε-close to one of the three equilibria of G0. By Definition 11
this means that the respective game is not ε-misinformed, so Pemis[mG; ε ] will be close to 0.
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(a) Percentage of misinformation games that result in the best
nme.

(b) Percentage of misinformation games that result in the worst
nme.

Figure 7: Strategy profiles in terms of efficiency.

As d increases, and the games Gr, Gc become less and less predictable, the probability of being ε-misinformed becomes
larger, reaching a plateau at around 72%. The explanation here is analogous to the one given for the other two cases: in
order for a misinformation game to not be ε-misinformed, it should either have one pure equilibrium (but not one of the
two that are in the equilibria of G0), or it should have one mixed equilibrium (but not ε-close to the one of G0). Based
on the analysis of the Prisoner’s Dilemma game, the probability of the former is around 28%; based on the analysis of
the Matching Pennies game, the probability of the latter is close to 0; combining these observations, we conclude that a
plateau at around 72% is reasonable.

For the inverse-ε-misinformed case (part (b) of Figure 6), small values of d result to high values for Pinvemis[mG; ε ],
as expected. As d increases, the probability decreases at a rate even faster than the one observed for Matching Pennies,
eventually converging at a value close to 0. This is explained by the fact that, in order for the game to be inverse-ε-
misinformed, it should have, among other things, also a mixed equilibrium that is close to the respective mixed of G0.
As we established in Case 2 above, this has a very low probability for large values of d.

7.2 Optimal strategy profiles in terms of efficiency

In this subsection, we report on experiments that investigate whether the misinformation game mG that results from a
given actual game G0 has natural misinformed equilibria that are best or worst in terms of efficiency (social welfare).
We then evaluate the effect of noise on each of the four games under consideration.

We performed Monte Carlo simulations as in the previous section and calculated:

a) the percentage Pbest of misinformation games that have a natural misinformed equilibrium that maximizes
social welfare (best nme),

b) the percentage Pworst of misinformation games that have a natural misinformed equilibrium that minimizes
social welfare (worst nme).

We repeat the simulations for all values of d in {0.02, 0.04, . . . , 10} and for ε = 10−2. The results are shown in
Figures 7a and 7b.

In Matching Pennies, as it is a constant-sum game, all strategy profiles provide the same level of social welfare, so the
respective line is flat, regardless of the value of d (see Figures 7a and 7b). In other words, the noise has no effect with
respect to the optimal outcome.

In Prisoners’ Dilemma, the best strategy profile is ((1, 0), (1, 0)) and the worst one is ((0, 1), (0, 1)) which coincides
with the pure NE of the actual game G0. We observe that, for small values of d, only a few repetitions provide the best
nme (Figure 7a), while most of them provide the worst nme (Figure 7b); this is in line with the results given in the
previous subsection. As d increases, the percentage of games resulting in the best strategy increases too, implying that
noise has a positive effect on Prisoners’ Dilemma.

In the Battle of the Sexes, the best strategy profiles are ((1, 0), (1, 0)) and ((0, 1), (0, 1)) (these are also the pure Nash
equilibria of the actual game), and the worst strategy profiles are ((1, 0), (0, 1)) and ((0, 1), (1, 0)). We observe that,
for small values of d, most of the misinformation games result in one of the best strategy profiles (Figure 7a). As d
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increases, this percentage decreases, implying that noise has a negative effect on the Battle of the Sexes: players are not
forced to choose better strategies.

In the Win-Win game, the best strategy profile is ((1, 0), (0, 1)) and the worst one is ((0, 1), (1, 0)). The same
observations as in the Battle of the Sexes hold for the Win-Win game.

To summarize, as the percentage Pbest increases (or Pworst decreases) with respect to d, noise is beneficial. This is the
case for Prisoners’ Dilemma. On the contrary, noise deteriorates the efficiency of the system if the percentage Pbest

decreases (or Pworst increases) with respect to d as in Win-Win and Battle of the Sexes games. Finally, the efficiency
of the system is independent of the noise in the Matching Pennies game.

Given the above, as expected, noise deteriorates the social welfare in games where the original Nash equilibrium is
already “good” for the social welfare (Battle of the Sexes, Win-Win), as it induces a more “random” behaviour. On
the contrary, it improves the situation in games where the original equilibrium is “bad” (e.g., Prisoner’s Dilemma). In
constant sum games (e.g., Matching Pennies), noise has no effect with regards to the social welfare.

7.3 PoM vs PoA

In this subsection, we compare the price of anarchy PoA with the price of misinformation PoM for the four games of
interest. Both metrics measure social welfare, with or without misinformation respectively, and take values that are
higher than or equal to 1.

Given a bimatrix game G with payoff matrix P = (Pr; Pc) we use Definition 9 to compute PoM for all values of
pairs (p, q), where p, q ∈ [0, 1]. The values of p, q are non other than the values in the joint strategy profile σ = (p⃗, q⃗)
= ((p, 1−p), (q, 1− q)). In formula 6, the quantities in the fraction are given by the formula SW (σ) = pT (Pr+Pc)q.
The respective graphs are shown in Figures 8a-8d.

We can make the following observations on social welfare planes of Figures 8a-8d that present the range of values of
PoM :

1. In Prisoner’s Dilemma we note that the social welfare plane is monotonic (see Figure 8a). The minimum value
is in the bottom left corner (“bluest”) and the maximum value is in the upper right corner (“redest”). We know
that the PoA in this game is 2, which is equal to the minimum social welfare, so any distortion in the payoff
matrices of the game does not deteriorate the efficiency of the game, and PoM ≤ PoA, for every level of
noise.

2. In Matching Pennies we observe that the social welfare plane is constant (Figure 8b). That is, PoM remains
constant as any combination of the values of the payoff matrix results in the same social welfare value. Thus,
noise may affect the strategic behaviour of players, but keeps the social welfare constant. Note that, in zero-sum
games such as Matching Pennies, the value of PoM and PoA cannot be calculated (the denominator of the
respective formulas takes the value of zero). To mitigate this inconvenience we add proper values to each
element of the payoff matrices and produce a constant-sum game, without affecting the strategic behaviour of
players.

3. In Battle of the Sexes we observe that the two pure Nash equilibria of the game are the optimal strategic
behaviours (Figure 8c). Thus, PoA depends on the mixed Nash equilibrium, and noise could improve or
degrade the efficiency of the system.

4. In Win-Win, the unique Nash equilibrium coincides with the optimal one, thus PoA = 1 (Figure 8d).
Therefore, any misinformation cannot improve the outcome of this game, and PoM ≥ PoA.

8 Conclusion and Future Work

In this paper we studied a novel game-theoretic setting, where players receive the information regarding the game’s
payoffs with a distortion that affects the elements of the payoff matrix. This distortion was assumed to be due to additive
noise that follows a normal distribution, and could be due to communication errors that may appear when the game’s
parameters are communicated through a noisy channel, or when some malfunction in the sender or receiver distorts this
information. In such noisy settings, it is possible that each player knows a different game compared to her opponent and
compared to the actual (originally communicated) one.

We model this situation using misinformation games, an appropriate theoretical setting introduced previously in [25],
and define a subclass of misinformation games called noisy games (see Section 4). The main problem considered in this
setting is the computation of the probability for behavioural consistency, i.e., the probability that the agents’ behaviour
will be “close” (under some formal definition of closeness) to the one expected according to the original game, despite
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(a) PoM plane for the Prisoner’s Dilemma. (b) PoM plane for the Matching Pennies.

(c) PoM plane for the Battle of the Sexes. (d) PoM plane for the Win-Win.

Figure 8: PoM plane for games in Table 3.

the noise. Towards this, two alternative formal definitions of behavioural consistency are given (Subsection 4.3) and
the respective probabilities are computed in Section 5. Note that, due to the complexity of the formulas, we restricted
ourselves to 2-player bimatrix games with 2 strategies per player.

We elaborate on those formulas and prove a number of related results (Section 6), which help understand their properties.
Such properties include the effect of the definition of closeness and/or the noise structure in the respective probabilities
for behavioural consistency, as well as a study of how different interventions and modifications on the original game
would affect these probabilities.

Moreover, we perform several numerical experiments using four well-known bimatrix games as benchmarks (see
Figure 3). Initially, we compare the probabilistic formulas with Monte Carlo simulation to verify their correctness.
Then, we derive general remarks as to the efficiency of the system regarding the additive noise, in terms of social welfare.
To do so, we use the Price of Misinformation metric, which is inspired by the well-known Price of Anarchy metric and
quantifies how benevolent/malevolent is the misinformation caused by the noise with regards to game performance
(related to social welfare).
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Undeniably, the 2 players’ bimatrix games with 2 strategies per player is a very restricting setting. Unsurprisingly
however, even in this simple setting our analysis highlighted the richness, intricacy and interdependence of the
probabilistic events, mathematical objects and techniques that were involved, leading to complex mathematical
computations and stiff formulations as regards the end results. Having said that, we plan to consider more complex
settings in the future, i.e., scenarios with more than two players and/or scenarios where each player may have more
than two strategies. Further, we could consider deriving analogous probabilistic formulas for other classes of noise
distributions (e.g., poisson or laplacian).

Moreover, an immediate future step is to provide tools to quantify the sensitivity of a game to random noise, i.e.,
determine “how much noise” the game can withstand so that the behaviour of the players remains close (under the
sense of behavioural consistency) to the expected ones, with a certain probability. A related research question is how
sensitivity is affected by inconsequential changes in the game specification (e.g., change of scale); in this direction,
results like Proposition 13 can help. This analysis could be used as a tool for game designers to improve their designs
and make them more robust to unexpected circumstances and noise in the communication channels.
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A Proofs for the Results Appearing in the Paper

A.1 Normal Form Games

Proof of Proposition 1
Let’s consider G = ⟨N,S, P ⟩, for P = (Pc; Pc). Suppose that G is degenerate. By definition, there is a pure strategy
(say si, by player x ∈ {r, c}) that has two pure best responses. Suppose that x = r, i = 1. Then, since s1, s2 are
equally preferred by c, it follows that Pc[1, 1] = Pc[1, 2], i.e., UGAIN(c, 1) = 0. The other cases (i.e., when x = c
and/or i = 2) are analogous.
For the opposite, suppose that UGAIN(r, 1) = 0. Then Pc[1, 1] = Pc[1, 2], so c has two pure best responses for the
strategy s1 of r, which means that G is degenerate. The proof is analogous for the other cases. □

Proof of Proposition 2
Suppose that x = r. From classical game theoretic results (e.g., see [17], [18]), and our assumptions, we get that p will
satisfy the following equation:

p · Pc[1, 1] + (1− p) · Pc[2, 1] = p · Pc[1, 2] + (1− p) · Pc[2, 2]

The result now follows trivially by solving this equation and applying the definition of UGAIN(c, i).
Analogously, for the case where x = c, we get the following equation:

p · Pr[1, 1] + (1− p) · Pr[1, 2] = p · Pr[2, 1] + (1− p) · Pr[2, 2]

Solving it, as above, will give the required result. □

Proof of Proposition 3
By Proposition 1, we conclude that UGAIN(x, i) ̸= 0 for all x ∈ {r, c}, i ∈ {1, 2}. This means that the different
(mutually exclusive) cases of the formulation of the proposition cover all possible cases for a non-degenerate game (see
also Table 1). Thus, it suffices to show the “only if” part for each different case.
For (1a), note that player x will play (1, 0) (i.e., s1) regardless of the choice of x̄, so NEx(G) = {(1, 0)} and OPx(1)
is true.
For (1b), note that the only Nash equilibrium of G is ((1, 0), (1, 0)), which proves the result.
Next, (1c) is analogous to (1b).
The cases (2a), (2b), (2c) are analogous to (1a), (1b), (1c) respectively.
With regards to (3a), it can be easily shown that the game can have no pure Nash equilibrium. Thus, it must have
a mixed one (by the result of Nash [16]). Moreover, it cannot have more than one mixed, as this would render it
degenerate5 (see [17],[3],[18]).

Thus, NEx(G) = {(p, 1− p)}, for some 0 < p < 1. By Proposition 2, it follows that p = UGAIN(x̄,2)
UGAIN(x̄,2)−UGAIN(x̄,1) , which

shows the result.
The case (3b) is analogous.
For (4a), we observe that the values of UGAIN(x, i) imply that the game has exactly two pure Nash equilibria, namely:
((1, 0), (1, 0)) and ((0, 1), (0, 1)). By [17], [18], it must also have one (unique) mixed equilibrium, as we examine a
non-degenerate case.
Thus, NEx(G) = {(1, 0), (0, 1), (p, 1 − p)} for some 0 < p < 1. Again, using Proposition 2, it follows that
p = UGAIN(x̄,2)

UGAIN(x̄,2)−UGAIN(x̄,1) , which shows the result.
For (4b) the proof is analogous, except that here the pure Nash equilibria of G are: ((1, 0), (0, 1)) and ((0, 1), (1, 0)). □

A.2 Misinformation Games and Noisy games

Proof of Proposition 4
By definition, mG is ε-misinformed if and only if for all σ∗ = (σ∗

r , σ
∗
c ) ∈ NME(mG) there exists σ0 = (σ0

r , σ
0
c ) ∈

NE(G0) such that σ∗, σ0 are ε-close. More formally:

5Immediate consequence of Corollary 3.7 [17].
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mG : ε misinformed

⇔ ∀σ∗ = (σ∗
r , σ

∗
c ) ∈ NME(mG) ∃σ0 = (σ0

r , σ
0
c ) ∈ NE(G0) : σ∗ ∈ Clε(σ0)

⇔ ∀σ∗ = (σ∗
r , σ

∗
c ) ∈ NME(mG), σ∗ ∈ Clε(NE(G0))

⇔ ∀σ∗ = (σ∗
r , σ

∗
c ) ∈ NME(mG)

(
σ∗
r ∈ Clε(NEr(G

0)) ∧ σ∗
c ∈ Clε(NEc(G

0))
)

⇔ ∀σ∗
r ∈ NEr(G

r), σ∗
r ∈ Clε(NEr(G

0)) ∧ ∀σ∗
c ∈ NEc(G

c), σ∗
c ∈ Clε(NEc(G

0))

⇔ ∀x ∈ {r, c} ∀σ∗
x ∈ NEx(G

x), σ∗
x ∈ Clε(NEx(G

0))

Now let us fix some x and consider the different cases with regards to NEx(G
0):

• If NEx(G
0) contains a single pure strategy, i.e., OPG

0

x (i) is true for some i ∈ {1, 2}, then the expression
∀σ∗

x ∈ NEx(G
x), σ∗

x ∈ Clε(NEx(G
0)) is true if and only if NEx(G

x) contains the same pure strategy, and
no other, i.e., if and only if OPG

x

x (i) is true.

• If NEx(G
0) contains a single mixed strategy, i.e., OMG0

x (p0) is true for some 0 < p0 < 1, then the expression
∀σ∗

x ∈ NEx(G
x), σ∗

x ∈ Clε(NEx(G
0)) is true if and only if NEx(G

x) contains a single mixed strategy that
is ε-close to (p0, 1 − p0), i.e., ROMGx

x (ω1, ω2) is true, where ω1 = max{0, p0 − ε}, ω2 = min{1, p0 + ε}.
Note that the max,min are necessary to cater for the case where p0 − ε, p0 + ε are smaller than 0 or greater
than 1, respectively.

• If NEx(G
0) contains two pure and one mixed strategies, i.e., PMG0

x (p0) is true for some 0 < p0 < 1, then
the expression ∀σ∗

x ∈ NEx(G
x), σ∗

x ∈ Clε(NEx(G
0)) is true if and only if NEx(G

x) contains either a pure
or a mixed strategy that is ε-close to (p0, 1 − p0). This is expressed by the expression in bullet #3 of the
proposition.

• If NEx(G
0) = Σx, i.e., ING0

x is true, then, no matter the contents of NEx(G
x), the expression ∀σ∗

x ∈
NEx(G

x), σ∗
x ∈ Clε(NEx(G

0)) is true.

This, combined with the fact that these are the only cases with regards to the value of NEx(G
0), conclude the proof. □

Proof of Proposition 5
By definition, mG is inverse-ε-misinformed if and only if for all σ0 = (σ0

r , σ
∗
c ) ∈ NE(G0) there exists σ∗ =

(σ∗
r , σ

∗
c ) ∈ NME(mG) such that σ∗, σ0 are ε-close. More formally:

mG : inverse-ε-misinformed

⇔ ∀σ0 = (σ0
r , σ

0
c ) ∈ NE(G0) ∃σ∗ = (σ∗

r , σ
∗
c ) ∈ NME(mG) : σ∗ ∈ Clε(σ0)

⇔
(
∀σ0

r ∈ NEr(G
0) ∃σ∗

r ∈ NEr(G
r) : σ∗

r ∈ Clε(NEr(σ
0
r))
)

∧
(
∀σ0

c ∈ NEc(G
0) ∃σ∗

c ∈ NEc(G
c) : σ∗

c ∈ Clε(NEc(σ
0
c ))
)

⇔ ∀x ∈ {r, c}∀σ0
x ∈ NEx(G

0) ∃σ∗
x ∈ NEx(G

x) : σ∗
x ∈ Clε(NEx(σ

0
x))

Now let us fix some x and consider the different cases with regards to NEx(G
0):

• If NEx(G
0) contains a single pure strategy, i.e., OPG

0

x (i) is true for some i ∈ {1, 2}, then the expression
∀σ0

x ∈ NEx(G
0) ∃σ∗

x ∈ NEx(G
x) : σ∗

x ∈ Clε(NEx(σ
0
x)) is true if and only if NEx(G

x) contains the
same pure strategy, possibly in addition to others, i.e., (given that Gx is non-degenerate) if and only if
OPG

x

x (i)
∨

RPMGx

x (0, 1) is true.

• If NEx(G
0) contains a single mixed strategy, i.e., OMG0

x (p0) is true for some 0 < p0 < 1, then the expression
∀σ0

x ∈ NEx(G
0) ∃σ∗

x ∈ NEx(G
x) : σ∗

x ∈ Clε(NEx(σ
0
x)) is true if and only if NEx(G

x) contains a mixed
strategy that is ε-close to (p0, 1− p0), possibly in addition to others, i.e., (given that Gx is non-degenerate)
ROMGx

x (ω1, ω2) is true, where ω1 = max{0, p0 − ε}, ω2 = min{1, p0 + ε}. Note that the max,min are
necessary to cater for the case where p0 − ε, p0 + ε are smaller than 0 or greater than 1, respectively.
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• If NEx(G
0) contains two pure and one mixed strategies, i.e., PMG0

x (p0) is true for some 0 < p0 < 1, then
the expression ∀σ0

x ∈ NEx(G
0) ∃σ∗

x ∈ NEx(G
x) : σ∗

x ∈ Clε(NEx(σ
0
x)) is true if and only if NEx(G

x)
contains two pure and a mixed strategy that is ε-close to (p0, 1− p0), i.e., (given that Gx is non-degenerate)
RPMGx

x (ω1, ω2) is true, where ω1 = max{0, p0 − ε}, ω2 = min{1, p0 + ε}.

• If NEx(G
0) = Σx, i.e., ING0

x is true, then, ∀σ0
x ∈ NEx(G

0) ∃σ∗
x ∈ NEx(G

x) : σ∗
x ∈ Clε(NEx(σ

0
x))

is true if and only if at least one of the strategies in NEx(G
x) is ε-close to each strategy in NEx(G

0).
Given that NEx(G

x) is finite (because Gx is non-degenerate), this can only hold if PMGx

x (px) for some px

such that (p, 1 − p) ∈ Clε((p, 1 − p)) for all 0 < p < 1. From the latter, we conclude that ε ≥ 0.5 and
max{0, p0 − ε} < px < min{1, p0 + ε}, which leads to the requirement in bullet #4 of the proposition.

This, combined with the fact that these are the only cases with regards to the value of NEx(G
0), conclude the proof. □

A.3 Probabilities

Proof of Proposition 6
The result is direct from Proposition 1 and the fact that P[U(x, y, i) = 0 ] = 0 for any x, y ∈ {r, c}, i ∈ {1, 2}. □

Proof of Lemma 1
For the first result, we observe that, since Ω1 < Ω2 ≤ 0:

Ω1 ≤ X

Y
≤ Ω2

∧
X < 0

∧
Y > 0 ⇔ Ω1 ≤ X

Y
≤ Ω2

∧
Y > 0

Thus, it suffices to compute the probability of the latter (simpler) event.
Now, set Z = X

Y . Then fZ|Y (z|y) = fX(zy), so:

fZY (z, y) = fZ|Y (z|y) · fY (y) = fX(zy) · fY (y)

Therefore:

P[Ω1 ≤ X
Y ≤ Ω2, X < 0, Y > 0 ] = P[Ω1 ≤ Z ≤ Ω2, Y > 0 ]

=

∫ +∞

0

∫ Ω2

Ω1

fZY (z, y) dz dy =

∫ +∞

0

∫ Ω2

Ω1

fX(zy) · fY (y) dz dy

=

∫ +∞

0

(∫ Ω2

Ω1

fX(zy) dz

)
fY (y) dy =

∫ +∞

0

(∫ Ω2y

Ω1y

1

y
fX(x) dx

)
fY (y) dy

=

∫ +∞

0

(∫ Ω2y

Ω1y

fX(x) dx

)
fY (y)

y
dy

The proof of the second result is completely analogous. □

Proof of Proposition 7
The results on OPG

x

x (i) (i ∈ {1, 2}) are direct consequences of Proposition 3, the fact that U(y, x, i) are normal random
variables as described in Table 3, and the independence/mutual exclusiveness of the involved random variables (which
allow us to use the restricted disjunction/conjunction formulas from formula (4), Subsection 3.1).
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For the case of ROMGx

x (ω1, ω2), applying Corollary 1, we get that ROMGx

x (ω1, ω2) is true if and only if:

(UGAINGx

(x, 1) > 0)
∧

(UGAINGx

(x, 2) < 0)
∧

(UGAINGx

(x̄, 1) < 0)∧
(UGAINGx

(x̄, 2) > 0)
∧(

ω1 <
UGAINGx

(x̄, 2)

UGAINGx(x̄, 2)− UGAINGx(x̄, 1)
< ω2

)
∨

(UGAINGx

(x, 1) < 0)
∧

(UGAINGx

(x, 2) > 0)
∧

(UGAINGx

(x̄, 1) > 0)
∧

(UGAINGx

(x̄, 2) < 0)
∧(

ω1 <
UGAINGx

(x̄, 2)

UGAINGx(x̄, 2)− UGAINGx(x̄, 1)
< ω2

)
Obviously, the above disjunction contains mutually exclusive events, so the probability P[ROMGx

x (ω1, ω2) ] is the sum
of the probability of each disjunct (by the restricted disjunctive formula – see formula (4), Subsection 3.1). So, let us
compute the probability of the first disjunct.
We observe that the events UGAINGx

(x, 1), UGAINGx

(x, 2) are independent to each other and also independent to the
other conjuncts. Moreover:

ω1 <
UGAINGx

(x̄, 2)

UGAINGx(x̄, 2)− UGAINGx(x̄, 1)
< ω2 ⇔ ω1 − 1

ω1
<

UGAINGx

(x̄, 1)

UGAINGx(x̄, 2)
<

ω2 − 1

ω2

Thus, we can apply Lemma 1 for the last three conjuncts (for Ω1 = ω1−1
ω1

, Ω2 = ω2−1
ω2

), getting that the probability of
the first conjunction is equal to:

(1− FU(x,x,1)(0)) · FU(x,x,2)(0) ·
∫ +∞

0

(∫ Ω2u2

Ω1u2

fU(x,x̄,1)(u1) du1

)
fU(x,x̄,2)(u2)

u2
du2

Working analogously for the second disjunct, and summing the resulting probability with the one above, we get the
result.
For RPMGx

x (ω1, ω2), we work analogously, applying the second bullet of Corollary 1 as above.
For INGx

x , we observe that if INGx

x is true, then Gx is degenerate, which has probability 0. □

Proof of Theorem 8
The proof is direct from Proposition 4 (and the respective Table 2), combined with the fact that the different cases in the
disjunction are mutually exclusive, so we can use the restricted disjunction formula of (4) in Subsection 3.1. □

Proof of Theorem 9]
The proof is direct from Proposition 4 (and the respective Table 2), combined with the fact that the different cases in the
disjunction are mutually exclusive, so we can use the restricted disjunction formula of (4) in Subsection 3.1. □

A.4 Effect of modifying tolerance (ε)

Proof of Proposition 10
We first observe that, for any x ∈ {r, c} and any a, b, c such that: 0 ≤ a ≤ b ≤ c ≤ 1, we have that:

P[ROMGx

x (a, c) ] = P[ROMGx

x (a, b) ]+ P[ROMGx

x (b, c) ] (ROM1)

P[ROMGx

x (a, c) ] = 0 ⇔ a = c (ROM2)

P[RPMGx

x (a, c) ] = P[RPMGx

x (a, b) ]+ P[RPMGx

x (b, c) ] (RPM1)

P[RPMGx

x (a, c) ] = 0 ⇔ a = c (RPM2)

From Theorem 8, and for i = 1, 2:

P[mG : εi-misinformed ] = Pr,i · Pc,i,
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where Pr,i, Pc,i are determined by the second column of Table 5 for the respective εi.
Similarly, from Theorem 9, and for i = 1, 2:

P[mG : inverse-εi-misinformed ] = P ′
r,i · P ′

c,i,

where P ′
r,i, P

′
c,i are determined by the third column of Table 5 for the respective εi.

Now, let us focus on the first bullet of the proposition. By Tables 3, 4, 5, it is easy to conclude that, for any x ∈ {r, c},
i ∈ {1, 2}, the computation of Px,i, P

′
x,i is not affected by the value of εi, and, thus: Px,1 = Px,2, P ′

x,1 = P ′
x,2 for

x ∈ {r, c}, which shows the result.
Now, let us focus on the second bullet, and let us consider Pr,i, P

′
r,i first. Set:

ω1,1 = max{0, p0 − ε1}, ω2,1 = min{1, p0 + ε1},
ω1,2 = max{0, p0 − ε2}, ω2,2 = min{1, p0 + ε2}

Since 0 ≤ ε1 < ε2, we get that: 0 ≤ ω1,2 ≤ ω1,1 ≤ ω2,1 ≤ ω2,2 ≤ 1. Moreover, since ε1 < ε2, it follows that:

ω1,1 = ω1,2 ⇔ ω1,1 = ω1,2 = 0 ⇔

 p0 ≤ ε1
and

p0 ≤ ε2

⇔ p0 ≤ ε1

Analogously:

ω2,1 = ω2,2 ⇔ ω2,1 = ω2,2 = 1 ⇔

 1− p0 ≤ ε1
and

1− p0 ≤ ε2

⇔ 1− p0 ≤ ε1

Using the order among ωi,j , and by applying (ROM1) twice, we get that:

P[ROMGr

r (ω1,2, ω2,2) ] = P[ROMGr

r (ω1,2, ω1,1) ]+ P[ROMGr

r (ω1,1, ω2,1) ]

+ P[ROMGr

r (ω2,1, ω2,2) ]

Now given the fact that probabilities are non-negative, and (ROM2), we have:

P[ROMGr

r (ω1,1, ω2,1) ] ≤ P[ROMGr

r (ω1,2, ω2,2) ] and:

P[ROMGr

r (ω1,1, ω2,1) ] = P[ROMGr

r (ω1,2, ω2,2) ] ⇔(
ω1,1 = ω1,2 and ω2,1 = ω2,2

)
Using analogous reasoning we get:

P[RPMGr

r (ω1,1, ω2,1) ] ≤ P[RPMGr

r (ω1,2, ω2,2) ] and:

P[RPMGr

r (ω1,1, ω2,1) ] = P[RPMGr

r (ω1,2, ω2,2) ] ⇔(
ω1,1 = ω1,2 and ω2,1 = ω2,2

)
Using the above, and Tables 3, 4, 5, we can easily conclude that Pr,1 ≤ Pr,2 and P ′

r,1 ≤ P ′
r,2. Moreover:

Pr,1 = Pr,2 ⇔

 ω1,1 = ω1,2

and
ω2,1 = ω2,2

⇔

 p0 ≤ ε1
and

1− p0 ≤ ε1


Analogously:

P ′
r,1 = P ′

r,2 ⇔

 p0 ≤ ε1
and

1− p0 ≤ ε1


Reasoning analogously for the case of Pc,i, P

′
c,i, we get:

For Pc,1 ≤ Pc,2 : Pc,1 = Pc,2 ⇔

 q0 ≤ ε1
and

1− q0 ≤ ε1
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For P ′
c,1 ≤ P ′

c,2 : P ′
c,1 = P ′

c,2 ⇔

 q0 ≤ ε1
and

1− q0 ≤ ε1


By the hypothesis of the second bullet with regards to NE(G0), Tables 3, 4, 5, and the above relations, the cases (2a),
(2b) of the Theorem follow easily.
Now let us focus on the third bullet. First, we observe that, by Table 5, the result is obvious for the case of ε-misinformed,
so let us focus on the case of inverse-ε-misinformed. If ε2 ≤ 0.5, then ε1 ≤ 0.5, so the result is again obvious by Table
5. So let us focus on the scenario where ε2 > 0.5.
To show the result for this case, we use an approach similar to the one employed for the second bullet. In particular, we
consider P ′

r,i first. Set:

ω′
1,1 = max{0, 1− ε1}, ω′

2,1 = min{1, ε1},
ω′
1,2 = max{0, 1− ε2}, ω′

2,2 = min{1, ε2}
Using an analogous procedure (as in the second bullet), and the fact that 0 ≤ ε1 < ε2, we conclude that:

0 ≤ ω′
1,2 ≤ ω′

1,1 ≤ ω′
2,1 ≤ ω′

2,2 ≤ 1

ω′
1,1 = ω′

1,2 ⇔ ε1 ≤ 1

ω′
2,1 = ω′

2,2 ⇔ ε1 ≤ 1

Also, using (RPM1), (RPM2), and the fact that probabilities are non-negative, we get, as in the second bullet:

P[RPMGr

r (ω′
1,1, ω

′
2,1) ] ≤ P[RPMGr

r (ω′
1,2, ω

′
2,2) ]

P[RPMGr

r (ω′
1,1, ω

′
2,1) ] = P[RPMGr

r (ω′
1,2, ω

′
2,2) ]

⇔
(
ω′
1,1 = ω′

1,2 and ω′
2,1 = ω′

2,2

)
Therefore, given that ε1 > ε2 > 0.5: (

P ′
r,1 ≤ P ′

r,2 and P ′
r,1 = P ′

r,2

)
⇔ ε1 ≤ 1

Working analogously for P ′
c,i, we get:(

P ′
c,1 ≤ P ′

c,2 and P ′
c,1 = P ′

c,2

)
⇔ ε1 ≤ 1

By the hypothesis of the second bullet with regards to NE(G0), Tables 3, 4, 5, and the above relations, the remaining
subcases of (3a), (3b) of the Theorem follow easily. □

A.5 Effect of changing the game (G0) and the mean (M )

Proof of Proposition 11
From Table 3, we observe that, for the given x, and for any i ∈ {1, 2}:

µU(x,r,i) = (P 0
r [1, i] +Mx

r [1, i])− (P 0
r [2, i] +Mx

r [2, i])

= (P 0
r [1, i] +Mx

r [1, i] + a)− (P 0
r [2, i] +Mx

r [2, i] + a)

= µU(x,r,i).

Analogously, we can show that µU(x,c,i) = µU(x,c,i) for any i ∈ {1, 2}. Also, it is clear that dU(x,y,i) = dU(x,y,i) for
any y ∈ {r, c}, i ∈ {1, 2}. Combining these two facts, the results are obvious. □

Proof of Proposition 12
Take any x ∈ {r, c}. Set bx = −aG − ax. We observe that G0 +Mx = G0 +Mx + [bx]. Thus, by Proposition 11,
we get, for x ∈ {r, c}:
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• For any i ∈ {1, 2},
P[OPG

x

x (i) ] = P[OPG
x

x (i) ]

• For any 0 ≤ ω1 ≤ ω2 ≤ 1,
P[ROMGx

x (ω1, ω2) ] = P[ROMGx

x (ω1, ω2) ]

• For any 0 ≤ ω1 ≤ ω2 ≤ 1,
P[RPMGx

x (ω1, ω2) ] = P[RPMGx

x (ω1, ω2) ]

In addition, game theoretic results tell us that NE(G0) = NE(G0). Combining the above with Theorems 8, 9 and
Table 5, the result follows directly. □

A.6 Effect of modifying noise intensity (D)

Proof of Proposition 13
Consider the family of random variables U(y, x, i) for mG. By the definition of M,D and by Table 3, it follows that,
for any x, y ∈ {r, c}, and for any i ∈ {1, 2}, it holds that:

µ
U(y,x,i)

= λµU(y,x,i) and d
U(y,x,i)

= λ2dU(y,x,i)

Therefore U(y, x, i) = λU(y, x, i).
Using the latter relationship, we get, for any x, y ∈ {r, c}, i ∈ {1, 2}:

F
U(y,x,i)

(0) = P[U(y, x, i) ≤ 0 ] = P[λ · U(y, x, i) ≤ 0 ] = P[U(y, x, i) ≤ 0 ] = FU(y,x,i)(0)

To simplify the equations in the following, let us set, for any x ∈ {r, c}, i ∈ {1, 2}:
Ui = U(x, x̄, 1), U i = U(x, x̄, 1), and let fi, f i the respective cdfs for Ui, U i. Then, using Lemma 1, and the above
notation, for any ω1, ω2 ∈ R such that 0 ≤ ω1 < ω2 ≤ 1, it holds that:∫ +∞

0

∫ ω2−1
ω2

u2

ω1−1
ω1

u2

f
U(x,x̄,1)

(u1) du1

 f
U(x,x̄,2)

(u2)

u2
du2

=

∫ +∞

0

∫ ω2−1
ω2

u2

ω1−1
ω1

u2

f1(u1) du1

 f2(u2)

u2
du2

= P[ ω1 − 1

ω1
≤ U1

U2

≤ ω1 − 1

ω1
, U1 < 0, U2 > 0 ]

= P[ ω1 − 1

ω1
≤ λ · U1

λ · U2
≤ ω1 − 1

ω1
, λ · U1 < 0, λ · U2 > 0 ]

= P[ ω1 − 1

ω1
≤ U1

U2
≤ ω1 − 1

ω1
, U1 < 0, U2 > 0 ]

=

∫ +∞

0

∫ ω2−1
ω2

u2

ω1−1
ω1

u2

f1(u1) du1

 f2(u2)

u2
du2

=

∫ +∞

0

∫ ω2−1
ω2

u2

ω1−1
ω1

u2

fU(x,x̄,1)(u1) du1

 fU(x,x̄,2)(u2)

u2
du2

Analogously, it can be shown that:∫ 0

−∞

∫ ω2−1
ω2

u2

ω1−1
ω1

u2

fU(x,x̄,1)(u1) du1

 fU(x,x̄,2)(u2)

u2
du2 =

∫ 0

−∞

∫ ω2−1
ω2

u2

ω1−1
ω1

u2

f
U(x,x̄,1)

(u1) du1

 f
U(x,x̄,2)

(u2)

u2
du2
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From the above equations, it is obvious that the respective probabilities in Table 4 for mG and mG are equal. Moreover,
since G0 = λ ·G0, it follows that the Nash equilibria of G0 and G0 are the same. Combining these facts with Table 5
and Theorems 8, 9, the result follows. □
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