In the last few years we have witnessed an explosion in the publication of data in the form of Linked Data. Recording the provenance information of Linked Data is an essential task in order to effectively support trustworthiness, accountability and repeatability. In this context, our work:

- Introduces a new provenance model for SPARQL INSERT Updates
- Allows the reconstructability of SPARQL INSERT Updates from their provenance
- Provides algorithmic support via the Provenance Construction and the Update Reconstruction algorithms

Provenance Model

<table>
<thead>
<tr>
<th>Quadruple (q)</th>
<th>Provenance (P)</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>s p o n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_1 (a b d n)</td>
<td>P_{c_1} = ${ \langle i, i, i \rangle }$</td>
<td>Attributes derived from const values</td>
</tr>
<tr>
<td>c_2 (d b a n$</td>
<td>$)</td>
<td>P_{c_2} = ${ \langle qp^{p_1}_o \circ (c_i), qp^{p_2}_o \circ (c_i), qp^{p_3}_o \circ (c_i) \rangle }$</td>
</tr>
<tr>
<td>c_3 (a d b n$</td>
<td>$)</td>
<td>P_{c_3} = ${ \langle qp^{p_1}_o \circ (c_i), qp^{p_2}_o \circ (c_i), qp^{p_3}_o \circ (c_i) \rangle }$</td>
</tr>
<tr>
<td>c_4 (a d b n$</td>
<td>$)</td>
<td>P_{c_4} = ${ \langle qp^{p_1}_o \circ (c_i), qp^{p_2}_o \circ (c_i), qp^{p_3}_o \circ (c_i) \rangle }$</td>
</tr>
</tbody>
</table>

Provenance Construction

- Quadruple q_2: (a, b, d, n$|$)

 - Position $s p o$
 - INSERT: $\{ (s_1, s_2, s_3, s_4) \}$
 - WHERE: $\{ (s_1, s_2, s_3, s_4) \}$

 - P_{q_2}:
 - Attributes derived from const values

Update Reconstruction

- Quadruple q_2: (a, b, d, n$|$)

 - Position $s p o$
 - INSERT: $\{ (s_1, s_2, s_3, s_4) \}$
 - WHERE: $\{ (s_1, s_2, s_3, s_4) \}$

References

This work was partially supported by the PlanetData NoE (FP7-ICT-2009-3.4. #257641) and DIACHRON IP (FP7-ICT-2011-4.3. #601043)