
Controlling Access to RDF Graphs

Giorgos Flouris1, Irini Fundulaki1, Maria Michou1, and Grigoris Antoniou1,2

1 Institute of Computer Science, FORTH, Greece
2 Computer Science Department, University of Crete, Greece
{fgeo, fundul, michou, antoniou}@ics.forth.gr

Abstract. One of the current barriers towards realizing the huge po-
tential of Future Internet is the protection of sensitive information, i.e.,
the ability to selectively expose (or hide) information to (from) users
depending on their access privileges. Given that RDF has established
itself as the de facto standard for data representation over the Web, our
work focuses on controlling access to RDF data. We present a high-level
access control specification language that allows fine-grained specification
of access control permissions (at triple level) and formally define its se-
mantics. We adopt an annotation-based enforcement model, where a user
can explicitly associate data items with annotations specifying whether
the item is accessible or not. In addition, we discuss the implementation
of our framework, propose a set of dimensions that should be considered
when defining a benchmark to evaluate the different access control en-
forcement models and present the results of our experiments conducted
on different Semantic Web platforms.

1 Introduction

RDF has established itself as a widely used standard for data representation
over the Web and is expected to play a critical role in the realization of the
Future Internet. Currently, 85,45% of the Semantic Web schemas are expressed
in RDF/S [21], while several commercial and academic efforts, such as the W3C
Linking Open Data initiative [17], target the development of RDF [10] reposi-
tories. The number of applications that publish and exchange possibly sensitive
RDF data continuously increases in a large number of domains ranging from
bioinformatics [16] to e-government1. Unfortunately, the potential of these ef-
forts and the realization of the Future Internet is undermined by the lack of
an effective mechanism for controlling access to such data. In light of the sen-
sitive nature of the information available, the issue of securing RDF content
and ensuring the selective exposure of information to different classes of users
depending on their access privileges is becoming all the more important. The
building blocks of an access control system are the specification language, that
allows the expression of access control permissions and policies, and the en-
forcement mechanism, responsible for applying the latter to the data, in effect
denying access to non-accessible data.
1 http://data.gov.uk/, http://www.data.gov/



2 Giorgos Flouris, Irini Fundulaki, Maria Michou, and Grigoris Antoniou

It is imperative that access control should be supported at a fine granularity
(i.e., triple level), and not only at a coarse-grained level (i.e., repository level),
as done by existing RDF repositories such as Sesame [7] and Jena [1]. To enforce
access control to an RDF repository, we advocate a framework which is repos-
itory independent, portable across platforms, and in which fine-grained access
control is enforced by a component built on top of the RDF repository (as in [4]).
More specifically, our contributions in this paper are: (i) a high level access con-
trol specification language for RDF graphs focusing on read-only operations; (ii)
a formal definition of the language’s semantics, based on the triple patterns of
SPARQL [15]; (iii) an annotation-based enforcement model where each triple is
automatically marked as accessible or inaccessible based on the available annota-
tions and the access control policy; (iv) a set of dimensions that should be taken
into account when defining a benchmark to evaluate the different enforcement
models for access control; and (v) an implementation and experimentation of
our framework for different platforms.

The rest of the paper is structured as follows: related work is discussed in
Section 2; Section 3 provides a brief introduction to RDF and RDFS; Sections 4
and 5 introduce the access control specification language and its formal seman-
tics respectively; we present the enforcement model, implementation and exper-
iments in Section 6, and conclude in Section 7.

2 Related Work

So far, there have been only a few works dealing with the problem of access con-
trol for RDF graphs, and most of them lack discussion on the formal semantics
of the proposed framework. Authors in [4] propose a specification language using
graph patterns as defined in SPARQL [15]. Unlike our approach, in [4], triples are
not annotated with accessibility information, but the enforcement mechanism is
query-based, i.e., the policy permissions are injected in the query in order to
ensure that the triples obtained are only the accessible ones. Unfortunately, the
semantics of a policy are not formally defined in the paper, making impossible
to check whether the algorithm used for enhancing the query is correct. In [18],
an access control specification language for defining permissions for update op-
erations on RDF data is presented, but the authors do not discuss formally the
semantics of the language and do not provide an enforcement mechanism, a
system implementation, or experiments. Approaches that incorporate RDFS [5]
entailment appear in [12] and [13]. In [12], the authors discuss how conflicts can
be resolved using the RDFS subsumption hierarchies, whereas in [13], inferences
are computed for an RDF dataset without revealing information that might have
been explicitly unauthorized.

In [9], the requirements for access control and an access control language are
presented in the context of a Semantic Wiki application, but its formal semantics
are not discussed and no access control enforcement mechanism is presented.
Finally, an approach for access control on XML data based on XPath, which is
very similar to ours, appears in [11].



Controlling Access to RDF Graphs 3

3 Preliminaries

subject(s) predicate(p) object(o)

foaf :Person rdfs:subClassOf foaf :Agent

foaf :age rdfs:domain foaf :Agent

foaf :age rdfs:range rdfs:Literal

foaf :mbox rdfs:domain foaf :Agent

foaf :mbox rdfs:range rdfs:Literal

foaf :firstName rdfs:domain foaf :Person

foaf :firstName rdfs:range rdfs:Literal

&a rdf:type foaf :Person

&a foaf :age 17

&a foaf :mbox <mailto:alice@fun.com>

&a foaf :mbox <mailto:alice@work.com>

&a foaf :firstName Alice

&b rdf:type foaf :Person

&b foaf :mbox <mailto:bob@work.com>

&b foaf :firstName Bob

Fig. 1. An RDF Graph G

This paper focuses on RDF
graphs [10], i.e., data expressed
using RDF triples of the form
(subject, predicate, object).
Given two disjoint and infi-
nite sets U , L, denoting the
URIs and literals respectively,
an RDF triple is any element
of the set U ×U × (U ∪L). An
RDF graph G is a set of RDF
triples. RDF triples can express
both schema and data informa-
tion and can be visualized in a
graph, whose nodes are the sub-
jects and objects of triples, and
arcs the predicates. Note that,
for simplicity, we ignore non-
universally identified resources

(blank nodes). The RDF Schema (RDFS) language [5] provides a built-in vo-
cabulary for asserting user-defined schemas in the RDF data model, as well as
semantics for defining various object types (classes, properties, instances) and
relationships between such objects.

Example 1. Throughout this paper, we will use, for illustration purposes, an
example taken from the FOAF2 application. More specifically, we will use the
RDF graph consisting of the (data and schema) RDF triples shown in Fig. 1.

4 RDF Access Control Framework

At the core of our access control framework lie the notions of access control
permission and access control policy. Intuitively, an access control permission
is used to explicitly set certain triple(s) in an RDF graph to be accessible (or
inaccessible). An access control policy includes a set of access control permissions
and information that determines whether a triple is accessible when it is not
associated with any permission, or when conflicts arise.

In this work, we concentrate on access control permissions for read-only
queries only; the specification of permissions for update operations (e.g., write,
modify) poses extra difficulties which are out of the scope of this paper and will
be considered in the future. As already mentioned, we will use fine-grained access
control, where the smallest unit of protection is the RDF triple. Thus, given a
user, role, or set of users, an access control permission grants or denies to/from
the user the ability to read (i.e., access) the protected RDF triple. In practical

2 Friend Of A Friend: www.foaf-project.org



4 Giorgos Flouris, Irini Fundulaki, Maria Michou, and Grigoris Antoniou

applications, it often makes sense to impose access control permissions on sets
of triples (say, all triples satisfying a certain property), rather than individual
ones. For instance, in Example 1, we may want to deny access to the names of
all young adults, i.e., to the triples referring to the first names of persons who
are less than 18 years old. Therefore, permissions can also be provided for sets
of triples.

To express such access control permissions we will use the notion of triple
patterns from the SPARQL Language Specification [15]. We consider V to be a
set of variables (denoted by ?x, ?y, . . .), disjoint from the set of URIs (U ) and
literals (L). We define a triple pattern to be an element of the set (V ∪ U ) ×
(V ∪U )× (V ∪U ∪L). Triple patterns are used to denote the triples in an RDF
graph that have a specific form, and can be further restricted using constraints to
determine the triples that are in the scope of a certain access control permission,
which is defined as follows:

Definition 1. An access control permission R is of the form

R = include/exclude (x, p, y) where T P, C

where (i) (x, p, y) is a triple pattern (ii) T P is a conjunction of triple patterns
and (iii) C is a conjunction of constraints of the form u op c where u ∈ V,
op ∈ {=, <,>, 6=} and c ∈ V ∪U ∪ L.

Intuitively, an access control permission denotes the RDF triple(s) in an RDF
graph G that are accessible (positive permissions of the form include (x, p, y) where T P, C),
or inaccessible (negative permissions of the form exclude (x, p, y) where T P, C).
Essentially, an access control permission can be thought of as a query whose
evaluation over an RDF graph results in a (possibly empty) set of triples (the
triples in the scope of the permission); said triples are granted or denied access.

R1 : exclude (?x, foaf :firstName, ?y) where (?x, foaf :age, ?z), ?z < 18

R2 : exclude (?x, rdfs:subClassOf, ?y)

R3 : include (?x, foaf :firstName, ?y) where (?x, rdf:type, foaf :Person), (?x, foaf :mbox , ?z)

Fig. 2. Access Control Permissions for the RDF Graph in Fig. 1

Accessible Triples R
(&a, foaf :firstName, Alice) R3

(&b, foaf :firstName, Bob) R3

Inaccessible Triples R
(&a, foaf :firstName, Alice) R1

(foaf :Person, rdfs:subClassOf, foaf :Agent) R2

Fig. 3. Accessible and Inaccessible Triples for the RDF Graph in Fig. 1

Example 2. Consider the access control permissions shown in Fig. 2. Permis-
sion R1 states that the names (triples of the form (?x, foaf :firstName, ?y)) of
young adults (i.e., individuals ?x for which there exists a triple of the form
(?x, foaf :age, ?z) where ?z < 18) should be inaccessible (exclude). Permission
R2 states that all subsumption relationships should not be accessible. Similarly,



Controlling Access to RDF Graphs 5

permission R3, states that the names of all persons with an email address should
be accessible (include). Fig. 3 shows the accessible and inaccessible triples for the
RDF graph shown in Fig. 1, and for each triple we give the access control per-
missions (R) it is in the scope of.

Access control permissions explicitly grant or deny access to a certain triple
(or set of triples). It would be unrealistic to assume that explicit access rights are
set for all triples in an RDF graph, or that permissions are always unambiguous.
In our example, the triple (&a, foaf :age, 17) does not have any permission set
(missing permissions), whereas the triple (&a, foaf :firstName, Alice) is marked
as both accessible and inaccessible (ambiguous permissions). In such cases, we
use the notion of access control policy to determine whether such triples should
be accessible or not. Formally:

Definition 2. An access control policy is a tuple of the form P = (P,N, ds, cr)
where (i) P is a set of positive permissions (ii) N is a set of negative permissions
(iii) ds ∈ {+,−} is the default semantics that indicates whether access to a
triple is granted (+) or denied (−) by default when access control permissions
are missing (iv) cr ∈ {+,−} is the conflict resolution policy and specifies whether
access to a triple is granted (+) or denied (−) when it is in the scope of both
positive and negative permissions.

Example 3. Consider an access control policy (P,N, ds, cr) where P = {R3},N =
{R1,R2} (see Fig. 2), with default semantics deny (ds = −) and conflict resolu-
tion policy again deny (cr = −). In this case, triple (&a, foaf :firstName, Alice)

that is in the scope of both a positive (R3) and a negative (R1) permission (see
Fig. 3) is eventually denied access (cr = −). Similarly, the triple (&a, foaf :age, 17),
which is not in the scope of any permission, is inaccessible (ds = −).

5 Formal Semantics

To formally define the semantics of access control permissions and policies,
we will use the notion of mapping (as in [14]), which is a function µ : V 7→
U ∪ L. For ease of presentation, we will denote mappings as sets of pairs, e.g.,
{(?x, &a), (?y, Alice)} is the mapping that maps variables ?x and ?y to values &a
and Alice respectively. We overload the notion of a mapping to apply to triple
patterns: in particular, for a triple pattern tp = (x, p, y), µ(tp) denotes the
triple obtained by replacing the variables in tp with their values according to µ.
This way, mappings are used to map triple patterns to triples, by replacing their
variables with the corresponding URIs or literals (per µ).

For a triple pattern tp and an RDF graph G, we denote by 〈〈tp〉〉G the set of
mappings obtained by evaluating tp in G, i.e., the mappings that map tp into
triples in G. Formally, 〈〈tp〉〉G = {µ|µ(tp) ∈ G}. For example, for the RDF graph
G in Fig. 1 and tp = (?x, foaf :firstName, ?y), two mappings are obtained, namely:
〈〈tp〉〉G = {{(?x, &a), (?y, Alice)}, {(?x, &b), (?y, Bob)}}.

To define the semantics of a conjunction of triple patterns T P = (tp1, . . . , tpn),
we will use the notion of compatible mappings introduced in [14]: the mappings



6 Giorgos Flouris, Irini Fundulaki, Maria Michou, and Grigoris Antoniou

µ1, . . . , µk are compatible, iff they have the same value for their common vari-
ables. Equivalently, µ1, . . . , µk are compatible iff

⋃
i=1,...,k µi is a mapping. The

semantics of T P for an RDF graph G, denoted by 〈〈T P〉〉G , is defined as:

〈〈T P〉〉G = {
⋃

i=1,...,n

µi | µi ∈ 〈〈tpi〉〉G for i = 1, . . . , n, and µ1, . . . , µn are compatible}

Intuitively, 〈〈T P)〉〉G corresponds to the mappings which map all tpi ∈ T P
into triples in G. For instance, for T P = ((?x, rdf:type, foaf :Person),(?x, foaf :mbox , ?z))
(see R3 in Fig. 2) and RDF graph G in Fig. 1, we get:

〈〈T P〉〉G = { {(?x, &a), (?z, mailto:alice@fun.com)},
{(?x, &a), (?z, mailto:alice@work.com)},
{(?x, &b), (?z, mailto:bob@work.com)}}

For a constraint γ = u op c, for c ∈ U ∪L, we say that a mapping µ satisfies
u op c, denoted by µ ` (u op c) iff µ(?x) op c holds; similarly, if c ∈ V, µ `
u op c iff µ(?x) op µ(c) holds. More generally, we say that a mapping µ satisfies
a conjunction of constraints C (denoted by µ ` C) iff µ ` γ for all γ ∈ C. For
instance, the mapping {(?x,&a), (?z, 17)} satisfies the constraint ?z < 18.

We can now define the semantics of an access control permissionR = include/exclude
tp0 where T P, C over some graph G, denoted by 〈〈R〉〉G . The set 〈〈R〉〉G corre-
sponds to the mappings that map the triple patterns in T P, as well as tp0, into
triples in G, and satisfy C; formally, for T P = (tp1 . . . , tpn):

〈〈R〉〉G = {µ | µ ∈ 〈〈(tp0, tp1, . . . , tpn)〉〉G , µ ` C}

The triples that are in the scope of R are exactly those that tp0 is mapped to,
under some mapping in 〈〈R〉〉G ; such triples are denoted by [[R]]G . Formally:

[[R]]G = {t | there exists µ ∈ 〈〈R〉〉G such that µ(tp0) = t }

Back to our example, Fig. 3 shows the triples in the RDF graph G of Fig. 1 that
are in the scope of permissions Ri from Fig. 2 ([[Ri]]G).

Now consider some access control policy P = (P,N, ds, cr) and an RDF graph
G. The accessible triples of G, given P, are determined by the default semantics
(ds) and the conflict resolution policy (cr), in addition to the actual access
control permissions, P and N. Let TP =

⋃
R∈P[[R]]G and TN =

⋃
R∈N[[R]]G be

the set of triples in the scope of positive and negative permissions respectively.
Triples in G \ (TP∪TN) (triples that are not in the scope of any permission) or in
TP ∩ TN (triples that are in the scope of both positive and negative permissions)
may be accessible or not, depending on the values of default semantics (ds) and
conflict resolution (cr) respectively. We denote by [[(P,N, ds, cr)]]G the accessible
triples for policy P = (P,N, ds, cr). In Fig. 4 we illustrate the semantics for a
policy for the different values of ds and cr in the form of a table and Venn
diagrams (accessible triples are depicted in gray).



Controlling Access to RDF Graphs 7

[[(P, N, ds, cr)]]G

[[(P, N, +, +)]]G = G \ (TN \ TP)
[[(P, N, +,−)]]G = G \ TN
[[(P, N,−, +)]]G = TP
[[(P, N,−,−)]]G = TP \ TN

TN

G

TP

default semantics = '+'
conflict resolution = '+'

G

TP

default semantics = '+'
conflict resolution = '-'

TN

TN

G

TP

default semantics = '-'
conflict resolution = '+'

TN

G

TP

default semantics = '-'
conflict resolution = '-'

Fig. 4. Access Control Policy Semantics

6 Implementation and Experiments

In this section we discuss our access control enforcement platform. In particular,
we present the architecture of the system, the implementation of the policies’
semantics (enforcement mechanism), the dimensions we used to set up our ex-
periments, and the evaluation of our implementation.

Jena
A Semantic Web Framework

for Java

RDF Dataset Loader

RDF Access Control 
Policy Manager

RDF Access Control 
Enforcement Module

RDF triples RDF triples
relational

representation 
of RDF triples

RDF access control
policies

policy

SPARQL Query

Serql Query
SPARQL Update SQL query

RDF 
dataset

Fig. 5. System Architecture

Architecture: We imple-
mented a main memory plat-
form which serves as an ad-
ditional access control layer
on top of an arbitrary RDF
repository. Our goal was for
our system to be portable
across platforms, so it was
designed in a repository-
independent way. The sys-
tem’s architecture is shown
in Fig. 5. It is comprised of
the following modules, all im-
plemented in Java: the RDF
Dataset Loader, responsible
for loading the RDF triples
in the underlying repositories,
the RDF Access Control Policy

Manager that loads in memory the access control policies and the RDF Access
Control Enforcement Module, which translates the access control policies into the
appropriate programs that compute the accessible triples of an RDF dataset
and annotates accordingly the data in the repositories with accessibility infor-
mation. Those programs can be SPARQL [15], Serql [6] and Sparul [20] queries
(for the corresponding RDF repositories) or SQL queries (when the repository
is a relational database).



8 Giorgos Flouris, Irini Fundulaki, Maria Michou, and Grigoris Antoniou

Access Control Enforcement: To enforce an access control policy, we trans-
late it into a SPARQL/Serql/Sparul/SQL query (depending on the query lan-
guage supported by the underlying repository) which incorporates the access
control policy’s default semantics and conflict resolution policy. The triples in
the result of the evaluation of this query are exactly the accessible triples in the
RDF graph. We use this knowledge to appropriately annotate each triple as be-
ing accessible or inaccessible. Conceptually, this information can be represented
by adding a fourth column to an RDF triple (hence obtaining a quadruple),
denoting whether the triple is accessible or not. Physically, it is stored using
the named graphs mechanism of RDF repositories [8]; in the case of relational
backend, we use a large triple table with four columns, following the schema
oblivious approach.

Due to lack of space, we will only present the SPARQL/Serql queries used
to annotate the RDF triples when the default semantics and conflict resolu-
tion policy is “deny” (the rest is similar). Given a policy P = (P,N,−,−),
annotations are made using a query of the form (QP \ QN) where QP, QN are
the queries that compute the set of triples in the scope of permissions in P
and N respectively (see also Fig. 4). In Fig. 6, we show the form of QP and
QN queries, where tpi

0 is the triple pattern in an access control permission
Ri = include/exclude tpi

0 where T P, C and expri is a SPARQL graph pattern,
i.e., a join of triple patterns and filters that appear in the where clause of Ri.
Given that SPARQL does not support the set minus operator (“\” in Fig. 4)
between triple sets, we had to implement this operator using main memory set
manipulation. In the case of Serql, we use the MINUS operator of the language.

CONSTRUCT {tp1
0 AND tp2

0 AND . . . tpk
0}

WHERE expr1

UNION
WHERE expr2

. . .
UNION
WHERE exprk

Fig. 6. Form of Queries QP and QN

Experiments: Our experiments mea-
sured the time required to annotate
the set of RDF triples, using the above
methodology, in state-of-the-art RDF
repositories (Sesame [3], Jena [1]) or
relational backend (Postgres [2]). All
our experiments ran on a 2.2GHz
Intel Core 2 Duo running Ubuntu
v9.10 Linux, with 4GB of physical
memory. We used the SP2Bench [19]
data generator to obtain the input
RDF graphs. We implemented our ap-

proach on top of Jena v2.6.2 using the Java engine ARQ v2.8.2, SDB v1.3.1 which
link ARQ to an SQL database back-end (Postgresql v8.4), the Java implementa-
tion Sesame v2.3.1 [3, 7] and a relational database (Postgresql v8.4). For Jena we
tested the SparqlJenaModule and SparqlJenaSDBModule (processing SPARQL
queries) as well as the SPARULModule (processing SPARQL/Update language
queries) modules. SparqlJenaModule and SPARULModule load the datasets
into main memory whereas the SparqlJenaSDBModule stores the datasets to
a Postgresql database. For Sesame we used the SeRQLModule, which processes
SPARQL [15] and SeRQL [6] queries in memory. We measured the time required



Controlling Access to RDF Graphs 9

0

2

4

6

8

10

12

14

0,5 1 1,5 2 2,5 3 3,5 4

Ti
m
e!
(s
ec
)

Document!size!(MB)

SeRQL

SparqlJena

SparUL

SparqlJenaSDB

!

(a) gp = 2,ps = 80

0
2
4
6
8
10
12
14
16
18
20

10 20 40 80 100

Ti
m
e!
(s
ec
)

Policies

SeRQL

SparqlJena

SparUL

SparqlJenaSDB

!

(b) gp = 2,doc = 4MB

0

10

20

30

40

50

60

70

80

2 5 10

Ti
m

e 
(s

ec
)

Graph Patterns complexity

SeRQL

SparqlJena

SparUL

SparqlJenaSDB

(c) ps = 80, doc = 4MB

Fig. 7. Experiments

for the annotation as a function of four different parameters: (i) document size
(doc), i.e., the size of the input RDF graph (size ranging between 500KB-4MB
with a 500KB increase); (ii) policy size (ps), i.e., the number of permissions in
the access control policy (for sizes of 10, 20, 40, 80 and 100, with an equal share
of positive/negative permissions in each case); (iii) permission size (gp), i.e.,
the number of triple patterns and constraints in the where clause of each ac-
cess control permission (values considered: 2, 5, 10); and (iv) policy parameters,
i.e., the values of the ds, cr parameters of the input policy (all 4 combinations
considered).
Evaluation: Fig. 7 shows a subset of the results of our experiments. In each
graph, the annotation time is presented as a function of one of the above param-
eters (i)-(iv), for fixed values for the other parameters (see Fig. 7). Due to lack
of space3 we do not include the results of experiments when varying the policy
parameters (default semantics and conflict resolution policy): we report here on
the (deny, deny) case only because it is the most common one. The results show
that our approach scales along the considered parameters. All the platforms that
we ran our experiments on demonstrated a linear behavior as document, pol-
icy sizes and permission complexity increased (except the Jena SPARUL and
SPARQL Modules). We do not show here the results of our experiments for the
pure relational solution since it proved to be extremely expensive (in some cases
causing an increase in annotation time of more than 100%) when compared to
the RDF-based solutions. We believe that this is caused by the large number
of self-joins (required to implement the WHERE clause of the respective SQL
query) on the large triple table.

7 Conclusions

We addressed the problem of selectively exposing information in RDF graphs
to different classes of users depending on their access privileges, a problem of
great importance for the Future Internet, given the sensitive nature of several
datasets. We advocated in favor of a fine-grained solution, in which the smallest
unit of protection is the RDF triple. In our proposal, triples are specifically
annotated as accessible (or inaccessible) using access control permissions, which
can be set on sets of triples using triple patterns as defined in SPARQL. We

3 The full set of our experimental results can be found in www.ics.forth.gr/isl/RAC.



10 Giorgos Flouris, Irini Fundulaki, Maria Michou, and Grigoris Antoniou

then showed how our policies can be translated into SPARQL queries which are
subsequently evaluated on different Semantic Web platforms in order to assess
the applicability of our approach.

In the future, we will consider extensions of our framework to support RDFS
entailment semantics, in effect allowing the determination of the (in)accessibility
of non-explicit triples. Another interesting subject of future work is the support
for permissions related to data modification (rather than read-only operations).

References

1. Jena A Semantic Web Framework for Java. http://jena.sourceforge.net/.
2. PostgreSQL. http://www.postgresql.org/.
3. Sesame: RDF Schema Querying and Storage. http://www.openrdf.org/.
4. F. Abel, J. L. De Coi, N. Henze, A. Wolf Koesling, D. Krause, and D. Olmedilla.

Enabling Advanced and Context-Dependent Access Control in RDF Stores. In
ISWC/ASWC, 2007.

5. D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. www.w3.org/TR/2004/REC-rdf-schema-20040210, 2004.

6. J. Broekstra and A. Kampman. SeRQL: A Second Generation RDF Query Lan-
guage. In Workshop on Semantic Web Storage and Retrieval, 2003.

7. J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In ISWC, 2002.

8. J. J. Carroll, C. Bizer, P. J. Hayes, and P. Stickler. Named Graphs. J. Web
Semantics, 3(4), 2005.

9. S. Dietzold and S. Auer. Access Control on RDF Triple Store from a Semantic
Wiki Perspective. In ESWC Workshop on Scripting for the Semantic Web, 2006.

10. B. McBride F. Manola, E. Miller. RDF Primer. www.w3.org/TR/rdf-primer,
February 2004.

11. I. Fundulaki and M. Marx. Specifying access control policies for XML documents
with XPath. In SACMAT, 2004.

12. A. Jain and C. Farkas. Secure Resource Description Framework. In SACMAT,
2006.

13. J. Kim, K. Jung, and S. Park. An Introduction to Authorization Conflict Problem
in RDF Access Control. In KES, 2008.

14. J. Perez, M. Arenas, and C. Gutierrez. Semantics and Complexity of SPARQL. In
ISWC, 2006.

15. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. www.

w3.org/TR/rdf-sparql-query, January 2008.
16. Gene Ontology. www.geneontology.org.
17. W3C Linking Open Data. esw.w3.org/topic/SweoIG/TaskForces/

CommunityProjects/LinkingOpenData.
18. P. Reddivari, T. Finin, and A. Joshi. Policy-Based Access Control for an RDF

Store. In Semantic Web for Collaborative Knowledge Acquisition, 2007.
19. M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. SP2Bench: A SPARQL Per-

formance Benchmark. Technical report, arXiv:0806.4627v1 cs.DB, 2008.
20. A. Seaborne and G. Manjunath. SPARQL/Update: A language for updating RDF

graphs. Technical report, Hewlett-Packard, 2007.
21. Y. Theoharis, Y. Tzitzikas, D. Kotzinos, and V. Christophides. On Graph Features

of Semantic Web Schemas. IEEE TKDE, 20(5), 2008.


