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ABSTRACT
The popularity of Knowledge Graphs (KGs) both in industry and

academia owes credit to their flexible data model, suitable for data

integration from multiple sources. Several KG-based applications

such as trust assessment or view maintenance on dynamic data rely

on the ability to compute provenance explanations for query results.

The how-provenance of a query result is an expression that encodes

the records (triples or facts) that explain its inclusion in the result

set. This article proposes NPCS, a Native Provenance Computation

approach for SPARQL queries. NPCS annotates query results with

their how-provenance. By building upon spm-provenance semir-

ings, NPCS supports both monotonic and non-monotonic SPARQL

queries. Thanks to its reliance on query rewriting techniques, the

approach is directly applicable to already deployed SPARQL engines

using different reification schemes – including RDF-star. Our ex-

perimental evaluation on two popular SPARQL engines (GraphDB

and Stardog) shows that our novel query rewriting brings a signifi-

cant runtime improvement over existing query rewriting solutions,

scaling to RDF graphs with billions of triples.
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1 INTRODUCTION
Thanks to the continuous advances in information extraction and

knowledge graph construction, the Web nowadays enjoys from a

plethora of machine-readable data, structured in large RDF knowl-

edge graphs (KGs). These KGs, often queried via SPARQL endpoints,

allow computers to “understand” the real world. They do so by en-

coding knowledge as collections of triples or statements (𝑠, 𝑝, 𝑜)
with subject 𝑠 , predicate 𝑝 , and object 𝑜 , e.g., (𝑈𝐾, 𝑐𝑎𝑝𝑖𝑡𝑎𝑙, 𝐿𝑜𝑛𝑑𝑜𝑛).
A triple (𝑠, 𝑝, 𝑜) is also a directed 𝑝-labeled edge from node 𝑠 to node

𝑜 . This data model serves as the foundation for multiple applications

such as question answering, Web search, and smart assistants.

Given the heterogeneity of data sources that contribute to mod-

ern KGs, the problem of identifying the provenance of query results

is central for many KG-based tasks. The provenance of a query

result is an expression that encodes the lineage of data transforma-

tions and statements that contributed to that result. Provenance is

of great value for KG providers because it streamlines maintenance

tasks such as source selection and view maintenance. For data con-

sumers, query provenance serves as an explanation for answers.

This can be pivotal in use cases that need to assess data reliability,

or manage access control, trustworthiness, and data quality.

Among the existing formalisms to model provenance, how-
provenance is the most expressive [15]. In this model, the prove-

nance of a query result is an algebraic expression in a provenance
semiring. Consider, for instance, the following KG,

{ 𝑢1: (UK, capital, London), 𝑢2: (London, in, UK), 𝑢3: (London, a, City) },

and the SPARQL query

select ?𝑥 where { {UK capital ?x } union {?𝑥 in UK; a City} }.
The solution to this query is London. How-provenance explains the
presence of London in the result set with the polynomial expression

𝑢1⊕(𝑢2⊗𝑢3). This polynomial tells us that there are twoways to get

London as a solution: either via 𝑢1, or via the conjunction of 𝑢2 and

𝑢3. There exist different algebraic structures for provenance in the

literature [8, 12, 15], but this paper considers spm-semirings [12]

because they are designed for the semantics of SPARQL, including

its non-monotonic fragment. We highlight that query provenance

assumes the availability of identifiers for triples, in other words, it

assumes that the KG has been reified using some scheme. Examples

of reification schemes are RDF-star and named graphs.

There are essentially two main strategies to compute how-

provenance for query results. Methods, such as TripleProv [22],

opt for customized engines designed to compute provenance along
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query evaluation. Since provenance support is embedded in the

engine, such solutions allow for advanced optimizations. On the

downside, customized engines are not applicable to already de-

ployed SPARQL endpoints. The other alternative is query rewrit-

ing [18]. By this logic, SPARQL queries are rewritten so that the

new query retrieves both the query solutions and the polynomials

describing their provenance, potentially with some post-processing.

While rewriting the query induces a runtime overhead, this design

provides the flexibility to be applied to any SPARQL endpoint on

the Web.

With this in mind, we propose NPCS, a new query rewriting

method for how-provenance computation in RDF/SPARQL engines.

Unlike previous approaches [18], NPCS does not require any post-

processing to compute query solutions with how-provenance anno-

tations. This makes NPCS the first fully native SPARQL solution for

how-provenance. Moreover, NPCS supports different data reifica-

tion schemes, including RDF-star. Our experimental evaluation on

both synthetic and real data suggests that our fully native SPARQL

rewriting (a) incurs a reasonable runtime overhead, and (b) it is

consistently faster than SPARQLprov [18], the state of the art in

how-provenance in SPARQL.

The rest of the paper is structured as follows. In Sections 2

and 3, we provide the basic background for this work in terms

of related work and preliminaries, respectively. In Section 4 we

describe our rewriting method in detail, whereas Section 5 provides

a comprehensive evaluation of the performance of our approach.

We wrap up the paper and discuss future work in Section 6.

2 RELATEDWORK
We survey the literature on provenance for query results along two

axis: provenance models (Section 2.1), and provenance support for

RDF/SPARQL engines (Section 2.2).

2.1 Semirings and Provenance Models
Semirings were first used to model query provenance in the ground-

breaking work by Green et al. [15]. This work proposed commu-
tative semirings to annotate query results for selection, projection,

join, and union queries for Datalog and the positive fragment of

relational algebra. Commutative semirings cannot model prove-

nance for non-monotonic operators such as the left-outer join and

the difference [15], hence the algebraic structures were expanded

to include a monus operator
1
that accounts for the relational dif-

ference [11]. Commutative semirings and their extensions model

provenance as polynomial expressions. These expressions, called

how-provenance, encode both the sources and the data transforma-

tions required to obtain (and sometimes exclude) a particular query

answer. How-provenance is more expressive than other provenance

models such as lineage [7] or why-provenance [6].

Damasio et al. [8] showed that by rewriting SPARQL queries

into relational algebra, we can provide provenance annotations

for SPARQL queries using m-semirings. However, Geerts et al. [12]
show that these can yield very long and complex provenance expres-

sions, and thus developed the spm-semirings formalism (spm stands

for SPARQL Minus) to overcome these limitations. Spm-semirings

1
Do not confuse monus with minus (the SPARQL operator). A monus operator is an

operator on certain commutative monoids that are not groups (see [11]).

guarantee more compact explanations and offer native support for

non-monotonic SPARQL operators such as optional and minus.

Since how-provenance polynomials are abstract annotations, they

are useful to a handful of metadata management applications [9, 16]

via the notion of commutation with homomorphisms.

2.2 Provenance-supported SPARQL engines
Wylot et al. [22] introduced TripleProv, a system to compute prove-

nance annotations in the commutative semiring framework for

queries with basic graph patterns, union, and the optional opera-

tor. Since its reliance on commutative semirings, TripleProv cannot

guarantee commutation with homomorphisms for queries involv-

ing the non-monotonic optional operator. Additionally, TripleProv

uses a customized engine that organizes data into molecules—sort

of indexes for star patterns—, and thus it cannot be used on already

deployed SPARQL engines. This is why our approach resorts to

query rewriting for how-provenance computation.

But approaches based on query rewriting are not rare at all.

Perm [14] and GProM [3] are two examples. Such approaches are

tailored for relational databases. Hence, they are not applicable

to SPARQL queries out of the box. Similarly to TripleProv, none

of these methods can properly support non-monotonic SPARQL

queries because Perm is based on the lineage model, and GProM

relies on commutative semirings.

While the work of Geerts et al. [12] was the first to study prove-

nance for the non-monotonic fragment of SPARQL, the first con-

crete method to compute how-provenance under the spm-semiring

formalism was proposed by Hernandez et al. [18]. They introduced

SPARQLprov, a method based on query rewriting that can annotate

query results with how-provenance polynomials for both mono-

tonic and non-monotonic queries. Contrary to NPCS, SPARQLprov

is not a 100% SPARQL solution because it relies on a subsequent

decoding phase to compute the final provenance annotations from

the results of the rewritten query. As our experimental evaluation

shows, this decoding phase can incur prohibitive runtime overheads

for non-selective queries.

3 PRELIMINARIES
3.1 RDF-star and SPARQL-star
The following definition follows the W3C Community Group

Draft [17]. We assume the existence of three (pairwise disjoint)

countably infinite sets: the set of IRIs 𝐼 , the set of blank nodes 𝐵,

and the set of literals 𝐿. An RDF triple 𝑡 = (𝑠, 𝑝, 𝑜) ∈ 𝑇 , where

𝑇 = (𝐼 ∪ 𝐵) × 𝐼 × (𝐼 ∪ 𝐵 ∪ 𝐿), is a statement that consists of a

subject 𝑠 , a predicate 𝑝 , and an object 𝑜 . An RDF graph 𝐺 is a set

of RDF triples. The RDF-star data model extends RDF by allowing

arbitrarily deep nesting of triples as subject or object arguments:

Definition 3.1 (RDF-star). An RDF-star triple is a 3-tuple defined

recursively as follows:

(1) Any RDF triple 𝑡 ∈ 𝑇 is an RDF-star triple; and

(2) Given RDF-star triples 𝑡 and 𝑡 ′, and RDF terms 𝑠 ∈ (𝐼 ∪ 𝐵),
𝑝 ∈ 𝐼 , and 𝑜 ∈ (𝐼 ∪ 𝐵 ∪ 𝐿), then the triples (𝑡, 𝑝, 𝑜), (𝑠, 𝑝, 𝑡), and
(𝑡, 𝑝, 𝑡 ′) are also RDF-star triples.

An RDF-star graph 𝐺 is a set of RDF-star triples.
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In a nutshell, RDF-star allows us to “say things” about statements,

which endows RDFwith native reification capabilities. This is crucial
when computing how-provenance for query results because query

provenance builds upon identifiers for triples in the graph.

RDF graphs can be queried using the SPARQL language. The

fundamental building blocks of SPARQL queries are basic graph

patterns (BGPs). They are sets of tuples of the form (𝑠, 𝑝, 𝑜) ∈
(𝑉 ∪ 𝐼 ∪ 𝐵) × (𝑉 ∪ 𝐼 ) × (𝑉 ∪ 𝐼 ∪ 𝐵 ∪ 𝐿), where 𝑉 is a countably

infinite set of variables—prefixed by the character ‘?’ and disjoint

with 𝐼 ∪𝐵∪𝐿. Analogously to RDF-star, SPARQL-star extends BGPs
by allowing nested patterns. BGPs in SPARQL queries are combined

with operators such as and, union or select. A (solution)mapping
is a partial function ` : 𝑉 → (𝑇 ∪ 𝐼 ∪𝐵 ∪𝐿) where the domain of `,

denoted by dom(`), is a finite set of variables. We write inScope(𝑄)
for the set of variables, called in-scope, that can occur in𝑄 answers,

and variables that always occur are called strongly bound [4]. The

details of SPARQL evaluation semantics are detailed in [2, 21]. In

short, the evaluation of a SPARQL query 𝑄 on an RDF graph 𝐺 is

defined as a function J𝑄K𝐺 , which returns a multiset of mappings.

Our goal is to annotate those mappings with their how-provenance.

3.2 How-provenance in SPARQL
3.2.1 Semirings. A commutative monoid M is an algebraic struc-

ture (𝑀, +M , 0M ) such that 𝑀 ≠ ∅ is a set closed under a com-

mutative and associate binary operation +M . The element 0M is

the identity operand for +M . Given two commutative monoids

(𝐾, +K , 0K ) and (𝐾,×K , 1K ) such that ×K is distributive over

+K , and 0K ×K 𝑥 = 0K (for every 𝑥 ∈ 𝐾), we call the struc-

ture K = (𝐾, +K ,×K , 0K , 1K ) a commutative semiring. An spm-
semiring (𝐾, +K ,×K ,−K , 0K , 1K ) extends a commutative semiring

with a minus operation −K . This operator follows a set of axioms

that allows us to model non-monotonic operations such as the

relational difference. For more details about spm-semirings, we

refer the reader to [13]. The algebraic expressions within an spm-

semiring are used to annotate query solutions. To see how, we need

to introduce the concepts of K-relations and K-graphs.

3.2.2 K-relations and K-graphs. Given a set 𝐴, an spm-semiring

K = (𝐾, +K ,×K ,−K , 0K , 1K ), and a function 𝑓 : 𝐴 → 𝐾 with a

finite support set supp(𝑓 ) = {` ∈ M | 𝑓 (`) ≠ 0K } is called a K-set
over 𝐴. We call 𝑓 (`) the K-value of ` ∈ 𝑈 . A K-set Ω over the

set of all possible SPARQL mappings is called a K-relation, and a

K-set Γ over all possible RDF triples is called K-graph.

Example 3.2. Let K = (𝐾, ⊕, ⊗, ⊖, 0, 1) be an spm-semiring with

𝐾 = {𝑢1, 𝑢2, 𝑢3}, and let 𝐺 and 𝑄 be the following RDF-star graph

and query:

𝐺 = { ((Alice, likes, pasta),wasDerivedFrom, 𝑢1),
((Alice, likes, pasta),wasDerivedFrom, 𝑢2),
((Alice, livesIn, Italy),wasDerivedFrom, 𝑢3) },

𝑄 = (?𝑥, likes, pasta) and (?𝑥, livesIn, Italy) .
It is easy to see that the predicate wasDerivedFrom defines a K-

graph Γ where the first and last triples are associated to 𝑢1 ⊕𝑢2 and
𝑢3, and that ` = {?𝑥 → Alice} is a solution mapping for 𝑄 . The set

{` → (𝑢1 ⊕ 𝑢2) ⊗ 𝑢3} is a K-relation that associates 𝑄’s solution

to a provenance polynomial. This how-provenance annotation tells

us that Alice is a query solution for𝑄 as long as the triple identified

Figure 1: The query rewriting process for NPCS

by 𝑢3 is present in conjunction with either the triples 𝑢1 or 𝑢2. We

call those provenance identifiers the sources.

Definition 3.3. Given an spm-semiring K , a SPARQL query 𝑄

consisting of a combination of triple patterns with the operators

and, union, diff, filter, optional, and select, and a K-graph

Γ, we write L𝑄MΓ to denote the K-relation defined recursively as

follows:

L(𝑠, 𝑝, 𝑜)MΓ (`) = Γ(` (𝑠, 𝑝, 𝑜)),
Lselect𝑊 where𝑄MΓ (`) =

∑
`′ :`′ |𝑊 =` L𝑄MΓ (`′),

L𝑄 filter 𝜑MΓ (`) = L𝑄MΓ (`) ×K 1` |=𝜑 ,

L𝑄1 union𝑄2MΓ (`) = L𝑄1MΓ (`) +K L𝑄2MΓ (`),
L𝑄1 and𝑄2MΓ (`) =

∑
`=`1∪`2 (L𝑄1MΓ (`1) ×K L𝑄2MΓ (`2)),

L𝑄1 diff𝑄2MΓ (`) = L𝑄1MΓ (`) −K (∑`′∼` L𝑄2MΓ (`′)),
L𝑄1 optional𝑄2MΓ (`) = L𝑄1 and𝑄2MΓ (`) +K L𝑄1 diff𝑄2MΓ (`),

where

∑
denotes sums using the operation +K , ∼ denotes mapping

compatibility, and `′ |𝑊 is the projection of mapping `′ on the

variables in𝑊 . Two mappings ` and `′ are compatible if ` (?x) =
`′ (?x) for every variable ?x ∈ dom(`) ∩ dom(`′).

4 PROVENANCE COMPUTATION WITH NPCS
In the following, we explain our method to annotate SPARQL

query solutions with how-provenance annotations as in Exam-

ple 3.2. Given a K-graph Γ, its corresponding RDF-star graph 𝐺 ,

and a SPARQL query 𝑄 , NPCS rewrites 𝑄 into 𝑄 ′
so that J𝑄 ′K𝐺

is a set of mappings with an additional variable encoding the

provenance polynomials. Thus, the output of 𝑄 ′
represents the

N[𝐾]-relation J𝑄KΓ . Those polynomials lie in an spm-semiring

(N[𝐾], ⊕, ⊗, ⊖, 0, 1), where 𝐾 is the set of triple identifiers in𝐺 . We

highlight that computing provenance assumes that the triples in

the graph are reified, i.e., identified. RDF-star is a natural way to do

it, but as shown later, our approach supports any reification scheme

for RDF data. The NPCS architecture is depicted in Figure 1.

4.1 Our Query Rewriting in a Nutshell
Consider the graphs Γ and 𝐺 and query 𝑄 from Example 3.2. For

pedagogical reasons, we rewrite our query𝑄 as 𝑃1and𝑃2. We recall
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that our goal is to return the following result set:[
?𝑥 ?𝑧

𝐴𝑙𝑖𝑐𝑒 (𝑢1 ⊕ 𝑢2) ⊗ 𝑢3

]
.

The column labeled ?𝑧 stores the how-provenance of each of the

query solutions. To compute such an expression, our strategy

must rewrite the query such that the rewritten query retrieves

the identifiers of the triples that match each of the triple pat-

terns. However, this is not enough. For instance, the triple pattern

𝑃1 = (?𝑥, likes, pasta) has two matches, i.e., 𝑢1 and 𝑢2, that must be

grouped into the expression (𝑢1 ⊕ 𝑢2). This term tells us that the

presence of at least one of those sources guarantees the inclusion of

Alice in the result set. Finally, the groups extracted from each of the

triple patterns must be combined with the ⊗ operator that explains

the semantics of and. We argue that to obtain the left-hand term

of the product we can rewrite 𝑃1 into the following sub-query:

𝑃 ′
1
= (select ?𝑥 (ProvAggSum(?𝑧⊕⊗1⊕⊙) as ?𝑧⊕⊗1)

where Reify((?𝑥, likes, pasta), ?𝑧⊕⊗1⊕⊙)
group by ?𝑥),

The Reify function rewrites a triple pattern so that it matches the

reification scheme used to encode the K-graph Γ as an RDF-star

graph 𝐺 . In our running example, Reify is a shortcut for

((𝑠, 𝑝, 𝑜),wasDerivedFrom, ?𝑧⊕⊗1⊕⊙) .

The intermediate variable ?𝑧⊕⊗1⊕⊙ is introduced to capture the

sources that match 𝑃1, whereas ?𝑧⊕⊗1 groups all the sources asso-
ciated to a query solution, which explains the group clause on ?𝑥 .

The function ProvAggSum, later explained, combines the different

sources into a summation with the operator ⊕.
The signs ⊕, ⊗, and ⊙ in the intermediate variable names are

strings used to produce new variable names that do not clash with

the original query variables. The names of the variables encode the

different steps of the construction of the annotations. For instance,

the sign ⊙ at the end of a variable name tells us that the variable’s

bindings are triple identifiers. If this is followed by a ⊕ sign, then

those bindings will eventually be grouped into a summation by a

subsequent step. Those results will be stored in a variable with the

same prefix but without the suffix ⊕⊙. Furthermore, the ⊗1 sign
tells us that our results correspond to the first operand of a join

operation, namely and in SPARQL. If we apply the same logic to

𝑃2 our rewriting for 𝑄 takes the following form:

𝑄 ′ = ( select ?𝑥 (ProvAggSum(?𝑧⊕) as ?𝑧)
where ((𝑃 ′

1
and 𝑃 ′

2
)

bind (ProvProd(?𝑧⊕⊗1, ?𝑧⊕⊗2) as ?𝑧⊕))
group by ?𝑥 ) .

The operation ProvProd combines the expressions derived from

the product’s operands. We resort again to ProvAggSum to sum up

all the ways to produce a solution mapping from a join operation.

The operators ProvAggSum and ProvProd are defined in terms of

the built-in SPARQL functions as follows.

Definition 4.1. Let ?𝑥 , ?𝑥1,. . . , ?𝑥𝑛 be variables. Then, we define

the following SPARQL operators
2
:

ProvAggSum(?𝑥) = concat(“ (⊕”, aggregate_concat(?𝑥), “)”),
ProvProd(?𝑥1, . . . , ?𝑥𝑛) = concat(“ (⊗”, ?𝑥1, . . . , ?𝑥𝑛, “)”),
ProvDiff (?𝑥1, ?𝑥2) = concat(“ (⊖”, ?𝑥1, ?𝑥2, “)”) .

4.2 Base Rewriting Rules
Having provided the intuition behind our query rewriting in Sec-

tion 4.1, we now introduce our rewriting rules for arbitrary SPARQL

queries.

Definition 4.2 (Base SPARQL-star query rewriting). Let 𝑄 be

a SPARQL query, ?𝑧 a variable, Reify a reification scheme, and

inScope(𝑄) a function that returns the variables that can be in the

solution mappings of query𝑄 after execution
3
. Then, the rewritten

query for 𝑄 and variable ?𝑧 over scheme Reify, denoted 𝛽 (𝑄, ?𝑧),
is defined recursively as follows:

(1) If𝑄 is an empty basic graph pattern, then 𝛽 (𝑄, 𝑧) is the query
{} bind (1as ?𝑧).

(2) If 𝑄 is a triple pattern (𝑠, 𝑝, 𝑜), then 𝛽 (𝑄, 𝑧) is the query
( select inScope(𝑄) (ProvAggSum(?𝑧⊕⊙) as ?𝑧)
where Reify((𝑠, 𝑝, 𝑜), ?𝑧⊕⊙)
group by inScope(𝑄) ).

(3) If 𝑄 is (𝑄1 and𝑄2), then 𝛽 (𝑄, ?𝑧) is the query
( select inScope(𝑄) (ProvAggSum(?𝑧⊕) as ?𝑧)
where (𝛽 (𝑄1, ?𝑧⊕⊗1) and 𝛽 (𝑄2, ?𝑧⊕⊗2))

bind (ProvProd(?𝑧⊕⊗1, ?𝑧⊕⊗2) as ?𝑧⊕)
group by inScope(𝑄) ).

(4) If 𝑄 is (𝑃1 union 𝑃2), then 𝛽 (𝑄, ?𝑧) is the query
( select inScope(𝑄) (ProvAggSum(?𝑧⊕) as ?𝑧)
where (𝛽 (𝑄1, ?𝑧⊕) union 𝛽 (𝑄2, ?𝑧⊕))
group by inScope(𝑄) ).

(5) If 𝑄 is (𝑄1 diff 𝑄2), then let a a variable substitution that

substitutes with fresh variables the variables in dom(𝑄1) ∩
dom(𝑄2) that are not strongly bound in 𝑄1. Then, 𝛽 (𝑄, ?𝑧)
is the query computed as follows.

( select inScope(𝑄)
(ProvDiff (𝑧⊖1, ProvAggSum(𝑧⊖2⊕)) as ?𝑧)

where (𝛽 (𝑄1, ?𝑧⊖1) optional𝐶a
𝛽 (a (𝑄2), ?𝑧⊖2⊕))

group by inScope(𝑄) ∪ {𝑧⊖1} ).
(6) If 𝑄 is (select𝑊 where𝑄 ′), then 𝛽 (𝑄, ?𝑧) is the query

( select 𝑊 (ProvAggSum(?𝑧⊕) as ?𝑧)
where 𝛽 (𝑄 ′, ?𝑧⊕)
group by 𝑊 ) .

(7) If 𝑄 is (𝑄 ′
filter 𝜑), then 𝛽 (𝑄, ?𝑧) is the query

(𝛽 (𝑄 ′, ?𝑧) filter 𝜑).
(8) If 𝑄 is (𝑄 ′

bind (𝐸 as ?𝑥)), then 𝛽 (𝑄, ?𝑧) is the query
(𝛽 (𝑄 ′, ?𝑧) bind (𝐸 as ?𝑥)).

We omit the rewriting rule for the optional operator because this

operator can be written in terms of and, union and diff, to be

precise, 𝑃1 optional 𝑃2 ≡ (𝑃1 diff 𝑃2) union (𝑃1 and 𝑃2).
Since the diff operation requires tracking the provenance of

both operands, diff translates to an optional operation, more

precisely, to an optional𝐶𝑣
operation, which extends optional

by renaming variables in the optional pattern with fresh ones. This

2
The operators concat and aggregate_concat are built-in SPARQL functions.

3
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/#variableScope

https://www.w3.org/TR/2013/REC-sparql11-query-20130321/#variableScope
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renaming discards undesired bindings produced in the subtrahend

while tracking the provenance. For example, consider the patterns

𝑃1 (?𝑥, ?𝑦) and 𝑃2 (?𝑥, ?𝑦, ?𝑢), whose in-scope variables are indicated
in the parenthesis, and let `1 = {?𝑥 ↦→ 𝑎} and `2 = {?𝑥 ↦→ 𝑎, ?𝑦 ↦→
𝑏, ?𝑢 ↦→ 𝑐} be two solutions for them. If instead of optional𝐶𝑣

,

the rule for diff (rule 5) used optional, the query would return

the provenance for the mapping {?𝑥 ↦→ 𝑎, ?𝑦 ↦→ 𝑏} instead of the

mapping `1. If ?𝑥 is strongly bound for 𝑃1 (i.e., always bound in its

answers) and ?𝑦 is not, then the operation 𝑃1 optional𝐶𝑣
𝑃2 is:

((𝑃 (?𝑥, ?𝑦) optional 𝑃 (?𝑥, a (?𝑦), ?𝑢))
filter (¬ bound(?𝑦) ∨ ¬ bound(a (?𝑦))∨?𝑦 = a (?𝑦))) .

To define correctness of the query rewriting described in Defini-

tion 4.2 we need the notions of soundness and completeness. A query

rewriting is sound when the rewritten query returns right polyno-

mial expressions, and complete if it returns polynomial expressions

for all mappings with non-zero polynomials.

Definition 4.3 (Soundness and Completeness). Let Reify be a func-

tion that implements a reification scheme, and 𝛾 be a function

that receives a SPARQL query 𝑄 and a variable ?𝑧 ∉ inScope(𝑄),
and returns a SPARQL query 𝛾 (𝑄, 𝑧) with inScope(𝛾 (𝑄, ?𝑧)) =

inScope(𝑄) ∪ {?𝑧}. Let Γ be a K-graph, and 𝐺 = Reify(Γ) the
RDF-star graph resulting from applying the Reify function to each

triple in Γ in order to encode Γ’s triple annotations.

(1) 𝛾 is called sound forReify if, for every answer of the rewritten
query ` ∪ {?𝑧 ↦→ 𝑒} ∈ J𝛾 (𝑄, ?𝑧)K𝐺 , 𝑒 is an expression for the

polynomial L𝑄MΓ (`).
(2) 𝛾 is called complete for Reify if, for everymapping ` such that

L𝑄MΓ (`) is a non-zero polynomial, there exists an expression

𝑒 such that ` ∪ {?𝑧 ↦→ 𝑒} ∈ J𝛾 (𝑄, ?𝑧)K𝐺 .

Theorem 4.4. Let Reify be a reification scheme, and 𝛽 be the
function described in Definition 4.2. Then, function 𝛽 is sound and
complete for the reification scheme Reify.

Proof. It can be shown by induction on the query structure. □

We highlight that for queries of the form 𝑄1 diff𝑄2, NPCS also

returns why-not provenance explanations of the form 𝑘1 ⊖ 𝑘2 (𝑘1
and 𝑘2 are polynomials) for the bindings that match both 𝑄1 and

𝑄2. The polynomial 𝑘2 tells us which sources must be removed

from the graph so that the corresponding binding becomes a query

solution.

4.3 Query Rewriting Optimization
If we look at our example rewritten query 𝑄 ′

described in Sec-

tion 4.1, we can notice that this query includes a group by clause,

and two subqueries, namely 𝑃 ′
1
and 𝑃 ′

2
, each of which also includes a

group by clause. In Definition 4.6 we describe an alternative query

rewriting that produces equivalent polynomial expressions, but

reduces the number of aggregate operations.

Definition 4.5. A sum-query 𝑄 is a query such that the query

rewriting 𝛽 described in Definition 4.2 returns a query of the form:

𝛽 (𝑄, ?𝑧) = ( select inScope(𝑄) (ProvAggSum(?𝑧⊕) as ?𝑧)
where 𝑇

group by inScope(𝑄) ).
We call query 𝑇 the pattern of 𝛽 (𝑄, ?𝑧).

Note that, according to Definition 4.2, sum-queries are all queries

that match the rules 2, 3, 4, and 6.

Definition 4.6. Let 𝑄 be a SPARQL query, ?𝑧 be a variable, and

Reify a reification scheme. Then, the rewritten query for 𝑄 and

variable ?𝑧 over scheme Reify, denoted 𝛽 (𝑄, ?𝑧), is defined recur-

sively as is specified in Definition 4.2, but the following rules are

applied when possible:

(1) If𝑄 is (𝑄1 and · · ·and𝑄𝑛), and𝑄1, . . . , 𝑄𝑛 are sum-queries,

such that for 1 ≤ 𝑖 ≤ 𝑛, the pattern of 𝛽 (𝑄𝑖 , ?𝑧⊕⊗𝑖) is 𝑇𝑖 ,
then 𝛽 (𝑄, ?𝑧) is the query
( select inScope(𝑄) (ProvAggSum(?𝑧⊕⊗) as ?𝑧)
where ((𝑇1 and · · · and𝑇𝑛)

bind (ProvProd(?𝑧⊕⊗1, . . . , ?𝑧⊕⊗𝑛)
as 𝑧⊕⊗)

group by inScope(𝑄) ).
(2) If𝑄 is (𝑄1 union · · · union𝑄𝑛), where𝑄1, . . . , 𝑄𝑛 are sum-

queries, and for 1 ≤ 𝑖 ≤ 𝑛, the pattern of 𝛽 (𝑄𝑖 , ?𝑧⊕) is 𝑇𝑖 ,
then 𝛽 (𝑄, ?𝑧) is the query
( select inScope(𝑄) (ProvAggSum(?𝑧⊕) as ?𝑧)
where (𝑇𝑖 union · · · union𝑇𝑛)
group by inScope(𝑄) ).

(3) If 𝑄 is (𝑄1 diff 𝑄𝑛), and a is a variable substitution that

substitutes with fresh variables the variables in dom(𝑄1) ∩
dom(𝑄2) that are not strongly bound in 𝑄1, and 𝑄2 is a

sum-query where the pattern of 𝛽 (a (𝑄2), ?𝑧⊖2) is 𝑇2, then
𝛽 (𝑄, ?𝑧) is the query
( select inScope(𝑄)

(ProvDiff (𝑧⊖1, ProvAggSum(𝑧⊖2⊕)) as ?𝑧)
where (𝛽 (𝑄1, ?𝑧⊖1) optional𝐶a

𝑇2)
group by inScope(𝑄) ∪ {𝑧⊖1} ).

(4) If 𝑄 is (select 𝑊 where 𝑄 ′), where 𝑄 ′
is a sum-query

such that the pattern of 𝛽 (𝑄 ′, ?𝑧⊕) is 𝑇 , then 𝛽 (𝑄, ?𝑧) is
( select 𝑊 (ProvAggSum(?𝑧⊕) as ?𝑧)
where 𝑇

group by 𝑊 ) .

Note: In rules 1 and 2 of Definition 4.6, we omitted the parenthesis

for sequences of operations and and union, because these opera-

tors are associative. Intuitively, the associativity of these operators

allows considering the binary operation as a single variadic opera-

tion with a single group by clause.

Example 4.7. Consider the query 𝑄 from Example 3.2. Then,

according to the query rewriting described in Definition 4.6 the

rewritten query of 𝑄 is:

𝛽 (𝑄, ?𝑧) = ( select ?𝑥 (ProvAggSum(?𝑧⊕⊗) as ?𝑧)
where (( Reify(?𝑥, likes, pasta, ?𝑧⊕⊗1⊕) and

Reify(?𝑥, likes, pasta, ?𝑧⊕⊗2⊕))
bind (ProvProd(?𝑧⊕⊗1⊕, ?𝑧⊕⊗2⊕)

as ?𝑧⊕⊗))
group by ?𝑥 ) .

This query has only one group by clause whereas the query 𝑄 ′

at the end of Section 4.1 (generated using the rewriting of Defini-

tion 4.2) has three.

Theorem 4.8. Let Reify be a reification scheme, and 𝛽 be the
function described in Definition 4.6. Then, function 𝛽 is sound and
complete for the reification scheme Reify.
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Proof. It can be shown by induction on the query structure, that

the expressions resulting from the rules in Definition 4.6 produce

the same results that the rewriting in Definition 4.2. □

5 EVALUATION
We conducted an extensive evaluation of NPCS’s viability for com-

puting how-provenance by assessing the runtime overhead incurred

by the rewritten queries. This is measured by comparing the run-

time between the original queries without provenance annotations

and the queries obtained with our approach.

5.1 Experimental Setup
5.1.1 Environment. NPCS was implemented in Java, using the Java

Development Kit (JDK) version 11. All the experiments were con-

ducted on a computer with an AMD EPYC 7281 16-core processor,

256GB of RAM, and an 8 TB HDD disk running Ubuntu 18.04.6

LTS. We evaluated NPCS on two widely used RDF/SPARQL engines

with support for RDF-star, namely GraphDB
4
(version 10.2.0) and

Stardog
5
(version 9.1.0). Throughout all experiments, we set a time-

out of 350 sec. for individual query executions to ensure consistent

results and reported the average response time of the queries over

five executions in a cold setting, i.e., after clearing the disk cache.

5.1.2 Competitor. We compare NPCS with SPARQLprov [18], a

state-of-the-art solution for how-provenance in SPARQL, which

is also based on query rewriting. We used the implementation

provided by the paper [18], and extended it to support the RDF-

star reification scheme. SPARQLprov and NPCS compute the same

provenance polynomials since they both rely on spm-semirings.

5.1.3 Synthetic Workload. We employed the Watdiv performance

benchmark specifically designed for RDF/SPARQL engines. Wat-

div provides a data generator that can produce synthetic datasets

of varying sizes. Additionally, WatDiv includes 20 select query

templates, each comprising 10 instantiated queries. The query tem-

plates are categorized into four types: linear queries (L), star queries

(S), snowflake-shaped queries (F), and complex queries (C). They

are all monotonic queries. We therefore introduced five additional

non-monotonic query templates (O) as proposed by [18]. These

non-monotonic queries were created by enclosing one of the triple

patterns in the linear queries with an optional clause.

We evaluated NPCS on the 10M-triple and 100M-triple Watdiv

datasets, that we reified using the RDF-star and named graphs

reification schemes. We excluded the standard reification from the

evaluation as it exhibits the worst performance according to [18].

Moreover, we created a 200M-triple dataset by duplicating every

triple of the 100M-triple dataset and assigning a second provenance

identifier to the duplicates. This dataset simulates a challenging

case where triples have been extracted from more than one source.

5.1.4 Real Workload. We tested NPCS and SPARQLprov on the

WDBench benchmark [1], which provides real-world data. The

benchmark uses data from 15.2 billion triples encoded using the

Wikidata reification scheme in a 2023 Wikidata dump. The bench-

mark provides more than 800 queries consisting of simple BGPs,

some of them with optional clauses. We took a sample of 150

4
https://graphdb.ontotext.com/

5
https://www.stardog.com/

queries consisting of 50 single-triple-pattern queries, 50 non-

monotonic queries (with optional), and 50 monotonic queries with

more than on triple pattern. The queries were randomly chosen.

5.2 Results
5.2.1 Synthetic Workload. Figure 2 compares the execution times

of the original query with those of the rewritten queries produced

by NPCS and our competitor SPARQLprov on RDF-star data when

using GraphDB and Stardog. We mesure the runtimes on the 10M

and 100MWatdiv datasets. We first notice that in all cases, rewriting

the query to compute how-provenance incurs a performance over-

head. Not surprisingly, the overhead increases with data size, but its

behaviour also depends on the query engine. For instance, NPCS’s

overhead ranges from 20% to 30% in GraphDB, and from 25% to 50%

in Stardog. Figure 2 also reveals that, on average, GraphDB is more

sensitive to data scaling than Stardog, even though runtime across

query templates exhibits higher variability in Stardog. Regardless

of the data size and the query engine, templates C3 and F5 are by far

the most challenging, which makes our competitor SPARQLprov

timeout on both GraphDB and Stardog. The complexity of C3 is

explained by its large number of intermediate results, whereas for

F5 it is caused by the large number of solutions.

When we compare the query rewriting strategies, we notice the

NPCS consistently outperforms SPARQLprov in 98 out of our 100

studied cases. Also, NPCS is on average 25 times faster than SPAR-

QLprov. One can explain this performance difference by the fact

that NPCS is a fully native SPARQL solution, whereas SPARQLprov

relies on a post-hoc decoding phase to compute the provenance

polynomials. Like NPCS, SPARQLprov rewrites the query to ex-

tract provenance information. Unlike our approach, SPARQLprov

encodes the structure of the how-provenance annotations in addi-

tional columns in the result set. Those additional columns can be

numerous and encode the structure of the provenance polynomials.

Decoding that information requires running additional group and

aggregation operations. Hence, the runtime of this decoding phase

is proportional to the number of query solutions times the maximal

depth of the operator trees of the provenance annotations. That

explains why SPARQLprov times out for query template F5, which

is by far the template with the highest number of query solutions

(173.6K solutions on average). NPCS, in contrast, carries out the

grouping operations during query evaluation, which not only lever-

ages the engine optimizations for grouping, but also makes it easier

to deploy in real-world settings.

Despite NPCS’s clear runtime advantage, SPARQLprov can ex-

hibit comparable or better performance on very selective queries.

This is demonstrated by the runtimes for queries O1, O2, and O5.

In cases such as query templates O2 and O5 on GraphDB, NPCS’s

strategy of evaluating grouping operations in the source engine

does not pay off. This is so because the queries and their constituent

triple patterns are very selective.

Figure 3 shows the results for the rewritten queries on the 200M

dataset on GraphDB. We observe similar trends as in the 100M

scenario, except that SPARQLprov also times out on query templates

C2 and F4. We omit the results for Stardog as they exhibit similar

behavior as in the 100M dataset.

https://graphdb.ontotext.com/
https://www.stardog.com/
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Figure 2: Query execution times on Watdiv 10M and 100M reified with RDF-star on GraphDB (top) and Stardog (bottom)

Finally, we evaluate NPCS on a different reification scheme,

namely the popular named graphs strategy. The results are de-

picted in Figure 4 for the 10M and 100M datasets on GraphDB.

We observe the same trends as for the RDF-star reification, that

is, NPCS outperforms SPARQLprov consistently in 48 out of 50

studied cases. This shows that our approach is insensitive to the

data reification scheme, which makes it applicable to any standard

RDF/SPARQL engine. Similar results are observed for Stardog.

Figure 3: Query execution times onWatdiv 200M reified with
RDF-star on GraphDB

5.2.2 RealWorkload. We evaluate NPCS on theWDBench. Figure 5

shows the results for GraphDB and Stardog. Each dot in the plot

represents the execution of a query, either the original query or a

rewritten query by NPCS or by SPARQLprov. Queries are plotted

on the x-axis by increasing number of solutions, and the y-axis

represents the execution time. We verify the same trend for both

engines, namely that SPARQLprov’s query rewriting induces a

much larger overhead than NPCS’s. While the overhead increases

with the number of query results for both methods, it is more

pronounced for SPARQLprov. This makes SPARQLprov time out

when the number of results is above 700K. We also observe that for

queries with a few thousand results executed on Stardog, NPCS’s

overhead can be minimal.

6 CONCLUSIONS
We have proposed NPCS, a novel query rewriting method to com-

pute how-provenance annotations for SPARQL query results. To

the best of our knowledge, NPCS is the first 100% SPARQL-based

solution for how-provenance. Our approach can be easily applied to

standard and already deployed RDF/SPARQL engines, without the

need for customized extensions or post-processing steps. Our ex-

perimental evaluation on synthetic and real data shows that NPCS’s

native SPARQL rewriting outperforms the state of the art in how-

provenance for SPARQL queries. The performance gains provided

by our method allow us to compute provenance annotations for mil-

lions of query results on knowledge graphs with billions of triples.

This makes NPCS attractive for ETL processes on large volumes

of data—a common scenario for multi-source KG construction and

OLAP for KGs [10, 19, 20].

As future work we intend to work on lazy approaches for how-

provenance computation, that is, approaches where provenance

is computed for a user-specified set of solutions. This avoids the
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Figure 4: Query execution times on Watdiv 10M and 100M reified as named graphs on GraphDB

Figure 5: Number of results vs. query execution time for the WDBench queries run on Wikidata, stored in GraphDB (top) and
Stardog (bottom), using the Wikidata reification scheme

execution of expensive queries for results that are not of interest of

the user. We have also envisioned to tackle the problem of comput-

ing how-provenance annotations for non-reified data, and add the

support for CONSTRUCT queries.

SUPPLEMENTARY MATERIAL STATEMENT
NPCS’s source code

6
, the scripts to recreate the experimental setup,

all required libraries, queries, and results can be found in [5].

6
URL: https://github.com/ZubariaForthAcc/NPCS
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