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Abstract

Epilepsy is one of the most common neurological diseases and the most common neurological chronic
disease in childhood. Electroencephalography (EEG) still remains one of the most useful and effective tools
in understanding and treatment of epilepsy. To this end, many computational methods have been devel-
oped for both the detection and prediction of epileptic seizures. Techniques derived from linear/nonlinear
analysis, chaos, information theory, morphological analysis, model-based analysis, all present different
advantages, disadvantages, and limitations. Recently, there is the notion of selecting and combining the
most robust features from different methods for revealing various signals’ characteristics and making more
reliable assumptions. Finally, intelligent classifiers are employed in order to distinguish epileptic state out of
normal states. This chapter reviews the most widely adopted algorithms for the detection and prediction of
epileptic seizures, emphasizing on information theory based and entropy indices. Each method’s accuracy
has been evaluated through performance measures, assessing the ability of automatic seizure detection/
prediction.

Keywords EEG, Epilepsy, Seizure detection, Seizure prediction, Entropy, Nonlinear analysis,
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1 Introduction

Epilepsy is a chronic neurological disorder characterized by neuro-
logical brain dysfunctions resulting in epileptic seizures. An epilep-
tic seizure is a transient occurrence of signs and/or symptoms
due to abnormal, excessive, and synchronous neuronal activity in
the brain [1]. It is estimated that in 2012 between 0.4 and 1 %
of the world’s population (around 50 million people) have active
epilepsy [2]. Among many diagnostic and imaging methods,
the electroencephalogram (EEG) is by far the most used and
effective technique in the daily clinical treatment. Given that it is
noninvasive, is relatively accurate, and has low cost, it has been
established as a necessary tool for clinicians and people who deal
with epilepsy.

Until recently, seizures were identified only visually by
an expert neurologist. However, this procedure constitutes a
laborious task especially in the case of long-term EEG recordings.
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Therefore, automatic computer aided algorithms have evolved in
order to shorten and automate this procedure and many seizure
detection methods are reported in the international literature [3, 4].
Figure 1 shows a schematic representation of a seizure detection
system.

Most studies present their solution to the problem of seizure
detection in the context of a decision support system for the
neurologist expert. As there are many types of seizures, this is
sometimes a difficult task, taking into account the nature, temporal
length, and singularities of each seizure type. When a patient
experiences seizures of different types one needs to categorize
EEG ictal periods into a specific type, although some epileptic
syndromes are difficult to be characterized as being of specific
category. A more demanding task, which is still considered an
open scientific question, is the prediction of a seizure [5], which
profoundly will improve the quality of life of people suffering from
severe seizures. Besides, the understanding of underlying mechan-
isms leading in seizures and the origin of a seizure is in each case are
still under question.

Towards this direction, many EEG analysis algorithms have
been proposed. Linear analysis has been widely used based mainly
on synchronization features as a primer and straightforward
approach. Although these methods can reveal in some cases the
existence of epileptic seizures, they have their limits if someone
takes the nature of real human EEG data into account [6, 7].
Under this prism, EEG signals can be interpreted as the result of
a system containing highly nonlinear elements. The study of non-
linear EEG dynamics can reveal hidden information and provide a
more complete picture about underlying brain processes [8, 9].
Nonlinear analysis has been used with increased accuracy over the
last decade in the area of seizure detection and prediction.
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Fig. 1 Schematic representation of seizure detection system
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2 Methods

In this section, linear methods (highlighting time–frequency meth-
ods), nonlinear methods (highlighting measures derived from
information theory), methods based on signal’s morphological
characteristics, and vision-based methods are presented.

2.1 Linear Methods Linear methods have been widely used in the area of epilepsy
detection mainly due to their simplicity and versatility. One of the
simplest linear statistic metrics is the variance of the signal. It offers
an insight into dynamics underlying the EEG and is usually calcu-
lated in consecutive windows. A further linear method is based on
the autocorrelation function, exploiting the periodic nature of
seizures. Liu et al. [10], using Scored Autocorrelation Moment
(SAM) analysis, distinguished EEG epochs containing seizures
with an accuracy of 91.4 % although signals did not present differ-
ences in their spectral properties.

Furthermore, seizure onset and offset determination may be
succeeded using linear prediction filters (LPF) [11]. An LPF esti-
mates the spectral characteristics of a signal, with its accuracy
depending on the stationarity of the latter. When there are spikes,
sharp waves or rapid changes, the filter’s prediction error increases,
leading to an identification of a possible seizure.

Discrete wavelet transform (DWT), which is a transformation
extracting scale-frequency components from data (each component
with resolution matched to its scale) may also be applied in seizure
detection. In [12], normal and seizure signals were classified with
an accuracy of 99.5 % using DWT and a linear classifier. Another
linear feature, the relative fluctuation index [13], can measure the
intensity of the fluctuation of EEG signals, which is defined as:

F i ¼
XM�1

j¼1

����ai j þ 1ð Þ � aiðjÞ
����;

where ai denotes the amplitude of the filtered EEG signal at the ith

band with length M. During a seizure, there is a larger fluctuation
in the EEG signals than during an ictal-free period. Therefore,
values of fluctuation index during a seizure are usually larger than
during rest EEG. Using this index, along with other features, a
study by Yuan et al. [13] achieved 94.90 % mean accuracy in a
segment-based aspect and 93.85 %mean accuracy in an event-based
aspect.

2.1.1 Time–Frequency

Methods

Various studies that employ time–frequency features have also been
used in the area of seizure detection [14].Hassanpour et al. [15] used
time–frequency patterns as signatures in order to detect seizures.
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Tzallas et al. [16–18] performed an extensive investigation of
well-known time–frequency distributions, extracting features from
the Power Spectral Density (PSD) time–frequency grid followed
by artificial neural network (ANN) classification. With this method-
ology, an accuracy between 89 and 100 % for three different datasets
was achieved using reduced interference time–frequency distribu-
tion and ANNs. A time–frequency matched filter was introduced
in [19, 20] in order to reveal seizure patterns. Rankine et al. [21]
proposed a related methodology analyzing changes in preictal,
ictal, and postictal states. Moreover, an improved time–frequency
dictionary in terms of reconstruction accuracy and discrimination
between seizure and non-seizure states is presented in [22].

2.2 Nonlinear

Methods

Epileptic seizures can be seen as manifestations of intermittent
spatiotemporal transitions of the human brain from chaos to
order [23]. Nonlinear analysis of EEG has attracted increasing
interest by many research groups mainly because it incorporates
the non-stationary nature of a signal. It perceives brain mechanisms
as part of a macroscopic system in a way to understand its spatio-
temporal dynamic properties. The revealed underlying information
of ongoing EEG leads to promising results not only in the detec-
tion but also in the prediction of upcoming seizures [24].

2.2.1 Fractal Dimension Fractal dimension is a nonlinear time domain measure characteriz-
ing the complexity of a time series. The degree of complexity
increases if the fractal dimension increases. Various algorithms
have been developed [25] in order to calculate the fractal dimen-
sion such as box counting [26], Katz’s algorithm [27], Petrosian’s
algorithm [28], and Higuchi’s algorithm [29]. According to the
last, the time series xðiÞ; i ¼ 1; 2; . . . ;N formulates the vector

Xk
m ¼ xðmÞ; x m þ kð Þ; . . . ; x m þ N �m

k

� �
� k

� �� �
;

where k is the time lag, m ¼ 1,2, . . ., k and byc the round down
integer of argument y. For each Xm

k, the average is formed:

AU1LmðkÞ ¼

XN�mð Þ
kb c

i¼1

x m þ ikð Þ � x
	
m þ i � 1ð Þk

��� ��� n � 1ð Þ
N�m

k


 � � k
Finally, the sum of averages is calculated as

LðkÞ ¼
Xk
m¼1

LmðkÞ

The linear estimation of the slope of the curve ln(L(k)) versus
ln(1/k) is an estimate of the fractal dimension.
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2.2.2 Lyapunov Exponent Lyapunov exponent (λ) is a nonlinear metric measuring the
exponential divergence of two time series trajectories in
phase space. Considering the m-dimensional time vector of a time
series X ¼ {x(t), x(t + 1), . . ., x(t + m � 1)} and two neighboring
points Xt0 and Xt in phase space at time t0 and t respectively, the
distances of the points in the ith direction are dXi jt0 and dXi|t
respectively. Given the following equation,

dXi jt � eλi t dX i jt0
the Lyapunov exponents are λi.

Finally, the maximal Lyapunov exponent can be defined as

λmax ¼ lim
t!1 lim

dXi jt0!0
lim

1

t
ln

dXi jt
dX i jt0

and measures the biggest increase rate of the error in the initial
conditions. Lyapunov exponents characterize the chaotic nature of
a time series, i.e., a slight shift in initial conditions can lead to a
non-deterministic difference in the phase space trajectory. Using
Lyapunov exponents and recurrent neural networks, Guler et al.
[30] achieved 96.79 % accuracy rate in the detection of epileptic
seizures.

On the other hand, Kannathal et al. [31] tested nonlinear
measures including the correlation dimension (CD), maximal Lya-
punov exponent, Hurst exponent (H), and Kolmogorov–Sinai
entropy (K–S entropy) in order to distinguish epileptic from nor-
mal EEG activity. All measures showed high discriminating ability,
with slightly better results being reported for the CD (p-value:
0.0001) and K–S entropy (p-value: 0.0001).

2.3 Information

Theory Based Analysis

and Entropy

Entropy is a physical measure derived from thermodynamics,
describing the order or disorder of a physical system. High entropy
values equal to high levels of disorder of a system, whereas low
values describe a more ordered system, capable of producing more
work. Signal processing and analysis research disciplines borrowed
entropy from information theory in order to address and describe
the irregularity, complexity, or unpredictability characteristics of a
signal. Given these properties, entropy has been widely used
towards automatic seizure detection [3, 32, 33].

2.3.1 Shannon Entropy After some initial approaches by H. Nyquist and R. Hartley,
research leaders at Bell Labs, Shannon established in 1948 quanti-
tatively the foundations of information theory [34]. According to
these, a signal is divided into J non-overlapping value bins and the
ratios of samples falling into j th bin to the total samples Ν are
calculated
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H ¼ �
XJ
j¼1

pj log2 pj

	 �
where pj ¼

N xj
 �
N

;

where N(xj) is the amount of samples that fall into bin j of total J
bins to the total samples N. EEG Shannon entropy has been
correlated with desflurane effect compartment concentrations
[35]. It has also been used in order analyze long term EEG coming
from patients with frontal lobe epilepsy [36].

2.3.2 Spectral Entropy Spectral Entropy was introduced by Inouye [37, 38] measuring the
proportional contribution of each spectral component to the total
spectral distribution [39].

H ¼ �
XJ
j¼1

pj log2 pj

	 �
where pj ¼

Sj
S
;

where S is the total spectrum and Sj is the spectrum at frequency bin
j of total J bins.

A traditional approach to estimate spectral entropy is through
Fourier power spectrum [40, 41], which is applicable mainly where
a signal’s stationarity conditions are satisfied, e.g., the resting EEG.
However, many clinical applications are highly non-stationary with
transient and rapid changes in their spectra distributions. In addi-
tion to that, a time-varying entropy index is necessary in some cases
[42]. This can be partially dealt with the short time Fourier trans-
form (STFT) revealing spectral distributions over successive win-
dows [40]. However, this approach faces the intrinsic problem of
window size selection that arises from the Heisenberg Fourier
Uncertainty Principle [43].

ΔtΔf � 1

4 � π
Due to this, a small window size increases temporal resolution

but makes spectral resolution poor whereas a wide window size
achieves the opposite effect. It is considered that the optimal distri-
bution is a Gaussian that minimizes the product of time–frequency
variances [44].

To overcome these limitations, Quiroga et al. [45] introduced
wavelet entropy (WE) which is based on multi-resolution decom-
position by means of the wavelet transform (WT). This technique
has already been applied in EEG/ERP signal analysis [46–48]. The
problem with this approach is that the results are strongly depen-
dent on the selection of the mother wavelet function. WE was
efficiently applied in order to discriminate between EEG signals of
controls and epileptic patients [49–51]. Rosso et al. [52] compares
the Gabor transform and the wavelet transform claiming the supe-
riority of the second because a variable window is used for the
analysis. Subsequently, the time evolution of wavelet entropy and
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relative wavelet entropy was investigated, showing significant
decrease during ictal periods. However, different wavelet basis
functions can produce different results, making their interpretation
sometimes ambiguous.

In order to yield an optimal time–frequency distribution and
subsequently time–frequency spectral entropy, adaptive algorithms
are used. Adaptive Optimal Kernel (AOK) time–frequency represen-
tation [53] is an effective method in representing signals in the time
frequency plane. The main advantage of having an adaptive signal-
dependentmethod is that in each case the kernel is selected according
to how well it is suited to signal’s characteristics. The method is
adjusted by the choice of the kernel which involves a compromise
between cross term reduction, loss of time–frequency resolution, and
maintenance of certain properties of distribution [44, 54]. Spectral
entropy by using this method was presented in [55].

2.3.3 Approximate

Entropy

Approximate entropy (ApEn) was introduced by Pincus [56] to
quantify the regularity and predictability of a time series data of
physiological signals. Being a modification of the Kolmogorov–
Sinai entropy [57], it was especially developed for determination of
the regularity of biologic signals in the presence of white noise [58].

Given a time series X(n) ¼ {x(n)} ¼ {x(1), x(2), . . ., x(N)} of
N samples, the ApEn value is calculated through the following steps:

1. The vector sequences Xm(i) ¼ {x(i), x(i + 1), . . ., x(i + m � 1)}
which represent m consecutive values commencing with the i th

point are formed.

2. The distance between xm(i) and xm(j) is calculated, defined by

d XmðiÞ;XmðjÞ½ � ¼ max
1�k�m

x i þ k � 1ð Þ � x j þ k � 1ð Þj jf g

3. For each xm(i) the number Ni
m(r) of vectors is calculated

d XmðiÞ;XmðjÞ½ � � r

with r representing the noise filter level.
Then, the parameters Ci

m(r) are estimated as,

Cm
i ðrÞ ¼

Nm
i ðrÞ

N �m þ 1

4. ϕm(r) is defined as the mean value of the parameters Ci
m:

ϕmðrÞ ¼

XN¼mþ1

i¼1

lnCm
i ðrÞ

N �m þ 1
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5. ApEn(m, r, N) is calculated using ϕm(r) and ϕm + 1(r) as

ApEn m; r;Nð Þ ¼ ϕmðrÞ � ϕmþ1ðrÞ

ApEnhas already been used inmany applications such as analysis
of heart rate variability [59–62], analysis of the endocrine hormone
release pulsatility [63], and detection of epilepsy [64, 65]. The
majority of studies indicate that during ictal periods ApEn presents
a significant decrease in comparison with EEG during normal per-
iods [3, 65, 66]. ApEn was also used in order to classify EEG signals
among five different states (including an ictal state) with an
increased accuracy [67].

The calculation of ApEn depends on the parameters embed-
ding dimension (m), noise filter level (r), and data length (N).
Besides, it is arguable whether the standard deviation used at the
noise filter level would be calculated from the original data series or
from the individual selected EEG segments. However, there is no
specific guideline for their optimal determination even though
most research studies use the parameters described in [56, 61] as
a rule of thumb. But ApEn statistics do not present relative consis-
tency [61] leading to problems in hypothesis formulation and
testing. As signals of different source and pathologies can have
quite different properties, these parameters should be determined,
based on the specific use. The need for a consistent determination
of parameters was studied in a recent work [68] where a preliminary
analysis of these parameters was established.

2.3.4 Sample Entropy Sample entropy (SampEn), which is presented in [61], also esti-
mates complexity in time series providing an unbiased measure
regarding the length of time series.

H ¼ ln
AmðrÞ
BmðrÞ

� �

The calculation of sample entropy starts with the steps 1 and
2 already described for the ApEn calculation. The following steps
are given below:

3. For each Xm(i) the number Ni
m(r) of vectors is calculated

d XmðiÞ;XmðjÞ½ � � r

with r representing the noise filter level.
Then, the parameters Bi

m(r) and Bm(r) are defined as,

Bm
i ðrÞ ¼

Nm
i ðrÞ

N �m � 1

BmðrÞ ¼ 1

N �m

XN�m

i¼1

Bm
i ðrÞ
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4. The dimension is incremented to m ¼ m + 1 and the number
Ni

m + 1(r) is calculated so that

d Xmþ1ðiÞ;Xmþ1ðjÞ½ � � r

Then, the parameters Ai
m(r) and Am(r) are defined as

Am
i ðrÞ ¼

Nmþ1
i ðrÞ

N �m � 1

AmðrÞ ¼ 1

N �m

XN�m

i¼1

Am
i ðrÞ

5. Finally, sample entropy is defined as

SampEn m; rð Þ ¼ ln
BmðrÞ
AmðrÞ

� �

The advantage of SampEn is that its calculation is independent
of time series size as it restricts self-matches and uses a simpler
calculation algorithm, reducing execution time [61]. However,
despite its advantages, SampEn is not widely used [69]. Sample
entropy was used as feature for automatic seizure detection in [70].
It was also applied in [71] combined with Lempel–Ziv as indicators
to discriminate focal myoclonic events and localizemyoclonic focus.

2.3.5 Kullback–Leibler

Entropy

Kullback–Leibler entropy (K–L entropy) measures the degree of
similarity between two probability distributions and can be inter-
preted as a method quantifying differences in information content
[72]. K–L entropy was applied to intracranial multichannel EEG
recordings and indicates its ability to detect seizure onset based on
spectral distribution properties [73].

2.3.6 Lempel–Ziv

Complexity

The Lempel–Ziv measure estimates the rate of recurrence of pat-
terns along a time series, reflecting a signal’s complexity. Lempel–
Ziv has been applied to epileptic EEG signal showing increased
values during ictal periods [74]. Another work has applied LZ
complexity on E-ICA and ST-ICA transformed signals in an
attempt to isolate seizure activity [75]. Both of these studies have
been applied to limited datasets, pointing out the need of a more
thorough evaluation.

2.3.7 Permutation

Entropy

Permutation entropy is a measure of complexity introduced by
Bandt [76]. Its application to absence epilepsy on rats indicated
superiority on prediction of epileptic seizures and identification of
preictal periods (54 % detection rate) comparing with sample
entropy [77]. The same study achieved 98.6 % correct identification
of interictal periods.
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2.3.8 Order Index Order index is another nonlinear feature that was proposed by
Ouyang [78] measuring the irregularity of non-stationary time
series. In a recent work [79], a comparative analysis of order index
along with other linear and nonlinear features was performed.

2.4 Morphological

Analysis

Most algorithms in the literature select features based on amplitude,
spectral properties, and synchronization of ongoing EEG in order
to identify a seizure.However, little progress has beenmade in order
to incorporate a neurologist’s experience in analyzing a waveform
morphology and shape for making a decision on optimal epilepsy
treatment. Some studies working towards shape analysis of epileptic
seizures give quite promising results not only by their techniques
themselves but also by the prospect of integrating the present and
future perception of neurologists’ expertise. In this way, Deburch-
graeve et al. [80] extracts segments that morphologically resemble
seizures by a combined nonlinear energy operator and a spikiness
index. Then a detector is applied exploiting the repetitive nature of a
seizure is applied. The spike and wave complexes of epileptic syn-
dromes can also be extracted by a two-stage algorithm, the first
enhancing the existence of spikes and the second applying a
patient-specific template matching [81]. Interictal spikes have also
been detected using Walsh transform in addition to the fulfillment
of clinical criteria establishing a simulated epileptic spike [82, 83].

2.5 Vision-Based

Analysis

In some cases, epilepsy monitoring is performed with synchronized
video and EEG recordings. Epileptic syndromes are evaluated
based not only on scalp recordings but also on human motion
features extracted from video sequences. Analysis involves mainly
detection of the myoclonic jerks, eye motion (eyeball doze, eyeball
upwards roll, eyelid movements), head jerks and movements, facial
expressions (mouth, lips malformations). However, it can be
understood that a seizure specific organization and combination
of motion features should be applied in order to provide better
results [84]. This promising area of research helps neurologist
experts have a more complete picture preventing them from false
alarms and leading to decision support with increased accuracy.
A thorough review can be found in [85]. Vision-based analysis in
epilepsy can be divided into two categories, marker-based and
marker-free techniques. Marker-based techniques track objects/
markers placed in representative parts of the human body that
convey information related to the epileptic manifestation. On the
other hand, marker-free techniques use advanced image processing
and computer vision tools to extract motion-related information
directly from the image sequences in the video. Both techniques
return time-varying signals, which form the basis for further feature
extraction in the time- and frequency domain. The extracted fea-
tures finally feed a classifier such as an ANN or a decision tree with
the aim to detect epileptic seizures.
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3 Seizure Prediction

Nowadays, seizure detection is considered practically an issue that
has been solved with satisfactory accuracy. On the other hand,
seizure prediction remains an open scientific problem in a way
that there is no consistent approach for predicting a seizure accu-
rately within a significant amount of time before it occurs. How-
ever, many algorithms have been tested in their ability to forecast
seizures.

3.1 Early Approaches The notion of seizure prediction was firstly mentioned in 1975 [86]
based on spectral analysis of EEG data collected from two electro-
des. In 1981, Rogowski et al. [87] investigated preictal periods
using pole trajectories of an autoregressive model. Gotman et al.
[88] investigated rates of interictal spiking as indicators of upcom-
ing seizures.

3.2 Linear Methods

3.2.1 Statistical

Measures

Among other measures Mormann et al. [89] investigated the
statistical moment of the EEG amplitudes in order to detect
the preictal state. Other linear measures like power have been
used in [90] and signal variance has been used in [91] to predict
seizure onset.

3.2.2 Hjorth Parameters Hjorth parameters, namely, activity, mobility, and complexity,
are time domain parameters useful for the quantitative evaluation
of EEG [92]. The parameter of activity represents the variance of
signal’s amplitude, the mobility represents the square root of the
ratio between the variances of the first derivative and the amplitude,
and the complexity is derived as the ratio between the mobility of
the first derivative of the EEG and the mobility of the EEG itself.
Mormann et al. used Hjorth parameters among others as features
for seizure prediction [89]. Mobility has been also used followed by
SVM classification achieving better false positive rates (fpr) in com-
parison with plain spectral analysis [93].

3.2.3 Accumulated

Energy

The accumulated energy is computed from the average energy
across all values of the signal x of a window k

Ek ¼ 1

Nw

XNw

i¼1

xk
2ðiÞ;

where Nw is the window length.
Then, the average of ten values of average energies are added to

the running accumulated energy.

AEm ¼ 1

10

X10m
k¼10m�9

Ek þ AEm�1;

where m ¼ 1,2,. . .,N/Nw and AE0 ¼ 0.
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This measure can be considered as the running average of
average window energies. Accumulated energy has been used in
various studies of seizure prediction [94–96].

3.2.4 AR Modelling In [97], a feature extraction and classification system was proposed
based on Autoregressive Models, SVM and Kalman Filtering. Its
performance regarding false positives rates per hour is quite
promising with a mean prediction time ranging from 5 to 92 min.

3.3 Nonlinear

Methods

Most of the nonlinear methods exploit the reconstruction of a time
series x(i), i ¼ 1, 2, . . ., N in phase space domain forming the m ‐
dimensional time delayed vectors

XmðiÞ ¼ xðiÞ; x i þ 1 � τð Þ; . . . ; x i þ m � 1ð Þ � τð Þf g;
where m is the embedding dimension and τ is the time delay.

This reconstruction conveys important information about the
nonlinear dynamics of a signal and it is used to many methods some
of them described below.

3.3.1 Lyapunov Exponent The calculation method of Lyapunov exponents was analyzed in
the previous section of this chapter. Iasemidis et al. [98–100]
applied for the first time nonlinear analysis to seizure prediction.
The idea behind this approach is that the transition from normal to
epileptic EEG is reflected by a transition from chaotic to a more
ordered state, and therefore, the spatiotemporal dynamical proper-
ties of the epileptic brain are different for different clinical states.

3.3.2 Dynamical

Similarity Index

Dynamical similarity index is a method introduced in [101] which
calculates brain state dynamics through phase state reconstruction
and compares a running window state against a reference window
with the use of the cross correlation integral. Various studies using
this index have shown promising results even in the detection of
preictal states of temporal lobe epilepsy [102, 103] and neocortical
partial epilepsy [104].

3.3.3 Correlation

Dimension

In order to calculate the correlation dimension, the correlation
integral defined by Grassberger and Procaccia [105] is needed

Cm ε;Nmð Þ ¼ 2

Nm Nm � 1ð Þ
XNm

i¼1

XNm

j¼iþ1

Θ ε� xi � xj
�� �� �

;

Nm ¼ N � m � 1ð Þ � τ;
where Θ is the Heaviside function. This integral counts the pairs
(xi, xj) whose distance is smaller than ε. Then, the correlation
dimension D is defined by
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D ¼ lim
ε!0
N!1

@ lnCm ε;Nmð Þ
@ ln ε

In preictal states, drops in correlation dimension were observed
making this measure able to identify states preceding seizures [95,
106, 107].

3.3.4 Entropies Zandi et al. [108] used entropic measure of positive zero-crossing
intervals achieving 0.28 false positive rate and average prediction
time 25 min.

Kolmogorov entropy (KE) is a nonlinear measure of the rate at
which information about the state of a system is lost [109] and
defined as

KE ¼ lim
e!0
m!1

1

τ
ln

Cm ε;Nmð Þ
Cmþ1 ε;Nmð Þ

where Cm, Cm + 1 are the correlation integrals of embedding
dimensions m, m + 1, respectively and τ the time delay.

In time-varying EEG signal the temporal evolution of KE is
required. Time series can be divided in Nw windows, and the mean
KE [110] can be calculated as

KE ¼ 1

Nw

XNw

k¼1

KEðkÞ

Higher positive values of KE suggest a chaotic behavior of the
system, whereas lower values suggest a more ordered system. KE
has been applied to seizure anticipation in infant epilepsy [90].

3.3.5 Phase

Synchronization

Phase synchronization is a nonlinear bivariate measure that has
been applied widely in the field of seizure prediction. It is repre-
sented through mean phase coherence

R ¼ 1

N

XN
k¼1

ei φa tkð Þ � φb tkð Þ½ �
�����

�����
In [111, 112] a detection of preictal state based on phase

synchronization decrease is presented. This decrease can be attrib-
uted to interactions between channels that are located to epilepto-
genic focus (pathological synchronization) and others located out
of seizure focus [113, 114].

4 Combination of Methods and Feature Selection

Detection methods can produce one or more features which are
representative measures describing information needed to each
problem establishment. Different features can reveal different
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aspects of information a signal contains. Due to this, different
features can achieve high sensitivity, some others high specificity
and vice versa.

A combination of methods is necessary in order to exploit most
of available information. In this case, an efficient feature selection
procedure is required in order to highlight the most robust features
capable to produce best results. It is reported that when using SVM
as a classifier, which is considered an efficient classifier, the selected
features affect the performance more than the used classifier itself
[115]. Towards the same direction, omitting good features may be
more detrimental for SVMs than including bad ones [116].

A study of EEG-based neonatal seizures [117] used total 55
features derived from time domain, frequency domain and infor-
mation theory achieving remarkable results (good detection rate
(GDR): 89 % at 1 false detection per hour (FD/h)).

In a recent study [79], nonlinear features and features derived
from information theory were evaluated in surface EEG recordings.
Signals were recorded from 8 epileptic patients whose seizures
identified and classified by a neurologist expert as absence like
seizures. The recordings were collected from 21 scalp loci of
the international 10–20 system with all electrodes referenced to
the earlobe. An electrode placed in the middle of the distance
between Fp1 and Fp2 on the subject’s forehead served as ground.
For this study, 75 seizures were selected within artifact free EEG
time series (without eye blinks, spikes, head movements, chewing,
general discharges), as other related studies [3] indicate. Figure 2
shows an example of that study including ApEn, Order Index, and
Multiscale Variance Index (MVI).

An important factor in the effectiveness of methods is the proper
determination of their intrinsic parameters. In a recent study [68], a
preliminary analysis of parameters used on ApEn was performed in
order to ensure an improved detection rate and accuracy.

5 Decision Making and Classification

After the feature extraction, seizure detection/prediction can be
evaluated using either threshold based methods or trained classi-
fiers. The stage of thresholding can be optional or the usage of
classifiers should be applied instead.

5.1 Threshold Based

Analysis

Threshold based analysis focus on the determination of thresholds
that can categorize feature values to ictal or non-ictal states. This
can be the statistical evaluation of the variability of features’ values
according to the desired significance level. The most common
approach is the threshold to be determined as a product of a
constant and the standard deviation of the feature space distribu-
tion. The three sigma rule [118] for any unimodal probability
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density is a rule of thumb that has been applied to many problems
of threshold determination. A more complex determination of
threshold could be achieved using Chebyshev inequality [68].

P feature� μj j � kσf g � 1

k2
;

where μ, σ are the mean value, standard deviation of the selected
feature distribution and k the chosen statistical threshold.

5.2 Usage

of Classifiers

Various classifiers have been employed in order to categorize data
and features into classes and make conclusions about the methods
performance. Classifiers like Expert Systems [118], Decision trees
[119], ArtificialNeural Networks (ANN) [17, 18, 30, 32, 120–122],
and Support Vector Machines (SVM) [123] have been employed in
order to increase a method’s detection accuracy.
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Fig. 2 EEG recording containing and the corresponding variation of approximate entropy (ApEn), Order Index
(OI), and Multiscale Variance Index (MVI). The vertical dashed lines denote the start and end of a seizure, while
the horizontal dashed line represents the detection threshold
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Although some authors [80] believe that using a classifier is not
suitable for patient-independent seizure detection, they have been
widely used in distinguishing between ictal and non-ictal periods.

6 Epilepsy Datasets

Some public available databases with seizure data have been
used as benchmark for various studies. The most known are the
Freiburg EEG database [124] contains invasive EEG recordings
of 21 patients suffering from medically intractable focal epilepsy,
the EPILEPSIAE database [125] that contains recordings during
an invasive presurgical epilepsy monitoring at the Epilepsy Center
of the University Hospital of Freiburg and the Bonn EEG
database [126].

7 Performance

Performance measures in seizure detection mostly are extracted
from contingency tables depicting frequencies of detected and
not detected seizures by a proposed algorithm against actual
and false seizures (see Table 1).

The most used measures include sensitivity, specificity, accuracy,
and precision.

Sensitivity ¼ Number of correctly detected seizures

Total number of algorithm positive outcomes

¼ TP

TPþ FN

Specificity ¼ Number of correctly normal states

Total number of algorithm negative outcomes

¼ TN

TNþ FP

Table 1
Contingency table used in order to evaluate performance of a detection algorithm against experiment
outcome

Detection algorithm

Seizure No seizure (control) Total

Experiment outcome Positive (P) TP FP nP ¼ TP + FP
Negative (N) FN TN nN ¼ FN + TN

Total nS ¼ TP + FN nNS ¼ FP + TN N

TP represents true positives, FP represents false positives, FN represents false negatives, and TN represents true negatives
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Accuracy¼ Number of correctly detected seizuresþ correctly normal states

Total number of cases

¼ TPþTN

TPþFPþFNþTN

Precision ¼ Number of correctly detected seizures

Total number of seizures
¼ TP

TPþ FP

In addition, there are also positive predictive value (PPV) and
negative predictive value (NPV) defined as

PPV ¼ Number of correctly detected seizures

Total number of detected incidents
¼ TP

TPþ FP

NPV ¼ Number of correctly detected normal states

Total number of normal states
¼ TN

TNþ FN

which address the probability of a detected seizure to be an actual
seizure and the probability of a detected normal state EEG to be
actual normal state EEG, respectively.

Finally, tests can be evaluated by the likelihood ratio which is
the probability a segment characterized as ictal classified as ictal
divided by the probability a segment characterized as ictal classified
as not ictal. This indicates how much likely it is a segment which
tests positive is ictal compared with one who tests negative.

Likelihood ratio ¼ Sensitivity

1� Specificity

7.1 Detection

Performance of

Algorithms

It is understood that datasets from different sources can signifi-
cantly affect a method’s behavior and accuracy depending on sei-
zure type, level of noise, patient movements, etc. Although many
researchers use their own datasets, however, a public available EEG
dataset [126] consisting of signals from five different states: (a)
normal EEG with eyes open, (b) EEG with eyes closed, (c) EEG
from interictal period (seizure free) within the epileptogenic zone,
(d) EEG of interictal period from the hippocampal formation of the
opposite hemisphere of the brain, (e) EEG of seizure activity, was
created and used as benchmark for many researchers that evaluated
their methods. The best achieved detection accuracies of these
methods using this dataset are presented in Table 2.

Other studies using their own datasets have also evaluated their
methods by means of detection accuracy and they are presented in
Table 3.

As these datasets are heterogeneous referring to different sei-
zure types, no safe conclusion for their comparative accuracy can be
performed.
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Table 2
Seizure detection accuracies for selected studies using data described in [126]

Authors Year Method Dataset
Best achieved
accuracy rate (%)

Gautama et al.
[127]

2003 Delay vector variance Bonn EEG
database [126]

86.2

VP Nigam, D
Graupe [128]

2004 Nonlinear filtering Bonn EEG
database [126]

97.2

I. G€uler, E.D.
Ubeyli [129]

2005 Wavelet coefficient metrics Bonn EEG
database [126]

98.68

Srinivasan
et al. [120]

2005 Time and frequency
features, ANN

Bonn EEG
database [126]

99.6

G€uler et al. [30] 2005 Lyapunov exponent,
Recurrent neural
networks

Bonn EEG
database [126]

96.79

Kannathal et al.
[32]

2005 Entropy measures, ANFIS
classifier

Bonn EEG
database [126]

92.22

G€uler and €Ubeyli
[130]

2006 PSD features, modified
mixture of experts

Bonn EEG
database [126]

98.6

Srinivasan et al.
[64]

2007 ApEn, Elman network Bonn EEG
database [126]

100

Polat and G€uneş
[119]

2007 PSD, decision trees Bonn EEG
database [126]

98.72

Subasi [131] 2007 Wavelet coefficients
metrics, mixture of
experts

Bonn EEG
database [126]

94.5

Tzallas et al. [17] 2007 Time–frequency analysis,
ANN

Bonn EEG
database [126]

96.3 (average accuracy)

Ghosh-Dastidar
et al. [121]

2007 Wavelet-chaos, neural
network

Bonn EEG
database [126]

96.7

Polat and G€uneş
[132]

2008 PCA-FFT, AIRS classifier Bonn EEG
database [126]

100

Ghosh-Dastidar
et al. [133]

2008 PCA, TBFNN Bonn EEG
database [126]
(subset)

96.6

Ocak [65] 2009 Wavelet transform, ApEn Bonn EEG
database [126]

94.85

Tzallas et al. [18] 2009 Time–frequency analysis,
ANN

Bonn EEG
database [126]

100

Chandaka et al.
[123]

2009 Cross-correlation, support
vector machines

Bonn EEG
database [126]

95.96

(continued)
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Table 2
(continued)

Authors Year Method Dataset
Best achieved
accuracy rate (%)

Altunay et al. [11] 2010 Linear prediction filter Bonn EEG
database [126]

93.33

Guo et al. [134] 2010 Discrete wavelet
transform,
line length feature,
MLPNN

Bonn EEG
database [126]

97.77

Kumar et al. [33] 2010 Entropy measures,
Recurrent
Elman network (REN)

Bonn EEG
database [126]

99.75

€Ubeyli [122] 2010 Lyapunov exponents,
probabilistic neural
networks

Bonn EEG
database [126]

98.05

Fathima et al. [12] 2011 Discrete wavelet transform Bonn EEG
database [126]

99.5

Guo et al. [135] 2011 Genetic programming
features, K-nearest
neighbor classifier

Bonn EEG
database [126]

99.2

Martis et al. [136] 2012 EMD features Bonn EEG
database [126]

95.33

Table 3
Seizure detection accuracies for selected studies using their own datasets

Authors Year
Seizure
type Method Dataset

Best
achieved
accuracy
rate (%)

Liu et al. [10] 1992 Neonatal
seizures

Scored
autocorrelation
Moment

EEG segments (58 with
seizures, 59 without seizures)

91.4

Alkan et al.
[137]

2005 Absence
seizures
(petit
mal)

MUSIC,
autoregressive
Spectrum,
MPLNN

EEG of 11 subjects (6 normal,
5 epileptic) with 20 absence
seizures (petit mal) total

92

Greene et al.
[138]

2007 Neonatal
seizures

Combination of
EEG and ECG
features, LD
classifier

10 neonates, 633 seizures 86.32

Vukkadala
et al. [139]

2009 No specific
type

Approximate
entropy, Elman
neural network

Intracranial EEG of 21 subjects
(12 normal, 9 epileptic)
containing 30 ictal and
30 non-ictal periods

93.33

(continued)



7.2 Prediction

Performance of

Algorithms

In order to evaluate the predictability and the performance of
different methods, a framework called the seizure prediction char-
acteristic [5, 141] was introduced. According to this, in a seizure
prediction scheme four parameters should be taken into account:
the seizure occurrence period (SOP) which is the time period
during which the seizure is to be expected, the seizure prediction
horizon (SPH) which is a minimum window of time between the
alarm raised by the prediction method and the beginning of SOP,
the false prediction rate (FPR) which is the number of false predic-
tions per time interval and the sensitivity which is the fraction of
correctly predicted seizures within total seizures. These character-
istics can evaluate the effectiveness of a prediction scheme.

8 Discussion

This chapter reviews and presents a comparative presentation of the
state-of-the-art methods in the area of seizure detection and pre-
diction. Most methods are EEG-based as EEG is by far the most
widely used tool for seizure detection and prediction. Besides that,
the area of vision-based detection and its combination with bio-
signal analysis is also briefly presented as a very promising tool in
clinical and research practice.

Each method presents its advantages and limitations achieving
its maximum effect regarding the application and seizure type.
In many cases seizure characteristics are notably varying even
among different seizures of the same patient and this phenomenon
is more common in small ages [144]. Therefore, a combination of
these methods is, in many cases, substantial exploiting the advan-
tages of each one maximizing the effectiveness.

Table 3
(continued)

Authors Year
Seizure
type Method Dataset

Best
achieved
accuracy
rate (%)

Yuan et al.
[13]

2012 Intractable
focal
seizures

Linear/nonlinear
features,
extreme
learning
machine

21 patients EEG data (81 seizures) 94.9

Zhou et al.
[140]

2013 Intractable
focal
seizures

Lacunarity,
Bayesian LDA

21 patients EEG data (81 seizures) 96.67
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An objective comparative assessment would be ideal in order to
be able to choose the optimal methods for specific applications.
However, in the related literature, it is difficult to define such a
framework because of different datasets used in different studies.
Seizure types, sample size, dataset precision (number of electrodes,
sampling frequency, etc.) and adopted experiment setup are the
main factors that prevent objectivity in methods’ evaluation. In
addition, as there are no standard guidelines with reliable standar-
dized data, most studies apply their methods on small datasets or
the collection of data is driven exclusively by their application.
Hence, they often demonstrate good accuracy for selected EEG
segments but it is not safe to make a generalized assumption about
their performance.

Despite the intrinsic difficulties, this review aims to introduce
and foster the understanding of available methods in the area of
seizure detection and prediction. Its contribution is towards the
construction of a consistent framework for the area of epilepsy
detection/prediction that can balance computational complexity
and accuracy.
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