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Abstract—In this study, we investigate reliable heart rate 

variability (HRV) parameters in order to recognize stress. An 

experiment protocol was established including different 

stressors which correspond to a range of everyday life 

conditions. A personalized baseline was formulated for each 

participant in order to eliminate inter-subject variability and to 

normalize data providing a common reference for the whole 

dataset. The extracted HRV features were transformed 

accordingly using the pairwise transformation in order to take 

into account the personalized baseline of each phase in 

constructing the stress model. The most robust features were 

selected using the minimum Redundancy Maximum Relevance 

(mRMR) selection algorithm. The selected features fed machine 

learning systems achieving a classification accuracy of 84.4% 

using 10-fold cross-validation.   
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I. INTRODUCTION 

In recent years, there is increasing research interest in the 

area stress recognition and its reliable automatic estimation. 

Although there is a common sense on stress experience, 

however, it constitutes a difficult task to categorize efficiently 

and to estimate objectively one’s stress levels. The problem 

becomes more complex considering the variety of the 

existing stress types or stress manifestations which greatly 

vary. Besides, people sometimes make efforts to hide their 

stress experience as a result of defence mechanisms to avoid 

the embarrassing situations it causes.  

Therefore, there is the need to develop stress detection 

methods which are based on semi-voluntary or involuntary 

measures where it is difficult to be affected by the user 

behaviour. In this direction, physiological signals can provide 

useful information about the bodily stress response [1]. 

Common measures that are used in order to analyze stress are 

Heart Rate Variability (HRV) parameters, Electrodermal 

Activity (EDA), Breath rate, Electromyogram (EMG), 

Electroencephalogram (EEG), etc. However, due to the fact 

that stress is considered a complex of cognitive, affective, 

psychological factors, the research question in many studies 

is the identification of the optimal combination of 

physiological patterns that lead to the emotional state under 

investigation. 

When a person perceives an upcoming threat, a cascade 

of physiological processes occurs which constitute the term 

“stress response”. Heart activity is modulated by two 

neuromodulatory receptors types (acetylcholine and 

norepinephrine) of heart cells corresponding to the 

Parasympathetic (PNS) and Sympathetic (SNS) nervous 

system respectively. Stress leads to the activation of the SNS, 

resulting in the increase of heart rate and its force of 

contraction. As a result, the amount of blood circulates faster 

through the body in order to deliver immediate more oxygen 

to the organs as an attempt to eliminate the stressor.   

Various studies exist in the literature employing HRV 

parameters in order to study stress states [2-6]. However, 

most of the studies use only a subset of features (e.g. only 

HR, SDNN) without providing information on which are the 

most relevant HRV parameters on stress response or provide 

just statistical evidence on their reasoning. On the other hand, 

the investigation of all HRV measures provides a more 

complete picture of heart activity in SNS/PNS activation 

during stress conditions [5].   

In this study, the optimal combination of HRV parameters 

in detecting specific stress types induced in experimental 

conditions is investigated. These parameters feed a machine 

learning system in order to discriminate efficiently between 

stress and neutral states. The proposed methodology 

validation was performed establishing a thorough 

experimental protocol recording facial videos/ECG signals 

towards developing a reliable stress recognition system. 

TABLE I        EXPERIMENTAL TASKS AND CONDITIONS OF THIS STUDY. 

 Experimental phase 
Affective 

State 

Duration 

(min) 

 

Social Exposure    

1.1 Neutral (reference) N 1  

1.2 Interview (self-describing) S 1  

Stressful event recall    

2.1 Neutral (reference) N 1  

2.2 Recall anxious event S 1  

2.3 Recall stressful event S 1  

Cognitive load    

3.1 Neutral/stressful images S 2  

3.2 Stroop Colour Word Task S 2  

Stressful videos    

4.1 Neutral (reference) N 1  

4.2 Relaxing video R 2  

4.3 Adventure video S 2  

4.4 Psychological pressure video S 2  

Note: Intended affective state (N:neutral,S:stress,R:relaxed). 
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II. EXPERIMENTAL PROCEDURE AND DATASET 

A. Experimental procedure 

In order to investigate the effects of stress conditions, 

stressors were induced to the participants designed to 

simulate a wide range of everyday life conditions. The 

different stressors categorized in 4 phases (social exposure, 

stressful event recall, cognitive load, stressful videos) aiming 

to cover the underlying stress types they may cause. The 

experimental procedure (for more details about the procedure 

please read [4]) with tasks description, duration and their 

corresponding affective state is presented in Table I. 

B. Dataset of the study 

The population of this study was 24 participants (7 

women, 17 men) with age 47.3±9.3 years. The study was 

approved by the North-West Tuscany ESTAV (Regional 

Health Service, Agency for the Technical-Administrative 

Services of Wide Area) Ethical Committee. The dataset was 

collected during the second data acquisition campaign 

(SRD’15) of a research project related to a computational 

platform monitoring cardio-metabolic risk [7].  

III. METHODS 

A. ECG recording and preprocessing 

For the ECG recording, the patient’s skin was prepared 

using prepping gel and conductive paste. Two Ag/AgCl 

electrodes were placed in symmetric position of the chest 

corresponding to the leads V1 and V2 which they are 

considered as the most appropriate in order to acquire bipolar 

ECG recording [8]. 

The signal was detrended by subtracting time series 

polynomial fit and bandpass filtered. Spikes and artifacts (due 

to the subject’s activity/body movements, etc) were also 

suppressed with proper filters. A typical preprocessed ECG 

signal acquired during this study is presented in Fig. 2. The R 

components of the QRS complex were detected and the RR 

Intervals (RRI) were calculated (Fig. 2). The ectopic 

heartbeats (irregular heartbeats deviated from normal) were 

also detected and excluded by adopting the HRV signal 

approach [9]. (percentage change of 40% over the averaged 

previous 5 heartbeats). The RRI time series were interpolated 

to a frequency of
in
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B. HRV parameters extraction 

After the RRI extraction, temporal and spectral HRV 

parameters were calculated. Temporal HRV parameters were 

directly computed from RRI [10], whereas the spectral HRV 

parameters were estimated from the time-frequency 

representation (TFR) of the RRI timeseries. The TFR (Fig. 1) 

was estimated using a time-varying autoregressive model 

[11]. The signal x(t) can be expressed as 

1

p

k

k

x(t) a (t)x(t k) e(t)
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where ακ(t) are the time-varying autoregressive (TVAR) 

coefficients, p is the model order, and e(t) is Gaussian noise 

with zero mean and variance 2

n . The model order was 

selected using the Akaike criterion (AIC) and determined at 

order 18 leading to normalized spectral indices. The temporal 

update and evolution of (AR) coefficients were estimated 

using a Kalman filter algorithm [11] which is an optimal 

estimator in the mean-square sense. The adaptive time-

varying estimation of spectrum achieves enhanced spectral 

resolution compared to FFT-based spectrum [11], thus 

enabling reliable estimates even for shorter time periods. The 

produced spectrogram S(t,f) is discretized into resels 

(resolution elements) integrating the time interval of each 

overlapping moving window Δt [12].  

The HRV parameters that investigated in this study 

divided into time and frequency domain as follows: 

Time Domain: RR, SDNN, HRm, HRstd, RMSSD, NN50, 

pNN50, HRV triangular index, ECG envelope 

Frequency Domain: Total power, LF, HF, LF/HF, LFnorm, 

HFnorm, LF peak, HF peak 

All of them form the feature matrix X ∈ ℝ2 with 

dimensions NxM representing N samples and M features (e.g. 

a specific sample is provided as an M-dimensional vector

1 2( ) [ ( ), ( ),..., ( )]i i i M iX t f t f t f t= ) and Y ∈ ℕ  is the class 

vector (class 1: no stress, class 2: stress). 

C. Baseline removal and pairwise transformation 

For each participant, a relaxed period was established 

which carefully took into account when designing the 

research experiment. This period corresponds to each 

subject’s baseline which is removed from all subsequent 

feature analyses. This transformation generates a common 

reference across subjects providing data normalization [4].   

The problem of stress detection can be viewed as a 

ranking problem where the input is the feature matrix X and 

the class vector Y described in section IIB. In order to 

transform into a 2-class (classes: no stress, stress) 

classification problem, the pairwise transformation was used 

as introduced in [13]  

 
Fig. 2. An example of preprocessed ECG signal from this study, R peaks (red 

markers) and RR interval determination. 

 
Fig. 1. Time-frequency representation of RR intervals which is used for the 

estimation of spectral HRV parameters.  
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where i,j refer to the temporal indices of non-stress and stress 

periods respectively with all possible pairs of a specific case 

of the feature matrix. The pairwise transformation creates 

preference pairs of feature vectors and their labels sign(Y(ti)-

Y(tj)). If Y(ti)> Y(tj) then X(ti) X(tj) and this preference pair 

is a positive instance, otherwise, it is a negative instance (X(ti)

X(tj)). The preference pairs and their corresponding labels 

after transformation can be considered as instances and labels 

in a new classification problem which then can be performed 

with traditional classification schemes.   

D. Feature selection 

The most relevant and important HRV features are 

investigated and selected in order to improve the performance 

of stress anticipation. The ranking of feature importance was 

performed using the minimum Redundancy Maximum 

Relevance (mRMR) selection algorithm [14]. This algorithm 

evaluates the features’ importance ranking based on maximal 

relevance and minimum redundancy optimizing in terms of 

the Mutual Information Quotient (MIQ) criterion.  

IV. RESULTS 

The architecture of the proposed stress recognition system 
is presented in Fig. 3. Its input is the ECG signal and the output 
is the automatic decision on the 2 emotional states under 
investigation (stress, no stress classes).    

C. Feature evaluation 

The HRV parameters were evaluated for significant 

differences between neutral and stress states for the different 

tasks of the experiment. Comparisons among tasks for each 

phase was performed using as control state the neutral 

recording at the beginning of each phase. There are some 

HRV parameters with discriminative ability between the two 

states, however their behaviour is not present and consistent 

across all tasks.  Specifically, the most consistent HRV 

features are HRm, HRstd, total power, LF/HF, LFnorm which 

significantly increase and the features SDNN, RMSSD, 

NN50, pNN50 which significantly decrease in specific 

experimental tasks making them possible efficient features 

for stress anticipation.  

 
Fig. 3. Architecture of the ECG stress recognition system comprising of 5 subsystems: (a) preprocessing, (b) HRV feature extraction, (c) normalization, (d) 

feature selection, (e) machine learning.  

 

 
Fig. 4. An example of baseline (relaxed task) removal providing a common 

reference and unveiling effects of stress that were hidden due to great inter-

subject variability. 

 
 

 
Fig. 5. (Upper graph) Misclassification error (SVM, 10-fold cross validation) 
as a function of number of selected features and the selected number (11) of 

features. (Lower graph) Feature importance ranking according to RF and the 
selection of the most important 11 features (denoted with red columns).  



A significant consideration in order to reveal the effects 

of stress was the careful determination of a relaxed period in 

the experiment so as the subsequent features analyses are 

referred to this baseline. This is very important to eliminate 

the great inter-subject variability on stress response providing 

a common reference to each feature across subjects ensuring 

data normalization. The effects of this procedure on the mean 

HR (HRm) is presented in Fig. 4.   

After the baseline was removed and the feature matrix 

was transformed using the pairwise transformation (see 

section III.C) in order to transform the ranking problem into 

a 2-class [no stress, stress] classification problem. The 

mRMR feature selection algorithm (section III.D) was 

employed in order to estimate each feature’s importance 

ranking and to select a robust subset of top-ranked features. 

The algorithm minimizes the misclassification error of the 

10-fold SVM discrimination accuracy between the 2 classes 

(no stress, stress) (Fig. 5, upper graph) yielding the selection 

of 11 top ranked features. The 11-most important features 

(HRm, LF, NN50, LFnorm, HRstd, pNN50, LF/HF, RMSSD, 

HFnorm, total power, HRVtri) were selected for the problem 

under investigation (Fig. 5, lower graph). 

Then, the top-ranked selected features were evaluated in 

terms of their ability to discriminate between the two classes 

(no stress, stress). A 10-fold cross-validation scheme on 

sample basis was used with the KNN, Generalized Linear 

Model (GLM), Naïve Bayes (NVB), Linear Discriminant 

Analysis (LDA), Support Vector Machines (SVM), Random 

Forest (RF) classifiers. The results are shown in Table IV 

where RF outperforms all other classification schemes with a 

classification accuracy of 75.1%. Then, the system’s 

performance was investigated on the pairwise transformed 

selected features where the system’s performance improved 

noticeably reaching a classification accuracy of 84.4% using 

SVM. The performance results are presented in Table IV.   

V. DISCUSSION 

This study investigates the stress effects on HRV 

parameters and pursuits to identify the optimal combination 

of HRV features being able to detect reliably stress 

conditions. The HRV features were ranked in terms of their 

significance and relevance to stress anticipation leading to the 

selection of the 11 top-ranked features (HRm, LF, NN50, 

LFnorm, HRstd, pNN50, LF/HF, RMSSD, HFnorm, total power, 

HRVtri). 

The proposed system was evaluated on 24 participants 

and 11 tasks performing a research protocol for about 45 min. 

Despite the fact that a bigger sample would enhance the 

generalizability of the results, the number of tasks (11 in 

total) increased the available data for each participant. 

Besides, the proposed pairwise transformation enhance the 

dataset and it is an efficient way to address this kind of 

problems making the dataset proper for feeding traditional 

classification systems.  

The best performance achieved in the proposed stress 

recognition system only utilizing HRV parameters is 84.4% 

classification accuracy in a 10-fold approach. These results 

are promising as only ECG signal was used. Considering that 

stress is a complex state that can use information from 

multimodal sources in order to assess reliable stress levels, 

this accuracy could, under circumstances, be increased using 

other modalities in parallel.  

The interest of the scientific community on the usage of 

only one ECG channel makes these methods appropriate, as 

they can be conveniently used through wearable devices in 

daily monitoring. Further studies and increased sample size 

would increase the model’s reliability, accuracy as well as to 

estimate the importance of the involved HRV parameters. 

Even though cardiac signals contain limited information, this 

study indicates that the usage of only ECG recordings could 

serve efficiently in stress detection. 
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TABLE IV  CLASSIFIERS PERFORMANCES OF DISCRIMINATION ACCURACY 

FOR THE SELECTED TOP-RANKED HRV FEATURES  

Classifier 
Sample basis 

Accuracy (%) 

After pairwise transform 

Accuracy (%) 

KNN 66.7 73.8 

GLM 56.2 76.2 

NVB 61.5 64.9 

LDA 65.6 69.9 

SVM 73.6 84.4 

RF 75.1 70.0 

 

 

 
 

 


