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Abstract�A person’s well-being status is re�ected by their face
through a combination of facial expressions and physical signs.
The SEMEOTICONS project translates the semeiotic code of the
human face into measurements and computational descriptors
that are automatically extracted from images, videos and 3D
scans of the face. SEMEOTICONS developed a multisensory
platform in the form of a smart mirror to identify signs related to
cardio-metabolic risk. The aim was to enable users to self-monitor
their well-being status over time and guide them to improve
their lifestyle. Signi�cant scienti�c and technological challenges
have been addressed to build the multisensory mirror, from
touchless data acquisition, to real-time processing and integration
of multimodal data.

Index Terms�Cardio-metabolic risk, unobtrusive well-being
monitoring, multimodal data integration, 3D face detection and
tracking, 3D morphometric analysis, psychosomatic status recog-
nition, multispectral imaging, breath analysis.

I. INTRODUCTION

THE principal communication channel among humans is

the face; it is a mirror of physical conditions, mood and

emotions. As such, the face is the basis of medical semeiotics,

revealing the well-being status of an individual through facial

expressions and a combination of physical signs (e.g., subcu-

taneous fat, skin color). This paper describes how the EU FP7

project SEMEOTICONS (http://www.semeoticons.eu/) moves

medical semeiotics to the digital realm, translating the semei-

otic code of the face into measurements and computational

descriptors obtained from images, videos and 3D scans of

the human face. The developed Wize Mirror, an intelligent

multisensory device, can detect and monitor facial signs over

time correlating them with cardio-metabolic risk and providing

personalized guidance to users on how to improve their habits.

Cardiac-related conditions are the leading cause of mortal-

ity worldwide, therefore, a device that can monitor cardio-

metabolic risk is an important tool to maintain a healthy

lifestyle.
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Other smart mirrors have been proposed for different pur-

poses, such as virtual clothes �tting [1], make-up rendering [2]

and biofeedback [3]. The latter paper described a multimodal

system using an interactive mirror and biomedical sensors

(camera, hand-held ECG, blood pressure and skin temperature

sensors and pressure pad). The main difference between [3]

and the device developed in this work is that the Wize

Mirror integrates a user-friendly interface (Fig. 1) with breath

composition analysis and contactless imaging of facial features

for advanced multimodal physiological analysis. The different

sensors collect heterogeneous data, including (multispectral)

images, videos, 3D scans and gas concentration signals, from

the user in front of the mirror. Dedicated algorithms process

the data, and extract colorimetric, morphometric, biometric

and compositional descriptors of facial signs. According to

the semeiotic model of the face for cardio-metabolic risk [4],

the descriptors include:

� 3D morphological face descriptors related to asymmetry,

swelling, overweight and obesity computed from a 3D

reconstruction of the face (Section IV).

� Facial descriptors revealing emotional status including

stress, anxiety and fatigue, captured via 2D expression

analysis on video sequences (Section V).

� Physiological parameters such as respiratory rate, heart

rate and heart rate variability, all estimated from videos

by detecting subtle color changes and cyclic movement

during the observation time (Section VI).

� Descriptors associated with cholesterol, metabolic end

products found in diabetes and endothelial dysfunction,

evaluated using a novel multispectral imaging system

assessing skin tissue, including microcirculation (Sec-

tion VII).

� Exhaled gas composition, measured using a novel gas-

sensing device, which gives quantitative feedback about

noxious habits such as smoking and alcohol intake (Sec-

tion VIII).

All these descriptors are integrated to de�ne a virtual

individual model and an individual wellness index. This index

enables a user to self-monitor and self-assess their well-being

status over time. The Wize Mirror also offers personalized

user guidance towards the achievement and maintenance of a
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Fig. 1. The Wize Mirror prototype; on the left the multisensory rack, with
from top to bottom: 5 multispectral imaging cameras (MSI), and a 90 fps
color video camera (CV) and depth sensor (DS).

positive lifestyle.

Designing and building the Wize Mirror required solving

signi�cant scienti�c and technological challenges, from touch-

less data acquisition to real-time processing of multimodal data

to obtain reliable measurements correlated with clinical risk

factors. Section II introduces the sensing modalities used by

the Wize Mirror. It also brie�y describes how the implemented

processing work�ow integrates all these multimodal data with

the calculated cardio-metabolic risk descriptors and the mul-

timedia interface enabling ubiquitous and unobtrusive user

interactions. The taxonomies, describing the data processing

�ow and the data sources, are introduced to guide the reader

through the intricacy of the system detailed in the subsequent

sections. Section III describes the processing multimedia back-

bone of the system, that is used by the different Wize Mirror

sensors for user detection, recognition, positioning, labelling

and 3D measurement. The details of each multimodal pro-

cessing subsystem are presented in Sections IV-VIII. Finally,

the de�nition of the virtual individual model integrating all

calculated risk descriptors is presented in Section IX and the

conclusions are described in Section X.

II. MULTIMODAL DATA INTEGRATION

Different data fusion and multi-sensor integration tasks are

performed on the Wize Mirror, including blending of 3D and

2D inputs, merging multispectral images and building the

virtual individual well-being model.

This section brie�y describes the sensing modalities used

in the mirror and how they correspond to different semei-

otic model descriptors. The sensors’ interaction structure and

overall data�ow are also presented to aid the description of

the system integration strategy. The details of each sensing

modality and the corresponding data analysis method are

described in the subsequent sections. The multiple sensors and

computed descriptors are given in Table I. Additionally, the

table lists the sections of the paper where the details of the

corresponding data analysis are given.

A multi-sensor integration is performed using 3D data

(obtained from the depth sensor) to simplify the face detection

and labelling process on the 2D data from the other cameras.

This makes the system more robust and ef�cient. A common

TABLE I
THE WIZE MIRROR SENSORS AND THE SEMEIOTIC MODEL DESCRIPTORS

CALCULATED BASED ON THE CORRESPONDING SENSING MODALITY.

Sensor Descriptor Section

Depth Sensor (DS) 3D Face Morphology (3DFM) IV

Color Video (CV) Facial Descriptors (FaDe) V

Color Video (CV) Physiological Parameters (PhPa) VI

Multispectral Imaging Cameras (MSI) Multispectral Measurements (MuMe) VII

Wize Sniffer (WS) Exhaled Gas Compositions (ExGC) VIII

stage for the analysis is face detection, tracking and facial

landmark estimation (see Fig. 3). Face detection and tracking

is only performed once using the data from the depth sensor

rather than on each data stream. This approach is more robust

to varying illumination. In this method, the user is detected

�rst in 3D space, and a model face mask is matched to the

depth sensor data to estimate the position and orientation

of the user’s face. Subsequently, the positions of prede�ned

facial landmarks are calculated (see Section III). Then, the 3D

face coordinates are projected into the 2D frames of different

cameras using the intrinsic and extrinsic parameters of the

cameras. These parameters are obtained when the mirror is

assembled using camera and stereo calibration techniques ([5]

and [6]). Using the proposed work�ow, the face detection and

2D facial landmark estimation stage is reduced to a single

process using the depth data and six projections of the matched

3D face mask into the corresponding 2D image space (see

Fig. 2). The projection is performed by multiplying each 3D

vertex, given in homogeneous coordinates, of the matched

face mask by a camera projection matrix M = A [RjT ] built

from 3x4 extrinsic parameter matrix (encoding mask rotation

R and translation T ) and 3x3 matrix A describing the intrinsic

camera parameters:
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where u=w and v=w represent the 2D coordinates in the image

reference systems; x; y and z are the 3D point coordinates

from the depth sensor reference system; R is a 3x3 rotation
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where f is the focal length; � is the skew parameter; and

(u0; v0) are the coordinates of the principal point.

The computational descriptors of face signs (given in Sec-

tion I) are integrated into the virtual individual model to build

a representation of the users status, which is consistent with

cardio-metabolic risk (see Fig. 3). Data fusion techniques

are used to synthesize the wellness index, a non-diagnostic
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Fig. 2. Face detection and tracking performed on depth data and projected into
multiple 2D images from different cameras. The depth sensor is highlighted
in orange (DS), color video camera is highlighted in green (CV) and the
�ve multispectral imaging cameras are shown in blue (MSI). Small colored
boxes on top (M1 to M6) represent different camera projection matrices
calculated using camera calibration. They are applied to the detected face
point coordinates given in the depth sensor reference system to convert them
into each camera’s reference system.

estimation for self-assessment and self-monitoring of cardio-

metabolic risk. Conceptually, the values obtained from the

analysis can be seen as the components of a state vector

moving in a multidimensional well-being state space. Sub-

sequently, the model is mapped into three separate wellness

subspaces related to physical wellness, emotional wellness and

lifestyle habit wellness (see Section IX for details).

To facilitate validation of the Wize Mirror subsystems and as

part of the mirror development a dedicated SEMEOTICONS’

Reference Dataset (SRD) was built. The SRD includes all

the modalities described in this paper as well as the results

of reference clinical tests capturing 46 different physiologi-

cal parameters. Additionally, 12 behavioral and psychometric

parameters were obtained using clinically validated question-

naires. The reference dataset was collected in two acquisition

campaigns conducted in May 2014 (SRD’14) and May 2015

(SRD’15) at the National Research Council of Italy in Pisa.

SRD’14 consists of 23 subjects, including 16 males and 7

females, aged between 25 and 61 years. The mean age is 45

years and the standard deviation (SD) is 11 years. SRD’15

consists of 26 subjects, including 14 subjects (11 males and 3

females) from SRD’14, aged between 32 and 62 years, with a

mean age of 48 years (SD 10 years). The remaining 12 subjects

(8 males and 4 females) in SRD’15, aged between 29 and 61

years (mean age of 46 years and SD of 9 years), were only

recruited for the second campaign. SRD’15 was collected dur-

ing system development, with the methods validation based on

SRD’14, leading to sensors upgrades and changes in the data

processing methods. Other publically available datasets were

used to further support the Wize Mirror subsystems validation.

Information about the datasets used for the validation of each

method is given in the corresponding section.

III. 2D/3D MEASUREMENT FACILITATION

The vast majority of measurements performed by the Wize

Mirror are based on data acquired from multiple imaging

devices. To facilitate unobtrusive data acquisition and syn-

chronization of the different Wize Mirror sensors, there is

Fig. 3. Multimedia data work�ow: from sensors, preprocessing and analysis
to virtual individual model calculation.

a need for user face detection, 3D head pose tracking and

subsequent face image segmentation (Section III-A). More-

over, to detect and monitor facial changes due to weight,

swelling, local growth and facial asymmetry and to perform

other bio-morphometric analyses over time, the Wize Mirror

is able to perform 3D face reconstruction (Section III-B).

Additionally, a 3D face labelling stage is needed to provide

different subsequent tasks with the approximate positions of

important facial landmarks (Section III-C). A bespoke face

recognition system is also implemented to facilitate user access

control. A detailed description of the face recognition module

can be found in [7].

A. Face detection and tracking

Face detection and tracking are performed using depth data

from a range sensor as the only input. The proposed face

detection and 3D head pose estimation are based on the

approach described in [8], the tracking method presented in

[9], and a personalized 3D labelled mask explained in Sections

III-B and III-C. First, a random forest framework is used to

classify depth image patches between two classes (head and

no head) and to perform regression in the continuous spaces

of the head position and orientation. Then the detection noise

is reduced using a Kalman �lter method [9]. Finally, the 3D

mask is registered to the input range data using an iterative

closest point algorithm [10] with the previously estimated pose

used for initialization. Mask registration improves the spatial

accuracy of the pose estimation and provides the approximate
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Fig. 4. Results of the face tracking procedure on a sample of video frames.
The 3D labelled mask is projected into 2D images after head pose estimation.

locations of different facial landmarks, such as the eyes, nose,

mouth and chin (see the results in Fig. 4). As all the cameras in

the system were previously calibrated with respect to the range

sensor (as indicated in Section II), the registered 3D mask

can be projected into images captured by any of the cameras

installed on the Wize Mirror, enabling face segmentation

and landmark location in different video streams. This step

avoids the redundancy of performing face detection in each

video. The computations are reduced because face detection

is performed on the depth data stream only, subsequently

transforming the vertices of the annotated 3D face mask using

rigid transformations and the projective camera model.

B. 3D face segmentation and reconstruction

As a preprocessing step, a face segmentation method was

proposed as the �rst stage of the reconstruction method. The

face segmentation is based on the face pose estimation. With

the calculated pose, a 3D model is transformed to match the

input depth data. The matched model de�nes the scan regions

which are subsequently used for the 3D face reconstruction.

The implemented reconstruction approach is based on the

Kinect fusion method [11]. Originally, the reconstruction

method was designed to reconstruct static scenes of rigid

objects by moving a range sensor and capturing different

points of view of the scene. The reconstruction requirements

for the Wize Mirror are different, as the sensor is in a �xed

position and the subject is moving. In the proposed algorithm

the relative motion of the head is reversed with respect to the

sensor to estimate the point of view. This is achieved by using

only the output from the face segmentation. More details about

the segmentation and reconstruction method can be found in

[12].

For the face morphological analysis explained in Section

IV the mesh to be processed has to be a manifold, with

no holes and no duplicated points or triangles. Although the

reconstructed meshes obtained with the mentioned methods

are visually good, they, sometimes, do not fully meet all the

requirements for a correct morphological analysis (Section IV)

of the 3D reconstruction. Therefore, the re-meshing method

[13] was applied to the resulting 3D point clouds. Samples of

the 3D reconstruction are shown in Fig. 5.

C. 3D face labelling

Among the previous works on landmark localization re-

ported in the literature, one interesting example is the method

described in [14], which uses a point distribution model

and performs face detection as the �rst stage. The model

Fig. 5. Results of 3D the face reconstruction and face labelling for two
subjects.

presented in [14] did not include landmarks on the mouth

or chin. The labelling process for the Wize Mirror produces

the approximate positions of the center of the eyes, tip of the

nose and centers of the mouth and chin on the reconstructed

face. This labelling is an important requirement for morpho-

logical analysis, multispectral measurements and analysis of

the psychosomatic status as the relevant processing is based

on the facial regions de�ned by these landmarks. The proposed

labelling method uses a 3D-deformable annotated model. This

model is registered to the reconstructed face as described in

[15], which explains how to build the model. The 3D faces

are represented by a low-dimensional shape space vector of the

statistical shape model, which is calculated through a model-

based surface registration process. After the deformable �tting,

the labels are near the real landmarks. Then, the closest point

to the label from the mesh is selected for each label. The

method was tested on SRD’15, and all the reconstructions were

correctly labelled using the proposed method. Examples of the

results are shown in Fig. 5.

IV. 3D FACE ANTHROPOMETRIC QUANTIFICATION

Anthropometry is the study of body and face morphology.

Anthropometric measurements are usually performed manu-

ally by trained personnel; therefore, they are often affected

by inter- and intra-observer variability. Leslie G. Farkas, a

pioneer of modern craniofacial morphology, gathered a set of

facial measurements across different ethnic groups, including

distances, angles and areas enclosed by anatomical landmarks.

Farkas also studied the relations of some syndromes with these

measures [16]. Most face morphometry methods are based

on 2D images rather than 3D data and require the accurate

location of facial landmarks.

One of the challenges of SEMEOTICONS is the automatic

computation of geometric descriptors of 3D facial data, ac-

quired via a low-cost scanner, to monitor and quantify an in-

dividual’s temporal facial shape changes in relation to cardio-

metabolic risk and body fat accumulation. There is a relatively

large number of techniques reported in the literature based on

a sparse set of 2D facial landmarks (often obtained by manual

annotation); [17] proposes a method for the prediction of nor-

mal and overweight females based on body mass index (BMI).

This method uses 2D features (Euclidean distances, angles,

and face areas) computed on selected soft-tissue landmarks.

The study was extended in [18] by investigating the relation

between visceral obesity and facial characteristics to determine

the best predictor of normal waist and visceral obesity. Recent
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Fig. 6. A visualization of the curves used to de�ne the face measurements
implemented in the Wize Mirror. From left to right: MorphoE, MorphoANN,
MorphoAB.

technological advances of the depth sensors for 3D acquisition

and modeling fostered the employment of digital descriptors

from shape analysis to study the morphometric properties on

3D models [19]. Promising results on how to quantify the

facial shape variation related to weight gain/loss, are reported

in [20], where complex shape descriptors, from the geometric

theory of persistent homology, were computed on a subset

(23 points) of the Farkas landmarks, and tested on a synthetic

dataset of 3D faces.

A. Digital measurements

The Wize Mirror is intended to be used by people for the

self-assessment of their well-being. Overweight and obesity

are among the most relevant factors of cardio-metabolic risk.

The requirements of the shape measures are: (i) not requiring

the detection of a large number of landmarks (dif�cult, espe-

cially for poorly geometrically characterized landmarks); (ii)

being well-de�ned, easy to implement, and computationally

ef�cient; (iii) being independent of rotation, translation, and

scale; (iv) being robust to noise and pose estimation errors.

The digital measurements implemented are:

� MorphoE: the length of the maximal curve among those

given by the intersection between the face mesh and a

family of concentric Euclidean spheres, centered in the

nose tip (Fig. 6);

� MorphoG: the geodesic analogue of MorphoE;

� MorphoANN: the area of an annuli at the border of the

face mask (likely affected by an increase in subcutaneous

fat);

� MorphoAB: the length of a geodesic path in the neck

region joining two speci�c points, under the ears.

MorphoE, MorphoG, and MorphoANN require the detection

of only three landmarks (eyes and nose tip), which are

automatically located on 3D face meshes (Section III-C). The

distance between eyes is used to normalize the measures with

respect to the user. MorphoAB requires the location of an

additional landmark (chin).

B. 3D face measures and physical parameters

Experiments on the reference dataset SRD’15 established

the relation between the described digital measurements and

a set of physical parameters related to cardio-metabolic risk.

The subjects had their face reconstructed using both the low-

cost depth sensor integrated in the Wize Mirror (see Section

III-B) and a commercial portable structured light scanner

(Artec Eva [21]).

The agreement between the reconstructed 3D faces captured

by the two scanning platforms was assessed through the intra-

class correlation coef�cient (ICC) [22]: the ICC values indicate

strong agreement for MorphoE, MorphoG and MorphoANN

(respectively, :913, :894, and :775), and moderate agreement

for MorphoAB (:678).

A set of physical parameters was collected for each subject,

according to the literature ([23], [24]): weight, BMI, waist

circumference (WC), hip circumference (HC), neck circum-

ference (NC), and fat mass (FM). The proposed digital mea-

surements were computed on facial meshes obtained from both

the depth sensor, as described in SectionIII-B, and the Artec

scanner. The Pearson’s correlation coef�cients between the

digital measurements and the physical parameters are reported

in Table II for the Artec scans and in Table III for the depth

sensor scans. The correlation patterns are similar, indicating

that the quality of the depth data does not signi�cantly affect

the geometric descriptors.

In both cases, all facial features are highly correlated with

weight, BMI and NC (up to r = 0:795), and all correlations

are highly signi�cant. The correlation with WC and HC is

slightly lower but still signi�cant. The correlation for FM is

not signi�cant (p-value> 0:1), which may be related to the

size and composition of the sample.

TABLE II
PEARSON’S CORRELATION COEFFICIENTS AND p VALUES BETWEEN THE

PHYSICAL PARAMETERS AND FACIAL FEATURES COMPUTED ON FACE

MESHES ACQUIRED USING THE ARTEC SCANNER.

MorphoE MorphoG MorphoANN MorphoAB

Weight r .795 .784 .687 .668
p .000 .000 .000 .000

BMI r .716 .714 .602 .526
p .000 .000 .002 .010

WC r .559 .553 .425 .519
p .006 .006 .043 .011

HC r .564 .547 .462 .460
p .006 .008 .030 .031

NC r .792 .752 .674 .621
p .000 .000 .000 .002

FM r .151 .155 .040 .023
p .491 .481 .855 .917

V. EMOTIONAL STATUS

The Wize Mirror includes methods to analyze facial cues

and physiological measures that are related to anxiety, stress

(Section V-A) and fatigue (Section V-B).

A. Stress and anxiety detection

Stress and anxiety are states of emotional strain that can

signi�cantly affect a person’s quality of life. According to the

literature, there are distinct facial cues that are representative

of stress/anxiety that appear in the facial areas of the eyes

and mouth, and in the motion pattern of the head [25]. For

contactless detection of these cues, a high-resolution camera
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TABLE III
PEARSON' S CORRELATION COEFFICIENTS ANDp VALUES BETWEEN THE

PHYSICAL PARAMETERS AND FACIAL FEATURES COMPUTED ON FACE
MESHES OBTAINED FROM THE MIRROR3D SCANNER.

MorphoE MorphoG MorphoANN MorphoAB
Weight r .733 .719 .669 .675

p .000 .000 .001 .001
BMI r .711 .716 .651 .671

p .000 .000 .001 .001
WC r .614 .619 .547 .579

p .002 .002 .008 .005
HC r .569 .568 .518 .557

p .007 .007 .016 .009
NC r .788 .781 .778 .648

p .000 .000 .000 .001
FM r .272 .316 .211 .349

p .221 .152 .347 .112

is embedded in the Wize Mirror. Advanced video processing
algorithms are used to extract and quantify the appropriate
facial information to asses a subject's psychophysical status in
a reliable and effective manner. The algorithms used for face
detection, tracking and region of interest (ROI) segmentation
are described in Section III.

The head motion algorithm can detect and quantify the
movement of a person's head based on a 2D video �le. An
ROI, de�ned as the region of the face between the eyes
and mouth, is determined, and the landmarks on the four
edges of the ROI are tracked. This ROI was selected as it
is characterized by the absence of eyes and mouth movements
due to facial expressions; thus, the resulting measurement
is only related to head motion. The Kanade Lucas Tomasi
(KLT) tracker [26] is applied to track the landmark points, thus
creating a time series of the temporal evolution of positions.
These time series describe the magnitudes of head motion
and velocity, as well as their projections in the horizontaland
vertical directions.

Eye-related features are also estimated by the Wize Mirror
to detect stressful emotional states [27]. These features,apart
from stress, can be modulated by environmental conditions
such as temperature and illumination conditions. Active ap-
pearance models (AAM) [28] are used to specify landmarks
in the eye perimeters that are tracked throughout the video
recording. Their distances and relative distribution create a
time series that provides eye activity information, including
measures of the eye aperture and the rate of blinking, which
are known to be correlated with a stressed emotional status
[25][27].

Mouth activity is also analyzed in terms of dense optical
�ow [29] to obtain a description of the motion patterns of
the lips. Optical �ow is applied only on the Q channel of the
YIQ colorspace of the mouth ROI, in which the lips appear
brighter than the surrounding tissue [30]. The maximum
motion magnitude over the entire video is taken as the source
for subsequent feature extraction, including features from the
time and the frequency domains [31]. An illustrative example
of the analysis framework and the resulting signals is shown
in Fig. 7.

Fig. 7. Left panel: Facial ROI (blue: face, green: mouth) and landmarks (red:
eye-related landmarks, yellow: head motion/speed landmarks)determination
used for stress and anxiety detection. Right panel: Time series of eye aperture
(top left), mouth motion (bottom left), head motion (top right), and head speed
(bottom right).

These methodologies and feature estimating algorithms
were tested onSRD'14 and a subset of 24 subjects from
SRD'15. Each subject performed 12 tasks (3 neutral, 8
stress/anxiety and 1 relaxed states), providing a good initial
dataset to evaluate stress/anxiety. Different stressors were used
during both acquisition campaigns to investigate various types
of stress and anxiety. These features were subsequently used
to develop the virtual individual model and to de�ne the
personalized wellness index.

B. Fatigue detection

The Wize Mirror computes a fatigue score that depends on
the frequency and duration of yawns, weighted with respect to
the time-point of video capture. The yawn detection algorithm
is based on real-time tracking of 68 facial landmarks [32].
Yawns are detected by matching landmark-based geometric
features of each video frame with templates representing
yawning and neutral expressions. LetE be a stored expression
that is represented by a set of templatesE = ( T1; :::; TM ).

Then, letC be the current expression. The similarity score
between the expressionsC and E is the sum of similarity
scores betweenC and the set of templates ofE:

s(C; E) =
MX

i =1

s(C; Ti )

where

s(C; Ti ) = exp( �
kv(C) � v(Ti )k

2
2

�
)

v is a feature vector encoding landmark positions,k�k2
represents theL 2 norm, and � is a constant controlling
the smoothness of the score distribution. In the experiments
reported � = 10 was used. Two vector representations of
expressions were implemented:

� A feature vector including the coordinates of all 68
landmarks de�ned in the Multi-PIE dataset [33]).

� A feature vector encoding information extracted from the
mouth region, including: bounding box ratio and distance
of the mouth landmarks from the mouth centroid.

The probability that an expressionC represents a yawn is

p(C; Y) =
s(C; Y)

s(C; Y) + s(C; N )


















