A Self-Similar and Sparse Approach for
Spectral Mosaic Snapshot Recovery

Grigorios Tsagkatakis' and Panagiotis Tsakalides'-?
"nstitute of Computer Science, Foundation for Research and Technology Hellas (FORTH)
2Computer Science Department, University of Crete
Heraklion, Crete, Greece

Abstract—Traditional Hyperspectral Imaging (HSI) architec-
tures face a fundamental trade-off between spatial, spectral
and temporal resolution, requiring repetitive scanning of the
scene. A new generation of Snapshot Spectral Imagers exploit
Spectrally Resolvable Detector Arrays to sample the entire
hyperspectral cube from a single frame. However these systems
are also limited since only a single band is captured by each
pixel. In this work, we propose a novel approach for estimating
the missing measurements, by exploiting the self-similarities
and the sparsity of representations in appropriate dictionaries,
without the need for additional training examples. We demon-
strate the high quality reconstruction of the proposed method
in cases where we artificially induce the particular sampling
pattern, as well as in cases where the frames are acquired by
snapshot spectral mosaic sensors.

1. Introduction

Hyperspectral Imaging (HSI) involves capturing images
from multiple spectral bands, over multiple time instances,
providing sequences of 3D spatio-spectral hypercubes de-
scribing the composition and dynamics of a scene. Acquir-
ing the three-dimensional data, two spatial and one spectral,
at high frame rates, while using two-dimensional detectors,
introduces a fundamental trade-off between spatial, spectral
and temporal resolution.

The discrepancy between the requested and the available
dimensionality of detectors has sparked different philoso-
phies in hyperspectral image acquisition system design,
which unfortunately share a common shortcoming related
to scanning requirements for constructing the complete 3D
hyperspectral datacube. The limitations associated with this
trade-off are responsible for a number of issues that hin-
der HSI performance, including slow acquisition time and
motion artifacts [1]. At the same time, the miniaturization
of imaging systems mandates that novel designs should be
free of mechanical parts, such as moving mirrors, which can
increase the complexity, size and cost [2].

Unlike traditional architectures such as push-broom and
whisk-broom, Snapshot (or Simultaneous) Spectral Imaging
(SSI) systems acquire the complete spatio-spectral hyper-
cube from a single or a few integration periods (frames)
[3]. One prominent example of an SSI architecture is

Snapshot Mosaic Multispectral Imaging, also known as the
Hyper/Multi-spectral Color Filter Array, which relies on the
use of Spectrally Resolved Detector Arrays (SRDA). In
SRDA, each detector element acquires light from a very
specific spectral region, which produces a sparsely sampled
hypercube [4], [5].

While SRDA systems achieve a new operational point in
terms of spatio-spectral sampling rate, they must address the
challenges that arise due to the dramatic spectral undersam-
pling associated with each pixel. This is clearly manifested
in figure 1 which presents a snapshot mosaic (top), the
associated spectrally undersampled frame (middle), and the
concatenated full spatial resolution, spatially undersampled,
frame (bottom), generated by selecting only the pixels asso-
ciated with a particular band. The images demonstrate the
noisy patterns in the mosaic frame due to the spatio-spectral
sampling pattern, the dramatic lack of measurements in
the undersampled frame, and the particularly low spatial
resolution of the band-specific frame.

In this work, we propose a novel recovery mechanism
which is able to estimate the missing spectral measurements
associated with each pixel by exploiting the correlations
that exists across different scales in hyperspectral images.
The rest of the paper is organized as follows: Section 2
provides a brief description of the state-of-the-art while
Section 3 presents the proposed recovery mechanism. Sec-
tion 4 provides some experimental evidence related to the
recovery capabilities of the proposed method, while the
paper concludes in Section 5.

2. State-of-the-art

In snapshot spectral imaging, multiplexing in the spatial
domain is considered through diffraction gatings [6], [7],
coded apertures [8], [9], or spatial light modulators [10] in
order to obtain a projection of the 3D data (two spatial
and one spectral dimensions), while the multispectral or
hyperspectral cube is reconstructed post-acquisition. Other
methods for SSI employ additional hardware such as prisms
[11], which introduce challenges in terms of calibration, can
lead to distortions, and can make the overall design less
robust.

In this work we explore the concept of Sparse Repre-
sentations (SRs) for modeling and recovery of the sparsely



Figure 1: Snapshot mosaic frame (top), high-spatial/low-
spatial resolution image at a particular band (middle), and
concatenated low-spatial/high spectral frame (bottom). Ob-
servation of these images showcases the artificially increased
spatial frequencies of the snapshot mosaic, the dramatic lack
of pixel values for a particular band, and the significantly
degraded resolution of the concatenated frame.

sampled hypercube. SRs have been considered for a wide
range of imaging problems including super-resolution of
grayscale [12] and hyperspectral [13] imagery, denoising
[14] and classification [15] of hyperspectral images, achiev-
ing very promising results, by exploiting dictionaries learned
from training sets or the query image itself [16].

For demosaicing SRDA frames, a generalized inpainting
method which assumes the spatial sparsity under the un-
decimated discrete wavelets transform and spectral sparsity
under the discrete wavelet transform was recently proposed
[17]. In another approach, recovery was posed as a low
rank recovery problem where a non-negative low rank ma-
trix completion framework was coupled with a randomized
resampling for estimating the missing spectral/spectral ele-
ments [18].

3. Recovery Mechanism

In this work, we explore two highly influential concepts
of signal and image modelling for addressing this challenge,

namely, the notions of self-similarity and sparsity. Self-
similarity refers to the assumption that similar patterns
appear at different scales within an image, while sparsity
suggests that image patches can be represented by a limited
number of elements contained in appropriately generated
dictionaries. For the problem of recovering the missing
spectral profiles for each pixel, we propose exploiting the
sparsity of the spectrally undersampled patches in dictio-
naries generated by the same image at a lower spatial, yet
higher spectral, scale.

Figure 2 presents a visual illustration of the proposed
recovery mechanism. In the figure, one can observe two
processing paths: the one indicated by the light blue arrows
corresponds to the process of generating the query elements,
while the path indicated by the orange arrow corresponds
to the process of generating a dictionary which exploits
self-similarity across scales. The term superpixel refers to a
cluster of physical pixels that collectively capture all spectral
bands and whose completion is the objective of this work.

Undersampled Superpixel

Low Resolution Hypercube

T
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Figure 2: Block diagram of the proposed recovery architec-
ture.

3.1. Self-similarity

Self-similarity refers to the existence of similar struc-
tures across different scales in an image due to the high cor-
relation that typically characterize natural images. Formally,
let Y € R™1Xn2%b be the full spatio-spectral resolution im-
age we wish to recover, Q € R™ Xn2xb  the undersampled
hypercube associated with the particular sampling pattern.
We also consider Z € Rv1Xv2*0_ where v; = n;/b and
vy = ny/b, which is the full spectral resolution hypercube.
Each v; X vy superpixel of Z is produced by selecting only
the pixels associated with a particular band from the input
spectral mosaic.



The concept of self-similarity in this work suggests that
a fully sampled hypercube patch y; can be represented in
a collection of elements d;, gathered in a dictionary D,
which is constructed by collecting hypercube patches from
the low-spatial, full-spectral frames Z, i.e., we collect full-
spectral resolution elements z; where each element is a
concatenation of 27"+ 1 b-dimensional neighboring spectral
pixels z; = vec(z(x — t,...,x +t,y — t,...,y +t)) centered
around each spatial location (x,y).

The query vectors q; are similarity generated by extract-
ing hypercube patches from Q. Although the query vector
q; and the dictionary elements d; have the same spatio-
spectral dimensionality, only 27"+ 1 < T'b elements of the
query vectors are measured. Recovery based on the notion
of self-similarity is introduced by seeking representation
coefficients w such that the full spectral resolution q; we
seek are generated according to q; =~ Dw; Vi € ny X ns.

3.2. Sparse models

Given the full spectral resolution vector q; and the
dictionary D, the objective of sparse coding is to identify
a coding vector w; € R¥ such that §; ~ Dw,; and
[|lwi|lo < K. However, the true query vector q; contains
only a limited number of (spectral) measurements due to the
sampling pattern of the detector. The sparse representations
framework suggest that we can still estimate the full spec-
tral resolution vector by utilizing the sparse representation
found on an appropriately subsampled dictionary D, having
measurements only at the same bands as q;

Formally, given the query vector q; and the subsampled
dictionary D, the estimation of w; is achieved by solving:

min ||q; — Dw;||2 subject to ||w;llo < K ()

which can be solved by greedy approaches like the Orthogo-
nal Matching Pursuit algorithm [19]. Alternatively, the non-
zero counting pseudo norm ¢y can be replaced with the
convex ¢1-norm and the problem in Eq. (1) becomes the
LASSO [20] minimization given by:

H‘lhi,IlHqi*DWiHZ‘i'/\HWHl 2

where ) is a regularization parameter controlling the impact
of sparsity on the solution. Once the coding vector is identi-
fied, the full spectral resolution vector can be estimated via
q; = Dw;. The full spatio-spectral resolution hypercube is
estimated by performing this process of all spatial locations.

To generate the dictionary, one can resort to specific
algorithms such as the K-SVD [21] which consider all
available training data and identify a pre-defined number
of dictionary elements that support the sparse coding of the
query vectors. Although such a process can provide some
guarantees regarding the sparsity of the representation, the
process involves a computationally demanding minimization
process which makes it impractical for the problem we con-
sider. Instead, we apply a K-mean clustering algorithm that
selects the K most representative examples that constitute
our dictionary.

4. Experimental results

To demonstrate the merits of the proposed recovery
mechanism, we consider two sets of results. In the first
set, full spatio-spectral resolution hypercubes are available !
[22] which allows the quantification of the recovery perfor-
mance, while in the second set, no reference hypercubes
are available. In both cases, we consider recovery of mean-
subtracted 16 and 25 spectral band hypercubes, dictionaries
consisting of K = 1000 elements, while the regularization
parameter in Eq. (2) is set to A = 1073. As a baseline
method, we consider the spectral frames estimated by linear
interpolation of the low spatial resolution hypercubes Z.

Figure 3: 16 band flowers hypercube. Top: full resolution
images of bands 6 and 14. Middle: Linear interpolated (32.1
dB). Bottom: Recovery by proposed method (35.9 dB).

Figures 3, 4 and 5 depict representative spectral frames
from two sequences of 16, 16, and 25 spectral bands, respec-
tively, where the top rows present the ground truth frame,
the middle rows show the interpolation results, and the
bottom rows show the frames reconstructed by the proposed
method, while the average PSNR over the spectral bands is
also reported.

For the 16 band cases in Figures 3, 4, the results
achieved by our method are of very high quality, demon-
strating most of the high frequency detail information shown
in the ground truth images. On the other hand, the frames
produced by the interpolation method clearly demonstrate
the shortcomings of the method in the estimation of missing
pixels, resulting in blurry frames. This limitation is very
clear in the target region shown in Figure 3 and the flowers
part in the center of the images in Figure 4.

1. Columbia Multispectral Image Database, http://www.cs.columbia.edu/
CAVE/databases/multispectral/



Figure 4: 16 band Chart and stuffed toys hypercube. Top:
full resolution images of bands 2 and 10. Middle: Linear in-
terpolated (25.4 dB). Bottom: Recovery by proposed method
(30.9 dB).

For the 25 band case shown in Figure 5, we observe
that although important features are correctly estimated by
our method, the proposed scheme also introduces artifacts
in the reconstructed frames, in the form of a high frequency
pattern. This phenomenon is caused by the fact that the
dictionary is composed of elements that have artificially
increased high frequencies due to the much lower spatial
sampling associated with the low resolution frames Z.

To further quantify the performance of each method, the
plots in Figure 6 present the Peak Signal-to-Noise Ratio
(PSNR) in dB for each band of the two 16 band sequences.
This figure serves to demonstrate the superiority of the
proposed method in terms of well-established error metrics
in addition to visual inspection.

Last, Figures 7 and 8 present the reconstruction results
obtained through recovery of 16 and 25 band hypercubes
using the proposed and the interpolation methods. Similar
to the case where the effects of the subsampling operator
were synthetically generated, the proposed method is able
to recover significantly more rich textures compared to the
interpolation method.

5. Conclusion

Estimating the full resolution hypercubes from snapshot
mosaic frames is critical for achieving high spatial reso-
lution from such architectures. In this work, we present a
training-free approach which exploits the self-similarities
across scales in images, as well as the concept of sparse
representation of estimating the missing spectral values for

Figure 5: 25 band Chart and stuffed toys hypercube. Top:
full resolution images of bands 18 and 22. Middle: Lin-
ear interpolated (25.2 dB). Bottom: Recovery by proposed
method (29.6 dB).
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Figure 6: Per band recovery performance for the two se-
quences using the interpolation and the proposed method.

each pixel. Experimental results on both synthetic and real
imagery clearly demonstrate that the proposed method is
able to accurately estimate the missing information, espe-
cially in moderate recovery scenarios, i.e., 16 spectral bands.
Future work will investigate how the existence of training
data could be introduced in the generation of the sparse
coding dictionary, aiming at higher quality recovery in more
challenging spectral sampling scenarios.



Figure 7: 16 band Mosaic frame hypercube. Top: Linear in-
terpolation of bands 2 and 9. Bottom: Recovery by proposed
method.

Figure 8: 25 band Mosaic frame hypercube. Top: Linear
interpolation of bands 3 and 21. Bottom: Recovery by
proposed method.
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