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ABSTRACT

While traditional hyperspectral imaging platforms rely on
a time-consuming sequential scanning of a scene, novel
snapshot approaches can acquire the full hyperspectral
profile from a single exposure, employing cutting-edge
technology such as Spectrally Resolvable Detector Ar-
rays. However, faster scanning using snapshot systems
comes with a price as the resulting spatial resolution is
significantly reduced. In this work, we propose a new
method for the enhancement of the spatio-spectral resolu-
tion of hypercubes acquired by snapshot spectral imagers
by casting the problem within the novel disruptive math-
ematical framework of low-rank Matrix Completion. The
proposed scheme can also be utilized as a lightweight hy-
perspectral image compression protocol where only a sin-
gle spectral band is stored and transmitted for each spatial
location, significantly reducing the bandwidth and power
requirements, without introducing additional complexity.
Experimental results suggest that high quality reconstruc-
tion is possible even at very high compression regimes.
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1. INTRODUCTION

Hyperspectral images provide critical insights into the
composition of a scene and have found multiple appli-
cations in remote sensing situations. Unfortunately, ac-
quiring, processing, storing and transmitting full spatio-
spectral resolution hyperspectral images can introduce
significant challenges, especially when considering the
limitations of satellite resources and onboard computing
[1]. To illustrate the impact of these challenges on storage
and communications, some missions, even if equipped
with sensors able to acquire hundreds of spectral bands,
employ radical measures, like binning and band rejection,
to transmit to the ground only a limited number of bands,
tens over hundreds, according to their acquisition plans.

Within this context, the family of Snapshot Mosaic
Multispectral Imaging architectures, also known as
hyper/multi-spectral Color Filter Arrays, relies on the use
of Spectrally Resolved Detector Arrays (SRDA) where
each pixel is associated with a specific spectral region,
thus allowing the acquisition of a full hyperspectral cube
from a single exposure [2, 3]. An example of a spectral
mosaic frame and the corresponding full resolution spec-
tral bands is shown in Figure [T}

Figure 1: Spectral mosaic acquired by an SRDA im-
ager (left) and the corresponding full resolution images of
bands 4 and 7. Although the ground truth images clearly
demonstrate the spatial smoothness of the scene, this in-
formation is lost during snapshot acquisition.

In order to achieve high temporal resolution imag-
ing, SRDA architectures must sacrifice spatial resolution
since only a small subset of pixels acquire energy in each
specific spectral band. In practice, pixel binning is per-
formed to group spectral-specific pixels together in full
spectral resolution super-pixels. This process is depicted
in Figure[2]

Despite the computational efficiency of this approach,
such a binning scheme reduces the spatial resolution of
the acquired hypercube by a factor of 16 or 25 for a
4 x 4 or a 5 x 5 sampling pattern, respectively. To
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Figure 2: SRDA architecture (left), a snapshot mosaic
raw frame (center), and a full spectral resolution super-
pixel” as part of the reconstruction hypercube (right). No-
tice that the process of producing the ”super-pixels” leads
to a dramatically smaller spatial resolution.

address this limitation, we propose the enhancement of
the low-rank matrices generated from the acquired hy-
perspectral data by employing the recovery capabilities
of the recently developed framework of Matrix Comple-
tion (MC), a paradigm-shift in modern multidimensional
signal sampling and recovery [2| [10], which asserts that
any low-rank matrix can be perfectly recovered from a
limited number of randomly selected entries. To vali-
date the potential of the proposed compression scheme,
we evaluate the performance on currently available air-
borne and spaceborne datasets, including measurements
from the AVIRIS and the Hyperion instruments.

2. LOW-RANK MATRIX COMPLETION

Our approach is based on the recently proposed frame-
work of Matrix Completion (MC) [2| [10] which has
emerged as a disciplined way of addressing the recovery
of high-dimensional data from what appears to be incom-
plete, and perhaps even corrupted information. Low-rank
MC has been utilized in a variety of image acquisition
and processing tasks including the acquisition of high
dynamic range imaging [9] and video denoising [17],
among others. More specifically, given a m X n measure-
ment matrix M, recovering the (mn) entries of the matrix
from a smaller number of k£ << mn entries is not possi-
ble, in general. However, it was recently shown that the
recovery of the complete set of entries in a matrix is pos-
sible, provided that both the number of missing entries
and the rank of the matrix are appropriately bounded.

Formally, let A be a linear map from R"*" — R*, that
selects a subset of the entries in matrix M. The linear
map A, is defined as a random sampling operator that
records a small number of entries from matrix M, that is
A(mi;) = {1if (ij) € S| 0 otherwise}, where S is the
sampling set. According to the low rank MC paradigm,
we can estimate X from the undersampled matrix M, by
solving:

mini}{nize rank(X)

subject to A(X) = AM) . (1)

Unfortunately, rank minimization is an NP-hard problem
and therefore cannot be applied in practice. Recently,

a relaxation of the above problem was shown to pro-
duce accurate approximations, by replacing the rank con-
straint with the more computationally tractable nuclear
norm, which represents the convex envelope of the rank.
The relationship is manifested by the Singular Value De-
composition (SVD) of the m X n measurements matrix,
into a product of an orthonormal matrix U, a diagonal
matrix S and another orthonormal matrix V, such that
M = USVT,

According to the spectral theorem associated with the
SVD, the number of singular values, i.e. the diagonal en-
tries of S, reveals the rank of the matrix. Low rank matri-
ces, such as the ones produced by spatio-temporally cor-
related processes, are therefore characterized by a small
number of singular values. Furthermore, the rank of a
measurement matrix might be artificially increased, due
to noise that typically follows an independent distribu-
tion. Hence, considering a lower-rank approximation of
the matrix results in an implicit denoising of the sampled
data. One can exploit such prior knowledge to restrict the
number of singular values to a small set that accounts for
most of the signal’s energy by introducing a thresholding
operator 7 which when applied to the SVD produces the
best rank-k estimation: M, = UT (S)V7Z.

Based on the SVD analysis of a matrix, the minimization
in () can be reformulated as:

mini)r(nize I1X ||
subject to A(X) = A(M), (2)

where the nuclear norm is defined as | M| = >_ |oy], i.e.
the sum of absolute values of the singular values. Recov-
ery of the matrix is possible, provided that the matrix M
satisfies an incoherence property. The solution of (2)) will
converge to the solution of (I)) with high probability once
k > Cq%rlog(q) random matrix entries are obtained,
where ¢ = maz(m,n).

For the noisy case, an approximate version can be solved
[L6], by replacing the equality constraint with an inequal-
ity constraint given by || A(X) — AM)|% < e, where
|X][|% = > A? denotes the Frobenius norm and e is the
approximation error. The optimization is therefore for-
mulated as:

mini)r(nize 1X |1«
subject to [|A(X) — AM)|| <. 3)

To solve the nuclear norm minimization problem of (EI),
various approaches have been proposed. In this work,
we employ the Augmented Lagrange Multipliers (ALM)
[L1]] approach, due to its performance with respect to both
computationally complexity and recovery capabilities.

3. MC BASED SRDA RECOVERY MECHANISM

The proposed SRDA recovery mechanism is show in Fig-
ure [3] where measurements from eithera4 x 4orab x 5



mosaic SRDA imager are grouped together (ensembled)
in order to estimate missing measurements, employing
the Matrix Completion theory. Formally, the snapshot
frame is divided into overlapping patches of side 3 x 3,
and each of them is re-ordered into subsampled vectors
containing measurements from 9 out of 16 or 25 spectral
bands.

Ensemble
SRDA

recovery
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Figure 3: Proposed Matrix Completion based full hyper-
cube recovery mechanism.

These vectors are subsequently grouped into matrices
where MC recovery is applied in order to estimate the
missing values. In our case, groups of 10 vectors are
considered during this grouping operation. The final es-
timation of the complete spectral profile for each spatial
pixel corresponds to the average of the different estima-
tions produced during the recovery of different overlap-
ping patches.

By repeating this process over all possible locations, i.e.,
the full spatial resolution of the detector, the complete
hypercube can be estimated with high accuracy. For
application in hyperspectral compression, the proposed
scheme could operate by selecting a small number of
spectral bands to store and transmit for each spatial lo-
cation.

4. EXPERIMENTAL EVALUATION

To quantify the performance of the proposed scheme, we
consider two performance metrics, namely quality of es-
timation and achieved compression ratio. Regarding the
quality estimation, two metrics, namely Peak Signal-to-
Noise Ratio (PSNR) and the Structural Similarity Index
Metric (SSIM) are employed while for the compression
ratio, we consider the compression ratio achieved by loss-
less compression of the full spatial resolution hypercube,
the ratio achieved for compression of a low resolution hy-
percube generated from snapshot measurements, and the
effective compression ratio which considers the full reso-
lution recovered hypercubes.

We evaluate the performance on three exemplary hyper-
cubes; namely, the Salinas, acquired by the AVIRIS sen-
sor, the Botswana, acquired by the Hyperion sensor on

EO-1, and the Pavia University, acquired by the ROSIS
sensor [7]]. For all cases, we consider the first 16 and
the first 25 spectral bands, simulating the acquisition by
a4 x 4 andab x 5 snapshot SRDA camera.

4.1. Reconstruction Quality

Figures ] and [5| present the ground truth and correspond-
ing reconstructions using the proposed method and the
method of linear interpolation of spectral bands from the
Salinas dataset recovered from a4 x 4 and a 5 x 5 SRDA
respectively.

Figure 4: Salinas 7t" (left), recovery by proposed method
(center), and recovery by interpolation (right) from a 4 x4
SRDA camera.

Figure 5: Salinas 4" (left), recovery by proposed method
(center), and recovery by interpolation (right) froma 5 x5
SRDA camera.

Comparing the two recovery methods, namely interpola-
tion and MC based, one can observe that in both cases,
the visual quality is dramatically better, preserving high
spatial frequency components like roads and the magni-
tude of regions of interest in the lower-left part of the



scene. At the same time, the performance of the interpo-
lation based method quickly deteriorates as more spectral
bands are considered while the proposed method is able
to maintain the high quality of the reconstruction even
under challenging conditions.

Similar observations can also be made for the Pavia Uni-
versity dataset as shown in Figures [6]and 7] for the 4 x 4
and 5 x 5 snapshot SRDA respectively. For the case of
16 spectral bands, we observe that the proposed scheme
preserves information like cars in the parking lot and the
street network, while the interpolation based approach
leads to sever image quality degradation. For the 25
bands case, the proposed scheme suffers some loss in
quality, which is significantly less compared to the in-
terpolation approach.

Figure 6: PaviaU 6" (left), recovery by proposed method

(center), and recovery by interpolation (right) from a 4 x4
SRDA camera.

Figure 7: PaviaU 4" (left), recovery by proposed method
(center), and recovery by interpolation (right) froma 5 x5
SRDA camera.

Last, for the Botswana set shown in Figures [8| and [9] for
the two SRDA cases, we observe that for the 25 bands
case, the interpolation introduces significant artifacts in
both low and high spatial frequencies, while the proposed
scheme suffers significantly less deterioration.

For a complete quality evaluation, Tables [I] and [2] pro-
vide the average reconstruction quality for the 4 x 4 and
5 x b cases, respectively. Quantitative results validate the
visual observation where for certain cases, the proposed

Figure 8: Botswana 6!" (left), recovery by proposed
method (center), and recovery by interpolation (right)

from a 4 x 4 SRDA camera.

Figure 9: Botswana 5" (left), recovery by proposed
method (center), and recovery by interpolation (right)
from a 5 x 5 SRDA camera.

method achieves more than 10dB gain in terms of quality
and 20% increase in SSIM (which ranges from 0 to 1).

Table 1: Quality of reconstruction for 16-band hyper-
cubes.

Interpolated Proposed

Sequence | PSNR | SSIM | PSNR | SSIM
Salinas 27.2 0.81 40.3 0.96

Botswana | 37.3 0.93 45.0 0.97
PaviaU 26.5 0.67 31.0 0.82

4.2. Compression Ratio

To evaluate the quality of the proposed scheme in terms
of compression ratio, we follow the experimental pro-
tocol shown in Figure [I0] where we distinguish three



Table 2: Quality of reconstruction for 25-band hyper-
cubes.

Interpolated Proposed
Sequence | PSNR | SSIM | PSNR | SSIM
Salinas 26.7 0.81 37.9 0.95
Botswana | 22.9 0.58 31.1 0.79
PaviaU 25.1 0.64 29.7 0.82

cases. The first case corresponds to the compression ratio
achieved when compression is applied on the ideal full
resolution hypercube, and it is meant to act as a baseline.
The second case assumes the realistic scenario where the
measurements from the snapshot SRDA frame are rear-
ranged into a low spatial resolution hypercube by simply
binding the measurements from each 4 x 4 or 5 x 5 pat-
tern into a single fully spectrally sampled hyperpixel. The
last case, extents the second scenario by assuming that the
full spatio-spectral resolution cube is recovered after the
application of the proposed de-mosaicking scheme, thus
the compression assumes snapshot measurements as in-
put and the full resolution hypercube as output.

CCsDS123

Figure 10: Experimental setup for the evaluation of the
compression ratio.

We report the performance employing the CCSDS-123
[4] compression standard, a lossless encoding scheme,
since introducing a lossy compression in conjunction
with a model-based recovery scheme would lead to sig-
nificantly lower compression quality. Furthermore, the
proposed experimental results assume that only data from
a snapshot SRDA sensor is available, thus no high spatial
resolution hypercube is available during the acquisition
stage.

Tables [3|and 4] report the compression ratios achieved by
the three approaches for the case of 4x4 and 5x 5, respec-
tively. Comparing the compression ratio achieved by the
full and the low resolution cases, we observe that com-
pression of the full resolution hypercubes is significantly
more efficient. This is expected since the low resolution
hypercubes are produced by spatio-spectral subsampling
of snapshot spectral imaging, leading to the introduction
of high spatial frequencies which reduce the correlation
and increase the entropy.

However, when both loss compression and the proposed

recovery mechanism are combined, the effective com-
pression ratio is at some cases 10 times higher com-
pared to full resolution compression and 20 times higher
compared to the low resolution hypercube compression.
This dramatic increase in performance is associated to
a moderate reduction in quality as demonstrated in Ta-
bles [[] and 2} Furthermore, the proposed compression-
reconstruction approach is applicable to both naturally
subsampling scenarios as it is the case of snapshot SR-
DAs, as well as a lightweight compression scheme when
full spatio-spectral hypercubes are available.

Table 3: Compression Ratio achieved for the 16 spectral
band case.

Resolution | PaviaU | Salinas | Botswana

Full 9.87 11.36 7.34
Low 3.99 4.53 3.47
Effective 63.84 72.48 55.52

Table 4: Compression Ratio achieved for the 25 spectral
band case.

Resolution | Pavia U | Salinas | Botswana

Full 9.76 11.43 6.98
Low 3.85 4.25 3.52
Effective 96.25 106.25 88.0

5. CONCLUSIONS

A novel approach for the recovery of full spatio-spectral
resolution hypercubes from snapshot spectral imaging ar-
chitectures is presented. The proposed scheme exploits
inherent inter- and intra- band correlations for recover-
ing the missing values with high quality. Experimental
results suggest that the considered strategy could allow
high speed compact design imaging without sacrificing
imaging quality.
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