An Infrastructure for Integrated Electronic Health Record Services: The Role of XML *

Dimitrios G. Katehakis¹, Stelios Sfakianakis¹, Manolis Tsiknakis¹, Stelios C. Orphanoudakis¹, ²

¹ Center of Medical Informatics and Health Telematics Applications (CMI-HTA), Institute of Computer Science (ICS), Foundation for Research and Technology – Hellas (FORTH), P.O. Box 1385, GR 711 10, Heraklion, Crete, Greece, Tel: +30 (81) 391600, fax: +30 (81) 391601, E-mail: {katehaki, ssfak, tsiknaki, orphanou}@ics.forth.gr, URL: http://www.ics.forth.gr.
² Department of Computer Science, University of Crete, P.O. Box 2208, GR 714 09, Heraklion, Crete, Greece.

Abstract

Due to the greater mobility of the population, national and international healthcare networks are increasingly used to facilitate the sharing of healthcare-related information among the various actors of the field. This sharing of information resources is generally accepted as the key to substantial improvements in productivity and better quality of care. Comprehensive medical information about a patient is difficult to obtain efficiently, unless the distributed and heterogeneous health record segments are incorporated into an Integrated Electronic Health Record (I-EHR) and viewed on-line through a unified user interface and visualization environment. Furthermore, the seamless integration of distributed EHR segments requires interoperability among heterogeneous autonomous information systems. As a result, standardization efforts for middleware that facilitate interoperability and enable the communication of information through standard messages are very active.

In the context of HYGEIAnet, the regional health telematics network of Crete; an I-EHR environment has been developed to provide integrated access to online clinical information, accessible throughout the island. The technological approach for implementing this I-EHR environment is based on the HYGEIAnet Reference Architecture (HRA), which provides the necessary framework for the reuse of services, components, and interfaces. The I-EHR environment provides the basis for consistent and authenticated access to primary information over the Internet, to support decision-making. In all cases primary information is kept at the place where it is produced and is maintained by the most appropriate clinical information system, contrasting traditional store and forward techniques, or centralized clinical data repositories. Seamless presentation of information is achieved by means of the Extensible Markup Language (XML), while its underlying capabilities allow for dynamic navigation according to personalized end-user preferences and authorities.

Keywords: XML, Healthcare Information Infrastructure, Component-Based Architecture, Integrated Advanced Information Management Systems.

* Please cite as:

<URL: http://www.jmir.org/2001/1/e7/>
1. Introduction

People have parts of their medical record located in all the places where clinical services have been applied to them (e.g. in community doctors, primary care, and secondary care). All these segments, which are related to personal healthcare delivery and well being, reside in disparate and in most cases not directly accessible places. Moreover, a number of restrictive policies do not allow carrying personal sensitive clinical information outside the corresponding organization boundaries, while the healthcare providers keep on maintaining detailed and confidential notes about their case. This is true even when healthcare providers use electronic clinical record systems and communication between them is performed by electronic means. Despite the fact that today the World Wide Web (WWW) provides the means for global access to all kinds of information, personal health information still remains fragmented, and not directly accessible in a unified way.

Any I-EHR environment should be capable of handling these issues and provide uniform ways for accessing authentic, physician-generated, patient record information that is physically located in different clinical information systems. Furthermore it needs be able to provide fast and authorized on-line access to longitudinal views of each individual personal health record, in order to allow for the timely delivery of health care. Such an environment is expected to allow patients to become more actively involved in the monitoring and assessment of their own wellness. At this point, the main reason driving the need for integrated access to clinical information is information sharing. Issues that need be resolved, on the way towards providing integrated solutions, are mainly focused around patient identification, interoperability among co-operating software components and the involved clinical information systems, and all the security related medico-legal issues.

2. Materials and Methods

The technological approach for implementing the I-EHR environment is based on the HYGEIAnet Reference Architecture (HRA), which provides the necessary framework for the reuse of services, components, and interfaces [1]. These services include at the middleware level resource, authorization, naming, messaging, terminology, semantic mapping, and other meta-data services, as well as services for the management of medical acts, patient identification, and clinical data location [2].

The HRA applications and services model used provides a logical paradigm of the relationships between applications, end-user services and the underlying middleware enabling services. At the bottom layer, generic services and tools (like e.g. data bases, directories, etc.), the Internet and software component infrastructures (like e.g. Common Object Request Broker Architecture - CORBA, Distributed Common Object Model - DCOM or Common Object Model Plus - COM+) form the technological infrastructure for storing and managing information. Autonomous clinical information systems are the information sources to be integrated. These information sources can be accessed by means of a number of alternative interfaces (e.g. Web/ Open Data Base Connectivity - ODBC/ CORBA etc.). On top the presentation layer provides the end-user with the means for accessing advanced I-EHR services and supporting activities in the various areas of the organization. Visualization can be delivered by means of e.g. the Web or Wireless Access Protocol (WAP) over a number of different possible devices (Personal Computers - PCs, handheld computers, mobile phones, etc.). The heart of the whole I-EHR environment, and core of the underlying Healthcare Information Infrastructure (HII), consists of middleware services that provide the mechanisms for information provision, filtering, and fusion. Figure 1 depicts how the required components for building the I-EHR are structured.

The currently available execution architecture is based on CORBA interfaces (for data acquisition, patient identification, semantic mapping and messaging), X.500/ Light Directory Access Protocol - LDAP (for security services, user profiles, patient clinical information, and healthcare resources), dedicated Structured Query Language - SQL/ ODBC-LDAP gateways (for accessing primary information and for maintaining indexing up-to-date), and XML (to sustain the collected clinical information in a consistent way). Primary information is usually kept on commercial data base management systems, and this is expected to continue to be the case in the years to come. A key strength of existing databases is their ability to make complex queries about clinical information that is kept in single data repositories. On the other hand, the emerging directory technology promises enhanced integrity, in order to offer personalized user environments, simplified service and application configurations, security service integration, and improved bandwidth allocation. Key strengths of the emerging
directory technology are its distributed provision and fast lookup based on name. International Telecommunication Union’s (ITU) X.500 and LDAP are the most promising approaches for building global directories [3]. Well-documented interfaces expressed in the Interface Definition Language (IDL) associated with the integration framework of CORBAmed [4], provide basic support for interoperability among computer systems. This is essential particularly in large hospitals, where many kinds of different computers have been installed and cannot be changed. The results of the CORBAmed efforts in standardizing IDLs influence the design of interfaces developed worldwide due to its strong industrial support. Models and architectures adopted can be easily used by any alternative implementation (e.g. DCOM, or COM+), or combinations of them.

Figure 1: A two-dimension view of the multi-level architectural framework for the I-EHR environment of HYGEIA.net.

Recently, XML has gained great attention and is becoming the preferred language for data interchange over the WWW. It has its origins in the Standard Generalized Markup Language (SGML) but compared to it, XML is simpler [5]. It looks like the HyperText Markup Language (HTML) but it’s stricter and more generic since anyone can define the vocabulary intended for use. It is well defined and there is an emerging technology and tools for authoring, validating and presenting. XML offers freedom in using user-defined vocabularies while the content is forced to conform to strict grammars (Document Type Descriptions - DTDs, XML schemas), which define how the tags can be mixed. The only thing that needs be described inside an XML document is the content, together with the component parts of the document, and not its presentation. Since its raw format is plain text, any XML document can easily be exchanged over well-known protocols such as the HyperText Transfer Protocol (HTTP) or the File Transfer Protocol (FTP), making it a very flexible platform for structuring and exchanging information.
3. Results

The I-EHR is a front-end to an EHR indexing service, managed by the Patient Clinical Data Directory (PCDD) [2] which indices both structured and unstructured information that is provided by co-operating information systems, without imposing any constraint on their internal operation or their interface, beyond the medical encounter level. At its current implementation, the main objective of the I-EHR environment is to deliver an encounter-centered view of the patient's EHR. It utilizes the available CORBA interfaces to provide a consistent way to locate, access and transmit secure information about a patient's EHR segments. Throughout any regional setting, these segments are maintained by a wide diversity of existing, autonomous, networked clinical information sources having different internal structures (database schemata) and different vocabularies to describe the notions used by them.

References to recorded data are obtained, and are used to retrieve actual information by means of the Object management Group’s (OMG’s) Clinical Observation Access Service (COAS) implementations. COAS seems to be generic and simple, yet powerful, expressing the clinical observations and the relations between them, composition being the most common. On the other hand the terms used to describe and identify these observations may come from different coding schemes and so a terminology service implementation is also necessary. This terminology service is responsible for concept mapping and translation between coding schemes. OMG’s Terminology (or Lexicon) Query Service (TQS) is used at this point to provide both conceptual mappings among the different clinical information systems available and the coding schemes they use for recording clinical findings. This is a requirement in order for the existing information to be capable of providing comparable patient data among different institutions.
In this context, a generic mapping between observations and attributes of database tables has been deployed. Composite observations have been mapped to database views while atomic observations have been mapped to attributes. The composite observations contain other observations and this composition in the database is implemented through links and references from one table to another (Figure 2). The observations that are contained or related to another observation are in turn views that reference other tables and so forth. This recursion ends when an atomic observation is found and if this is the case the value of an attribute is retrieved. There is a specific mapping for each type of clinical information source and each mapping follows a coding scheme accessible through a terminology server so that a client can “understand” the semantics of the information returned to it. The actual COAS implementation is the same for all information systems as long as they store their information in a relational database system. In other words, moving from an information source to another, the actual implementation remains the same and the only thing that changes is the mapping from internal database relations to observations, provided that these information sources store their data in relational databases.

As far as the Graphical User Interface (GUI) for accessing the I-EHR environment is concerned, apart from the lifeline view of all the available encounters of the patient, a number of alternative views are currently supported: a per-clinical system view of the encounters’ history, as well as the traditional tabular view of old generation GUIs. When requested, primary information is collected and presented to the end user by initiating remote COAS servers. The COAS data returned need further transformation in order to be properly presented to the
user. The underlying data model supported by the Patient Clinical Data Directory (PCDD) is based on the Subjective Objective Assessment Plan (SOAP) model that originates from the primary healthcare domain [6].

In this context, XML has not only been used to describe the COAS observation data in a human readable format but also to be the central point of the transformation process. The composition and recursion concepts that are an integral part of the COAS representation of clinical observations are inherently supported in XML. An XML tag represents each COAS observation. If this observation is a composite one then this tag contains other tags that represent the component observations and so on until we reach an atomic observation. An atomic observation is a different tag that can have a “value” attribute or “parsed character data” as its content.

The COAS results are represented in XML through a DTD that has been developed (available in Appendix A). Been represented in XML, the clinical information can be transformed to many other formats like the HyperText Markup Language (HTML), the Portable Data Format (PDF) etc. using the Extensible Stylesheet Language (XSL). Such an example is depicted in Figure 3.

In a potential scenario of use, the end user needs to locate and access clinical information about a specific subject of care (citizen). The system forwards this request to all known or existing COAS servers and collects their responses. These clinical observations are transformed to XML and then transformed again to a number of HTML pages. These pages can be presented sorted chronologically to the user and the user can browse them going back and forth in time. Alternatively XML clinical data can be grouped by their type and then transformed to HTML pages where the user can view a patient’s clinical information categorized according to personal preferences (e.g. all biochemical exams together).

Currently a COAS server and a COAS client have been implemented using the Java Programming language [7] and CORBA as the communication infrastructure. The application is accessible through WWW as a web application: the client side which is responsible for collecting the COAS results of a user’s query, saves them in XML format and transforms the XML data to HTML. The implementation has been developed using the Servlet technology [8] and the Jakarta Tomcat 3.2 servlet container [9]. The system is stable enough for practical use. The deployment of such system though requires the presence of other full-implemented components also, such as the OMG’s Person Identification Service (PIDS) to assure unique identification of patients, TQS to manage different nomenclatures and the Resource Access Decision (RAD) service to impose security policies. These components are required not only as far as COAS is concerned but also in the general context of HYGEIAnet and are work in progress, partly implemented today.
4. Discussion

HYGEIAnet builds on a regional healthcare information infrastructure to improve the quality and accessibility of health care and to enable the delivery of integrated health care services. It provides the information and services that are the foundation for accountability, continuous improvement to health care and better understanding of the determinants of the health of the population. The principles followed during the design phase of HYGEIAnet, originated from the currently existing status in the regional healthcare system that is applied for Greece and aim towards servicing the local population, no matter whether they are patients, healthcare professionals, researchers, or managers. The I-EHR environment, as it has been developed and set up, provides a decentralized view of the patient medical record, by dynamically composing information that resides in a variety of heterogeneous clinical information systems. Under a secure Internet/Intranet environment the full personal health history can be collected and composed totally transparently to the authorized health professional very fast (the Internet/Intranet is not limited in capacity). In addition maintaining electronic health record information is extremely economical to the very end users, and consumers of the system (which are the citizens themselves), since the cost is transferred to the healthcare practitioners keeping primary information and to telecom operators and ISPs maintaining regional or national networks. The I-EHR, as used in the current context is “virtual” in the sense that it provides a uniform view of data (meta-data) possibly configured to work differently at different locations.

Due to the fact that users seek selective information, following specific paths depending on their personal preferences, it is expected that the I-EHR concept will eventually lead to a uniform applications and services environment. Since electronic records can provide much easier navigational facilities, navigational issues are expected to become even more important in the future, mainly because of the end-user requirements to have similar interfaces in terms of look and feel.

The lack of a standardized interface for accessing clinical objects has forced the current implementation to follow an open architecture approach that utilizes the best available technologies for accessing clinical multimedia data. It is indeed a fact that information systems use different technologies and terms for accessing the same clinical objects. CORBAmid currently leads the definition of interoperable specification effort that can support activities related to accessing directly a greater variety of healthcare information. XML provides the appropriate technology and makes up the most convenient vehicle towards a common format for delivering and presenting information content. Elaboration of the standard DTD logical structure and related XML infrastructure will make information personalization flexible, and generic enough to adapt to various types of users and client devices. Since documents (accompanied of course by the physician’s signature) are much more easily accessible rather than data inside a database, XML has the potential of becoming a very cheap technology, provided of course that the underlying HII exists. XML can be introduced incrementally and its implementation is completely transparent to the end user. One of the main advantages of this approach is the support of context searching capabilities.

Currently major organizations like HL7 [10], CEN/TC251 [11], and ASTM [12] work in modeling the electronic health record and are expected to provide useful DTDs for the healthcare domain. In the case of HL7 Clinical Document Architecture (previously known as ‘Patient Record Architecture’) that is defined as “a document markup standard for the structure and semantics of exchanged clinical documents”, documents are encoded in XML and can be put in a hierarchy of increasing strictness and detail. At the HL7 level one DTD, which is at the time being the only HL7 DTD available, only blocks of free text and coded entries are used to represent the patient’s record. Unfortunately currently very few results on standardization about DTDs exist worldwide for the medical domain, no need mentioning best practice examples, and significant effort ought to be paid towards that direction.

5. Acknowledgements

The work presented in this paper is funded in part by the European Commission through the PICNIC project (IST-1999-10345).
6. Conflict of Interest

The authors would like to disclose that they have no personal financial interests related to the subject matters discussed in the manuscript.

7. References

8. Abbreviations

- **CMI-HTA**: Center for Medical Informatics and Health Telematics Applications
- **COAS**: Clinical Observation Access Service
- **CORBA**: Common Object Request Broker Architecture
- **COM+**: Common Object Model Plus
- **DCOM**: Distributed Common Object Model
DTD: Document Type Description
EHR: Electronic Health Record
FORTH: Foundation for Research and Technology – Hellas
FTP: File Transfer Protocol
GUI: Graphical User Interface
HII: Healthcare Information Infrastructure
HRA: HYGEIAnet Reference Architecture
HTML: HyperText Markup Language
HTTP: HyperText Transfer Protocol
I-EHR: Integrated Electronic Health Record
IDL: Interface Definition Language
ITU: International Telecommunication Union
LDAP: Light Directory Access Protocol
ODBC: Open Data Base Connectivity
OMG: Object Management Group
PC: Personal Computer
PCDD: Patient Clinical Data Directory
PDF: Portable Data Format
PIDS: Person Identification Service
RAD: Resource Access Decision
SGML: Standard Generalized Markup Language
SQL: Structured Query Language
SOAP: Subjective Objective Assessment Plan
TQS: Terminology Query Service
WAP: Wireless Access Protocol
WWW: World Wide Web
XML: Extensible Markup Language
XSL: Extensible Stylesheet Language
Appendix A.

The Implemented COAS Document Type Definition (DTD)

```xml
<!ELEMENT Query (Observation)*)>
<!ATTLIST Query TimeOfQuery CDATA #REQUIRED
WhoAsk CDATA #REQUIRED
SelectedQuery CDATA #REQUIRED
GeographicRegion CDATA #REQUIRED
TimeRange CDATA #REQUIRED
Gender CDATA #REQUIRED
Age CDATA #REQUIRED>

<!ELEMENT Observation (AtomicObservation | CompositeObservation)>
<!ATTLIST Observation Patient_Id CDATA #REQUIRED
Information_System CDATA #REQUIRED
Visit_Id CDATA #REQUIRED>

<!ELEMENT CompositeObservation ((AtomicObservation | CompositeObservation)*
,ObservationReference*, ObservationQualifier*)>
<!ATTLIST CompositeObservation ObservationType CDATA #REQUIRED
ObservationTime CDATA #IMPLIED>

<!ELEMENT AtomicObservation (ObservationValue,ObservationReference*, ObservationQualifier*)>
<!ATTLIST AtomicObservation ObservationType CDATA #REQUIRED
ObservationTime CDATA #IMPLIED>

<!ELEMENT ObservationValue ((PlainText | NoInformation | CodeElement | LooselyCodeElement | Curve |
 MultiMedia | DateTime | Measurement |TechnologyInstanceLocator), ObservationQualifier*)>
<!ATTLIST PlainText EMPTY
Value CDATA #REQUIRED
language CDATA #IMPLIED>

<!ATTLIST NoInformation EMPTY
reason CDATA #IMPLIED>

<!ATTLIST CodeElement EMPTY
value CDATA #REQUIRED
printName CDATA #IMPLIED>

<!ATTLIST LooselyCodeElement EMPTY
text CDATA #REQUIRED
codingSchemeID CDATA #REQUIRED>
```
<!ELEMENT Curve EMPTY>
<!ATTLIST Curve
 values CDATA #REQUIRED
 xUnits CDATA #IMPLIED
 yUnits CDATA #IMPLIED>

<!ELEMENT Multimedia EMPTY>
<!ATTLIST Multimedia
 header CDATA #REQUIRED>

<!ELEMENT DateTime EMPTY>
<!ATTLIST DateTime
 value CDATA #REQUIRED
 relationalOperator CDATA #IMPLIED
 accuracy CDATA #IMPLIED
 accuracycontext CDATA #IMPLIED
 accuracyUnit CDATA #IMPLIED>

<!ELEMENT Measurement EMPTY>
<!ATTLIST Measurement
 NumericValue CDATA #REQUIRED
 units CDATA #IMPLIED>

<!ELEMENT TechnologyInstanceLocator EMPTY>
<!ATTLIST TechnologyInstanceLocator
 protocol CDATA #REQUIRED
 address CDATA #REQUIRED>

<!ELEMENT ObservationQualifier (QualifiedBy)*>
<!ATTLIST ObservationQualifier
 ObservationQualifierType CDATA #REQUIRED>

<!ELEMENT QualifiedBy (ObservationQualifier)+>

<!ELEMENT ObservationReference EMPTY>
<!ATTLIST ObservationReference
 ObservationReferenceType CDATA #REQUIRED
 ObservationReferenceName CDATA #REQUIRED
 Patient_Id CDATA #REQUIRED
 Information_System CDATA #REQUIRED
 Visit_Id CDATA #REQUIRED
 ObservationTime CDATA #IMPLIED>