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EE273 Lecture 2
Wires

September 28, 1998

William J. Dally
Computer Systems Laboratory

Stanford University
billd@csl.stanford.edu
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Today’s Assignment

• Reading
– Sections 3.3.4 through 3.5.2

– Complete before class on Wednesday
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A Quick Overview

• Wires have
– resistance

– capacitance
– and inductance

• To reason about wires we
create models
– ideal
– lumped L, R, or C

– transmission line

• Transmission lines have
– an impedance Z0

– a propagation constant, A
• from which we get velocity,

v

• An LC transmission line is
lossless
– waves travel down the line

without loss

• Waves reflect off the ends of
a line depending on the
termination impedance
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Wires in Digital Systems

• Physically wires are
– Stripguides on printed-circuit cards

and backplanes

– Conductors in cables and cable
assemblies

– Connectors

• We tend to treat them as ideal
wires
– no delay (equipotential)
– no capacitance, inductance, or

resistance

• They are not ideal

• To build reliable systems we need
to understand their properties and
behavior

Wire



EE273 Lecture 2 9/28/98

Copyright 1998 by W. J. Dally, all rights reserved 3

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L2, Sept 28, 1998 5

Resistance of Wires

• Most real wires have
resistance

• Depends on
– material (resistivity)
– length

– cross section

• Causes
– delay
– loss
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Capacitance of Wires

• Real wires have capacitance
– line charge

– parallel plate
– fringing

• To compute
– assume Q
– compute E field

– integrate to get V
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Inductance of Wires

• Real wires have inductance

• In a homogenous medium

CL = εµ

L
I

= Λ
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Some Example Wires

Type W R C L

On chip 0.6µm 150kΩ/m 200pf/m 600nH/m

PC Board 150µm 5Ω/m 100pf/m 300nH/m

24AWG pair  511µm 0.08Ω/m 40pf/m 400nH/m

Scale model of a line has different R, but same L and
C per unit length
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Wire Models

• In a particular situation, we
create a model of a wire that
captures the properties we
need
– ideal

– lumped L, R, or C
– RC transmission line
– LC transmission line
– General LRCG transmission

line

• Model to use depends on
frequency

L
R
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LRCG Wire Model

• Model an infinitesimal length
of wire, dx, with lumped
components
– L, R, C, and G

Rdx Ldx

Cdx Gdx

dx
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Transmission Line Equations

Rdx Ldx

Cdx Gdx
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Impedance

• An infinite length of LRCG transmission line has an impedance Z0

• Driving a line terminated into Z0 is the same as driving Z0

• In general Z0 is complex and frequency dependent

• For LC lines its real and independent of frequency

Rdx Ldx

Cdx Gdx Z0 = Z0
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Example, 24AWG Pair

• f0 = 33kHz

• Below f0, line is RC

• Above f0, line is LC
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Propagation Constant

• Using impedance, we can
solve for V(s,x)

• Propagation is governed by a
constant, A
– real part is attenuation
– imaginary part is phase shift

• velocity-1
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Lossless LC Lines

• If R and G are negligible
– line is lossless (no

dissipation)

– governed by the wave
equation

• Waves propagate down the
line in both directions without
distortion

• Line is described by its
impedance and velocity

• What happens when the
wave gets to the end of the
line?
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Lossless LC Line

Vf

Vr

Waveform on line is superposition of forward and reverse traveling waves
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Driving a Transmission Line

RO

V(t)

Place waves on the line by driving one end with a source
Assume line is infinite for now

–

+
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Line

Line
Model

Driving a Line - Equivalent Circuit

RO

V(t)

RO

V(t) Z0

VC

––

+

–

+

+

Response of line to
voltage source depends
on previous state of line,
VC
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Termination

• Suppose we drive a unit step, U(t), on the line

• What happens at the far end?

...
ZT It

Vi
Ii

Copyright (C) by William J. Dally, All Rights Reserved
EE273, L2, Sept 28, 1998 20

Line

Line
Model

Termination - Equivalent Circuit

...
ZT It

Vi
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Reflections and The Telegrapher’s Equation
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• Incident wave determines Vi, Ii
• Use equivalent circuit to solve

for VT, IT
• Use superposition to calculate
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Some Common Terminations

...
...

Z0

...

Open circuit

Matched termination

Short circuit
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Example of Reflections

400

–

+

50Ω, 5ns

1KΩ

S R

3.3V
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Example of Reflections

400

–

+

50Ω, 5ns

1KΩ

S R

krS = −
+

=400 50
400 50

0 778.

1V

V V Vi =
+


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400 50

0 111.
krR = −

+
=1000 50

1000 50
0 905.
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Example of Reflections

400

–

+

50Ω, 5ns

1KΩ

S R

krS = −
+

=400 50
400 50

0 778.

1V

V V Vi =
+





 =1

50
400 50

0 111.

krR = −
+

=1000 50
1000 50

0 905.

Vwave Vline t
Vi1 0.111 0.111 0
Vr1 0.101 0.212 5
Vi2 0.078 0.290 10
Vr2 0.071 0.361 15
Vi3 0.055 0.416 20
Vr3 0.050 0.465 25
Vi4 0.039 0.504 30
Vr4 0.035 0.539 35
Vi5 0.027 0.566 40
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Example of Reflections
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Standing Waves

Big

VP(t)

–

+

50Ω, 5nsS R

What happens if we drive an open line with a sine wave?

With an arbitrary periodic function (period = round trip)

What if the line is shorted?
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Next Time

• Lossy wires
– attenuation

– RC transmission lines

• Special transmission lines
– multi-drop buses

– balanced lines

– even and odd-mode propagation


