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Abstract

Linked Data is a method for publishing structured data that facilitates their sharing, link-

ing, searching and re-use. A big number of such datasets (or sources), has already been

published and their number and size keeps increasing. Although the main objective of

Linked Data is linking and integration, this target has not yet been satisfactorily achieved.

Even seemingly simple tasks, such as finding all the available information for an entity

is challenging, since this presupposes knowing the contents of all datasets and perform-

ing cross-dataset identity reasoning, i.e., computing the symmetric and transitive closure

of the equivalence relationships that exist among entities and schemas. Another big chal-

lenge is Dataset Discovery, since current approaches exploit only the metadata of datasets,

without taking into consideration their contents.

In this dissertation, we analyze the research work done in the area of Linked Data In-

tegration, by giving emphasis on methods that can be used at large scale. Specifically, we

factorize the integration process according to various dimensions, for better understand-

ing the overall problem and for identifying the open challenges. Then, we propose in-

dexes and algorithms for tackling the above challenges, i.e., methods for performing cross-

dataset identity reasoning, for finding all the available information for an entity, methods

for offering content-based Dataset Discovery, and others. Due to the large number and

volume of datasets, we propose techniques that include incremental and parallelized algo-

rithms. We show that content-based Dataset Discovery is reduced to solving optimization

problems, and we propose techniques for solving them in an efficient way.

The aforementioned indexes and algorithms have been implemented in a suite of ser-

vices that we have developed, called LODsyndesis, which offers all these services in real

time. Furthermore, we present an extensive connectivity analysis for a big subset of LOD

cloud datasets. In particular, we introduce measurements (concerning connectivity and

efficiency) for 2 billion triples, 412 million URIs and 44 million equivalence relationships

derived from 400 datasets, by using from 1 to 96 machines for indexing the datasets. Just

indicatively, by using the proposed indexes and algorithms, with 96 machines it takes less

than 10 minutes to compute the closure of 44 million equivalence relationships, and 81

minutes for indexing 2 billion triples. Furthermore, the dedicated indexes, along with the

proposed incremental algorithms, enable the computation of connectivity metrics for 1

million subsets of datasets in 1 second (three orders of magnitude faster than conven-

tional methods), while the provided services offer responses in a few seconds. These ser-

vices enable the implementation of other high level services, such as services for Data En-
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richment which can be exploited for Machine-Learning tasks, and techniques for Knowl-

edge Graph Embeddings, and we show that this enrichment improves the prediction of

machine-learning problems.

Keywords: Linked Data, RDF, Data Integration, Dataset Discovery and Selection, Con-

nectivity, Lattice of Measurements, Big Data, Data Quality
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Περίληψη

Τα ∆ιασυνδεδεμένα ∆εδομένα (Linked Data) είναι ένας τρόπος δημοσίευσης δεδο-

μένων που διευκολύνει το διαμοιρασμό, τη διασύνδεση, την αναζήτηση και την επα-

ναχρησιμοποίησή τους. ´Ηδη υπάρχουν χιλιάδες τέτοια σύνολα δεδομένων, στο εξής

πηγές, και ο αριθμός και το μέγεθος τους αυξάνεται. Αν και ο κύριος στόχος των ∆ια-

συνδεδεμένων ∆εδομένων είναι η διασύνδεση και η ολοκλήρωση τους, αυτός ο στόχος

δεν έχει επιτευχθεί ακόμα σε ικανοποιητικό βαθμό. Ακόμα και φαινομενικά απλές

εργασίες, όπως η εύρεση όλων των πληροφοριών για μία συγκεκριμένη οντότητα

αποτελούν πρόκληση διότι αυτό προϋποθέτει γνώση των περιεχομένων όλων των πη-

γών, καθώς και την ικανότητα συλλογισμού επί των συναθροισμένων περιεχομένων

τους, συγκεκριμένα απαιτείται ο υπολογισμός του συμμετρικού και μεταβατικού

κλεισίματος των σχέσεων ισοδυναμίας μεταξύ των ταυτοτήτων των οντοτήτων και

των οντολογιών. Η ανακάλυψη δεδομένων (Dataset Discovery) επίσης αποτελεί με-

γάλη πρόκληση, διότι οι τρέχουσες προσεγγίσεις αξιοποιούν μόνο τα μεταδεδομένα

των πηγών, και δεν λαμβάνουν υπόψη τα περιεχόμενα τους.

Σε αυτή τη διατριβή, αναλύουμε το ερευνητικό έργο που έχει παραχθεί στον τομέ-

α της Ολοκλήρωσης ∆ιασυνδεμένων ∆εδομένων με έμφαση σε τεχνικές που μπορούν

να εφαρμοστούν σε μεγάλη κλίμακα. Συγκεκριμένα παραγοντοποιούμε το πρόβλη-

μα σε διαστάσεις που επιτρέπουν την καλύτερη κατανόηση του προβλήματος και τον

εντοπισμό των ανοικτών προκλήσεων. Εν συνεχεία προτείνουμε ευρετήρια και αλγο-

ρίθμους για την αντιμετώπιση των παραπάνω προκλήσεων, συγκεκριμένα μεθόδους

για συλλογισμό επί των ταυτοτήτων των πόρων, για εύρεση όλων των πληροφοριών

για μία οντότητα, για ανακάληψη πηγών βάσει περιεχομένου και άλλων. Λόγω του

μεγάλου πλήθους και όγκου των πηγών, οι τεχνικές που προτείνονται περιλαμβάνουν

αυξητικούς και παράλληλους αλγορίθμους. ∆είχνουμε ότι η ανακάλυψη πηγών βάσει

περιεχομένου ανάγεται στην επίλυση προβλημάτων βελτιστοποίησης και προτείνουμε

τεχνικές για την αποδοτική επίλυσή τους.

Τα παραπάνω ευρετήρια και αλγόριθμοι έχουν υλοποιηθεί στη σουίτα υπηρεσιών

που αναπτύξαμε που αναφέρεται με το όνομα LODsyndesis, η οποία προσφέρει όλες

αυτές τις υπηρεσίες σε πραγματικό χρόνο. Επιπροσθέτως, παρουσιάζουμε μία εκτε-

νή ανάλυση συνδεσιμότητας για ένα μεγάλο υποσύνολο πηγών του νέφους Ανοικτών

∆ιασυνδεδεμένων ∆εδομένων (LOD Cloud). Συγκεκριμένα αναφέρουμε μετρήσεις

(συνδεσιμότητας και αποδοτικότητας) που αφορούν 2 δισεκατομμύρια τριπλέτες,

412 εκατομμύρια URIs και 44 εκατομμύρια σχέσεις ισοδυναμίας που προέρχονται
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από 400 πηγές, χρησιμοποιώντας από 1 έως 96 μηχανήματα για την ευρετηρίαση.

Ενδεικτικά, χρησιμοποιώντας 96 μηχανήματα χρειάστηκαν λιγότερα από 10 λεπτά

για τον υπολογισμό του συμμετρικού και μεταβατικού κλεισίματος, και 81 λεπτά

για την ευρετηρίαση 2 δισεκατομμυρίων τριπλετών. Επιπρόσθετα, χρησιμοποιώντας

τα ευρετήρια μαζί με τους προτεινόμενους αυξητικούς αλγορίθμους, κατέστη εφι-

κτός ο υπολογισμός των μετρήσεων συνδεσιμότητας για 1 εκατομμύριο υποσύνολα

πηγών σε 1 δευτερόλεπτο (τρεις τάξεις μεγέθους γρηγορότερα σε σχέση με συμβα-

τικές μεθόδους), ενώ οι προσφερόμενες υπηρεσίες έχουν απόκριση δευτερολέπτων.

Οι υπηρεσίες αυτές καθιστούν εφικτή και την υλοποίηση υπηρεσιών υψηλότερου

επιπέδου, όπως υπηρεσίες εμπλουτισμού πηγών για χρήση από τεχνικές Μηχανι-

κής Μάθησης καθώς και τεχνικές για ∆ιανυσματικές Αναπαστάσεις Γράφων Γνώσης

(Knowledge Graph Embeddings) και δείχνουμε ότι ο εμπλουτισμός αυτός βελτιώνει

της προβλέψεις σε προβλήματα μηχανικής μάθησης.

Λέξεις κλειδιά: ∆ιασυνδεδεμένα ∆εδομένα, Ολοκλήρωση ∆εδομένων, Ανακάλυψη

και Επιλογή Πηγών ∆εδομένων, Συνδεσιμότητα, Πλέγμα Μετρήσεων, Μεγάλα ∆εδο-

μένα, Ποιότητα ∆εδομένων
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Πανεπιστήμιο Κρήτης

xii



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Περίληψη (Abstract in Greek) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Analysis of the Problems and Related Challenges . . . . . . . . . . . . . . . . 3

1.4 Contributions of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Outline of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Large Scale Semantic Integration of Linked Data: A survey . . . . . . . . . . . . . 9

2.1 Background and Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Linked Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 The Linked Data Ecosystem . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 Related Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Why Data Integration is Difficult . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 The Data Integration Landscape . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Surveying the Integration Methods . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Dataset Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Basic Services To Deliver . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.3 Integration Substance (Materialization vs Virtualization) . . . . . . . 24

2.4.4 Internal Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.5 Auxiliary Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.6 Integration Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Processes for Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6 Evaluation of Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7 Semantic Integration On a Large Scale . . . . . . . . . . . . . . . . . . . . . . 51

2.7.1 Services for Large in Number RDF Datasets . . . . . . . . . . . . . . . 51

2.7.2 Integration Cases on a Large Scale . . . . . . . . . . . . . . . . . . . . 53

xiii



2.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Research Gaps & Motivating Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1 Placement of dissertation in the Data Integration Landscape . . . . . . . . . 57

3.2 Task A. Object Coreference & All Facts about an Entity . . . . . . . . . . . . . 58

3.2.1 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.2 Motivating Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.3 Our placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Task B. Connectivity Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2 Motivating Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.3 Our Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Task C. Dataset Search, Discovery & Selection . . . . . . . . . . . . . . . . . . 61

3.4.1 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.2 Motivating Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.3 Our Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Task D. Data Enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5.1 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.2 Motivating Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.3 Our Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Task E. Data Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.1 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.2 Motivating Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6.3 Our Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7 The Proposed Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Cross-dataset Identity Reasoning & Semantics-aware Indexes . . . . . . . . . . . . 71

4.1 Background & Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.1 Background - MapReduce Framework . . . . . . . . . . . . . . . . . . 72

4.1.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Considering Equivalence Relationships . . . . . . . . . . . . . . . . . 73

4.2.2 Creation of Real World Objects & Triples . . . . . . . . . . . . . . . . . 73

4.3 Problem Statement & Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.2 The Proposed Process of Global Indexing . . . . . . . . . . . . . . . . 75

4.4 Cross-dataset Identity Reasoning at Global Scale . . . . . . . . . . . . . . . . 76

4.4.1 Computation of Equivalence Relationships - Single Machine Algorithm 78

4.4.2 Computation of Equivalence Relationships - Parallel Algorithm . . . 81

4.4.3 Creation of Semantics-Aware RDF Triples . . . . . . . . . . . . . . . . 85

4.5 The Set of Semantics-Aware Indexes I . . . . . . . . . . . . . . . . . . . . . . 87

xiv



4.5.1 Constructing the Entity-Triples Index . . . . . . . . . . . . . . . . . . 89

4.5.2 Constructing Semantically Enriched Indexes for Entities, Properties,

Classes and Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5.3 Additional Indexes. Namespace Index . . . . . . . . . . . . . . . . . . 92

4.6 Comparison of Parallel Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 92

4.7 Experimental Evaluation - Efficiency . . . . . . . . . . . . . . . . . . . . . . . 94

4.7.1 Datasets Used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.7.2 Hardware & Details about the Implementation. . . . . . . . . . . . . . 95

4.7.3 Efficiency of Cross-Dataset Identity Reasoning . . . . . . . . . . . . . 96

4.7.4 Efficiency of Constructing the set of Semantics-aware Indexes I. . . . 98

4.7.5 Contents of Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.8 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Content-based Intersection, Union and Complement Metrics . . . . . . . . . . . 103

5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1.1 Commonalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1.2 Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1.3 Information Enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1.4 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1.5 Difficulty and Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Why plain SPARQL implementations are not enough . . . . . . . . . . . . . . 106

5.2.1 Real World Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.2 Real World Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.3 Real World Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.4 Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.5 Real World Triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.6 Comparison of a SPARQL implementation with the proposed lattice-

based incremental approaches. . . . . . . . . . . . . . . . . . . . . . . 111

5.3 The Lattice of Measurements by using the set of Semantics-aware Indexes I 112

5.3.1 Direct Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.2 Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Content-Based Intersection, Union and Complement Metrics . . . . . . . . 115

5.4.1 Computation of Commonalities . . . . . . . . . . . . . . . . . . . . . . 115

5.4.2 Computation of Coverage . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4.3 Computation of Information Enrichment given a Dataset Dm . . . . . 120

5.4.4 Computation of Uniqueness given a Dataset Dm . . . . . . . . . . . . 122

5.5 Incremental Computation of Intersection, Union & Complement Metrics . . 124

5.5.1 Lattice Traversals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.5.2 Lattice-Based Incremental Algorithms for computing cmnBest(K,F). 126

xv



5.5.3 Lattice Based Incremental Algorithm for computing covBest(K,F) (LB

method). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.5.4 Lattice-Based Incremental Algorithm for computing enrichBest(K,F,Dm)

138

5.5.5 Lattice-Based Incremental Algorithm for computing uniqBest(Dm,F,K)139

5.6 Computing Lattice-Based Measurements in Parallel . . . . . . . . . . . . . . 140

5.6.1 Overview of the Parallelization. . . . . . . . . . . . . . . . . . . . . . . 140

5.6.2 Why to parallelize the bottom-up approach. . . . . . . . . . . . . . . 140

5.6.3 Bottom-up Lattice-Based Algorithm in Parallel . . . . . . . . . . . . . 141

5.7 Experimental Evaluation - Efficiency . . . . . . . . . . . . . . . . . . . . . . . 146

5.7.1 Datasets & Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.7.2 Efficiency of Commonalities Metrics . . . . . . . . . . . . . . . . . . . 147

5.7.3 Efficiency of Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.7.4 Efficiency of Information Enrichment and Uniqueness . . . . . . . . 154

5.7.5 Efficiency of Parallel Lattice-Based Measurements . . . . . . . . . . . 155

5.8 Connectivity Analytics over LOD Cloud Datasets . . . . . . . . . . . . . . . . 157

5.8.1 Datasets Used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.8.2 Connectivity Gain from transitive and symmetric closure computation.158

5.8.3 Statistics Derived by the Indexes. . . . . . . . . . . . . . . . . . . . . . 158

5.8.4 Connectivity analytics based on content-based intersection metrics. 160

5.8.5 Indicative Union and Complement Measurements . . . . . . . . . . . 165

5.8.6 Conclusions about the Connectivity at LOD Scale . . . . . . . . . . . 167

5.9 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6 The LODsyndesis Suite of Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.1 LODsyndesis Services for Tasks A-E . . . . . . . . . . . . . . . . . . . . . . . . 170

6.1.1 How to find the URI of an Entity . . . . . . . . . . . . . . . . . . . . . . 170

6.1.2 Task A. Object Coreference and All Facts for an Entity Service . . . . . 170

6.1.3 Services for Task B. Connectivity Analytics & Visualization . . . . . . 174

6.1.4 Services for Task C. Dataset Search, Discovery and Selection . . . . . 175

6.1.5 Services for Task D. Data Enrichment . . . . . . . . . . . . . . . . . . . 178

6.1.6 Services for Task E. Quality Assessment . . . . . . . . . . . . . . . . . 180

6.2 LODsyndesisML. How Linked Data can aid Machine Learning-based tasks . 182

6.2.1 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.2.2 Placement of LODsyndesisML in the Data Integration Landscape . . 183

6.2.3 Linked Data-based Feature Creation Operators . . . . . . . . . . . . . 183

6.2.4 The Steps of the Proposed Approach . . . . . . . . . . . . . . . . . . . 186

6.2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.2.6 Synopsis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.3 LODVec. Knowledge Graph Embeddings over Hundreds of Linked Datasets . 191

xvi



6.3.1 Background & Related Work . . . . . . . . . . . . . . . . . . . . . . . . 193

6.3.2 Placement of LODVec in the Data Integration Landscape . . . . . . . . 194

6.3.3 LODVec: The Proposed Approach . . . . . . . . . . . . . . . . . . . . . 194

6.3.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.3.5 Epilogue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.4 LODQA. Question Answering over large number of datasets . . . . . . . . . . . 202

6.4.1 The process offered by LODQA . . . . . . . . . . . . . . . . . . . . . . . 203

6.4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.4.3 Web Demo and Related Links . . . . . . . . . . . . . . . . . . . . . . . 205

6.5 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

7.1 Synopsis of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

7.2 Directions for Future Work and Research . . . . . . . . . . . . . . . . . . . . . 210

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Appendices

A Publications and Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

B Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

xvii



xviii



List of Figures

1.1 Desired Services for Tasks A-E . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Example of Linked Data with 9 triples . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Use case diagram for the Linked Data ecosystem . . . . . . . . . . . . . . . . 11

2.3 Running example containing the steps of four different integration substances 15

2.4 The dimensions of data integration landscape . . . . . . . . . . . . . . . . . . 16

2.5 Example of two datasets and possible bindings . . . . . . . . . . . . . . . . . 18

2.6 The different criteria of dataset discovery . . . . . . . . . . . . . . . . . . . . 22

2.7 Steps for materialized and virtual integration . . . . . . . . . . . . . . . . . . 25

2.8 The different criteria of (schema

and instance) matching tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.9 Top level - ontology based integration . . . . . . . . . . . . . . . . . . . . . . 47

2.10 Lifecycle of an integrated dataset . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 LargeRDFBench Cross Domain Datasets . . . . . . . . . . . . . . . . . . . . . 60

3.2 Lattice of four datasets showing the common Real World Objects . . . . . . . 61

3.3 Motivating Example. Three scientists want to find K datasets (say 5) from

the 12 available ones, for performing an analysis for endangered species. . . 64

3.4 The steps of the process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 Running example containing four datasets. . . . . . . . . . . . . . . . . . . . 77

4.2 Hash-to-Min Algorithm Example - Impact of Ordering . . . . . . . . . . . . . 81

4.3 Example of SameAsPrefixIndex . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 EntEqCatCatalog Construction time . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 Number of Connected Components having

computed after the execution of each

MapReduce Job per Different Order . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Total Execution time (in seconds) after the

execution of each MapReduce Job per

Algorithm Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.7 Number of Connected Components per Real world Object . . . . . . . . . . 97

4.8 Creation time of indexes and catalogs for different number of machines. . . 100

xix



5.1 Running example for four datasets D1 −D4 and two indexes. . . . . . . . . . 113

5.2 Query Qconnectivity. Computation of Commonalities . . . . . . . . . . . . . . . 117

5.3 Query Qcoverage. Computation of Coverage . . . . . . . . . . . . . . . . . . . . 119

5.4 Query Qenrichment. Computation of Information Enrichment . . . . . . . . . . 121

5.5 Query Quniqueness. Computation of Uniqueness . . . . . . . . . . . . . . . . . . 123

5.6 The bottom-up depth first search traversal . . . . . . . . . . . . . . . . . . . . 125

5.7 The top-down breadth first search traversal . . . . . . . . . . . . . . . . . . . 126

5.8 Execution of Bottom-up Lattice-Based Incremental Algorithm for comput-

ing cmnBest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.9 Computing the metrics for all the supersets of D1,D4 . . . . . . . . . . . . . . 129

5.10 Execution of Incremental Algorithm for the 5 lattice nodes in green color . . 135

5.11 Pruning Example-Computing the metrics for all the supersets of D4, that

have not been explored yet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.12 Example of splitting the Upper Set of a set of nodes in 4 “Slices”, each having

4 nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.13 Execution Time for finding the commonalities among any subset of 10 datasets

(i.e., 45 pairs of datasets), by using Virtuoso and Blazegraph and 2 million

triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.14 Execution time of |cmn(B,RWE)| of Entities

Index among any combination of

10-25 datasets (210 − 225 subsets B) . . . . . . . . . . . . . . . . . . . . . . . . 150

5.15 Execution time of |cmn(B,LIT)| of Literals

Index among any combination of

10-25 datasets (210 − 225 subsets B) . . . . . . . . . . . . . . . . . . . . . . . . 150

5.16 Execution time of |cmn(B,RWT)| of Triples

Index among any combination of

10-25 datasets (210 − 225 subsets B) . . . . . . . . . . . . . . . . . . . . . . . . 150

5.17 Execution time of commonalities by using

LB+UPGR among any combination of

20-30 datasets (220 − 230 subsets B) . . . . . . . . . . . . . . . . . . . . . . . . 150

5.18 Execution time of |cov(B,RWE)| of Entities

Index among any combination of

10-25 datasets (210 − 225 subsets B) . . . . . . . . . . . . . . . . . . . . . . . . 153

5.19 Execution time of |cov(B,LIT)| of Literals

Index among any combination of

10-25 datasets (210 − 225 subsets B) . . . . . . . . . . . . . . . . . . . . . . . . 153

5.20 Execution time of |cov(B,RWT)| of Triples

Index among any combination of

10-25 datasets (210 − 225 subsets B) . . . . . . . . . . . . . . . . . . . . . . . . 153

xx



5.21 Execution time of coverage by using

LB+PRGR among any combination of

20-30 datasets (220 − 230 subsets B) . . . . . . . . . . . . . . . . . . . . . . . . 153

5.22 Execution time of |enrich(B,RWE,Dm)|

among any combination of 10-24 datasets . . . . . . . . . . . . . . . . . . . . 155

5.23 Execution time of |uniq(Dm,RWE,B)|

among any combination of 10-24 datasets . . . . . . . . . . . . . . . . . . . . 155

5.24 Lattice-based Measurements for Different

Number of Machines & 35 datasets . . . . . . . . . . . . . . . . . . . . . . . . 157

5.25 Lattice-based Measurements for Different

Number of Datasets and 64 Machines . . . . . . . . . . . . . . . . . . . . . . 157

5.26 Number of datasets where different sets of elements occur. . . . . . . . . . . 159

5.27 Number of connected pairs of datasets per interval for each measurement

type F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.28 Number of connected triads of datasets per interval for each measurement

type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.29 Unique(RWE) - Max Subset per Level . . . . . . . . . . . . . . . . . . . . . . . 163

6.1 Object Coreference Service. Find all the equivalent URIs to “Aristotle” . . . . 171

6.2 Provenance Service. Find all the datasets where the entity “Aristotle” occurs 171

6.3 All Facts Service. Find all the triples of the real world entity “Aristotle” . . . . 173

6.4 Left: The LOD cloud diagram. Right: One perspective of the introduced in-

teractive LOD 3D model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.5 Two ways to visualize the connections . . . . . . . . . . . . . . . . . . . . . . 175

6.6 Dataset-Based Connectivity Service. Find the top-5 most connected datasets

to GeoNames according to the number of common literals . . . . . . . . . . 176

6.7 Entity-Based Services. Find the top-5 triads of datasets that maximize the

number of triples for Ancient Philosophers . . . . . . . . . . . . . . . . . . . 178

6.8 Hybrid Services. Find the top-5 pairs of datasets that offer the maximum

number of complementary triples for the entities of Ecoscope Dataset . . . 180

6.9 Fact Checking Service. Compare the values for the birth place of “Aristotle” . 181

6.10 Running Example of LODsyndesisML . . . . . . . . . . . . . . . . . . . . . . . 184

6.11 Process of LODsyndesisML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.12 Features Number Per Dataset For Books

& Movies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.13 Generation Time for each Feature Operators

Category and Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.14 Selected Features for Books & Movies with their Provenance . . . . . . . . . . . . 189

xxi



6.15 Accuracy in Each Iteration & Test Size

for Dataset Books and Movies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.16 Average Accuracy of Models in Cross Validation

for Movies with Test Size 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.17 Running example containing 3 knowledge graphs and LODsyndesis . . . . . 193

6.18 The steps of LODVec approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.19 The QA Process over the running example . . . . . . . . . . . . . . . . . . . . 203

6.20 An example of the LODQA demo . . . . . . . . . . . . . . . . . . . . . . . . . . 205

xxii



List of Tables

2.1 Categorizing dataset discovery approaches

according to the criteria of Figure 2.6. . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Categorizing Existing Schema & Instance

Matching approaches for large-scale datasets

according to the criteria of Figure 2.8 . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Categorizing existing quality tools according to their characteristics . . . . . 42

2.4 Categorizing Existing RDF integration tools. O=Other Formats, Any=Any Service, QA=Query

Answering, KS=Keyword Search, FT=Format Transformation, LT=Logical Transformation, PD=Predefined

Mappings, OMT= Ontology Matching Techniques, C=Closure, IMT=Instance Matching Techniques, VQA=Virtual

Query Answering, CL=Conceptual Level, UVL=URIs and Values Level, TL=Triples Level, QL=Query Level,

DF=Data Fusion, Con.=Connectivity, DC=Data Cleaning, QP=Query Performance, Aut.=Automatically,

S-Aut.=Semi-Automatically, —D—=Datasets, *discovers more datasets on-the-fly, —T—=Triples, M=Millions,

B=Billions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Existing Services for large numbers of RDF datasets, *Documents, **Vocabularies,

Mil.=Million, Bil.=Billion, Unk.=Unknown . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Indicative Queries for the tasks A-E . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Finding the provenance of different elements. . . . . . . . . . . . . . . . . . . 75

4.2 Classes of Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Insert u5 owl:sameAs u6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Insert u3 owl:sameAs u7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Insert u1 owl:sameAs u3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Comparison of Parallel algorithms. . . . . . . . . . . . . . . . . . . . . . . . . 93

4.7 Metadata of datasets which are used in the experiments. . . . . . . . . . . . 95

4.8 Construction time and size of catalogs and indexes. . . . . . . . . . . . . . . 99

4.9 Exact creation time by using different number of virtual machines (VMs) . . 99

5.1 directCount of different measurement types. . . . . . . . . . . . . . . . . . . . 114

5.2 Comparison of different approaches for computing |cov(B′,F)|, for a set of

“visited” subsets BV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3 Statistics of indexes for 400 datasets, and for the 25 most popular datasets

of each index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xxiii



5.4 Execution time for SPARQL queries for measuring the commonalities be-

tween pairs and triads of 10 datasets, by using Virtuoso and 58 million triples.149

5.5 Statistics for measuring |cmn(B,F)| for

each index incrementally, for 220 subsets . . . . . . . . . . . . . . . . . . . . 151

5.6 Max Speedup by using different models for

measuring |cmn(B,F)|, for each index . . . . . . . . . . . . . . . . . . . . . . . 151

5.7 Execution time for finding the commonalities for subsets of 400 RDF Datasets

by using the bottom-up lattice-based algorithm. . . . . . . . . . . . . . . . . 152

5.8 Statistics for measuring |cov(B,F)| for

each index incrementally, for 220 subsets . . . . . . . . . . . . . . . . . . . . 154

5.9 Max Speedup by using different models for

measuring |cov(B,F)|, for each index . . . . . . . . . . . . . . . . . . . . . . . 154

5.10 Lattice Measurements for 35 datasets & 235 nodes (34.35 Billions of Nodes) . 156

5.11 Statistics for equivalence relationships. . . . . . . . . . . . . . . . . . . . . . . 158

5.12 Elements per number of datasets. . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.13 Connected subsets of datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.14 Top-10 Subsets ≥ 3 with the most common RWE . . . . . . . . . . . . . . . . 163

5.15 Top-10 Subsets ≥ 3 with the most common Literals . . . . . . . . . . . . . . . 164

5.16 Top-10 subsets with ≥ 3 datasets having the most common real world triples. 164

5.17 Top-10 datasets with the most entities, triples and literals existing at least in

3 datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.18 Best subset of datasets of each level Lhaving

the most triples for Seafood red list species . . . . . . . . . . . . . . . . . . . 166

5.19 Top-5 triads of datasets that cover

the most triples for EDGE species . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.20 Top-5 dataset pairs providing complementary

triples for the entities of DBpedia . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.21 |uniq| of Wikidata (WD) & YAGO (YG),

vs DBpedia (DB) and Freebase (FR) . . . . . . . . . . . . . . . . . . . . . . . . 166

6.1 LODsyndesisREST API - GET Requests. . . . . . . . . . . . . . . . . . . . . . . 179

6.2 Feature Creation Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.3 Restrictions of features with respect to the characteristics of a property . . . . . . . 186

6.4 Accuracy for each Feature Operators Category (Movies & Books test size 0.2) . . . . 189

6.5 Notations-Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.6 Classification and regression experiments on Movies dataset . . . . . . . . . 199

6.7 Classification and regression experiments on Music Albums dataset . . . . . 201

6.8 Top-5 related movies to “Wall-E” movie by using different datasets . . . . . . . . . . . . . 201

xxiv



Chapter 1

Introduction

1.1 Context and Motivation

In recent years, there has been an international trend towards publishing open data and

an attempt to comply with standards and good practices that make it easier to find, reuse

and exploit open data. Linked Data is one such method for publishing structured data,

that facilitates their sharing, linking, searching and re-use. It allows data to be interlinked

(by using URIs instead of simple values) for assisting their integration. The main objective

of Linked Data is linking and integration for easing data discovery process, for performing

data analysis and for offering integrated query answering, and a big number of datasets

(over 10,000 [91]) has already been published according to the principles of Linked Data

(and their number and size keeps increasing). The large volume of these datasets neces-

sitates their semantic integration, their connectivity, the preservation of their provenance,

and the assessment of their quality and veracity, for fulfilling the requirements of e-science.

In particular, the processing and the analysis of a large volume of integrated data is crucial

for any scientific field, for providing novel and accurate scientific results.

However, the semantic integration of data from these datasets at a large (global) scale

has not yet been achieved, and this is perhaps one of the biggest challenges of computing

today. Indeed, the integration process still requires a number of steps, some of which are

difficult or costly. As it is stated in [83], “Integration requires spending resources on map-

ping heterogeneous data items, resolving conflicts, cleaning the data, and so on. Such

costs can also be huge. Actually, the cost of integrating some sources may not be worth-

while if the gain is limited, especially in the presence of redundant data and low quality

data”. Moreover, according to Mark Schrieber1 “Data scientists spend even 95% of their

time on data discovery and data integration”, whereas it has been written2 that “Data sci-

entists spend from 50 percent to 80 percent of their time in collecting and preparing unruly

1https://amsterdamdatascience.nl/wp-content/uploads/2020/01/Top-10-Data-Science-Blunders-
Michael-Stonebraker.pdf

2http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-
work.html? r=0

1
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digital data, before it can be explored for useful nuggets”.

The main objective of this dissertation is to design and develop innovative indexes,

methods, algorithms and tools for assisting the process of data discovery and semantic

data integration at a large scale.

1.2 Related Problems

Although the ultimate objective of LOD (Linked Open Data) is linking and integration, for

enabling discovery and integrated query answering and analysis, even some basic tasks

are nowadays challenging due to the scale and heterogeneity of the datasets. Generally,

Linking and Integration at scale are inherently difficult problems for various reasons. Ini-

tially, datasets are produced and managed by different organizations according to concep-

tualizations, models, schemas and formats based on their needs and choice, and these

data are stored in different locations and systems. Another difficulty is that the same

real-world entities or relationships are referred with different names or URIs and in differ-

ent natural languages; the synonyms and homonyms of natural languages further perplex

identification and matching. Moreover, quite often there is not enough data for automated

matching because datasets contain complementary information about the same entities.

Data integration also has to tackle the fact that datasets usually contain erroneous, out-of-

date and conflicting data. Finally, integration is not a one shot task in the sense that ev-

erything can change as time passes (e.g., schemas, ontologies, naming conventions, etc.),

necessitating additional actions for curating the integrated access.

Due to the aforementioned problems, the execution of various tasks that are related to

data integration at large scale is quite difficult. These tasks are listed below.

•Task A. Obtaining complete information about one particular entity or a set of entities

by applying cross-dataset identity reasoning. (i.e., Object Coreference).

• Task B. Assessing the connectivity among any combination of datasets, and monitor-

ing their evolution over time (i.e., Connectivity Analytics).

• Task C. Discovering the K most relevant datasets to a given dataset or/and to a partic-

ular task, by exploiting the whole contents of datasets, and not only metadata (i.e., Dataset

Search, Discovery and Selection).

• Task D. Combining information from several datasets (i.e., Data Enrichment), e.g., for

improving the execution of Machine-Learning based tasks.

• Task E. Assessing the quality of one or more datasets and estimating the reliability of

a specific fact for an entity (i.e., Data Quality).

All the aforementioned tasks require special methods, indexes and measurements that

involve more than two datasets. However, they are not available although they are of pri-

mary importance for the integration process in an open and involving environment.
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1.3 Analysis of the Problems and Related Challenges

The main objective of this dissertation is to offer advanced services for covering the needs

of the aforementioned tasks. In particular, for each task we desire to provide services for

fulfilling the requirements and needs of scientists of any scientific field (or even simple

users).

Concerning task A, it is of primary importance to find all the URIs and the complete

information for an entity (say “Aristotle”), in order one to be able to widen the information

or/and to build an integrated dataset for that entity. Regarding task B, the exploitation of

measurements, that concern the connectivity among any combination of datasets (e.g.,

between pairs or triads of datasets), is useful for assessing the degree up to which datasets

are connected, e.g., for answering queries such as “How many entities share Wikidata, DB-

pedia and YAGO?”. Concerning task C, we desire to answer complex Dataset Discovery

queries that involve content-based measurements (and not only measurements based on

metadata) among two or more datasets, such as “find the K most relevant datasets to a

particular dataset”, i.e., finding related datasets containing the same entities to a given

one.

Concerning task D, one should be able to find datasets that can enrich the information

of his/her dataset. Indeed, it is important to combine information from multiple datasets

for several tasks, e.g., for producing more features or/and entity embeddings, which can be

used for improving the predictions of Machine-Learning based tasks. Regarding task E, the

cross-dataset identity reasoning allows spotting the contradictions that exist and on the

same time provides information for data cleaning or for estimating and suggesting which

data are probably correct or more accurate. Moreover, the content-based measurements

can aid publishers to estimate and improve the quality of their datasets. More concrete

motivating examples of tasks A-E are given in Chapter 3.

Below, we introduce the main challenges and the corresponding research questions

(RQ) that this thesis aims at tackling, for being able to provide advanced services for the

tasks A-E.

• Challenge 1. Cross-Dataset Identity Reasoning. The equivalence relationships that

exist among entities and schemas of different datasets, such as owl:sameAs,owl:equivalentProperty

and owl:equivalentClass, model an equivalence relation. Therefore, for finding all the

equivalent URIs for a given URI, it is a prerequisite to compute the transitive and symmet-

ric closure of these relationships. However, it presupposes knowledge of all datasets and

most of the algorithms (such as Tarjan’s connected components (CC) algorithm [233]) that

compute the transitive and symmetric closure of equivalence relationships require a lot of

memory, i.e., one should keep in memory all the binary relationships during the compu-

tation of closure. Therefore, the major research question (RQ1) is how to compute in an

efficient way the cross-dataset identity reasoning, i.e., the computation of transitive and
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symmetric closure of owl:sameAs, owl:equivalentPropertyand owl:equivalentClass re-

lationships, by using either a single machine or a cluster of machines, since the number

of equivalence relationships at scale is large. The corresponding research question are

addressed in Chapter 4.

• Challenge 2. Construction of Indexes at Large Scale by applying Cross-Dataset

Identity Reasoning. We desire to index the whole contents of multiple datasets, for en-

abling fast access to all the triples of a given URI u (including the triples that contain any

of the equivalent URIs of u). Therefore, one major question (RQ2), is how to apply the

result of the cross-dataset identity reasoning for constructing such semantics-aware in-

dexes. Moreover, since the there are many datasets (hundreds or even thousands) and

some of them are very big, one key question (RQ3) is how to parallelize in an efficient way

the construction of these indexes. The corresponding research questions are addressed in

Chapter 4.

• Challenge 3. Dataset Discovery by using content-based measurements among two

or more datasets. For offering dataset discovery through content-based measurements,

i.e., “find the K most relevant datasets to a given one”, it is a prerequisite to take into ac-

count the whole contents of datasets (and not only metadata) and to solve maximization

problems. The main problem is that the possible combinations of datasets is exponential

in number, specifically the number of possible solutions for a given K is given by the bi-

nomial coefficient formula. Therefore, a major question (RQ4) is whether a standard W3C

query language implementation (such as SPARQL) can be used for solving such maximiza-

tion problems. Moreover, since set operations (i.e., intersection, union, complement) be-

tween large datasets are quite expensive, a key question (RQ5) is how we can reduce the

number of set operations between different datasets. Finally, a main question (RQ6) is

whether these content-based measurements can be parallelized. The corresponding re-

search questions are addressed in Chapter 5.

1.4 Contributions of this Dissertation

The key contributions of this dissertation are the following:

• We introduce a comprehensive and clear landscape of large scale semantic integra-

tion approaches for better understanding the problem, for identifying the gaps as

well as for identifying research directions. The results have been published in [173].

• We propose methods for performing cross-dataset identity reasoning at large scale,

i.e., we focus on computing the transitive and symmetric closure of owl:sameAs,

owl:equivalentProperty and owl:equivalentClass relationships. These methods

rely on special indexes and algorithms and can be executed by using either a sin-

gle machine or a cluster of machines (indicatively, by using 96 machines less than 9



1.4. Contributions of this Dissertation 5

Figure 1.1: Desired Services for Tasks A-E

minutes are needed for computing the transitive and symmetric closure of 44 million

equivalence relationships). The results have been published in [165, 168, 171].

• We introduce scalable methods and algorithms that rely on MapReduce techniques,

for constructing dedicated global semantics-aware indexes that cover the whole con-

tents of datasets (just indicatively, 81.5 minutes are needed for constructing all the

indexes for two billion triples by using 96 machines). The results have been pub-

lished in [165, 168, 171].

• We introduce content-based intersection, union and complement metrics for dataset

search and discovery over large number of linked datasets, which are formulated and

tackled as maximization problems. Moreover, we exploit dedicated indexes, lattice-

based incremental algorithms and set-theory properties for tackling the exponential

complexity of the problems. Indicatively, the proposed algorithms are even more

than 5000× faster than a straightforward method and can compute the metrics for

1 million subsets of datasets even in 1 second. The results have been published

in [165, 168, 171, 174].

• We exploit the aforementioned indexes for various modern and forthcoming appli-

cations, such as for Dataset enrichment for Machine Learning tasks, entity embed-

dings over large number of datasets and Question answering over several datasets.

Indicatively, by creating features and embeddings from multiple datasets simultane-

ously, we managed to improve the accuracy of predictions (we identified even 13%

increase) for machine learning classification problems. The results have been pub-

lished in [73, 166, 169, 172].
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• We report statistics and connectivity analytics for a big subset of the current LOD

cloud that comprises 400 datasets and 2 billion triples, which reveal the sparsity of

LOD Cloud datasets. The results have been published in [165, 168, 169, 171, 174]

• We present our research prototype, called LODsyndesis (http://www.ics.forth.gr/

isl/LODsyndesis/), that exploits the semantics-aware indexes and the content-based

metrics for assisting the Data Integration process by offering services for the tasks A-

E (which can be seen in Figure 1.1). Despite the large volume of data, we offer fast

responses for millions of queries for 400 datasets, 412 million entities and 2 billion

triples (e.g., 3.5 seconds are needed for retrieving all the triples of Aristotle). The

results have been published in [169].

1.5 Publications

The work presented in this thesis has been published in international journals and confer-

ences. These publications are listed below, ordered by date:

• M. Mountantonakis and Y. Tzitzikas, On Measuring the Lattice of Commonalities Among

Several Linked Datasets, Proceedings of the VLDB Endowment (PVLDB), 2016

• M. Mountantonakis and Y. Tzitzikas How Linked Data can aid Machine Learning-

based Tasks, 21st International Conference on Theory and Practice of Digital Libraries

(TPDL), (pp. 155-168), September 2017, Thessaloniki, Greece

• M. Mountantonakis and Y. Tzitzikas Scalable Methods for Measuring the Connectivity

and Quality of Large Numbers of Linked Datasets, ACM Journal of Data and Informa-

tion Quality (JDIQ), 9(3), 15, 2018

• M. Mountantonakis and Y. Tzitzikas High Performance Methods for Linked Open Data

Connectivity Analytics, Information 2018, 9, 134.(Special Issue Semantics for Big Data

Integration)

• M. Mountantonakis and Y. Tzitzikas LODsyndesis: Global Scale Knowledge Services,

Heritage. Open Access Journal (ISSN 2571-9408), 1(2), 335-348, MDPI.(Special Issue:

On Provenance of Knowledge and Documentation: Selected Papers from CIDOC

2018), 2018.

• M. Mountantonakis and Y. Tzitzikas Large Scale Semantic Integration of Linked Data:

A survey, ACM Computing Surveys, 52(5), Sept. 2019

• M. Mountantonakis and Y. Tzitzikas Knowledge Graph Embeddings over Hundreds

of Linked Datasets, 13th International Conference on Metadata and Semantics Re-

search, Rome, Italy, October 2019
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• M. Mountantonakis and Y. Tzitzikas Content-based Union and Complement Metrics

for Dataset Search over RDF Knowledge Graphs, ACM Journal of Data and Informa-

tion Quality (JDIQ), 2020

1.6 Outline of Dissertation

The rest of this dissertation is organized in the following way:

• Chapter 2 introduces the background and it describes the context. Furthermore, it

reviews the related literature, by presenting a survey of the work that has been done

in the area of Linked Data integration in the last decade giving emphasis in the inte-

gration of large in numbers datasets.

• Chapter 3 discusses the research gaps derived by the analysis of Chapter 2, the main

motivating scenarios and the queries and services that we desire to offer for the tasks

A-E. Moreover, it describes the main differences between the work done in the con-

text of the dissertation and the related approaches for each task.

• Chapter 4 presents algorithms for performing cross-dataset reasoning and for con-

structing semantics-aware indexes that cover the whole content (e.g., entities, schema,

triples) of datasets. Finally, it reports comparative efficiency results by using differ-

ent techniques and a cluster of 64 machines.

• Chapter 5 defines content-based intersection, union and complement metrics among

any subset of datasets. It shows why current implementations of SPARQL language

are not efficient for making such measurements, and it presents lattice-based incre-

mental algorithms that rely on the semantics-aware indexes and exploit set-theory

properties for computing these content-based metrics. Moreover, it introduces meth-

ods for performing such measurements in parallel. Finally, it contains comparative

efficiency results and it presents indicative statistics and connectivity analytics (de-

rived from the proposed indexes and measurements) for 400 real RDF datasets and

2 billion triples.

• Chapter 6 describes the suite of services and tools that have been developed in the

context of this dissertation, which are referred by the name LODsyndesis. Emphasis

is given in two tools, called LODsyndesisML and LODVec, that can be used for creating

features and entity embeddings for aiding the execution of machine-learning based

tasks.

• Chapter 7 concludes the thesis by providing a summary of the results and a discus-

sion on possible future directions.
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• Appendix A lists the publications resulted from this dissertation, and provides links

to the prototypes and services that have been developed.

• Appendix B reports the acronyms used in this dissertation.



Chapter 2

Large Scale Semantic Integration of

Linked Data: A survey

Data integration has been studied in the context of various data models, namely in the rela-

tional model, e.g., see [112] for a survey of information integration in the relational model,

and in the semi-structured model, e.g., see [40] for a survey of approaches for integration

for XML databases, while [84] surveys works for big data integration for both models.

In this chapter, we survey the work that has been done in the area of Linked Data inte-

gration. There are surveys for various individual tasks of the general integration process,

i.e. surveys for distributed RDF processing [121], for ontology matching [227], for instance

matching [178], for integration for OLAP [27], for query federation [213], for visualization

and exploration [39,66,239], for quality [192,261]. In the current survey, we aim at covering

the topic holistically, i.e. from various perspectives, for better understanding the overall

problem and process, and for making more obvious the dependence between the individ-

ual tasks. Moreover, since the LOD cloud already contains a large number of datasets (over

9,000 datasets according to [91]), we give emphasis on methods that can be applied to very

large number of datasets. This distinction is important in the sense that a semi-automatic

process which can be followed for integrating a few (say 5) datasets, is not affordable, due

to the required human effort, for integrating thousands of datasets. Michael Stonebraker

(a pioneer researcher in data management) has mentioned (http://ilp.mit.edu/images/

conferences/2013/ict/presentation/stonebraker.pdf) that data integration at scale is

a very big deal and probably the biggest problem that many enterprises face, since the tra-

ditional approaches cannot scale easily to more than 25 sources. For this reason, in this

chapter we emphasize on tasks that could aid the integration of large number of datasets,

and discuss the tools that are available for large in number RDF datasets. Overall this

chapter provides a concise overview of the issues, methods, tools and systems for seman-

tic integration of data.

In various places of this chapter, we shall use a running example from the marine do-

main. Moreover, please note that in several places we refer to LODsyndesis, which is the

9
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suite of services and tools that have been developed in this dissertation. The rest of this

chapter is organized as follows: §2.1 provides the background and the context, discusses

the Linked Data ecosystem and refers to past surveys. §2.2 introduces the difficulties of

data integration while §2.3 describes the landscape of data integration. §2.4 surveys the

integration methods while §2.5 discusses the different integration processes. §2.6 focuses

on evaluation related to information integration, whereas §2.7 lists tools and services for

large in number RDF datasets and what steps of the processes they cover and how. §2.8

provides a synopsis of this chapter.

2.1 Background and Context

In this section, in §2.1.1 we introduce the main principles of Linked Data, and in §2.1.3 we

discuss the Linked Data Ecosystem.

2.1.1 Linked Data

Definition. “Linked Data refers to a method of publishing structured data, so that it can

be interlinked and become more useful through semantic queries, founded on HTTP, RDF

and URIs” [42].

The roots of Linked Data. In the 1990s, Tim Berners-Lee, the inventor of the World

Wide Web, discussed the vision for a Semantic Web [36], i.e., ”The first step is putting data

on the Web in a form that machines can naturally understand, or converting it to that form.

This creates what I call a Semantic Web - a web of data that can be processed directly or

indirectly by machines”. In 2001, Tim Berners-Lee and his colleagues described the main

ideas of Semantic Web [37], e.g., representing data in RDF format, using ontologies that

enable the creation of inference rules, and others, while the May 2006 paper [226], stressed

the emerging need for semantic data integration and described most of the Linked Data

principles, which are dissussed below.

Linked Data Principles. The major principles of Linked Data, which are required for

reaching the goal for a “Web of Data” (or Semantic Web) [42], were officially proposed in

July 2006 by Tim Berners-Lee1:

“1) use URIs as names for things, 2) use HTTP URIs so that people can look up those

names, 3) when someone looks up a URI, provide useful information, using the standards

(RDF, SPARQL) and 4) include links to other URIs, so that they can discover more things.”

The fourth principle, which refers to data interlinking, is of primary importance for data

integration, since it suggests to the publishers to create relationships with URIs occuring

in different datasets. The datasets can be linked through common URIs, which can refer ei-

ther to schema elements (they are defined through RDF Schema and OWL [32]), or data el-

1htps://www.w3.org/DesignIssues/LinkedData.html
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Figure 2.1:

Example of Linked Data with 9 triples
Figure 2.2:

Use case diagram for the Linked Data ecosystem

ements. SPARQL is a standard query language (http://www.w3.org/TR/sparql11-query/)

for retrieving and managing RDF data, whereas queries can be expressed across differ-

ent datasets. Moreover, the emergence for achieving linking and integration can be ob-

served from proposals for rating open data, i.e., by using the 5-star Open Data (http:

//5stardata.info/en/), as well as proposals for rating vocabularies [125].

2.1.2 RDF

Resource Description Framework (RDF) [32] is a graph-based data model. It uses Interna-

tionalized Resource Identifiers (IRIs), or anonymous resources (blank nodes) for denoting

resources, and constants (Literals), while triples are used for relating a resource with other

resources or constants. Hereafter, we shall use the term URIs (Uniform Resource Identi-

fiers) to refer to IRIs (since the term URI is more commonly used). A triple is a statement

of the form subject-predicate-object 〈s,p,o〉, and it is any element of T = (U∪Bn)× (U)×

(U ∪Bn ∪L), whereU, Bn andL denote the sets of URIs, blank nodes and literals, respec-

tively, whereas an RDF graph (or dataset) is any finite subset of T . For instance, the triple

〈d1:Yellowfin Tuna, d1:livesInOcean, ex:Pacific〉, contains three URIs, where the first one

(i.e., d1:Yellowfin Tuna) is the subject, the second one (i.e., d1:livesInOcean) is the pred-

icate (or property) and the last one (i.e., ex:Pacific) is the object. By using Linked Data,

the linking of datasets can be achieved by the existence of common URIs or Literals, or by

defining equivalence relationships, e.g., owl:sameAs, among different URIs (entities, prop-

erties and classes).
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2.1.3 The Linked Data Ecosystem

To understand the world of Linked Data and the involved stakeholders, we could consider

them as a single ecosystem. Figure 2.2 provides the Use Case Diagram and below we iden-

tify the main actors and use cases of that ecosystem.

Dataset’s Owner. The owner of a dataset can be a public organization (e.g., a munici-

pality, a research centre, a university), a private sector organization (e.g., a company, like

BBC, NGOs, etc.) or even an individual that owns and is responsible for creating, keeping,

maintaining and publishing the dataset.

Consumer, Services or Applications. This actor corresponds to entities, services or

applications that consume data for various reasons, i.e., for providing services of various

levels or granularity like Dataset Discovery, Dataset Selection, URI Lookup, Keyword Search

and Query Answering services. For instance, LODLaundromat [207] offers URI Lookup and

Keyword Search for over 650,000 documents. Other applications, such as Swoogle [74] and

Watson [67], offer keyword search services for the Semantic Web datasets and resources,

while LODsyndesis [165] offers services for Dataset Discovery and Dataset Selection. Fi-

nally, this actor includes end-user applications (like smart phone applications) that exploit

Linked Data for supporting their functionality.

Integrator/Aggregator. This actor captures individuals or organizations whose objec-

tive is to integrate a number of datasets and provide integrated access services. The final

output can be exploited by the members of the corresponding community. One example

is Europeana Foundation which is responsible for Europeana [124], which is the European

digital platform for cultural heritage. This platform combines data from more than 3,000

institutions across Europe while these data were transformed into Linked Data and are

represented in the Europeana Data Model [124]. In other occasions, international projects

play this role. Note that the use case ”Perform Integration” is actually the process that will

be analyzed in this survey.

Data Scientist. A Data Scientist can be considered as a special case of Consumer

and Aggregator/Integrator. A data scientist usually has to find and select the appropri-

ate datasets (or sub-datasets) for his/her needs and may have to aggregate and integrate

data in order to perform the intended analysis. Moreover at the end, the data scientist can

publish the results of this analysis as a new dataset (therefore it could be considered as

dataset owner).

2.1.4 Related Surveys

Several surveys have been published in the database world about Data Integration, i.e.,

surveys assuming the relational data model (such as [112]), surveys assuming the semi-

structured data model (e.g., [40] includes approaches for integrating XML databases), sur-

veys that concern big data integration for both models (e.g., [84]), as well as surveys for
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semantic integration focusing on “ontology-based” approaches [134, 183]. Concerning

Linked Data, there are surveys for various individual tasks of the general integration pro-

cess. Specifically, [121] surveys techniques and approaches for scalable distributed RDF

processing, querying and reasoning, e.g., search engines, federated query systems, rule-

based reasoning and so forth. [227] provides a literature review for the field of ontology

matching for the decade 2003-2013 whereas the authors in [178] compare the features

of various tools and frameworks that perform instance matching. In [27], the objective

was to survey how the “Semantic Web technologies can aid in data discovery, acquisition,

integration, and analytical querying of external data, and thus serve as a foundation for

exploratory on-line analytical processing (OLAP)”. The authors analyzed the steps that

should be carried out for creating data warehouses and answering OLAP queries. More-

over, [213] compares novel SPARQL endpoint federation engines in many dimensions and

details the tools that have been created for this specific method of integration, while [131]

surveys approaches that support scalable distributed SPARQL query evaluation. [202] high-

lights the strong need for holistic data integration approaches that can integrate many

data sources (and not be limited only to pairwise matching). [66] surveys approaches for

visualizing Linked Data, [39] surveys a number of systems for data visualization and explo-

ration, while [239] surveys methods for supporting faceted exploration over RDF datasets.

Concerning the quality of Linked Data, the authors in [261] survey 21 approaches and de-

scribe 26 data quality dimensions, e.g., accuracy, interlinking, conciseness, consistency and

others, while they introduce corresponding metrics and approaches for each dimension.

Moreover, [192] surveys approaches focusing on knowledge graph refinement (mainly on

error detection and data completion), which are of primary importance for improving the

quality of a single dataset (that could be an integrated dataset). Finally, OCLC Research

Team has provided a survey for hundreds of projects and services from the domain of dig-

ital libraries that exploit Linked Data principles [229]. The key difference between our

survey and the aforementioned ones is that they focus on various individual tasks of the

general integration process whereas we emphasize on the whole integration process and

methods that can be applied for large number of datasets (e.g., thousands of datasets).

2.2 Why Data Integration is Difficult

Information integration aims at offering unified access services over a set of information

from heterogeneous datasets (structured, semi-structured or unstructured), that can have

different conceptual, contextual and typographical representations. Integration is not

easy for various reasons. Most of these reasons has attracted the interest of database com-

munity for decades, e.g., for relational model [230, 231] and in the area of Semantic Inte-

gration [134, 183]. Below we list six main reasons, each exemplified using the running

example of Figure 2.3, which shows the three sources of Figure 2.1, i.e., D1, D2 and D3, in
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the context of four integration scenarios.

a) Different Authorities. The datasets are produced, kept or managed by different orga-

nizations in different formats, schema, models [134, 183], locations, systems and licenses.

There is not any “centralized control system”, therefore, each publisher (e.g., organization)

decides how to produce, manage and publish a dataset based on their needs and choices.

For instance, in the marine domain the dataset of Fishbase (http://www.fishbase.org),

that contains information about the “taxonomy, geographical distribution, biometrics,

population, genetic data and many more” [163], is accessible through an SQL server, there-

fore one needs a fetcher to download it and a transformer to RDF, for linking it with other

datasets. On the contrary, for Ecoscope dataset (http://ecoscopebc.mpl.ird.fr/joseki/

ecoscope), which contains “geographical data, pictures and information about marine

ecosystems” [163], transformations are not required since this dataset has already been

published in RDF format.

b) Naming. The same real-world entities or relationships are referred with different URIs

and names and in different natural languages, while natural languages have synonyms

and homonyms that make harder that automatic connection. For instance, the URI of the

species Thunnus Albacares in DBpedia is http://www.dbpedia.com/Thunnus_Albacares,

while in Ecoscope the corresponding URI is http://www.ecoscope.com/thunnus_albacares.

Moreover, the aforementioned species has 348 common names in 82 different natural

languages [236]. In addition, we often have to tackle the problem of homonyms, since

the same name can describe two or more different real-world entities. For example, “Ar-

gentina” is used to refer to the country (http://dbpedia.org/resource/Argentina) but

also to a fish genus (http://dbpedia.org/resource/Argentina_(fish)).

c) Complementarity. The datasets usually contain complementary information, e.g., con-

sider two datasets about the same domain each modeling a different aspect of the do-

main. The commonalities between these datasets can be very few and this does not aid

automated linking and integration. For example, a dataset can include data about the

predators of marine species, and another one can contain data about the selling price of

a species in a fish market. In the former, the species can be referred by its scientific name,

while in the latter by its commercial code.

d) Errors, Conflicts. The datasets can contain data that are erroneous, out-of-date or

conflicting. For example, in the marine domain Fishbase mentions that the max length

of thunnus albacares is 239 cm while Wikipedia (whose content is used from many RDF

sources such as DBpedia) states that its max length is 240 cm, meaning that conflicts can

occur even because one dataset is more precise than another. Other conflicts are due to

erroneous information, e.g., suppose that one dataset states that the capital of Australia is
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Figure 2.3: Running example containing the steps of four different integration substances
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Figure 2.4: The dimensions of data integration landscape

Sydney and several other datasets that is Canberra. Finally, out-of-date data are very com-

mon in many domains, e.g., the current team of a football player (this is however related

also to difficulty (f) described below).

e) Different Conceptualizations. The datasets about the same domain may follow differ-

ent conceptualizations (or modeling decisions) of the domain [134, 183], i.e., they have

different schemas (as we would say in the relational database world). For instance, some

datasets conceptualize an address by using one property (e.g., 〈:Michael,:hasAddress,

"Street1,Heraklion,71303"〉, others use one property per address part (e.g., 〈:Michael,:

street,"Street1"〉, 〈:Michael,:city,"Heraklion"〉and 〈:Michael,:postCode,"71303"〉). More-

over, other datasets use a blank node for representing an address. Consequently, there is

not a general pattern that the creators of the datasets follow for representing the informa-

tion for a specific domain.

f) Evolution. Everything changes: the world, the ontologies (e.g., see [101] for a survey of

ontology change), the data. Thereby, integration action which have taken place may have

to be updated or revised. This is also a source of possible conflicts as stated earlier.

2.3 The Data Integration Landscape

The data integration landscape is wide and complex. For approaching it in a structured

manner, we can describe an integration process through a multidimensional space. Such

a space should allow describing each integration method as one or more points of the

multidimensional space in a clear manner. Specifically, we introduce the space defined by

the cartesian product of five dimensions

IntegrationLandScape = (DatasetTypes × BasicServicesToDeliver × IntegrationSubstance ×

InternalServices × AuxiliaryServices)
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Figure 2.4 illustrates the basic values that correspond to each dimension. Below we briefly

describe each one, while a detailed description for each one is given in the next sections.

• DatasetTypes (or input types) refers to the different dataset types that can be used as in-

put, e.g., RDF files, relational databases, HTML with embedded annotations (e.g., RDFa,

JSON-LD). The dataset’s owner (recall the Linked Data Ecosystem in §2.1.3) is responsible

for the type of the dataset.

• BasicServicesToDeliver (or output types) refers to the main purpose of integration, i.e.,

what services we would like to offer by integrating several datasets, e.g., see those shown

in Figure 2.4. This dimension corresponds to Consumer, Services or Applications actor of

§2.1.3.

• IntegrationSubstance (or Integration Architecture) refers to the different integration sub-

stances, physical (materialized) versus virtual, and their specializations (e.g. see those

shown in Figure 2.4). The responsible actor (according to §2.1.3) is the integrator/aggrega-

tor .

• InternalServices (i.e., how it works) refers to the services used during the integration pro-

cess, e.g., transformations, bindings, etc., in order to “connect” the pieces of data, thereby,

the responsible actor is the integrator/aggegator (see §2.1.3).

• AuxiliaryServices (i.e., extra output types, beyond the core ones) refers to services that

can be optionally exploited/offered either before or after the integration process, related

to provenance, evolution, quality and others (again integrator/aggregator is the responsi-

ble actor).

For tackling the various discrepancies (as mentioned in §2.2), which is actually the

“duty” of the InternalServices mentioned before, the various integration approaches essen-

tially attempt to “connect” the data of the underlying datasets. Generally, datasets can be

connected (or linked) through a) instance links, b) schema concepts and c) constants, i.e.,

literals. According to [168], LOD cloud datasets are mainly linked through schema con-

cepts (99% of datasets’ pairs share RDF schema elements) and literals (78% of datasets’

pairs share literals), while only 11.3 % of datasets’ pairs contain common instances. One

kind of connection is through canonicalization, e.g., an integration system can decide to

transform every occurrence of “UK” and “Great Britain” to “United Kingdom”. In this way,

semantically equivalent elements can get the same single representation. Another kind

of connection is through binding , i.e., by adding extra relationships (data in general) that

connect these elements, e.g., “UK” ≡ “Great Britain”. We use the term “binding” to refer to

what is called correspondence, mapping, link, etc. We can distinguish the following cases

based on the semantics of these bindings (in some parts of the discussion below we shall

use examples from the two small datasets shown in Figure 2.5):

• Taxonomy-based relations

– Exact-ones. Here we have relations expressing equivalence, e.g., owl:sameAs,

owl:EquivalentProperty, skos:exactMatch, or difference e.g., owl:DifferentFrom.
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Figure 2.5: Example of two datasets and possible bindings

– Inexact-ones. Here we have connections between elements of different granu-

larities, e.g., 〈Researcher,subclassOf,Person〉 and 〈livesAt,subpropertyOf,

staysAt〉, connections between different accuracy levels, e.g., 84 vs 84.9, or con-

nections between similar concepts by using relations such as skos:closeMatch.

• Enrichment-based. Here the binding of two elements is achieved through non-taxonomic

properties, or paths of properties, e.g., see how Cafe_Terrace_at_Night of Dataset1

can be connected with Vincent_Van_Gogh of Dataset2.

Now there are several types or sources of evidence for creating bindings of the afore-

mentioned kinds:

• Axiomatically by users (designers, curators), e.g., the triple 〈leavesAt,subpropertyOf,

staysAt〉 can be provided by a designer.

• Name similarity (string similarity, phonetic similarity, stemming), e.g., Yannis∼ Yiannis

can be detected through EditDistance.

• Neighborhood (direct or indirect) similarity, e.g., b1 ∼ b2 can be detected by blank

node matching techniques.
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• Natural Language Processing-based, e.g., entity or relation mining over the literals

associated through rdfs:labelwith a URI can be used for connecting that URI with

the URI of the identified (in the literal) entity(-ies). This type of evidence can be

based on lexicons, thesaurus, translators, e.g., multilingual similarities, such as weight

∼ βαρoς (i.e., weight in greek language) in Figure 2.5, can be detected by using a

translator, and word embeddings (e.g., word2vec [153]), where words having simi-

lar meaning are represented in a similar way.

• Common Instances, for example two classes can be connected with a taxonomic re-

lation based on the fact that they have common instances (through the ostensive

method, or through inductive and machine learning-based methods).

• Inference-based (or Reasoning-based), e.g., the equivalence Heraklion ≡ Iraklio is

inferred because the staysAt is a functional property and livesAt is a subproperty

of staysAt.

• Topology-based similarity, e.g., all nodes of the book in the left side can be matched

with the blank nodes subgraph in the right side (because these two graphs are iso-

morphic).

• Usage-based, e.g., frequently accessed together entities can be connected because of

this. For example, Yannis could be connected with Γιαννης (which is the same name

written in Greek characters) if these two words frequently co-occur in the log file of

a search system.

We observe that in order to integrate properly these two very small and simple datasets,

that contain information about the same (very narrow) domain, we have to combine vari-

ous kinds of evidence and create various types of binding.

2.4 Surveying the Integration Methods

For surveying the various integration methods for Linked Data, apart from studying the lit-

erature [2008-2018] (the main works, since it is impossible, for reasons of space, to include

the entire literature), we considered also our experience from various EU projects.

This section is structured according to the dimensions (or aspects) of the Data Integra-

tion Landscape introduced in §2.3. For each dimension, we describe its role, the related

challenges, and the related methods, techniques and tools. Specifically, in §2.1.4 we men-

tion related surveys, in §2.4.1 we discuss the different dataset types, in §2.4.2 we describe

the basic services that can be delivered through an integration process, in §2.4.3 we fo-

cus on the integration substance, while in §2.4.4 we describe the internal services and in

§2.4.5 the auxiliary services. Finally, in §2.4.6, we classify 18 integration tools according to

the dimensions in §2.3.
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2.4.1 Dataset Types

DatasetTypes refers to the different dataset types that can be used in an integration pro-

cess as input. In this survey, we focus on datasets represented in RDF format. However, we

should note that there are several ways and tools for mapping relational databases to RDF

format [224] and for converting CSV (comma separated values) files to RDF [90]. Moreover,

a huge volume of RDF data can be extracted through HTML web pages [184, 197]. Specif-

ically, billions of web pages contain semantic annotations by using Microformats, RDFa

and HTML Microdata mainly inside their ¡body¿ element, and JSON-LD scripts predomi-

nantly inside their ¡head¿ section.

2.4.2 Basic Services To Deliver

One aspect of primary importance is what is the purpose of integration, i.e. why we want

to integrate data, what we want to achieve and to eventually deliver in terms of input and

desired output. Some forms of the desired integrated access can be simple, while other

forms can be more complex. To this end, below we dichotomize such services to Fine

Grained and Coarse Grained services:

• Fine Grained (FG) Services. Here the objective is to find, select and assemble “pieces”

of data. To this category of services we can distinguish three different levels: Level

I. Global URI Lookup Service (analyzed in §2.4.2.1), Level II. Global Keyword Search

(analyzed in §2.4.2.2) and Level III. Integrated Query Answering Service (analyzed in

§2.4.2.3).

• Coarse Grained (CG) Services. Here the objective is to find or select entire datasets. In

this category of services we have: Dataset Discovery & Selection (analyzed in §2.4.2.4).

2.4.2.1 FG: Level I. Global URI Lookup Service.

This kind of service can be used for finding all the URI containing a substring or all the

equivalent (or similar) URIs of a given URI u. For realizing such a service, we have to

tackle difficulty (b), i.e. the problem of synonyms and homonyms, which in turn requires

the execution of various tasks including:

• cross-dataset completion of the owl:sameAs relationships for completing (with re-

spect to symmetry and transitivity) the relationships that are already recorded, otherwise

the response would be incomplete. The same is true for schema elements, e.g., for owl:equivalentClass.

•matching methods for individuals or schema elements (instance matching is described

in §2.4.4.3 while schema matching is described in §2.4.4.2) for identifying new equiva-

lences between URIs which have not been recorded. However we should note that not all

entities (or concepts) have necessarily URIs, in the sense that some of them can be rep-
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resented as literals, or even not modeled in the datasets themselves (they could be called

hidden intermediate concepts or entities [78]).

2.4.2.2 FG: Level II. Global Keyword Search.

This kind of service can be used for finding URIs, triples, literals and datasets relevant to

an information need that has been expressed as a keyword query. Such services can be

based on Information Retrieval techniques, semantic-based techniques, or both. The re-

sponses of such services is a list of elements ranked according to their estimated relevance

to the user query. It is not hard to see that having achieved an effective (of good quality)

I-service, certainly aids the provision of II-services, since without complete URI lookup

the II-services will miss relevant elements and thus will have low recall.

2.4.2.3 FG: Level III. Integrated Query Answering Service.

This kind of service answers complex queries containing data derived from more than

one dataset over any integrated system. For instance, such a service should be able to

answer the following query: ”Find the ecosystems, waterareas and countries that http://

www.dbpedia.com/Thunnus_Albacares is native to, and the common names that are used

for this species in each country, as well as their commercial codes”. One difference be-

tween level III and level II services is that a III-service takes as input a query expressed in a

structured query language (SPARQL), while II-services receive as input queries expressed

in natural language. Consequently, one major difference between III-services and I/II-

services is that a III-service presupposes a common conceptualization that allows formu-

lating the query and it also presupposes the existence of data according to this conceptual-

ization (for evaluating the query). The latter is not always feasible, since we may miss the

needed datasets mainly due to the different conceptualizations or the complementarity

of datasets (difficulties c and e), i.e., we may not have enough common data to establish

connections. Another difference between III-services and I/II-services is that it is much

more difficult to achieve a quality response to a complex query. For example, suppose that

an I-service has recall 80% (e.g., that it only finds 80% of the URIs or triples about a real-

world entity). Now a query that contains a condition that involves 2 URIs (e.g., all x such

that (u1,X,u2) is expected to have recall equal to 64% (=0.80 * 0.80), with k URIs, the recall

would be 0.8k. Clearly, the more complex the query becomes, the harder to achieve good

quality.

2.4.2.4 CG: Dataset Discovery & Selection

It refers to the discovery of the most relevant datasets to a given keyword, dataset or URI

and to the selection of the most desired datasets which fulfill the requirements that the
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Figure 2.6:

The different criteria of dataset discovery

Approach Input Based
on

Output

Nikolov et al. [182] D,K C RL
Leme et al. [143] D M RL
Wagner et al. [252] D,K M+C RL, V
Ellefi et al. [87] D M RL
LinkLion [179] D M UL
RapidMiner Link [208] U L UL
LODVader [33] D M RL, V
LODsyndesis [165] D, U M+C UL, V
WIMU [246] U M+C RL
ExpLOD [133] K M RL
Lotus [122] K C UL
Swoogle [74] K, U M+C RL
Sindice [187] K, U M+C RL
SWSE [119] K,U M+C RL
Watson [67] K,U M+C RL
Datahub.io K M UL
Google Dataset Search [184] K M RL
SpEnD [258] K M UL, DS, V
SPARQLES [248] K M UL, DS, V
LODAtlas [198] K,D M RL
LOV [247] K M UL, V

Table 2.1:

Categorizing dataset discovery approaches

according to the criteria of Figure 2.6.

selected integrated access system is intended to serve.

Context. If there is prior knowledge for the datasets that will be integrated (e.g., in

MarineTLO warehouse [236], the authors already knew which datasets will be used for con-

structing the warehouse) there is no need to exploit such a Dataset Discovery service. On

the contrary, one can exploit such a service if there is no knowledge about what datasets

exist, or there is prior knowledge for some datasets that will be surely used, however, more

datasets are needed. For instance, Figure 2.3 shows an example where the scientist (or

user) desires to find datasets whose domain is about Marine Species by using a keyword

search engine that returns a ranked list of datasets.

Difficulties. The heterogeneity in terms of format, schema, etc., the existence of differ-

ent URIs referring to the same real-world entity, and datasets evolution, i.e., difficulties (a),

(b) and (f), makes it difficult to discover valuable and relevant datasets. Additionally, diffi-

culties (c), i.e., complementarity of information and (e), i.e., different conceptualizations,

can complicate that process.

Categorization. Figure 2.6 depicts the different criteria that can be employed for char-

acterizing the Dataset Discovery approaches. One criterion is how the information need is

expressed: as a Keyword-query, as a URI or as a Dataset. Another criterion is the method

which is used for discovering relevant datasets: there exist Metadata-based approaches

which depend on metadata such as measurements, statistics and dataset descriptions,

Content-based approaches, which exploit the contents of the datasets for discovering rele-

vant datasets, and Links-to approaches which discover relevant URIs and datasets on-the-

fly by traversing equivalent links. Regarding the output, the simplest one is an Unranked
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List, which just returns a list of datasets (or links with their provenance) without ranking,

while the output can be a Ranked List, where a score is assigned for each dataset, e.g., by

exploiting Dataset Recommendation techniques. Finally, a Dataset Visualization output

can be more informative for the human users for helping them to understand and explore

the structure and the interconnections of Linked Data and lead to an efficient and intuitive

interaction with them, while Daily Statistics (as an output) are important for checking the

evolution of each dataset.

Approaches. Table 2.1 lists a number of approaches and categorizes them according

to the dimensions of Figure 2.6. Below, we describe in brief these approaches.

Dataset-based Approaches. Leme et al. [143] proposed a probabilistic classifier based

on Bayesian theory, for identifying the most relevant datasets that can be interlinked with a

given dataset, i.e., they create a ranking w.r.t. the probability of a dataset to be relevant with

a given one. LinkLion [179] is a service collecting pairwise mappings for 476 RDF datasets,

while one can discover mappings for a given dataset. In [87], it is presented a dataset

recommendation approach for detecting potential datasets, that can be linked to a given

dataset and relies on the common schema elements among the datasets. LODVader [33]

uses Bloom filters to compare, index and count links between RDF distributions in the

streaming process. One can upload a dataset description file and that system compares

its metadata with the existing datasets’ metadata. Then, it provides to the users a LOD

Diagram showing the discovered links for their datasets. Nikolov et al. [182] proposed a

method that takes as input a single dataset and uses an index and keyword search for

retrieving the most relevant datasets to the given one. LODsyndesis [165, 168, 171] offers

content-based measurements for 400 datasets, e.g., one can find the “K most connected

datasets to a given one”.

Keyword-based Approaches. Google Dataset Search engine [184] crawls and indexes

metadata from thousands of datasets and HTML web pages. By using that engine, one

can retrieve the most relevant datasets to a set of keywords. Moreover, Datahub.io offers

also a keyword search mechanism by exploiting the metadata of datasets that have been

uploaded from several organizations and users. Semantic Web Search Engine (SWSE) [119]

resembles a classical search engine, i.e., it crawls and indexes RDF data and provides a

keyword search for easing the search, exploration and retrieval of RDF data. Swoogle

[74] crawls and retrieves several semantic web documents by exploiting metadata and by

traversing links. All the retrieved documents are indexed and analyzed by using several

metrics for computing ranks (e.g., ranks for ontologies). The users can exploit the keyword

search functionality for retrieving results about these documents. Sindice [187] uses also

a crawler for discovering and fetching RDF files, while it connects to SPARQL endpoints

for retrieving RDF datasets. It uses several indexes (e.g., for URIs and literals), while one

can submit a keyword query in this system for finding relevant data. Watson [67] offers

advanced functionality for searching semantic web resources, i.e., one can search in docu-
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ments and ontologies, find metadata, explore ontologies, write their one SPARQL queries

and use several metrics by selecting their own filters. LODAtlas [198] is a metadata-based

engine, where one can type one or more keywords for finding datasets containing those

keywords in their metadata, whereas LOV [247] offers a keyword search engine for retriev-

ing relevant vocabularies. In [252], recommendations are provided through keyword

search for integrating identical schema and instance elements of different datasets. The

users can discover more sources, that are connected with the selected ones by exploiting

measurements that try to find similarities between the datasets. Lotus [122] is a text engine

returning URIs and their provenance for a given set of keywords. Finally, SPARQLES [248]

and SpEnD [258] contain a catalog of SPARQL endpoints, however, their main objective

is to monitor the evolution of SPARQL endpoints over specific time periods by providing

daily statistics (and visualizations).

URI-based Approaches. The URI-based approaches are based either on indexes or

on the existence of dereferencing HTTP URIs, where one can discover relevant URIs on-

the-fly (by traversing owl:sameAs or other kinds of relationships). LODsyndesis [165, 171]

provides a global entity lookup service based on a owl:sameAs catalog, which retrieves

all the datasets (and triples) where a URI u (or an equivalent URI of u) exists. Moreover,

WIMU [246] offer a service for returning to the user all the datasets where that URI oc-

curs. ExpLOD [133] creates interlink usage summaries, which are used for understanding

the contribution of each dataset for a real world entity. RapidMiner Link Explorer [208]

takes as input a URI and discovers on-the-fly relevant URIs and datasets by following

owl:sameAs paths. The advantage of on-the-fly approaches is that one can explore a large

number of URIs for the same entity, while by using an index, the number of URIs for the

same entity is stable. However, they strongly depend on dereferencing HTTP URIs, since

a path terminates when a non-dereferencing URI is visited. Finally, a number of keyword

searching services [67, 74, 119, 187] also offer a URI lookup service.

2.4.3 Integration Substance (Materialization vs Virtualization)

Here, we describe the Integration Substance (or Integration Architecture), which can be

materialized or virtual. The corresponding integration approaches are described below

and Figure 2.7 shows their main steps.

Materialized Approach. In the materialized (or warehouse) integration, the integrated

data are stored in a single repository [52, 236]. As a first step (see upper part of Figure

2.7), one should select the datasets (or views of specific datasets) that are appropriate for

fulfilling the requirements of the warehouse, which are defined in its “design” phase. In

the “creation phase”, it is a prerequisite to download (or fetch) the underlying datasets and

usually to transform them to a target model before uploading them in that repository, i.e.,

since datasets use different schemas, formats and so forth. Moreover, mappings among
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Figure 2.7: Steps for materialized and virtual integration

the underlying datasets in both schema and instance level should be defined, for enabling

the answering of complex queries, that combine information from two or more datasets.

A crucial step is the “testing phase”, where one assess the quality of the constructed repos-

itory, by using several metrics and by taking into consideration the defined requirements.

In the “monitoring phase”, one should monitor the underlying datasets for identifying pos-

sible changes in one or more of them. Such a change can result to the reconstruction

of the whole warehouse, i.e., “refresh phase”. Regarding the benefits of this integration

substance, (a) it is more flexible in terms of transformations, (b) the stability and robust-

ness of the materialized repository do not rely on the datasets’ servers, i.e., one should

access such a server only either for fetching a dataset or for monitoring possible changes,

instead of answering queries, and (c) it can offer faster responses, mainly in query evalu-

ation, and secondarily in several other tasks, e.g., for applying techniques for instance or

schema matching. Concerning the drawbacks, there is a cost for hosting such a reposi-

tory, while it needs a periodical monitoring and refresh. Figure 2.3 contains an example

with the required steps for building a Semantic Warehouse. Moreover, we should mention

OLAP approaches, which is a special case of materialized data integration. In this case,

data are described by using a star-schema (modeling entities of a single type), while “data

are organized in cubes (or hypercubes), which are defined over a multidimensional space,

consisting of several dimensions” [249]. That technology is mainly used by enterprises,

for producing critical analytics (aggregate queries), by using internal data (e.g., sales of a

company), or/and external data, e.g., through the exploitation of semantic web technolo-

gies [27]. OLAP queries mainly belong to Analytics service of BasicServicesToDeliver di-

mension (see Figure 2.4). In [27], several OLAP approaches are surveyed, while “The RDF

Data Cube Vocabulary” (http://www.w3.org/TR/vocab-data-cube) can be exploited for

publishing multi-dimensional data (results of aggregated queries) in RDF format. Finally,

we should also mention Data Marts, which are “small units of a Data Warehouse that are

dedicated to the study (analysis) of a specific problem” [47], i.e., they belong to Analytics

service of BasicServicesToDeliver dimension (see Figure 2.4).



26 Chapter 2. Large Scale Semantic Integration of Linked Data: A survey

Mediator (Virtual Integration). In the mediator approach, the data remains in the

original sources [52,236], while sources can be unaware that they are part of an integration

system [121]. Concerning its “‘design phase” (see central part of Figure 2.7), one should se-

lect the datasets that will be used and to define a mediated schema, which is essential

for supporting query translation among the different models of the underlying datasets’

schemas. Thereby, the mappings between the mediated schema and each dataset should

be created. The core functionality of a mediator contains three main steps. Initially, a

query, expressed by exploiting the mediated schema, is received. The query is disassem-

bled in smaller sub-queries, where the mappings are exploited for performing Query Rewrit-

ing, i.e., as stated in [54], “the problem of query rewriting consists in reformulating the

query into a (possibly) equivalent expression, called rewriting, that refers only to the source

structures”. Therefore, such a process makes it feasible each sub-query to be answered by

a specific dataset, and for optimizing the query execution plan. Concerning the last step,

each sub-query is sent to a specific dataset’s server, which in turn sends a response with

the answer of such a sub-query, and the responses of all the sub-queries are merged for

providing to the user the answer of the initial query. Concerning the “monitoring phase”, it

is of primary importance to monitor the underlying sources for detecting possible changes

that can result to the reconstruction of the mappings between the datasets and the medi-

ated schema. Regarding the advantages of a mediator, there is no need to pay a cost for

hosting the dataset, while it can access in real-time updates of datasets’ content. On the

contrary, its efficiency, quality and complexity relies mainly on the sources’ servers. In

Figure 2.3, we can see an example for a Mediator approach.

Federated Query Processing (Virtual Integration). “It refers to the process of running

SPARQL queries over several SPARQL endpoints” [194]. The underlying sources either use

terms from the same schemas for describing their data, or they use common URIs for

describing specific entities. As a consequence, it is a prerequisite that specific schemas

and URIs are reused for achieving federated query processing, i.e., for performing joins

among two or more sources. As it can be seen in Figure 2.7, the first step is to select which

datasets will be used for answering queries. Afterwards, the federated query processing

contains the following steps: “Query Parsing, Data Source Selection, Query Optimization

and Query Execution”. Query Parsing is the process of parsing and transforming a given

query expressed by using SPARQL query language into a query execution tree [186], while

Data Source Selection is used for finding the relevant datasets (i.e., SPARQL endpoints) for

a triple (or a set of triples) pattern of a given SPARQL query [108]. By having selected the

datasets for a given query, Query Optimization process starts for placing the triple patterns

into groups, and it is used for determining in an efficient way the order of joins and triple

patterns. The last step, i.e., Query Execution, is performed for answering the initial query.

Similarly to a mediator approach, the data remains in the original sources. However, a fed-

erated query approach does not depend on a global schema (and thus there is no need to
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create mappings among different sources); instead it assumes that the underlying sources

describe their data by using a common data model (therefore, it is not capable to tackle

heterogeneities such as different conceptualization). Moreover, sources can be aware that

they participate in such a federation system [186]. In Figure 2.3, we can observe an exam-

ple of a federated query engine.

Traversal-based Integration (Virtual Integration). The traversal based integration de-

pends on the live exploration of data links at query execution time [115]. First, such an

approach receives a query and searches for URIs given either in the query body or as addi-

tional parameters. Second, it discovers URIs that are relevant to that query by traversing

paths (e.g., owl:sameAspaths), for finding more URIs that can be possibly exploited for en-

riching the results of the given query. Afterwards, the URIs and datasets that will be used

for answering the query are selected, since it is not necessary to use all the relevant URIs

(such a selection can be assisted by predefined rules). Finally, it collects the answers for

each URI and returns the final answer (containing data from one or more datasets) to the

user. One major advantage of this approach is the live exploration and discovery of rele-

vant datasets that were unknown, since it does not need prior knowledge for answering a

query. Consequently, there is no need to store and transform data in such systems, i.e. data

remains in the original sources. On the contrary, the data access time can be a drawback

due to the recursive process which is usually followed, while the existence of few available

deferencable links makes it difficult to discover relevant data. Moreover, since datasets

are explored at real time, it is difficult to measure their quality, while the possible chain of

links can be huge. In Figure 2.3, we can see that a smaller number of steps is required for a

Traversal-based approach. Comparing to other Virtual Integration approaches, it neither

uses a global schema (like in a mediator approach), nor it knows a-priori all the candidate

sources that can be used for answering a query.

Hybrid Integration. A Hybrid Integration approach can share characteristics from

two or more integration substances, e.g., suppose an approach, where a part of data are

fetched and transformed, while an other part of data is explored at query time (e.g., by

following owl:sameAs paths).

2.4.4 Internal Services

This set of services are usually performed during the integration process. In §2.4.4.1 we dis-

cuss Fetching and Transformation, in §2.4.4.2 and §2.4.4.3 we discuss Schema and Instance

Matching, respectively, whereas in §2.4.4.4 we describe the process of Query Answering in

virtual integration.
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2.4.4.1 Fetching and Transformation

It aims at fetching the data that will be used in a materialized approach and at transform-

ing them into a common format.

Context. It can be applied in a Materialized approach, since in a Virtual approach, data

are left in their original sources. We can see in Figure 2.3 (in the materialized approach)

that the scientist/user downloaded the datasets and transformed the blank nodes of D2 to

URIs.

Difficulties. It can tackle difficulties (a) and (e), i.e., the heterogeneity of datasets in

terms of format, schema, and modeling decisions that datasets follow for the same real-

world objects.

Categorization. A variety of access methods can be offered from each dataset for fetch-

ing its contents, (all contents or a specific “slice” of a dataset). In particular, for many RDF

datasets, a SPARQL endpoint or an RDF dump is provided, while alternative access meth-

ods include accessible files through HTTP, a JDBC connection and others. The datasets

that are not provided in RDF format need to be transformed to that format, i.e., format

transformation. For some datasets a logical transformation should be also performed, i.e.,

for enabling the representation of these datasets’ content by using a core ontology. The

logical transformation can contain rules that change the language of a literal, rules that

transform the type of an RDF resource, e.g., transform a URI to a blank node, a URI to a

literal, a blank node to a URI, etc., or rules for fixing syntactical errors.

Approaches. Concerning Materialized approaches, LDIF [222] can import data, that

are represented in different formats (e.g., RDF/XML, turtle), from SPARQL endpoints or/and

by using a crawler. It uses the R2R Framework [43] for performing complex logical transfor-

mations, in order to integrate data represented through different ontologies into a single

one (i.e., conceptualization issues). MatWare [243] uses plugins for fetching data that are

represented in different formats (e.g., RDF, JDBC, HTTP), and for providing format trans-

formation for the fetched data. It also supports logical transformation through SPARQL

queries and plugins, while it uses the X3ML framework [156], which handles in a state-

of-the-art way the URI generation and the logical transformation. ODCleanstore [135]

fetches RDF data through a SOAP webservice, and executes a defined set of transform-

ers for offering a common data representation (i.e., logical transformation). KARMA [136]

imports files in many different formats (csv files, RDF, etc.) and transforms all the different

data formats into a nested relational data model. It supports also logical transformation,

i.e., one can combine several ontologies for creating mappings between their data and

standard ontologies, while it uses techniques for identifying and suggesting to the user

possible mappings. Regarding Hybrid Integration approaches, TopFed [216] transforms

billions of Cancer Genome Atlas (TCGA) data into RDF format, while the transformed

sources are described by using the same schema (i.e., format and logical transformation).
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RapidMiner LOD Extension [208] imports data in several formats (e.g., csv, excel), while

it offers a SPARQL and an RDF Data Cube importer. It supports both format and logical

transformation for representing data in a common format. FuhSen [62] fetches data from

different formats (e.g., REST, RDF, SQL) by using wrappers, while data are transformed into

RDF molecules, i.e., an RDF molecule is the cluster of all the triples of a specific subject.

Furthermore, the authors in [197] fetched billions of HTML pages and they extracted the

data expressed in Microdata format and RDFa for producing billions of RDF triples (the

produced collection is accessible in http://www.webdatacommons.org/). Moreover, there

exists approaches focusing mainly on fetching and transforming datasets. LODLaundro-

mat [207] offers a common representation for over 650,000 RDF documents after cleaning

them, i.e., they are free of syntactic errors. The authors of [224] have proposed automatic

ways for publishing relational databases to RDF, while [225] surveys various approaches

for mapping relational databases to RDF, e.g., CSV2RDF [90] transforms csv and excel files

to RDF.

Evaluation Collections. LODIB [44] is a benchmark for evaluating whether a tool can

detect several mapping patterns and perform the required logical transformations (trans-

forming a literal to URI, renaming a class, etc.), for representing the data of three different

sources by using a single target vocabulary. Moreover, it measures the performance of

each tool in terms of execution time. Finally, in [44] several data transformation bench-

marks are mentioned (except for LODIB).

2.4.4.2 Schema/Ontology Matching (or alignment)

It refers to the problem of determining mappings at schema level between schema con-

cepts. i.e., classes (e.g., Person owl:equivalentClass Human) and properties (e.g., staysAt

rdfs:subPropertyOf livesAt).

Context. An integration system can (a) use predefined (PD) ontology mappings (and

possibly their closure) that have been declared (e.g., axiomatically) before the integration

process or/and (b) exploit ontology matching techniques (OMT) for producing new map-

pings during the integration process. In the simplest case, when two or more datasets use

the same schema (or ontology), there is no need to create mappings between them (e.g.,

federated query engines depend on datasets that share concepts from same schemas).

However, by having two or more datasets with different schemas, mappings are essen-

tial for being able to answer queries over the integrated content. By deciding to build a

warehouse, one can either a) create the mappings between each pair of datasets or b) can

define a single global schema and create the mappings between that schema and each

dataset, which enables the adequate mapping and integration for data, derived from dis-

tinct datasets. By choosing to build a mediator, a (single global) mediated schema is cre-

ated, whereas mappings between that schema and each dataset’s schema are also created.
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The major advantage of using a single global schema is the less effort that is required for

schema mappings: e.g., given K sources instead of having to construct K ∗ (K − 1) pair-

wise mappings, only K mappings are required (one for each source). Moreover, the focus

is given on one model, rather than many. The most commonly used schemas for declaring

mappings among ontologies are RDF/RDFS (e.g., rdfs:subClassOf and rdfs:subPropertyOf)

and OWL (e.g., owl:equivalentProperty). In Figure 2.3, for the Warehouse, the user selected

to create the mappings between the underlying sources, while for the Mediator, the map-

pings were created between a global schema and each underlying dataset.

Difficulties. This process is not trivial, mainly due to difficulties (a), i.e., datasets are

usually published by using different and heterogeneous schemas and models, (e) differ-

ent conceptualization of the same domain, and (f) evolution, i.e., several ontologies are

frequently changed. This problem has attracted the interest of the community for decades.

For instance, [230,231] extensively describe the difficulties of integrating different schemas

in the area of relational databases and [134,183] analyze the difficulties of matching differ-

ent ontologies in Semantic Integration area.

Categorization. We categorize matching tools (either schema or instance matching

tools) in manually specified linking configuration tools (i.e., a user manually specifies some

rules), learning-based tools (e.g., they can exploit machine-learning methods) and tools

using both techniques [178], as it can be observed in Figure 2.8. Moreover, since we em-

phasize on big number of data (and datasets) we can categorize the approaches according

to the type of the solution that they offer: a centralized solution, which means that the

computation is performed in one machine, a parallel solution, i.e., a cluster of machines

is used for speeding up the process, or both solutions, i.e., they provide both a central-

ized and a parallel solution. Furthermore, we can divide the tools according to the output

that they produce, i.e., a Schema Matching approach produces always Schema mappings,

an Instance Matching approach creates always Instance mappings (see §2.4.4.3), whereas

some tools produce both instance and schema mappings. Moreover, we can distinguish

the approaches according to the types of evidence (which were presented in §2.3) that they

exploit for creating semantic bindings, and the resources that they use, i.e., only datasets’

content (e.g., triples of datasets), or/and external resources (e.g., lexicons, translators) for

improving the accuracy of mappings.

Approaches. Starting from the area of Relational databases, [230, 231] has proposed a

generic integration methodology (which can also be adopted by semantic web approaches)

that concern the automatic resolution of conflicts (e.g., structural conflicts) and automatic

generation of mappings among different schemas (or views) and the integrated schema by

taking into consideration the underlying semantics of the different schemas. Fully auto-

matic methods have also been proposed in various contexts, including query-oriented in-

tegration of relational databases [35] and methods for creating automatically mappings be-

tween taxonomy-based sources [241]. Below, we mention eight ontology matching tools,
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which are categorized in Table 2.2 by using the criteria of Figure 2.8.

YAM++ [180] is an ontology matching tool that provides several string similarity met-

rics, topology-based metrics, and metrics for identifying similar neighbors. It combines

these metrics with machine learning methods for creating mappings, it uses inference-

based rules for refining mappings, while it exploits a translator and Wordnet for tackling

language issues (e.g., multi-lingual issues).

StringOpt [57] uses a large variety of string similarity metrics (such as Jaro, Levenstein,

N-gram, etc.), external resources (e.g., lexicons, translators), and pre-processing strategies

(e.g., stemming), while the authors tested and compared those string similarity metrics for

several ontologies.

LogMap [127] is a tool that can be used by ontologies containing thousands of concepts

and combines string similarity with topology-based metrics for identifying mappings be-

tween different ontologies. Moreover, it exploits external lexicons for finding synonyms

and lexical variations, while it can detect and repair on-the-fly inconsistent mappings by

exploiting inference rules.

SBOMT [185] is a scalable statistically-based ontology matching tool that can identify

even 1:n relationships. It creates features by using several types of evidence (e.g., string

similarity), which are used as input in a machine learning task along with historical map-

pings among ontologies, for learning and predicting new mappings, while WordNet is

used for removing erroneous mappings.

AggrementMaker [65] is a tool that supports several structural and lexical matching

methods (e.g., by using WordNet) and can produce even n:m relationships. Moreover, it of-

fers manual and automatic user intervention while it can also produce mappings between

instances.

WebPie [245] is a parallel engine that can be used for computing the inference of in-

stances, classes and properties. It can compute the inference for several types of relations

such as transitive, symmetric, inverseOf and so on, while the authors have tested the en-

gine with billions of triples.

PARIS [232] is a learning-based system for discovering relationships between entities

of different datasets and RDF ontologies. It mainly tries to identify class similarity between

two different ontologies (e.g., exact or in-exact relations) by exploiting similarities between

the instances.

XMAP++ [77] is a tool using lexical, structural and linguistics metrics for performing

ontology matching. Specifically, it exploits external lexical databases and thesaurus, such

as WordNet, for providing synonyms between two entities from different ontologies.

Furthermore, an “Expressive and Declarative Ontology Alignment Language” (EDOAL)

can be exploited for describing complex relations of entities that are described by using

different schemas (http://ns.inria.org/edoal/1.0/).

Evaluation Collections. The most popular benchmark (and competition) is the OAEI
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Figure 2.8:

The different criteria of (schema

and instance) matching tools

Tool Input
Re-
sources

Confi-
gura-
tion

Sol-
ution

Output
Link
Types

Types of Evi-
dence

Yam++ [180] DC+ER M+L C SM NS, NB, NLP IB
LogMap [127] DC+ER M+L C SM NS, NB, NLP, IB,

TB
StringOpt [57] DC+ER M+L C SM NS, NLP
SBOMT [185] DC+ER M+L C SM NS, NB, NLP, CI,

IB
Agreement
Maker [65]

DC+ER M+L C SM NS, NB, NLP TB

XMAP++ [77] DC+ER M+L C+P SM NS, NB, NLP, IB,
TB

WebPie [245] DC M P SM+IM IB
PARIS [232] DC L C SM+IM NS, IB
Silk [250] DC M+L C+P SAS+OIR NS, NLP,TB
LIMES [181] DC M+L C+P SAS+OIR NS
LINDA [45] DC L C+P SAS NS,NB,IB
MinoanER
[85]

DC L P SAS NS,NLP

CoSum-
P [262]

DC L C SAS+OIR NS, NB, TB

MINTE [63] DC L C SAS NB, NS, TB

Table 2.2:

Categorizing Existing Schema & Instance

Matching approaches for large-scale datasets

according to the criteria of Figure 2.8

(Ontology Alignment Evaluation Initiative) which is a yearly evaluation event (http://

oaei.ontologymatching.org/). It contains several test datasets, where each one focuses

on different difficulties of ontology matching process, such as matching ontologies of

the same or different domains, ontologies using different languages, and others. Finally,

[188, 227] survey over 60 Ontology Matching tools and a number of benchmarks for com-

paring the performance of such tools.

2.4.4.3 Instance Matching (or alignment)

It refers to the problem of determining mappings at the data level, between real world

entities (or instances/individuals), e.g., Thunnus Albacares ≡ Yellowfin Tuna since they

refer to the same marine species.

Context. An integration system can (a) use predefined (PD) instance mappings (and

possibly their closure) that have been declared (e.g., axiomatically) before the integration

process or/and (b) exploit instance matching techniques (IMT) for producing new map-

pings during the integration process. A materialized approach can use any of these ap-

proaches, while a virtually integration system usually relies on existing equivalence rela-

tionships and on their closure (e.g., traversal-based engines follow owl:sameAspaths). The

most commonly used mapping (or relationship) is the owl:sameAs relationship, i.e., an en-

tity e1 is same as entity e2 (e1 owl:sameAs e2) when both entities refer to the same real entity,



2.4. Surveying the Integration Methods 33

e.g., http://www.dbpedia.com/Thunnus_Albacaresowl:sameAshttp://www.ecoscope.com/

thunnus_albacares, while such mappings, among the URIs of marine species Thunnus

Albacares) are shown in Figure 2.3 (i.e., in the Materialized approach). Comparing to

Schema Matching, Instance Matching process produces mappings for instances only (i.e.,

instances and schema concepts are two disjoint sets), whose number is usually much

larger than the number of schema concepts [168]. However, both processes can be very

complex due to several difficulties (e.g., different conceptualizations), while [55] provides

more details about these two techniques.

Difficulties. It is related to the existence of many URIs for the same real entity (diffi-

culty b).

Categorization. We categorize these tools by using the same criteria described in

§2.4.4.2, which are shown in Figure 2.8. However, we can further categorize instance

matching tools according to the mappings that they support (see Figure 2.8). Most tools

usually produce owl:sameAs relationships, while some tools are also capable to produce

other relationships, such as foaf:based-near, which declares that an entity has similar

meaning with an other one but not exactly the same.

Approaches. Table 2.2 (i.e., see the last 8 tools) shows scalable tools performing in-

stance matching which are briefly described below.

Silk [250] supports manually specified rules and supervised learning for producing

owl:sameAs links (by default) or other user-specified relationships. It uses mainly sev-

eral string similarity metrics, while it provides a parallel version for scaling out to very

big datasets. Finally, Silk is used as a component from three materialized tools, i.e., OD-

Cleanstore [135], MatWare [243] and LDIF [222].

LIMES [181] is a tool that supports both manual configuration and learning techniques

(supervised and unsupervised). It offers different approximation techniques based on

metric spaces for estimating the similarities between instances. It can produce both owl:sameAs

and user-specified links, it offers both a centralized and a parallel version, while it is used

by TopFed [216].

PARIS [232] can detect owl:sameAs relationships by exploiting functional properties.

This system (which is used by RapidMiner LOD Extension [208]) does not require a con-

figuration from the user and offers a centralized solution which have tested with a large

number of triples and entities.

WebPie [245] can take as input owl:sameAs relationships and computes in a parallel

way their transitive and symmetric closure in order to produce inferred owl:sameAs rela-

tionships.

LINDA [45] is a fully automatic system offering both a centralized and a parallel version

and has been tested for over 100 millions of entities. It uses several techniques for identi-

fying owl:sameAs relationships, while it checks the neighborhood of different entities for

inferring relationships.
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MinoanER [85] ia a system that discovers owl:sameAs relationships by placing similar

descriptions into blocks, while it tries to discover mappings by using descriptions that

occur in the same block. It has been built by using parallel frameworks and has been

tested with millions of entities.

CoSum-P [262] is a generic framework that performs entity matching by solving a multi-

type graph summarization problem. It receives an RDF graph and creates a summary

graph, while it uses several structural similarity metrics, such as the number of common

neighbors.

MINTE [63] (which is a component of FuhSen [62]) computes similarities between

RDF molecules for matching equivalent entities by using semantic similarity functions,

e.g., GADES [234], while except for perfoming instance matching, it integrates also all the

triples of a specific real entity.

Recently, there is trend for approaches that use embeddings and Machine Learning

techniques for finding similarities. MateTee [160] is an approach that creates a vector rep-

resentation of entities and uses a Stohastic Gradient Descent method for computing simi-

larities among entities. RDF2VEC [210] converts an RDF graph in sequences of entities and

relations, and adapts neural language models, such as word2vec [153]. The produced vec-

tors can be exploited for Machine Learning tasks (e.g., for identifying similarities between

two entities). Finally, the task of matching different entities can become more complicated

since there exists a remarkable percentage of unnamed entities (e.g., see the example with

the book in Figure 2.5), i.e. blank nodes. For such a case, there have been proposed tech-

niques based on signatures [140] for blank nodes matching.

Evaluation Collections. One can exploit the OAEI benchmark (as in the case of On-

tology Matching) for evaluating the performance of Instance Matching systems with re-

spect to various difficulties, such as detecting differences on the values or/and the struc-

ture of different datasets that contain information about the same entities. Moreover, it

contains a track, which can be used a) for both Ontology and Instance Matching, and b)

for creating mappings not only between pairs, but also among triads of datasets (http:

//oaei.ontologymatching.org/2018/knowledgegraph). Finally, [68] contains several real

and synthetic benchmarks for evaluating instance matching systems.

2.4.4.4 Query Answering in Virtual Integration

It refers to the process of answering of a given query in virtual integration.

Context. In Figure 2.3, one can see specific examples of answering a query by using a

mediator, a federated query engine and a traversal based approach.

Difficulties. For a mediator, the task of query rewriting requires the computation of

mappings between the mediated schema and the underlying datasets, thereby, the hetero-

geneity in terms of schema, i.e., difficulty (a), and different conceptualizations, i.e., diffi-
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culty (e), can make this process more difficult. For a federated query or a traversal-based

engine, it is important to select datasets that use the same model or/and URIs (they should

be dereferencing in a traversal-based case), since they do not produce mappings, thereby,

i.e., difficulties (a) and (b) should be overcome.

Approaches. We introduce approaches concerning the Query Answering process for

each different virtual integration type.

Query Answering over a Mediator. In the database field, there exist two main ap-

proaches that can be defined for this process with respect to the way that the mappings

have been defined. Specifically, they are called LAV (local as view) and GAV (global as view)

while there exists approaches containing a combination of them, i.e., GLAV (global local as

view) [54, 144]. LAV is an approach where “the source structures are defined as views over

the global schema” [257] and most of the proposed solutions are based on query answer-

ing by using query rewriting, i.e., after the query rewriting process the query can be evalu-

ated over the underlying sources for obtaining the results. GAV is an approach where “each

global concept is defined in terms of a view over the source schemas” [257] and most so-

lutions try to substitute each global relation with its corresponding definition concerning

the sources. GLAV is an approach specifying the mappings between the source schemas

and the global one. Finally, Maurizio Lenzerini, Diego Calvanese and their colleagues have

extensively studied the aforementioned LAV, GAV and GLAV techniques and have surveyed

a lot of approaches using these techniques [54, 144].

The above techniques have been also applied in the context of Linked Data [158]. In

particular, SemLAV [159] is a LAV-based approach for processing in a scalable way SPARQL

queries, by producing answers for SPARQL queries against large integration systems, whereas

in [141], GAV SPARQL views are exploited for rewriting queries against a global vocabulary.

Regarding other query rewriting approaches, in [244] techniques for query rewriting over

taxonomy-based sources were proposed while in [148] the authors proposed a framework

performing query rewriting for SPARQL queries. It takes as input a SPARQL query rep-

resented by a specific ontology, and transforms it to a semantically equivalent query, by

using an other ontology. Furthermore, in [64] a technique is described for exploiting trans-

formations between RDF graphs for enabling query rewriting.

Finally, we should mention the work that has been done by Diego Calvanese and his

colleagues [51, 53, 256], for answering SPARQL queries over relational databases. Partic-

ularly, the Ontop Ontology-Based Data Access system [51] gives the opportunity to the

users to access relational databases, by rewriting SPARQL queries into (federated) SQL

queries over the underlying databases. Moreover, they have extended this work by propos-

ing methods for assigning a single canonical IRI to entities [256]. In particular, they assign

such a canonical IRI, for all the IRIs that refer to the same entity (i.e., these IRIs are con-

nected through a direct or through an inferred owl:sameAs relationship). Their target is to

avoid to provide redundant answers, i.e., avoid to include all the possible combinations of
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equivalent identifiers in the answers, and thus to achieve lower execution times.

Query Answering over a Federated Query Engine. The proposed engines can be dis-

tinguished in three different categories [213], according to the approach that they follow

for selecting the datasets that can answer a given sub-query. First, there exists Catalog/index-

assisted approaches, where they maintain a catalog for the available endpoints while in-

dexes have been created and statistics have been collected during the construction of the

virtually integrated system. Then, for each query the aforementioned indexes and meta-

data are exploited for selecting the most relevant datasets for a given triple pattern. Sec-

ondly, Catalog/index-free solutions maintain a catalog for the endpoints, however, they

collect statistics on-the-fly (e.g., by exploiting SPARQL ASK queries) and the datasets are se-

lected through the aforementioned statistics. Finally, Hybrid solutions combine both tech-

niques for selected the datasets that can answer the initial query. Concerning Catalog/index-

assisted approaches, DaRQ [201] system uses an index containing service descriptions for

each source, which include the triple patterns that are answerable by each source. As re-

gards Catalog/index-free approaches, FedX [223] system sends one SPARQL ASK query per

triple pattern to the federated datasets’ endpoints for detecting relevant datasets, e.g., for a

triple pattern {?s foaf:name ?name}, it send the following query to each datasetDi: ”ASK {?s

foaf:name ?name}”, which returns true if Di contains triples with this property. Finally, for

decreasing the execution time of source selection task, query approximation techniques

have been proposed [108].

On the contrary, most tools use a hybrid approach for answering a given query. In

particular, SPLENDID [106] uses an index containing VoID descriptions for finding the

candidate sources for answering a triple pattern, however, for triples containing variables

that are not included in the VoID statistics, it sends SPARQL ASK queries. HiBISCuS [214]

exploits an index for the subjects and the objects and SPARQL ASK queries for the pred-

icates for discovering the relevant datasets for a given triple. ANAPSID [29] uses a cata-

log containing the available SPARQL endpoints and their ontology concepts, while statis-

tics for the endpoints are updated on-the-fly in order to maintain up-to-date information.

DAW [215] constructs indexes that contain information about a distinct predicate of a spe-

cific dataset (e.g., how many triples contain this predicate), and uses a novel source se-

lection algorithm for ranking the sources based on their contribution, in order to select

the most relevant sources for a given triple pattern. MULDER [88] sends SPARQL queries

for collecting descriptions of RDF molecules templates, i.e., “descriptions of entities of

the same RDF class”. It mainly exploits that descriptions to select the datasets that can

increase the completeness of the answer. Finally, more details about dataset selection of

federated query engines and issues that concern query optimization (e.g., query planning,

join strategy) are out of the scope of this survey, however, one can find surveys containing

analytical details for these steps [186, 212, 213].
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Query Answering over Traversal-based Integration Approaches. SQUIN [116] receives

a query and tries to retrieve triples by using the URIs that can be found in that query. Then,

a recursive iterative process (which stops only when a fixed point is reached) that relies on

the aforementioned triples starts, and in each step, SQUIN tries to discover incrementally

more URIs and triples that are related to the given query. Linked-Data-Fu [113] system

supports traversal-based integration, by following links based on specific rules that can be

declared by using Data-Fu Language. It exploits REST technology, i.e., it starts by sending

a POST requests to a specific URI, and the results can be derived through a GET request.

By sending such requests, it can discover on-the-fly links and it can send new requests

for retrieving even more data. SWGET uses NautiLOD formal language [99], for retriev-

ing in a recursive way data from several linked datasets. It relies on regular expressions

and ASK SPARQL queries for selecting the most appropriate sources in order to continue

the navigation (e.g., by traversing owl:sameAspaths), while one can control the navigation

through SPARQL queries. Moreover, we should mention SPARQL-LD [93], an extension of

SPARQL 1.1 that enables to combine in a single query (and perform whatever transforma-

tion is possible via SPARQL) data coming not only from external SPARQL endpoints, but

also from external data stored in RDF, JSON-LD files, as well as data from deferenceable

URIs, and others.

Query Answering over Hybrid-Integration Approaches. TopFed [216] is a hybrid ap-

proach (mainly a federated query engine) that contains biological data. We categorize

TopFed as a hybrid approach, since data are transformed for being described by the same

schema and they are linked with external sources through schema/instance matching

techniques. For answering a specific query, this engine uses both a metadata catalog and

ASK queries. FuhSen [62] takes as input a keyword query and a similarity threshold for cre-

ating a knowledge graph at query time. It uses a global vocabulary (called OntoFuhSen)

for transforming the initial query to a SPARQL query or to a REST request, and sends fed-

erated queries to the relevant sources. Finally, the responses of the queries are enriched,

by integrating all the triples of a specific entity (by using MINTE [63]). RapidMiner LOD

Extension [208] is partially a traversal-based approach. It follows paths of a given type

(e.g., owl:sameAs paths) for finding and integrating data over different sources, however, it

can fetch data and perform instance/schema matching, while it offers data fusion mecha-

nisms.

Evaluation Collections. There exists benchmarks like FedBench [220], LargeRDFBench,

SP2Bench and others [212], which cover several dimensions such as the result complete-

ness, ranking of the returned answers and efficiency of each different step of the process

(e.g., source selection).
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2.4.5 Auxiliary Services

This set of services are auxiliary and can be exploited before or after the integration pro-

cess. In §2.4.5.1 we analyze issues concerning data Provenance, while in §2.4.5.2 we intro-

duce ways to measure and improve the Quality of one or more datasets. In §2.4.5.3 we

show how one can Monitor the Evolution of datasets, whereas in §2.4.5.4 we discuss the

process of Publishing an integrated dataset.

2.4.5.1 Provenance.

“It focuses on how to represent, manage and use information about the origin of the source

or data to enable trust, assess authenticity and allow reproducibility” [261].

Context. Data provenance should be preserved regardless of the selected integration

approach.

Difficulties. It mainly refers to difficulty (a), i.e., the initial format of the datasets can

change and the contents of a dataset can be transformed (e.g., for being compatible with

a global schema). In such cases, one should respect the datasets’ licenses, and record the

provenance of each triple.

Categorization. There are various levels of provenance support which are usually re-

quired: “i) Conceptual level, ii) URIs and Values level, iii) Triple Level and iv) Query level”

[236]. Regarding level (i), the key point is that one can transform specific triples accord-

ing to a conceptual model that models provenance, i.e., it is mainly applicable in a Mate-

rialized approach. Concerning level (ii), one can adopt the “namespace mechanism for

URIs”, i.e., the prefix of the URI can be exploited for providing information about the ori-

gin of the data (can be supported from any approach), while for literals one can use the

extension “@Source” to the end of every literal (e.g., “Thunnus” @Dbpedia). Regarding

level (iii), by storing each dataset in a separate graphspace, the origin of a triple can be

obtained by asking for the graphspace containing that triple (applicable only in a Materi-

alized approach), while N-Quads format can be exploited for storing each triple’s prove-

nance. Finally, level (iv) can be supported by offering query rewriting techniques, i.e., one

can exploit the graphspaces’ contents for showing the contribution of each dataset to the

answer of the query. It can be supported from any integration substance (mainly for Vir-

tual Integration approaches).

Approaches. In the first provenance challenge [161] (held on 2006), several teams se-

lected to exploit Semantic Web technologies for creating systems in order to represent

the provenance for a “functional magnetic resonance imaging workflow” and to answer

some predefined provenance queries. A provenance model for RDF data, containing the

dimensions of data creation and data access, is described in [114]. Specifically, the authors

analyzed the major types and relationships of each dimension. Moreover, they showed

ways for accessing provenance metadata, while they introduced properties form popular
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ontologies (such as Dublin Core and FOAF), that can be exploited for storing provenance

information. The aforementioned model was used in [117] along with a method for as-

sessing the trustworthiness of the Web data. By using that method, one can assess the

timeliness of the existing provenance metadata and check whether important provenance

information are missing for a given dataset. A provenance ontology, which can be used

for describing the provenance for both data access and data creation is presented in [118].

In particular, they describe how one can include metadata provenance information to a

specific dataset by using that ontology, and how to access and query such metadata, since

it is important for several tasks, e.g., for evaluating the timeliness of provenance informa-

tion. A generic provenance vocabulary, called PROV Model (http://www.w3.org/TR/2013/

NOTE-prov-primer-20130430/), has been standardised by the W3C community. By using

the PROV Model, one can describe the main entities, agents and activities being part of

the production of a specific dataset, while information about the conceptual model, the

constraints and applications using the PROV Model, can be found in [157].

2.4.5.2 Quality Assessment

“It is the analysis of data in order to measure the quality of datasets by using relevant qual-

ity dimensions” [261].

Context. Quality is of primary importance for any integrated system. Figure 2.3 shows

an example where a data fusion algorithm resolved a conflict, i.e., two sources agree that

the max length of Thunnus Albacares is 240cm, while the remaining one contains another

value for that fact.

Difficulties. It is predominantly related to difficulty (d) and secondarily to difficulty

(f).

Categorization. There are various quality dimensions that can be measured in the

context of an integrated system. Some of these dimensions can be used for assessing the

quality of a single dataset, e.g., dimensions such as completeness, accuracy, data cleaning,

consistency and others [261]. For example, the completeness of a dataset can be measured

for detecting and correcting possible errors and inconsistencies. Other dimensions, such

as Data Interlinking, Connectivity and Data fusion require information from two or more

datasets (mainly evaluated by materialized approaches), while Virtual Integration systems

mainly evaluate their Query Performance [186, 212, 213]. Below, we emphasize on quality

dimensions requiring two or more datasets (mainly large number of datasets), however,

we mention some novel approaches for the single dataset case, since the quality of an

underlying dataset can affect the quality of the whole integrated content.

Data Interlinking. “It refers to the degree up to which entities that represent the same

concept are linked to each other” [261]. For evaluating this quality dimension, one can

check the quality of owl:sameAs links, the interlinking degree of a given dataset, and oth-
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ers. In [260], the authors distinguished two categories for dataset interlinking: interlinking

of external websites, i.e., for measuring the availability of links between different sources,

and interlinks with other datasets, i.e., for identifying possible mappings that are inac-

curate or links containing not so useful information. [219] focused on crawling a large

number of datasets and on providing statistics for them. The authors described data inter-

linking measurements such as the degree distribution of each dataset (how many datasets

link to a specific dataset). LODStats [91] retrieves thousands of number of documents for

providing useful statistics about how interlinked each document is, while [109] introduces

network measures (e.g., interlinking degree and clustering coefficient), for assessing the

quality of mappings and for detecting bad quality links (e.g., owl:sameAs links). Finally,

there exists approaches, where one can find the number of common links [165, 179], and

the number of common triples, literals and schema elements [168], between two or more

datasets.

Connectivity Assessment. “Connectivity express the degree up to which the contents

of a warehouse form a connected graph that can serve, ideally in a correct and complete

way, the query requirements of a semantic warehouse, while making evident how each

source contributes to that degree” [163, 164, 242]. Connectivity can occur both in schema

and instance level. It is useful to measure connectivity “a) for assessing how much the

aggregated content is connected, b) for getting an overview of the warehouse, c) for quan-

tifying the value of the warehouse (query capabilities) since poor connectivity can result

to less expressive queries, d) for making easier its monitoring after reconstruction and e)

for measuring the contribution of each source to the warehouse” [163, 164, 242].

Data Fusion, Trust & Fact Checking. “Data fusion aims at resolving conflicts from dif-

ferent sources and find values that reflect the real world”, according to [84]. In [135] con-

flicts are defined as the cases where two triples, belonging in different sources, contain con-

flicting object values for a specific subject-predicate pair. Regarding the differences with

Data Interlinking, the latter aims at evaluating how connected two or more datasets are,

i.e., whether they contain information about the same entities, while in Data Fusion case,

such connections among datasets have already been discovered, and the goal is to find

the triples containing URIs that represent the same real-world object and transform them

into a single accurate representation by resolving conflicts. In the context of integrated

(mainly non-structured) data and relational databases, there exists several proposed meth-

ods and approaches, depending on multiple techniques (e.g., probabilistic-based, IR mod-

els) [145]. Regarding approaches using Semantic Web notions, Google Knowledge Vault

[79] stores the information in the form of RDF triples and identifies for such triple a confi-

dence score. However, it extracts information from both RDF sources (i.e., FreeBase) and

non-RDF ones.

Concerning the different strategies of data fusion [145, 152], the simplest case is to

provide to the users all the conflicted objects for a given subject-predicate pair with their
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provenance, and let them decide whether an object is correct or not, i.e., User-Based ap-

proaches. Another technique called Resolution-Based, exploits a number of functions,

such as majority or average for deciding which object to keep. Moreover, Trust-Based

methods take into account the degree up to which we trust the provenance of data, i.e.,

dataset trustworthiness can be measured as a whole, by measuring the accuracy of all the

triples of a dataset, however, it is usually difficult to know dataset’s trustworthiness a priori.

Concerning semantic integration tools, LDIF uses Sieve [152] for assessing the quality of

the integrated data and exploits Resolution-Based techniques (e.g., average), Trust-based

techniques (e.g., prefer data from trusted sources), and configurable metrics for deciding

whether a specific value is correct or a transformation is required for improving its ac-

curacy. ODCleanStore [135] offers several conflict resolution rules, where some of them

select only one value among the conflicting values (e.g., MAX, ANY), while it can also com-

pute a new value based on the conflicting values. Fuhsen uses MINTE [63], which applies

three fusion policies for performing data fusion of two RDF datasets, while RapidMiner

LOD extension [208] uses some simple data fusion operators (e.g., majority) for resolving

conflicts. Finally, in [104] PageRank is computed for 319 RDF datasets for offering trust

measurements that are also useful for evaluating dataset interlinking.

Regarding Fact Checking, it can be defined as the “area which focuses on computing

which subset of a given set of statements can be trusted” [103,190]. DeFacto [103] is a tem-

poral approach that checks for the validity of facts. It takes RDF triples as input facts, and

it exploits the web for searching for possible proofs, by supporting multiple languages. In

particular, they propose supervised learning methods that require a large volume of train-

ing data while they use a combination of trustworthiness metrics and textual evidence for

measuring an evidence score for a specific fact.

Crowdsourcing & Data Quality. “Crowdsourcing refers to the process of solving a prob-

lem formulated as a task by reaching out to a large network of (often previously unknown)

people” [30]. There exists two different crowdsourcing mechanisms, called content-based

and micro-task [30]. Content-based crowdsourcing concerns a group of Linked Data ex-

perts. In [139], each expert used TripleCheckMate tool, which enables users to select spe-

cific DBpedia resources [142], to detect problems for the triples containing that resources,

and to categorize them by using a predefined set of quality issues (described in [261]).

Micro-task mechanism concerns anonymous (even non-experts) users, thereby, the au-

thors decided to restrict the scope of the possible errors that these users can detect [139].

For a specific triple, they can identify datatype or language errors, and incorrect links

and object values (e.g., a person’s birth place). Afterwards, for any mechanism that tool

stores the incorrect triples (classified according to their quality issue) for further check-

ing. Regarding other approaches, HARE [28] is a SPARQL query engine that exploits micro-

task mechanism for completing missing values, which can occur at query execution time.

Moreover, such a mechanism is used from ZenCrowd [71] for improving the quality of in-
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Characteristics/
Systems

LinkQA
[109]

Luzzu [70] ODCleanStore
[135]

Sieve [152] SWIQA
[102]

RDFUnit
[138]

MatWare

[243]
SeaStar
[218]

Quality
Dimen-
sions [261]

Completeness,
Interlinking

Consistency,
Concise-
ness, and
others

Accuracy,
Complete-
ness, Con-
sistency,
Conciseness

Completeness,
Consistency,
Conciseness

Accuracy,
Com-
pleteness,
Timeli-
ness

Accuracy,
Consis-
tency

Connectivity,
Interlink-
ing, Rele-
vancy

Accuracy,
Inter-
linking,
Connec-
tivity

Sources Num-
ber

Set of Map-
pings

One
Source

Collection of
Quads

One In-
tegrated
Source

One
Source

One
Source

Set of
Sources

One
or Two
Sources

Output For-
mat

HTML RDF RDF, HTML N-Quads HTML RDF,
HTML

RDF, HTML HTML

Progr. Lang. JAVA JAVA JAVA JAVA - - JAVA JAVA
Query Lang. - - - - SPARQL SPARQL SPARQL -

Table 2.3: Categorizing existing quality tools according to their characteristics

stance mappings (e.g., detecting incorrect owl:sameAs links), and from CrowdMap [217]

for improving ontology alignment process.

Tools assessing the quality of RDF datasets. Here, we describe in brief several RDF

quality assessment frameworks/tools, which are categorized by using several aspects in

Table 2.3.

LinkQA [109] is a tool that can be exploited for measuring and improving the quality of

RDF data concerning the dimensions of interlinking and completeness. It mainly assesses

the quality of mappings (e.g., owl:sameAs relationships) by using network measurements.

Luzzu [70] evaluates the quality of a single RDF source for 10 quality dimensions, by

using 25 predefined metrics, while it also supports user-defined metrics. The results are

provided to the users in RDF format by exploiting the daQ ontology and the QPRO Ontol-

ogy [70].

ODCleanStore [135] evaluates the quality of the integrated RDF dataset for four quality

dimensions, whereas it offers methods for resolving the conflicts between the underlying

datasets. The results of the measurements are produced in both an HTML page and in

RDF format.

Sieve [152] (which is part of LDIF [222]) evaluates the quality of an integrated dataset.

It offers configurable techniques for resolving conflicts and deciding the correctness of

a specific value and it supports three quality dimensions, while the results are stored in

N-Quads format.

SWIQA [102] is applicable for a unique dataset and relies on a set of rules for detecting

possible errors in the data values. It uses several measurements for evaluating three qual-

ity dimensions, while it can also be adjusted for evaluating a relational database, by using

D2RQ wrapping technology.

RDFUnit [138] relies on predefined or custom SPARQL queries, and its objective is to

evaluate and improve the accuracy and the consistency of a single RDF dataset. It mainly

tries to assess whether an ontology is correctly used and the results are offered in both an

HTML page and in RDF format.
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MatWare [243] computes connectivity metrics for assessing the connectivity among the

integrated datasets. It produces as output an HTML page, and a file in RDF format by

using VoIDWH ontology [163], i.e., an extension of the W3C standard VoID ontology (http:

//www.w3.org/TR/void/).

SeaStar [218] is a framework that assess the quality of one or two sources mainly in

terms of interlinking dimension. Its major target is to evaluate the accuracy of several

types of links (e.g., owl:sameAs links) between pairs of datasets.

2.4.5.3 Dynamics/Evolution & Monitoring.

“Dynamics quantifies the evolution of a dataset over a specific period of time and takes

into consideration the changes occurring in this period” [76]. The objective of Monitoring

is to observe and check the progress or quality of an integrated access system over a period

of time.

Context. Since everything changes very fast, any integration system should take this

dimension into account. For instance, we see in Figure 2.3 an example where the schema

of a dataset changed, thereby, the mappings in a materialized or in a mediator approach

should be regenerated.

Difficulties. It is predominantly related to difficulty (f) and secondarily to difficulty (d).

Categorization. We can distinguish the integration approaches in three categories ac-

cording to how they are affected when a dataset changes: (a) approaches that needs to

be updated manually, (b) approaches that can be semi-automatically updated (e.g., by

modifying a part of a configuration file and by pushing a “reconstruction” button) and

(c) approaches that are automatically updated (i.e., not affected from datasets’ updates).

Moreover, datasets’ evolution can occur in ontology level and instance level. Evolution

in ontology level occurs when the schema of at least one dataset changes or the global

schema changes. By using a global schema, only the mappings between that dataset and

the global schema should be recreated (i.e., in a mediator or/and in a warehouse). How-

ever, the construction of pair-wise mappings results to the recreation of the mappings

between the aforementioned dataset and every other dataset (i.e., in a warehouse). For

Catalog/index-assisted or hybrid federated query approaches (such as DaRQ [201]), the

indexes containing statistics for properties/classes should be refreshed, while approaches

such as FedX [223] (which relies on ASK queries), or ANAPSID [29] (which collects statistics

on-the-fly) are automatically updated. On the contrary, evolution in instance level occurs

when the policy (e.g., the prefix) of a dataset’s URIs changes, or when more URIs are added

in a specific dataset. For a materialized approach, instance matching rules should be re-

constructed and all the mappings containing the dataset that changed should be recre-

ated. Regarding virtual integration, it is essential to update indexes or/and statistics, that

are affected through such an evolution (e.g., the number of triples where a property oc-
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curs can be changed when more URIs are added). Finally, by storing in a warehouse the

integrated content as a single integrated dataset, the evolution of a dataset can result to

its whole reconstruction. For avoiding this time consuming process, one can store the

datasets in different graphspaces (e.g., like in MarineTLO warehouse [236]) and update

only the dataset(s) that changed.

Approaches. In [137], the authors provide an approach which allows query answering

in virtual integration systems under evolving ontologies without recreating mappings be-

tween the mediator and the underlying sources. In particular, it can be achieved by rewrit-

ing queries between different ontology versions and then forwarding them to the underly-

ing sources in order to be answered. Moreover, in [128] a “Dynamic Linked Data Observa-

tory” is introduced for monitoring Linked Data over a specific period of time, whereas [76]

proposes a function for measuring the dynamics of a specific dataset, while they list sev-

eral approaches related to datasets’ dynamics. SPARQLES [248] and SpEnD [258] monitor

the health of hundreds of public SPARQL endpoints, by sending SPARQL queries at regular

intervals, e.g., for checking the availability of each endpoint over time. Finally, incosisten-

cies can occur in the specificity of ontological instance descriptions, when such descrip-

tions are migrated to the up-to-date version of a given ontology [237].

2.4.5.4 Publishing an Integrated Dataset

Its objective is to publish an integrated dataset in order to be reused by others for several

tasks (e.g., query evaluation, data analysis, etc.).

Context. A scientist/user can publish an integrated dataset in order to be findable and

reusable by others. However, Linked Data are not so “open” for the consumers or the sci-

entists to be reused, since in many cases they are published under a license. According

to [100, 120], each RDF dataset should contain such a license in order the datasets to be

reused under legal terms. Moreover, the license should be both machine-readable (e.g.,

mentioned in the VoID description of a dataset) and human-readable (e.g., mentioned in

the documentation of the dataset). According to [100] a license should contain informa-

tion for the permission that concern the reproduction, distribution, modification or redis-

tribution. Therefore, in case of publishing an integrated dataset, the publishers should re-

spect both the provenance and the licenses of the constituent datasets. Such information

should be included in the metadata of the dataset and published along with the dataset.

Moreover, the publisher of any dataset (e.g., integrated dataset) should use recommended

standards and follow specific principles, such as Linked Data principles [42] and FAIR prin-

ciples [254], for making their dataset more discoverable, reusable and readable from both

“‘humans and computers”. In Figure 2.3, we can see some ways for publishing an inte-

grated dataset in the warehouse approach.

Difficulties. Datasets are produced by several organizations in different licenses, places,
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schemas, formats, and so forth (difficulty a).

Recommended Standards for Data Publishing. There exists several W3C standards

that are recommended to be used during the creation and before publishing any dataset

(a single or an integrated one), for enhancing Data Exchange and Data Integration. The

key standards can be divided in a) standards for creating links among a single dataset and

other datasets (e.g., relationships between instances and ontologies), and b) standards

for creating basic metadata for a dataset (e.g., description, name, language, provenance).

Concerning a), it is important each dataset to contain links to (schema/instance) URIs

of other datasets, by using standard vocabularies such as OWL, RDF/RDFs, SKOS2 and so

forth. Regarding b), the basic metadata of each dataset should be desribed by using stan-

dard vocabularies, such as DCAT3, schema.org, VoID4, Dublin Core5, FOAF6, PROV7, etc.

Indeed, there is an emerging trend of using such vocabularies in several cases, i.e., they

are used by billions of Web Pages [184, 197] (mainly through Microdata or/and JSON-LD),

by Digital Libraries [229] and by Governments [75], e.g., Open Government Data from Eu-

ropean Union, Unites States, United Kingdom and others, usually through the creation of

descriptions using schema.org or/and DCAT vocabulary. Furthermore, Google’s dataset

search engine collects and indexes datasets’ metadata that have been expressed by us-

ing such ontologies [184]. Therefore, it is clearly of primary importance for any publisher

to use these standards, for enabling data sharing, and for easing the integration of their

dataset with other ones. Moreover, it is worth noting that VoID vocabulary can be exploited

for deciding whether two or more datasets are worth to be integrated, since it can be used

for describing metadata concerning the links that exist between two datasets. Finally, we

should also mention the Shapes Constraint Language, i.e., SHACL8, which is a language

for “validating RDF graphs against a set of conditions”, that can used for several purposes,

such as for data cleaning before publishing the dataset.

Where to Publish Datasets. First, dataset catalogs such as datahub (http://datahub.

io/) and Zenodo (http://zenodo.org/), offer services for uploading a dataset, metadata

about the dataset and so forth. Second, a SPARQL endpoint can be exploited in order the

dataset to be directly published and accessed by humans and machines (e.g., for query

answering). In particular, there are several available tools offering query evaluation such

as Virtuoso (http://virtuoso.openlinksw.com/), BlazeGraph (http://www.blazegraph.

com), AllegroGraph (http://www.franz.com/agraph/) and Stardog (http://www.stardog.

2http://www.w3.org/2004/02/skos/
3http://www.w3.org/TR/vocab-dcat/
4http://www.w3.org/TR/void/
5http://dublincore.org
6http://xmlns.com/foaf/spec/
7http://www.w3.org/TR/2013/NOTE-prov-primer-20130430/
8http://www.w3.org/TR/shacl/
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com/) which has been succesfully used in NASA MARS mission9.

2.4.6 Integration Tools

Table 2.4 lists a number of integration tools and categorizes them according to the dimen-

sions of §2.3, i.e., the integrated method that they offer, their input and output types and

what internal (e.g., instance matching) and auxiliary services (e.g., provenance) they sup-

port. Although these tools can support millions or even billions of triples, to the best of our

knowledge, they have been tested by using a small number (below 20) of real or synthetic

datasets (see the last two columns of Table 2.4). Materialized approaches have mainly

been tested by using real datasets [136, 222, 243], while federated approaches have been

evaluated by using benchmarks such as LargeRDFBench [212] (having billions of triples)

and FedBench [220] (having millions of triples). Materialized approaches are difficult to

scale up to a big number of datasets, since some steps require manual effort, e.g., defin-

ing and configuring matching/transformation rules. On the contrary, virtual integrated

systems do not offer transformation and data fusion mechanisms and mainly rely on a

common schema (or/and common URIs), therefore, conceptualization, naming and con-

flicts issues are difficult to be tackled. Finally, when a dataset evolves, some steps that

possibly require manual effort (e.g., defining new matching rules) should be repeated for

most integration tools.

2.5 Processes for Integration

In the previous sections we have factorized the integration problem to various dimensions

and we have analyzed the approaches and methods for each one of these dimensions.

Regarding InternalServices dimension, one question is what processes (i.e., sequence of

steps) are usually followed. For instance, given two or more sets of triples to be integrated,

does one start from ontology matching or from instance matching? Of course various pro-

cesses could be followed according to the context. Below, we distinguish the main ones,

each accompanied by a real-world case.

P1. (Processes for) Top-Level Ontology-based or Competency Query-based Integration: Here,

the desired Level III requirements are specified either as competency queries and/or by

providing the ontology or schema that the integrated view of the datasets should have.

Then, the data of the individual datasets should be transformed (physically or virtually)

according to the integrated schema. Indeed, information integration is traditionally done

in the context of databases by reconciling data coming from different sources under a com-

mon schema. An analogous process for the case of the RDF data (that follows the materi-

9https://cdn2.hubspot.net/hubfs/2820685/Assets/CaseStudies/Stardog_NasaCaseStudy.pdf
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Tool/ Frame-
work

Integration
Substance

Data-
set
Types

Out-
put
Types

Transf-
orma-
tions

Schema
Match-
ing

Instance
Match-
ing

V
Q
A

Prov-
enance
Levels

Qua-
lity

Evol-
ution

Tested
|D|

Tes
ted
|T|

LDIF [222] Materialized RDF Any LT PD+OMT PD+IMT ✗ CL,UVL,TL DF S-Aut. 1-9 B
ODCleanstore
[135]

Materialized RDF Any LT PD+OMT PD+IMT ✗ CL,UVL,TL DF S-Aut. 1-9 M

MatWare [243] Materialized RDF+O Any LT, FT PD+OMT PD+IMT ✗ CL,UVL,TL Con. S-Aut. 1-9 M
KARMA [136] Materialized RDF+O Any LT, FT PD+OMT PD ✗ CL,UVL,TL DC S-Aut. 1-9 B
FuhSen [62] Hybrid RDF+O KS FT PD PD+IMT X UVL,QL DF S-Aut. 1-9 M
TopFed [216] Hybrid RDF QA LT, FT PD+OMT PD+IMT X UVL,QL QP S-Aut. 10-19 B
RapidMinerLOD
[208]

Hybrid RDF+O Any LT, FT PD+OMT PD+IMT X UVL,QL DF Aut. 1-9* M

SQUIN [116] Traversal RDF QA ✗ PD PD+C X UVL,QL QP Aut. 1-9* M
SWGET [99] Traversal RDF QA ✗ PD PD+C X UVL,QL QP Aut. 1-9* M
Linked-Data-
Fu [113]

Traversal RDF+O Any ✗ PD PD+C X UVL,QL QP Aut. 10-
19*

M

SEMLAV [159] Mediator RDF QA ✗ PD+OMT PD X UVL,QL QP S-Aut. 1-9 M
DaRQ [201] Federated RDF QA ✗ PD PD X UVL,QL QP S-Aut. 10-19 M
Splendid [106] Federated RDF QA ✗ PD PD X UVL,QL QP S-Aut. 10-19 B
HiBISCuS [214] Federated RDF QA ✗ PD PD X UVL,QL QP S-Aut. 10-19 B
FedX [223] Federated RDF QA ✗ PD PD X UVL,QL QP Aut. 10-19 B
ANAPSID [29] Federated RDF QA ✗ PD PD X UVL,QL QP Aut. 10-19 B
DAW [215] Federated RDF QA ✗ PD PD X UVL,QL QP S-Aut. 1-9 M
MULDER [88] Federated RDF QA ✗ PD PD X UVL,QL QP S-Aut. 10-19 M

Table 2.4:
Categorizing Existing RDF integration tools. O=Other Formats, Any=Any Service,

QA=Query Answering, KS=Keyword Search, FT=Format Transformation, LT=Logical Transforma-

tion, PD=Predefined Mappings, OMT= Ontology Matching Techniques, C=Closure, IMT=Instance

Matching Techniques, VQA=Virtual Query Answering, CL=Conceptual Level, UVL=URIs and Values

Level, TL=Triples Level, QL=Query Level, DF=Data Fusion, Con.=Connectivity, DC=Data Cleaning,

QP=Query Performance, Aut.=Automatically, S-Aut.=Semi-Automatically, —D—=Datasets, *discovers

more datasets on-the-fly, —T—=Triples, M=Millions, B=Billions

Figure 2.9: Top level - ontology based integration

alized approach), is the one that is followed by LDIF [222] and ODCleanStore [135], which

are generic frameworks for integrating Linked Data. MatWare [243] follows a similar pro-

cess and it has been used for building and maintaining real and operational warehouses,

i.e., MarineTLO warehouse [236] and the ongoing GRSF warehouse [240]. In Figure 2.9,

one can observe the process that is usually followed by such frameworks and tools. In

general, we could say that the process starts with the specification of a kind of “integra-

tion template” that the data of the underlying datasets should “fill”. This template can be

specified by (competency) queries, schemas/ontologies or both.

P2. (Processes for) General purpose integration (fully automatic): In this case we do not
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Figure 2.10: Lifecycle of an integrated dataset

have an “integration template”, either because we are not aware about the contents of the

underlying datasets, and/or because the integration does not have a specific purpose, i.e.,

we aim at building a general purpose integrated view of a set of datasets. Therefore, here

we try to do the best that we can, and usually in such cases it is more difficult to guarantee

that the integrated view satisfies the criteria of completeness, validity and accuracy. We

can say that approaches and systems that fall in this category include, LODLaundromat

[207], LOD-a-Lot [96], LODsyndesis [165,171]. In these systems the process followed varies.

Specifically, LODLaundromat [207] starts by collecting URLs denoting dataset dumps

and downloads the datasets by connecting to the hosting servers. Afterwards, it performs

data cleaning by finding and correcting syntax errors, by replacing blank nodes with well-

known URIs and by removing duplicate triples. Then, it stores the documents in a uniform

serialization format (each document is stored in a different file), it creates the metadata

for the underlying datasets and it publishes the data for being reused for various purposes

in N-Triples and HDT format [97]. LOD-a-Lot [96] is a service that integrate all the doc-

uments of LODLaundromat (over 650K documents) into a single indexed HDT file [97]

for easing the process of accessing and querying the full corpus as a whole. LODsynde-

sis [165, 171] starts by collecting hundreds of available datasets from online catalogs (such

as datahub.io) and then it computes the transitive and symmetric closure of owl:sameAs

relationships in order to find all the equivalent entities among the datasets. Afterwards,

it creates indexes and performs measurements that are exploited for offering several ser-

vices such as object coreference dataset discovery and selection, connectivity assessment

and others. Figure 2.10 illustrates an indicative lifecycle model of an integrated dataset in

the form of UML State Diagram. Each integration process can be conceived as a series of

transitions between the illustrated states.

P3. Composite Processes: Composite processes are also possible. A composite process

can be seen as a sequence of points of the multidimensional space that we defined. For

example, suppose an integration process that comprises two subprocesses: the first aims

at discovering and selecting the 10 most related datasets to one information need, and

the second aims at fine-level integration of these 10 datasets of the first step. In general,
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workflow management systems could be exploited for specifying and enacting complex

processes for data integration.

We should note that Data Enrichment is a special composite data integration process,

since it involves dataset discovery and selection, and fine grained integration. In that case,

the context is usually different since the main target of such approaches to produce an

enriched dataset for feeding Machine-Learning algorithms, and not to provide query an-

swering services. There are several tools performing data enrichment from several sources

for improving Machine-Learning tasks, such as RapidMiner Semantic Web Extension [208],

FeGeLOD [193], LODsyndesisML [166] and LODVec [172]. We will further elaborate on this

topic in Chapter 6.

Remark about evaluation. It is easier to evaluate how successful a P1 process was. It is

harder for P2 processes, and even harder for P3 processes.

2.6 Evaluation of Integration

How an integration approach can be evaluated? In general, we could identify two basic

evaluation aspects, quality and cost (the latter includes the human effort required), and

ideally we would like optimal quality and fully automatic (and cost-effective) integration

processes. Of course an integration process comprises various steps, each one could be

evaluated independently of the others, and in §2.4 we referred to such benchmarks. How-

ever, there is a need for evaluating also the overall process and its outcome, and for this

reason below we discuss how each kind of services (that can be delivered through an inte-

gration process), either fine-grained or coarse-grained (as distinguished in §2.4.2), can be

evaluated.

Evaluation of Fine-grained Services. Here, we describe ways and we introduce evalu-

ation collections concerning the fine-grained services.

• FG: Level I. For offering complete Global URI Lookup Services, i.e., for finding all the

datasets and the equivalent URIs of a URI u, it is important to produce high quality map-

pings among URIs and to offer cross-dataset completion (see §2.4.2.1). Incorrect owl:sameAs

mappings result to low quality services, i.e., URIs referring to different entities are consid-

ered as equivalent. The quality of mappings is mainly evaluated by using metrics such as

precision and recall [109], whereas cross-dataset completion is evaluated through connec-

tivity metrics [163, 165]. Concerning the cost, several tools automate such processes and

produce mappings having high precision (see §2.4.4.2 and §2.4.4.3), however they are not

free of errors. Consequently, human effort is required for interpreting the results of the

measurements and the produced mappings. For this reason, crowdsourcing approaches

are used for improving the precision and recall of matching process [28, 30, 71, 139, 217].

• FG: Level II. The evaluation of Global Keyword Search Services relates more to Informa-

tion Retrieval techniques. In particular, a straightforward way for evaluating such a service
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is to use reference collections [221]. LUBM benchmark [110] contains an Concerning Vir-

tual Integration Systems, there exists benchmarks like FedBench [220], LargeRDFBench,

SP2Bench and others [212], which cover several dimensions such as the result complete-

ness, ranking of the returned answers and efficiency (e.g., execution time). evaluation col-

lection with keyword queries (and their corresponding answer) that can be evaluated over

RDF datasets. INEX Linked Data track provides a collection, which contains Wikipedia

articles, and DBpedia and YAGO links (and triples) for the entities that occur in each arti-

cle [86]. The main task of that track was to find the most relevant articles for a keyword

query. Finally, in SemSearch workshops the challenge was to evaluate semantic web Key-

word Search engines at large scale, by using the “Billion Triples Challenge 2009” dataset,

which contains 1.4 billion of triples [86].

• FG: Level III. The evaluation of Integrated Query Answering Services differs from the pre-

vious level, since the input for such an evaluation is a query expressed in a structured

query language. One way to evaluate such an approach, is to predefine some competency

queries [163] (MarineTLO warehouse [236] and GSRF warehouse [240] are evaluated in this

way). “A competency query is a query that is useful for the community at hand, e.g., for a

human member (e.g., a scientist)” [163], and sketches the desired scope and structuring of

the information before the creation of the integrated system. For evaluating correctly each

competency query, the expected results should be predefined. However, this type of evalu-

ation requires human effort for defining the requirements of the integrated access system.

Concerning Virtual Integration Systems, in §2.4.4.4 we mentioned several benchmarks for

evaluating such systems. General question answering benchmarks are also used for test-

ing such services, e.g., Free917 [49] is an open question answering benchmark containing

917 natural language questions which can be answered by using the content of Freebase

dataset. Moreover, QALD [147] is an evaluation series campaigns on question answering

over Linked Data. The major challenge for the participants, is to use as input several RDF

datasets and natural language questions, for returning the desired answers or a SPARQL

query that is able to produce the correct answers. QALD is used for evaluating several as-

pects such as multilinguality, large-scale question answering and others, while for each

aspect it contains several questions and tasks. Finally, LC-QuAD [235] is a corpus contain-

ing 5,000 questions for testing several different cases, while it provides the corresponding

SPARQL queries which are essential for answering questions over DBpedia [142]. Finally, a

framework is provided for generating natural language questions and their corresponding

SPARQL queries for reducing the manual effort.

Evaluation of Coarse-grained Services. Concerning Dataset Discovery & Selection Ser-

vices, the results of such services for a specific integration task, are usually evaluated by

measuring the marginal gain of the selected sources [83], or/and by measuring the level

of connectivity among any set of datasets [168], i.e., for evaluating whether the selected

datasets contain information for the same entities. Additional quality dimensions can be
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Tool/Service Total
Triples

Include
>

Datasets

Global
URI
Lookup

Dataset
Discov-
ery

Dataset
Visual-
ization

Conn-
ectiv-
ity

Fetching
Trans-
forming

Key-
word
Search

Dataset
Analy-
sis

Querying
Datasets

Dataset
Evolu-
tion

LODsyndesis
[165]

2 Bil. 400 X X X X

LODLaundromat
[207]

38 Bil. >650,000* X X X X

LOD-a-lot [96] 28 Bil. >650,000* X X X

LODStats [91] 130
Bil.

9,960 X X

Datahub.io Unk. >1,270 X X X

LinkLion [179] 77
Mil.

476 X X X

DyLDO [128] Unk. 86,696* X

LODCache 4 Bil. 346 X X

LODCloud [219] Unk. 1,239 X X X X

sameAs.org [105] Unk. >100 X

WIMU [246] Unk. >650,000* X X

LOV [247] Unk. 637** X X X

Linghub [150] Unk. 272 X X X

SPARQLES [248] Unk. 557 X X X

SpEnD [258] Unk. 1,487 X X X

Table 2.5: Existing Services for large numbers of RDF datasets, *Documents, **Vocabularies,
Mil.=Million, Bil.=Billion, Unk.=Unknown

considered, such as timeliness, accuracy, coverage and efficiency [205], as well as con-

straints such as the cost of integration (e.g., in terms of money amount for private datasets).

2.7 Semantic Integration On a Large Scale

At first, in §2.7.1 we list services for integrating large in number RDF datasets, while in

§2.7.2 we show some successful paradigms of integration on a large scale.

2.7.1 Services for Large in Number RDF Datasets

Table 2.5 compares the running LOD cloud tools/services that contain information about

over a hundred LOD datasets, according to the services that they provide (each service

can be exploited for different dimensions of Data Integration), while each tool/service is

described in brief, below. Please note that LODsyndesis is the suite of services and tools

that have been developed in this dissertation.

LODsyndesis [165, 168, 171] offers services for object coreference, i.e., find the datasets,

the equivalent URIs and all the triples of a given entity [168], services for content-based

dataset discovery and selection, and services for performing connectivity analytics for

large numbers of RDF datasets.

LODLaundromat [207] (http://lodlaundromat.org) is a set of services for fetching,

transforming, cleaning, compressing and querying 650,000 RDF documents. By using this

service, one can search for specific URIs, while it provides a keyword search engine (called
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Lotus [122]), where one can find all the triples and URIs where a specific keyword occurs.

LOD-a-Lot [96] (http://lod-a-lot.lod.labs.vu.nl/) has integrated the set of LOD-

Laundromat documents in a single self-indexed file in HDT format [97]. This integrated

dataset can be used for query resolution at Web scale.

LODStats [91] (http://stats.lod2.eu/) is a service including some basic metadata for

over 9,000 RDF datasets. For example, one can find the number of datasets’ triples, or the

languages that each dataset uses, while one can find all the datasets for specific schema

elements (i.e., properties and classes).

Datahub.io (http://datahub.io) is a portal that provides several datasets in different

formats, and one can find some major statistics for each dataset (e.g., number of triples,

number of links to other datasets). Moreover, one can fetch datasets provided in dumps

and get updates from datasets.

LinkLion [179] (http://linklion.org/portal) contains dumps of mappings between

pairs of datasets and statistics about them.

DyLDO [128] (http://km.aifb.kit.edu/projects/dyldo/) is a Dynamic Linked Data

Observatory whose target is to monitor the evolution of Linked Datasets over time. This

service collects frequent, continuous snapshots of a subset of RDF documents and pro-

vides interesting insights in how Linked Data evolve over time.

LODCache (http://lod.openlinksw.com) is a SPARQL endpoint service, based on Vir-

tuoso database engine [89], that includes several datasets and billions of triples. By using

this service, one can send queries that can be answered from two or more datasets, while

one can type queries for measuring the connectivity among several datasets. However, in

that case the closure of equivalence relations is performed on query time which can be

time-consuming (http://docs.openlinksw.com/virtuoso/rdfsameas/).

LOD Cloud [219] provides statistics about the datasets and the domains where they

belong, while one can see all the connections between pairs of datasets through the pop-

ular LOD Cloud Diagram (http://lod-cloud.net). Moreover, the datasets can be fetched

through that webpage.

SameAs.org [105] (http://sameas.org) is a URI lookup service containing over 203 mil-

lion URIs, where one can find all the equivalent URIs for a given URI.

WIMU [246] (http://w3id.org/where-is-my-uri/) is a service that uses the datasets

of LODLaundromat and LODstats, and one can search for a specific URI. This service re-

turns a ranked list of documents, where a particular URI occurs. Moreover, one can down-

load the documents containing that URI, or/and the triples for a URI from a specific doc-

ument.

LOV (Linked Open Vocabularies) [247] (http://lov.okfn.org) is a service containing

over 600 vocabularies from different datasets. It offers a keyword search and a SPARQL

endpoint, which contains schema triples and it can be used in order to search for schema

elements.
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Linghub [150] (http://linghub.lider-project.eu) is a portal that collects thousands

of datasets from linguistic domain (272 of them in RDF format), and uses the Linked Data

Principles for displaying the metadata of datasets. This portal offers a faceted browsing

service, a keyword search service and a SPARQL endpoint, for easing the process of discov-

ering datasets according to different users’ requirements.

SPARQLES [248] (http://sparqles.ai.wu.ac.at) and SpEnD [258] (http://wis.etu.

edu.tr/spend/) are services containing metadata and statistics for hundreds of SPARQL

endpoints.

2.7.2 Integration Cases on a Large Scale

Here, we mention some real, and noteworthy, cases of integration in a large scale, and

we divide them in domain-specific and domain-independent cases. These cases either

contain large number of datasets, or the number of datasets is not big but the integrated

dataset is itself big (and popular).

2.7.2.1 Domain-Specific Integration Use Cases.

Here, we introduce use cases of successful data integration that have been applied for a

specific domain. Europeana [124] is a digital library for cultural heritage combines data

from than 3,000 institutions across Europe while these data were transformed into Linked

Data (over 1.8 billion of triples). One can query the integrated content by using SPARQL

queries. OCLC (http://www.oclc.org) is a “global library cooperative” that supports data

from thousands of libraries. OCLC has developed WorldCat (http://worldcat.org) which

contains 2.7 billion records with bibliographic metadata in Linked Data format. For mak-

ing the data more findable by search engines (e.g., Google Dataset Search [184]) and reusable

from other users, data are expressed by using standard formats and vocabularies, such

as RDFa and schema.org. PhLeGrA [129] has integrated data from four heterogeneous

large scale biomedical datasets. The authors analyzed the integrated graph for discov-

ering associations between drugs, and they used that graph and machine learning tech-

niques for improving the accuracy of predictions of adverse drug reactions. Bio2RDF

is “the largest network of Linked Data for Life Sciences” [50]. It contains approximately

11 billion triples from 35 datasets, and it can execute federated queries among the un-

derlying sources, since it creates mappings between the ontology of each dataset and a

global schema, called Semanticscience Integrated Ontology (SIO). Finally, Open Phacts

[107] has integrated over 3 billion triples from approximately 20 datasets containing in-

formation about drugs, and it exploits a mediator mechanism for supporting complex

SPARQL queries.
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2.7.2.2 Domain Independent Integration Use Cases.

Here, we introduce domain-independent use cases of successful data integration. Google

Knowledge Graph contains over 18 billions of facts for over 570 million entities [79], and ex-

ploits Semantic Web technologies for integrating information for any domain. It integrates

both semi-structured data (e.g., from organizations and companies) and data from mil-

lions of HTML web pages that are mainly expressed in standard formats and vocabularies,

such as JSON-LD, Microdata and schema.org. Except for Google Knowledge Graph, Google

uses similar mechanisms for providing integration for specific domains, such as for Shop-

ping (http://developers.google.com/search/docs/data-types/product), for providing

Maps (http://developers.google.com/search/docs/data-types/local-business) and

others. Wikidata [251] is a free and open knowledge base that contains over 26 millions of

entities and it is readable and editable by both humans and machines. It contains data in

over 350 different languages, while it mainly integrates data from Wikipedia (different lan-

guages) and users’ data. Freebase [46] is a former knowledge base which integrated data

from four sources: Wikipedia, MusicBrainz (http://musicbrainz.org), FMD (http://www.

fashionmodeldirectory.com) and the dataset of NNDB (http://www.nndb.com), and con-

tained approximately 2 billions of triples. The users had the opportunity to contribute

to the knowledge base by editing structured data. YAGO [204] is a multilingual knowl-

edge base that integrates data from Wikipedia, Wordnet (http://wordnet-rdf.princeton.

edu/), and Geonames (http://www.geonames.org). It includes over 1 billions of triples for

approximately 17 millions of entities. It is constructed through information extraction

and merging and not by community effort. DBpedia [142] is a knowledge base that in-

tegrates multilingual data extracted from Wikipedia (http://www.wikipedia.org) in 125

languages. It contains over 3 billions of triples, and describe over 38 millions of things.

For easing the integration process with other sources, it contains large number of links to

other datasets in the LOD cloud. In a comparative survey for the aforementioned knowl-

edge bases [95], the authors defined 35 aspects according to which knowledge bases can

be analyzed, while in [94] they analyzed the quality of these knowledge bases in several

dimensions.

2.8 Discussion

The presented integration tools (see §2.4.6) have been applied over a small number of

datasets (even for billions of data), however, they cannot easily scale up to large number

of datasets, since manual effort is usually needed for defining/configuring transformation

rules, matching rules, and other tasks. Moreover, virtual integration tools do not offer con-

flicts resolution mechanisms, and most of them rely on the usage of a common schema

or/and URIs, thereby, issues, such as different naming and conceptualizations, cannot be
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fully tackled. Apart from that, the evolution of the underlying datasets cannot be tack-

led straightforwardly by most integration approaches, i.e., some steps with manual effort

should be repeated (e.g., mappings between datasets) for applying such changes.

For tackling the integration difficulties (presented in §2.2) that cannot be solved at a

large scale by the integration tools of §2.4.6, there is a recent trend for services for large

in number RDF datasets (see §2.7.1), each focusing on one aspect of the problem. For

instance, LODLaundromat [207] faces the problem of different formats (and syntactic er-

rors), by fetching and transforming thousands of documents, LODsyndesis [168] tackles

the problem of naming, by finding all the equivalent URIs of instances and schema el-

ements of billion of data, while SpEnD [258] and SPARQLES [248] check the evolution

of datasets by monitoring a large number of online SPARQL endpoints. Moreover, due

to the large volume of available data, we have observed a) a proliferation of dataset dis-

covery and selection approaches (e.g., [33, 87, 143, 165]), since it is important to select

the most valuable datasets for integration [165, 205], b) the exploitation of the available

knowledge and the usage of external resources, such as predefined equivalence relation-

ships [165,168,171], web pages [103], lexicons and translators [57,65,77,127,180,185], and

knowledge bases [79], for tackling quality and matching issues, c) the exploitation of novel

machine learning-based methods for identifying similarities [160,210], and d) the increase

of crowdsourcing approaches [28, 30, 71, 139, 217] for identifying and solving errors/con-

flicts. However, we are still far from achieving full semantic integration at large scale [84],

and we should also take into account the evolving requirements for “Web semantics” [38].

Synopsis. Overall, a combination of the a) above state-of-the-art methods (e.g., ma-

chine learning and crowdsourcing approaches), and b) the usage of as much as possible

available knowledge on the web ( e.g., knowledge bases, web pages), is required for achiev-

ing integration at large scale. Successful integration examples include i) domain specific

use cases, such as Europeana [124] and OCLC from cultural heritage domain, and Bio2RDF

[50], Open Phacts [107] and PhLeGrA [129] from life science domain, and ii) domain in-

dependent use cases, i.e., Google Knowledge graph [79], DBpedia [142], Wikidata [251],

YAGO [204] and Freebase [46]. Indicatively, Google Knowledge graph integrates data from

millions of annotated web pages and semi-structured data, for offering information for

billions of facts. Moreover, Wikidata [251] can be also considered as a successful integra-

tion example; it combines knowledge from several datasets (e.g., Wikipedia) and it can be

edited from both humans and machines, and this facilitates its evolution and the correc-

tion of errors. In general, success stories of data integration at large scale in Semantic Web

mainly involve centralized knowledge bases, however, there are proposals for more effec-

tive decentralization [199]. Overall, it seems that hybrid approaches, that combine various

sources of evidence, are more likely to drive to effective, and sustainable, large scale data

integration.

Research Gaps. In Chapter 3, we present the major research gaps which are derived



56 Chapter 2. Large Scale Semantic Integration of Linked Data: A survey

by the analysis of the presented survey and how our approach tries to tackle them. These

research gaps correspond to the tasks A-E, where we also introduce several motivation

scenarios about these tasks and we describe the main differences of our thesis comparing

to the related approaches.



Chapter 3

Research Gaps & Motivating Scenarios

In this chapter, we introduce the major research gaps, derived by the analysis of Chapter

2, whereas we describe several motivating scenarios (for the tasks A-E) and the novelty

of this thesis. Moreover, in Table 3.1 we introduce some key indicative queries that we

desire to answer (for the tasks A-E). In particular, in §3.1, we describe the placement of this

dissertation to the Data Integration Landscape (see Chapter 2). In §3.2-§3.6, for each of

the tasks A-E, we introduce the major research gaps, motivating scenarios and the novelty

of this dissertation comparing to the existing approaches. Finally, in §3.7, we describe in

brief the process which will be followed for achieving the targets of this dissertation.

3.1 Placement of dissertation in the Data Integration Landscape

Here, we describe the placement of this dissertation in the Data Integration Landscape

(see §2.3). Concerning the dimension of Dataset Types, the input of our approach is a

large number of RDF datasets. As regards the other dimensions, our work predominantly

belongs to the dimensions of Basic Services to Deliver, since the objective is to provide ad-

vanced services belonging to both Coarse-grained (i.e., Dataset Discovery & Selection) and

Fine Grained, such as URI lookup services and Question Answering services (e.g., related

to Machine-Learning tasks). Moreover, it belongs to the dimension of Auxiliary services,

since the proposed methods can be exploited for Quality Assessment and for Evolution &

Monitoring (e.g., through connectivity analytics). Finally, the proposed work secondarily

57
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Table 3.1: Indicative Queries for the tasks A-E
Query Name Tasks Query Description

QobjectCor A “Give me all the equivalent URIs of a given URI u (e.g.,
“http://www.dbpedia.org/resource/Aristotle”)”

Qprov A “Give me all the datasets containing information for a given en-
tity (or property, literal, etc.) (e.g., Aristotle)”

QallFacts A “Give me all the triples (and their provenance) of a given URI u”

Qconnectivity B,C “Give me the K datasets having the most common entities (or
triples, literals, etc.)”

QdatConnectivity C,E “Give me the K most connected datasets to my dataset (accord-
ing to the number of entities, triples, literals, etc.)”

Qcoverage C “Give me the K datasets that maximize the information (i.e.,
triples) for an entity (or a set of entities)”

Qenrichment C,D “Give me the K datasets that contain the most complementary
information (e.g., maximum number of triples) for the entities
of my dataset”

Quniqueness C,E “Give me the K datasets, that my dataset contributes the most
(or less) unique content”

Qveracity A,E “Compare all the different values (and their provenance) for a
specific fact (e.g., the birth date of Aristotle)”

QdatQuality C,E “How unique/redundant is the content of my dataset compar-
ing to others?”

QdatReuse C,E “Does my dataset enrich the content of other datasets?”

belongs to the dimension of Internal Services (i.e., for Schema/Instance Matching), since

we perform cross-dataset identity reasoning for both instance and schema elements.

3.2 Task A. Object Coreference & All Facts about an Entity

This task belongs to the Fine Grained services (see §2.4.2), since the objective is to find,

select and assemble “pieces” of data. Our target is to be able to answer the queriesQobjectCor,

Qprov, QallFacts and Qveracity (see Table 3.1) for any given entity (URI) at global scale.

3.2.1 Research Gaps

As we have seen in §2.7.1, there exists global scale services offering object coreference,

such as LODLaundromat [207] and WIMU [246], where one can find all the datasets (and

documents) containing a specific URI. However, one is not able to find all the equivalent

URIs and triples for a given URI or/and schema element. Furthermore, there exist ap-
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proaches, such as sameAs.org [105], where one can find the equivalent URIs of a given one,

however, they do not provide such functionality for schema elements and do not collect

all the available information for a given entity.

3.2.2 Motivating Scenarios

Suppose a scenario where one user or an application wants to find all the available data

and their provenance associated with “http://www.dbpedia.org/resource/Aristotle”, includ-

ing URIs being owl:sameAswith this entity (i.e., object coreference), coming from multiple

sources. For making it feasible, one should compute the transitive and symmetric closure

of owl:sameAs relationships. Except for the entities, the publishers tend to use also dif-

ferent URIs for representing schema elements (i.e., properties and classes). For instance

for the fact “Which was the birth date of Aristotle?”, different datasets can use different

URIs to represent the entity “Aristotle” and the schema element “birth date”. Therefore,

for collecting all the available data (and their provenance) for an entity and for not miss-

ing facts that occur in two or more datasets, it is also mandatory to compute the transitive

and symmetric closure for the corresponding equivalence relationships in schema level,

i.e., owl:equivalentProperty and owl:equivalentClass.

3.2.3 Our placement

To the best of our knowledge, this is the first work that computes the transitive and sym-

metric closure in both instance and schema level for large number of linked datasets.

Therefore, by using the methods which are proposed in this dissertation, we are able to

provide all the equivalent URIs and all the available information for any entity. Moreover,

the authors in [51, 53, 256] follow a virtual approach for answering SPARQL queries over

relational databases, and query rewriting techniques for keeping a single IRI (or identi-

fier) for each real entity. On the contrary, we use a set of RDF datasets (and not relational

databases), and we follow a “materialized-based” approach for collecting all the data for a

given entity, since we construct and store several semantics-aware indexes.
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Figure 3.1: LargeRDFBench Cross Domain Datasets

3.3 Task B. Connectivity Analytics

This task belongs to the Auxiliary Services (see §2.4.5), i.e., it can be used for measuring

how connected the datasets are. Moreover, it also belongs to the Coarse Grained services

(i.e., see §2.4.2.4), because connectivity analytics can be used for finding the most con-

nected datasets to a given one. The objective is to be able to answer queries, such as

Qconnectivity (see Table 3.1), for any subset of datasets.

3.3.1 Research Gaps

There are only few approaches that offer global scale measurements for large number of

linked datasets (see §2.7.1). Moreover, current global scale services do not provide mea-

surements among more than two datasets (see Table 2.5), although such measurements

are useful for several tasks (e.g., connectivity analytics). Indeed, the community uses cat-

alogs that contain some very basic metadata, and diagrams like the Linking Open Data

cloud diagram1, as well as LargeRDFBench2 (an excerpt is shown in Figure 3.1). These dia-

grams illustrate how many links exist between pairs of datasets, however they do not make

evident if three or more datasets share any URI, Literal, and so forth.

3.3.2 Motivating Scenarios

The target is to compute connectivity measurements that involve more than two datasets.

The results can be visualized as Lattices, like that of Figure 3.2 which shows the lattice of

1http://lod-cloud.net/
2http://github.com/AKSW/LargeRDFBench
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Figure 3.2: Lattice of four datasets showing the common Real World Objects

the four datasets of Figure 3.1. From this lattice one can see the number of common real

world entities in the triads of datasets, e.g. it is evident that the triad of DBpedia, GeoNames

and NYT shares 1,517 real world objects, and there are 220 real world objects shared in all

four datasets. Instead, the classical visualizations of the LOD cloud, like that of Figure 3.1,

stop at the level of pairs, therefore it is not an easy task to estimate how connected Linked

Datasets are and to assess their quality.

3.3.3 Our Placement

This is the first work that provides connectivity measurements among any subset of linked

datasets (and not only between pairs of datasets as in [33, 143, 179, 207, 252]). Moreover,

even for measurements between pairs of datasets, this is the first work that takes into ac-

count the transitive and symmetric closure of equivalence relationships (for not missing

connections).

3.4 Task C. Dataset Search, Discovery & Selection

This task belong to the Coarse Grained services (i.e., see §2.4.2.4), since its major target

is to find or select entire datasets. As we have discussed in Chapter 2, dataset search and
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discovery are the first steps of an integration process and it is really difficult to find whether

there are related datasets for a given application/task. Therefore, the objective is to be able

to answer queries such as QdatConnectivity, Qcoverage,Qenrichment and Quniqueness.

3.4.1 Research Gaps

Current methods for dataset search and discovery exploit metadata (see §2.4.2.4) for aid-

ing the discovery of datasets. Such metadata usually describe generic information about

a dataset, like its description, a set of keywords, etc. By using services such as Google

Dataset search (http://toolbox.google.com/datasetsearch) or datahub.io, one can find

relevant datasets according to some keywords. In particular, they show to the users several

datasets according to a ranking, however, the user does not know whether these datasets

are worth to be combined. Another drawback of these approaches is that they contain

several datasets with unstructured data, which makes that problem even harder, i.e., it is

not easy to find all the datasets containing information about the same entities.

The problem of unstructured data can be alleviated by adopting Linked Data, since

linking can be achieved through common URIs or/and through equivalence relationships

(e.g., owl:sameAs relationships). As we have seen in §2.4.2.4 and §2.7.1, existing Linked

Data content-based approaches, such as LODStats [91] and LODLaundromat [207], offer

services for searching and discovering datasets containing specific URIs or/and keywords,

while SPARQLES [248] and SpEnD [258] exploit metadata for searching for SPARQL End-

points. However, the main target of these approaches is to offer statistics, preservation

and quality assessment services, i.e., they do not focus on assessing the quality among

combinations of datasets. Thereby, it is impossible to get back hits each corresponding to

a set (or “cluster”) of datasets.

Moreover, a key problem is that current approaches do not take into account the cross-

dataset reasoning among datasets (see §3.2) for discovering relevant ones, therefore con-

nections can be missed. Another problem is that “the reuse and take-up of rich data

sources is often limited and focused on a few well-known and established RDF datasets”

[34]. Thereby, a key challenge is how to reveal the importance of high quality under-
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recognized datasets. For example, suppose that an under-recognized dataset, called DTiger,

contains valuable information only for the species “Tiger”. However, since the famous

RDF datasets, e.g., DBpedia [142], Wikidata [251], YAGO [204], contain information about

this species, in a global dataset ranking, the dataset DTiger would be in a very low position

comparing to the popular datasets, even if the desired task is to collect information about

“Tiger”.

3.4.2 Motivating Scenarios

The target is to assist the task of Dataset Search, Discovery and Selection by offering content-

based services which are based on intersection, union and complement metrics. In partic-

ular, we desire to propose measurements that can be directly used for answering Dataset-

based queries such as “find the K datasets that are more connected to a particular dataset”

or/and “find the K datasets that maximize the information of a given dataset”. Such queries

are important for finding related datasets containing the same entities and/or triples, liter-

als and schema elements, either for constructing a warehouse or for mediator-based query

answering. Moreover, they can be used for answering Entity-based queries, i.e., “Give me

the K datasets containing the maximum number of triples for a set of entities”.

For being able to provide such services, it is crucial not to miss connections between

the datasets, i.e., we should compute the cross-dataset identity reasoning. For instance,

suppose that you publish a dataset and for connecting it to the rest datasets of the LOD

cloud you establish relationships with DBpedia (by having triples that refer to URIs from

DBpedia). Without the computation of closure, you would get that only 1 dataset is con-

nected to your dataset (i.e. only DBpedia). With the proposed indexes and measurements

(that include the computation of the transitive closure of equivalence relationships), you

could get much more datasets, i.e., datasets that you could not easily discover because

they could have in common only few, or even none, URIs (or triples, literals, etc.) with

your dataset.

As a motivating example, suppose that in Figure 3.3 three scientists want to perform

an analysis for endangered species, i.e., for predicting the possibility those species to be-
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Figure 3.3: Motivating Example. Three scientists want to find K datasets (say 5) from

the 12 available ones, for performing an analysis for endangered species.

come extinct in the current century. For this reason, they desire to search and integrate

at least K (say five) different datasets containing information about such species, from

the 12 available datasets for these species. However, each of these scientists has different

requirements (i.e., see their queries in the left side of Figure 3.3).

In the first case, the scientist wants to enrich the content of his dataset (say Dj), how-

ever, his requirement is the five desired datasets to contain the most common endangered

species with Dj. The second scientist has not collected any data, and he desires to discover

the five datasets, whose union will produce an integrated dataset that will contain the max-

imum number of endangered species, i.e., comparing to any other combination of five

datasets. In the third case, the scientist has already created a dataset, say Di, containing

information about several endangered species, and he desires to find five more datasets

for enriching the information for the same species of Di, i.e., by finding complementary in-

formation for those species. In that example, since there are available 12 different related

datasets, which result to 792 possible quintets of datasets, thereby, it is time-consuming

for the scientists to check all the possible quintets for discovering the best one for them.
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The above user needs should be taken into account, however, they are not covered from

existing approaches that exploit metadata (see §2.4.2.4), e.g., in Figure 3.3 (right side) such

methods return the same ranking list of single datasets for all three scientists.

On the contrary, in Figure 3.3, an engine that computes such (intersection, union and

complement) metrics, returns a ranking of quintets of datasets (instead of a ranking of

single datasets), while the ranking is different for each scientist, according to their require-

ments, e.g., for Scientist 2 the best quintet of datasets contains {D1,D3,D4,D5,D6}, while

for Scientist 3, the five best datasets for his needs are {D2,D5,D8,D9,D11}. Therefore, we

can obviously see that for different users (and even for the same task), (i) different combi-

nations of datasets and (ii) different “slices” of a specific dataset can have different quality

and value, e.g., even a small “slice” of an under-recognized dataset can be of primary im-

portance for being used in a specific application.

3.4.3 Our Placement

To the best of our knowledge, this is the first work proposing content-based intersection,

union and complement metrics for returning ranking lists of multiple datasets (instead of

single datasets or pairs of datasets as in [33, 143, 179, 207, 252]), which is quite important,

since “Many tasks involving datasets require the stitching of several datasets to create a

whole that is fit for purpose” [56]. Comparing to other dataset discovery approaches, we

exploit the contents of datasets (and not metadata, e.g., as in [198, 248, 258]). Comparing

to content-based approaches [207, 246, 252], we use indexes enriched with inferred equiv-

alence relationships.

3.5 Task D. Data Enrichment

This task mainly belongs to the composite services (see §2.5), since it involves dataset dis-

covery and selection, and fine grained integration. The main objective is exploit “pieces”

of data, for enriching the content of a given dataset. The objective is to be able to answer

queries such as Qenrichment (see Table 3.1), and to provide data enrichment services that can
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be exploited for machine learning tasks.

3.5.1 Research Gaps

For enriching the data for a given entity (or all the entities of a given dataset), it is a pre-

requisite to perform cross-dataset identity reasoning, however it is not supported from

current global scale approaches (see §2.7.1). Moreover, as we will explain in Chapter 6,

there are not available data enrichment tools for Machine-Learning tasks, which combine

data from hundreds of datasets simultaneously, by taking into account the cross-dataset

identity reasoning.

3.5.2 Motivating Scenarios

It is important to collect information about the same real world entities from several sources

in order to “widen” the information for the entities of interest. Technically, this reduces to

constructing a dataset with high “pluralism factor”, i.e., a consolidated dataset where the

number of datasets that provide information about each entity is high. An indicative query

for discovering relevant datasets for such a scenario follows: “find the K datasets that max-

imize the pluralism factor of the entities of a particular dataset”.

Moreover, by collecting all the available data for an entity, we can exploit that func-

tionality in the context of Machine Learning tasks, specifically for finding more features

or/and for creating word embeddings about a given set of entities from many datasets,

simultaneously. The target is to create a new enriched dataset, that can exploited for im-

proving machine learning tasks. Below, we mention a possible use case for the cultural do-

main. Suppose that one wants to classify a set of paintings according to their genre [228],

e.g., Impressionist, Renaissance and others, by using a machine learning algorithm. How-

ever, there are either few or even no available information for these entities, therefore, one

should search on the web for those paintings to create more features and to perform cross-

dataset reasoning for collecting data from multiple sources. Such a process can be time-

consuming, while the discovered data often should be transformed before being used in

a Machine Learning task. On the contrary, by collecting all the data for a given entity and
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for offering mechanisms for creating features and word embeddings automatically, such a

process can be much easier.

3.5.3 Our Placement

We propose queries that can aid the publishers of datasets to find other datasets that

can enrich their content (i.e., such as Qenrichment), which are not covered from related ap-

proaches (see §3.4). Moreover, we propose two tools, i.e., LODsyndesisML [166] and LODVec

[172], which offer data enrichment for creating features and word embeddings for ma-

chine learning tasks for any set of entities. Their novelty is that they can enrich a given

dataset by using hundreds of datasets, simultaneously. More details about their novelty

(and a comparison with related approaches) are given in Chapter 6.

3.6 Task E. Data Quality Assessment

This task mainly belongs to the Auxiliary services (see §2.4.5), since the objective is to

assess data quality. The target is to be able to answer queries such as Qveracity, QdatQuality and

QdatReuse (see Table 3.1).

3.6.1 Research Gaps

There is a lack of approaches that are scalable for assessing the quality (see §2.4.5.2) of

large in number RDF datasets. For Data Fusion only a few approaches exist for RDF datasets,

while the existing ones have been tested for a small number of datasets (less than ten

datasets). Moreover, in the context of web pages, in [145] the authors mentioned as a gap

for the tasks of Data Fusion and Data Trust, that the different fractions of data occurring

in the same dataset can possibly have different quality, e.g., one dataset can provide more

accurate information for the instances belonging in class Marine Species comparing to the

instances belonging in class Countries.
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3.6.2 Motivating Scenarios

Below, we provide some motivating scenarios for several quality aspects.

Data Veracity. As it is stated in [82], a mandatory component for resolving conflicts

and improving the correctness (and in this way the quality) of data is to collect all the

records (in our case URIs) referring to the same real world entity, to fuse them into a sin-

gle representation and then to apply dedicated algorithms over the “integrated” content.

Indeed, the “global scale”-like semantic indexing that we propose can be beneficial for es-

timating the veracity of data. The key point is that the collection of all information about

an entity, and the cross-dataset inference that is offered, aids spotting the contradictions

that exist and on the same time provides information for data cleaning or for estimating

and/or suggesting which data are probably correct or more accurate. After having spot-

ted such cases, several options are possible for improving quality: to inform the owners

of the datasets for correcting the spotted errors, or to produce an aggregated dataset with

no conflicts by adopting a method for estimating the probability of correctness of each

fact and/or selecting the more probable one (as it is also stated in [81, 82]). Specifically,

errors can occur in the values of specific real world objects. For instance, in d-nb.info3 it

is written that Aristotle’s birth year was 384 BC while in DBpedia4 the value of the property

birthDate for Aristotle is -383-1-1. The aggregation of all information enables estimating

the more probable one. Moreover, it is not hard to see that the equivalence relationships

can be exploited for improving the effectiveness of instance matching [191], which is an

important requirement for effective integration [59].

Dataset Quality in terms of Interlinking and Reusability. A dataset’s publisher should

be able to assess the quality of his dataset comparing to other datasets, e.g., to assess

whether his dataset is worth to be reused. For assisting this task, union and complement

metrics can be exploited, for answering queries like, i) “How unique/redundant is the con-

tent of my dataset comparing to others?”, ii) “What percentage of the available information

for a set of entities is offered only from my dataset?”, and iii) “Does my dataset enrich the

content of other datasets?”. These queries can assist publishers to improve their dataset’s

3http://d-nb.info/gnd/118650130, accessed date: November 1, 2017
4http://dbpedia.org/resource/Aristotle, accessed date: November 1, 2017
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quality in a long run, however, they cannot be answered from current systems.

Quality of a Possible Integration. Since the integration process is quite challenging

and requires a big effort and possibly a monetary cost, it is important to estimate the qual-

ity of a possible integration by using such metrics, e.g., for answering queries like “What is

the gain of integrating dataset Dj with datasets Dk and Dm?”.

3.6.3 Our Placement

Comparing to the Data Quality services presented in §2.4.5.2, we provide metrics for Dataset

Quality in terms of Interlinking and Reusability among any subset of datasets (and not only

for pairs (e.g., as in [143, 179]). Moreover, with our approach it is feasible to compare all

the values for a specific fact (e.g., the birth date of Aristotle) from hundreds of datasets.

Therefore our approach can be exploited for performing Data Fusion for large number of

datasets, since most current methods have been tested for a small number of datasets (i.e.,

see §2.4.5.2).

3.7 The Proposed Process

In the rest of this thesis, we describe how to design and developed novel indexes, methods

and tools, for tackling the above research gaps and for assisting the process of semantic

integration of data at large scale (i.e., for improving the tasks A-E). In Figure 3.4, we show

the process that is followed, which is also described in brief, below. For performing the

steps of Figure 3.4, we should tackle the challenges introduced in §1.3.

The input is a subset of LOD Cloud datasets and equivalence relationships in schema

and instance level (i.e., owl:equivalentProperty,owl:equivalentClassand owl:sameAs).

The first step is to tackle the challenge of performing cross-dataset identity reasoning over

large number of datasets, for constructing a set of equivalence catalogs. The second step

is to construct indexes at large scale by applying cross-dataset identity reasoning, for pro-

ducing several semantics-aware indexes that cover the whole contents of datasets. These

two steps will be introduced in Chapter 4.
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Figure 3.4: The steps of the process

The third step (which will be described in Chapter 5) concerns the exploitation of the

constructed indexes, for performing lattice-based measurements among any subset of

datasets. All these metrics will be exploited for offering connectivity analytics and content-

based Dataset Discovery over large number of linked datasets.

The fourth step is to use the semantics-aware indexes for offering through LODsyndesis

website5, several advanced services for the tasks that are represented in this chapter (i.e.,

tasks A-E) and for answering all the queries that are included in Table 3.1. The last step is

to exploit the indexes for offering advanced services for machine-learning tasks over large

number of datasets, i.e., we introduce two research prototypes, called LODsyndesisML and

LODVec that use the semantic-aware indexes for creating features and word embeddings

for machine learning tasks. All these tools and services are introduced in Chapter 6.

5http://www.ics.forth.gr/isl/LODsyndesis



Chapter 4

Cross-dataset Identity Reasoning &

Semantics-aware Indexes at Global Scale

In this chapter, we propose methods for tackling Challenge 1 and Challenge 2, i.e., perform-

ing cross-dataset identity reasoning and constructing semantics-aware indexes at large

scale. We focus on answering the research questions RQ1, RQ2 and RQ3, for providing

indexes that can be directly used for answering the queries related to task A (i.e., Object

Coreference and Finding all the Facts for an Entity). In particular, by using the methods

that are presented in this chapter, it is feasible to answer the queriesQobjectCor,Qprov, QallFacts,

and Qveracity for any given entity. For the rest queries of Table 3.1, it is also a prerequisite to

exploit the indexes of this chapter, however, they require also special algorithms, methods

and tools which will be introduced in the next chapters. Concerning the contributions of

this chapter:

• we show how to perform cross-dataset identity reasoning, i.e., we propose methods

for computing the transitive and symmetric closure for owl:sameAs,owl:equivalentProperty

and owl:equivalentClass relationships, either by using a single machine or a clus-

ter of machines,

• we exploit the result of the aforementioned closure for constructing in parallel (by

using MapReduce [69] techniques) semantics-aware triples, where we replace all the

URIs belonging in the same class of equivalence with a unique identifier,

• we construct in parallel five semantics-aware indexes, i.e., an entity-based triples

index, for enabling the immediate access to the available data for any entity, and

indexes for finding fast the provenance of entities, classes, properties and literals,

• we measure the speedup and scalability obtained by the proposed indexes and algo-

rithms, by using 400 real RDF datasets containing over 2 billion triples.

The rest of this chapter is organized as follows. In §4.1, we introduce the MapReduce

framework and several notations, whereas in §4.2, we describe the requirements for con-

71
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structing the semantics-aware indexes. Moreover, in §4.3, we introduce the problem state-

ment and we describe in brief the proposed indexing process. In §4.4 we describe ways to

compute the transitive and symmetric closure of equivalence relationships by using either

a single or a cluster of machines and we show how to exploit the result of the closure for cre-

ating semantics-aware triples. In §4.5, we show how to construct semantics-aware indexes

for entities, literals, triples and schema elements, whereas §4.6 compares the parallel algo-

rithms that are used (in terms of the number of iterations that are required and their com-

munication cost). Moreover, §4.7 reports experimental results, that concern mainly the

efficiency of the proposed methods, and statistics about the constructed indexes. Finally,

§4.8 concludes this chapter.

Publications related to this chapter. The work presented in this chapter has been

published in [165, 168, 171].

4.1 Background & Notations

4.1.1 Background - MapReduce Framework

MapReduce [69] is a popular distributed computation framework which is widely applied

to large scale data-intensive for processing, primarily in the big-data domain. The com-

putation takes as input a set of key-value pairs and produces a set of output key-value

pairs. Each MapReduce program (or job) is carried out in two phases: a map followed by

a reduce phase. Map and Reduce are two different functions which are user-defined that

can become tasks that are executed in parallel. The Map function takes as input key-value

pairs, performs a user-defined operation over an arbitrary part of the input, partitions the

data and produces a set of intermediate key-value pairs. Subsequently, all key-value pairs

produced during the map phase are grouped by their key and are passed (shuffled to the

appropriate tasks and sorted) to the reduce phase. During the reduce phase, a reduce func-

tion is called for each unique key, it processes the corresponding list of values and finally

produces a set of output key-value pairs.

4.1.2 Notations

First, letD = {D1, ...,Dn} be a set of datasets,P(D) denote the power set ofD, and B is any

set of datasets B⊆ D. Moreover, we divide the URIs in three categories, i.e.,U = E∪P∪C,

where E refers to the entities, P to the properties and C to the classes, where these sets of

URIs are pairwise disjoint. In particular, a property describes a relation between a subject

and an object and the set of properties P is defined as P = {p | 〈s, p, o〉 ∈ T }. Concerning

the classes, they are used for grouping entities into classes, e.g., Humans, Philosophers,

Actors, and so forth. They can be found through triples of the form 〈s,rdf:type,c〉, where s

is an entity and c is a class, i.e., C = {c | 〈s, rdf :type, c〉 ∈ T }. Finally, the remaining URIs are



4.2. Requirements 73

defined as entities, i.e., E = U \ (P∪ C). For a single dataset Di ∈ D, Ui ⊂ U is the set of

its URIs (where Ei, Pi and Ci are the sets of entities, properties and classes, respectively),

triples(Di) ⊂ T is the set of its triples and Li is the set of its literals. It is worth mentioning

that we ignore triples containing blank nodes, since we do not apply blank node matching

techniques for finding common blank nodes, like those proposed in [238].

4.2 Requirements

Here, we introduce the main requirements, which are essential for constructing semanti-

cally enriched indexes that cover the whole contents of datasets.

4.2.1 Considering Equivalence Relationships

Our major requirement is to take into consideration the equivalence relationships be-

tween the datasets, i.e., to compute the cross-dataset identity reasoning. We consider

the following equivalences in schema and instance level in a subset of datasets B ⊆ D.

Let Equiv(B, r) be all the triples that contain a property r ∈ Eqv, Eqv = {owl : sameAs,

owl : equivalentProperty, owl : equivalentClass}, that defines a specific equivalence be-

tween two URIs: Equiv(B, r) = {(u,u′)|(u, r,u′) ∈ triples(Di),Di ∈ B, r ∈ Eqv}. The owl:sameAs

property denotes that two URIs refer to the same entity, while the remaining ones denote

equivalences among schema elements (i.e., properties and classes). These types of equiv-

alences are transitive, symmetric and reflexive, and our target is to compute their closure,

in order not to miss equivalence relationships among different datasets.

If Rdenotes a binary relation, consequently, we use C(R) to denote the transitive, sym-

metric and reflexive closure of R, while C(Equiv(B, r)) stands for this type of closure of a

relation r in all datasets in B. For instance, if Utemp = {u1,u2,u3,u4,u5} and there are two

owl:sameAs relationships, u1 owl : sameAs u3 and u1 owl : sameAs u4, then their closure de-

rives the following classes of equivalence Utemp/∼ =
{

{u1,u3,u4}, {u2}, {u5}
}

. We can now

define the equivalent URIs (considering all datasets in B) of an entity u ∈ E, a property

p ∈ P and a class c ∈ C as follows:

EqEnt(u,B) = { u′ | (u,u′) ∈ C(Equiv(B, owl:sameAs)),u,u′ ∈ Ei,Di ∈ B}

EqProp(p,B) = { p′ | (p, p′) ∈ C(Equiv(B, owl:equivalentProperty)), p, p′ ∈ Pi,Di ∈ B}

EqClass(c,B) = { c′ | (c, c′) ∈ C(Equiv(B, owl:equivalentClass)), c, c′ ∈ Ci,Di ∈ B}

4.2.2 Creation of Real World Objects & Triples

Here, we show how to exploit the result of the computation of cross-dataset identity rea-

soning, for keeping a single representation for each real world object.
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4.2.2.1 From URIs to Real World Objects

For taking into account the equivalences, our target is to replace any URI with its corre-

sponding class of equivalence, where the URIs that are “semantically” the same belong to

the same class of equivalence, e.g., all the URIs referring to “Aristotle” belong to the same

equivalence class. We denote as [u]e, [u]pr and [u]cl the class of equivalence of a URI u, if

it belongs to entities, properties or classes, respectively. In particular, for a dataset Di ∈ D,

we define its’ real world entities, properties and classes, as follows:

• Real World Entities: RWE(Di) = ∪u∈Ei
[u]e, where ∀u′ ∈ EqEnt(u,D), [u]e = [u′]e.

•Real World Properties: RWP(Di) = ∪u∈Pi[u]pr, where∀u′ ∈ EqProp(u,D), [u]pr = [u′]pr.

• Real World Classes: RWC(Di) = ∪u∈Ci
[u] where ∀u′ ∈ EqClass(c,D), [u]cl = [u′]cl.

Finally, for all the datasets D we define the following sets: RWE =
⋃

Di∈D RWE(Di),

RWP =
⋃

Di∈D RWP(Di) and RWC =
⋃

Di∈D RWC(Di), for entities, properties and classes,

respectively.

4.2.2.2 Literals Conversion

For the literals of a dataset Di, we define as LIT(Di) = ∪l∈Li lconv, the set of its’ transformed

literals, where we convert each literal l ∈ Li to lower case, we remove its language tag

(e.g., “Aristotle”@en → “aristotle”), while we remove its datatype (e.g., 1∧∧xsd:integer →

“1”). We perform these conversions for not missing connections, e.g., for the same literal,

one dataset can use capital letters, another one lowercase letters, a third one both capi-

tal and lowercase letters (e.g., “ARISTOTLE” vs. “aristotle” vs. “Aristotle”), a literal can be

the same in different languages (e.g., “Aristotle”@en, “Aristotle”@ca), while the same lit-

eral can be represented from different datasets with different types (e.g., 1∧∧xsd:integer,

1∧∧xsd:double). Finally, for all the datasets inDwe define LIT =
⋃

Di∈D LIT(Di).

4.2.2.3 From Triples to Real World Triples.

We define the real world triples for a dataset Di, by replacing each URI with its correspond-

ing class of equivalence and by converting each literal (in the way that we explained be-

fore). A triple t = 〈s, p, o〉 is replaced with a new triple μ(t) = 〈s′, p′, o′〉, where,

s′ =
{

[s]e, s ∈ Ei p′ =
{

[p]pr, p ∈ Pi o′ =



























oconv, o ∈ Li

[o]e, o ∈ Ei

[o]cl, o ∈ Ci
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Table 4.1: Finding the provenance of different elements.

Element Datasets Where an Element Occurs

Entity u dsetsEnt∼(u,B) = {Di ∈ B | [u]e ∈ RWE(Di)}
Property p dsetsProp∼(p,B) = {Di ∈ B | [p]pr ∈ RWP(Di)}

Class c dsetsClass∼(c,B) = {Di ∈ B | [c]cl ∈ RWC(Di)}
Literal l dsetsLit(l,B) = {Di ∈ B | lconv ∈ LIT(Di)}
Triple t dsetsTr∼(t,B) = {Di ∈ B | μ(t) ∈ RWT(Di)}

As a consequence, the real world triples for a dataset Di is defined as RWT(Di) =

∪t∈triples(Di)μ(t), and for all the datasets in D we define RWT =
⋃

Di∈D RWT(Di). Finally,

for a set of entities E′, we define RWTE′ = {〈s, p, o〉 ∈ RWT | s = [u]e or o = [u]e,u ∈ E′} as

the set of real world triples where at least one u ∈ E′ (or an equivalent URI of u) occurs.

4.3 Problem Statement & Process

4.3.1 Problem Statement

Our major target is to be able to answer the queries QobjectCor, Qprov, QallFacts, and Qveracity.

Concerning QobjectCor, the objective is to compute the transitive and symmetric closure of

equivalence relationships at global scale, for being able to answer such queries for any

u ∈ U, i.e., for finding the EqEnt(u,B), EqProp(p,B) and EqClass(c,B).

Regarding Qprov, the target is to be able to find all the datasets that contain information

(i.e., the provenance) about a specific element (or an equivalent one), by exploiting the

real world objects and triples which were introduced above. In Table 4.1, we define the

set of datasets where a specific element (or an equivalent one) occurs, e.g., for the URI

d1:Aristotle, dsetsEnt∼(d1:Aristotle,D) returns all the datasets where d1:Aristotle (or any

equivalent URI of d1:Aristotle) occurs.

Finally, for the queries QallFacts, and Qveracity, the target is to retrieve fast all the real world

triples for a given entity, e.g., for being able to compare conflicting values from different

datasets. In the rest of this chapter we present methods for constructing several semantics-

aware indexes that can be directly exploited for answering the aforementioned queries.

4.3.2 The Proposed Process of Global Indexing

Here, we describe the process of global indexing in brief. In particular, it comprises of

four different steps, which can be seen in the running example of Figure 4.1. The first

step is the collection of input datasets, which is a set of datasets’ triples and a set of RDF

relationships (e.g., owl:sameAs relationships). In our running example, the input contains

4 datasets, each one having six triples (in the upper left side), and several instance and

schema relationships (in the upper right side). The next step includes the computation of
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closure in schema and instance level, where catalogs containing for each URI an identifier

are produced. In the third step, we use the initial datasets and the aforementioned catalogs

for creating “semantically” enriched triples (i.e., real world triples). In the fourth step, we

create semantically enriched inverted indexes for different sets of elements (e.g., triples,

entities), where we collect all the information of each different entity, and we store the

dataset IDs (i.e., a posting list) where real world entities, properties, classes, triples and

literals occur.

4.4 Cross-dataset Identity Reasoning at Global Scale

Rationale: It is required for finding all the URIs that are equivalent to a given one, i.e, for

finding EqEnt(u,B), EqProp(p,B), and EqClass(c,B), which were defined in §4.2.1. More-

over, the result of this process will be exploited for creating the sets RWE, RWP, RWC and

RWT (i.e., see §4.2.2). Here, we introduce methods where each class of equivalence will

get a signature (id) and the signature is constructed incrementally during the computa-

tion. We create one such catalog for each different URI’s category, i.e., properties, classes

and entities, as it is described below:

• Entity Equivalence Catalog (EntEqCat): For each of the entities u ∈ E we assign a

unique ID, where EID denotes this set of identifiers (i.e., a binary relation ⊆ EID).

For constructing this catalog, we read the URIs of each dataset (marked in bold in

Figure 4.1) and the owl:sameAs relationships (see the upper right side of Figure 4.1),

and we compute the transitive, symmetric and reflexive closure of owl:sameAs rela-

tionships, for computing the classes of equivalence. All the entities belonging to the

same class of equivalence (e.g., all the URIs of “Aristotle”) will be assigned the same

identifier, e.g., see the EntEqCat in the running example of Figure 4.1. This catalog

will be exploited for replacing each URI that occurs in a triple with an identifier.

• Property Equivalence Catalog (PropEqCat): For each of the properties p ∈ P, we store

a unique ID, where PID denotes this set of identifiers (i.e., a binary relation ⊆ PID).

For constructing it, one should read the properties of each dataset (underlined in

Figure 4.1), the owl:equivalentProperty relationships (see the upper right side of

Figure 4.1), and compute the closure of these relationships for producing the classes

of equivalence for properties. Afterwards, all the properties belonging to the same

class of equivalence are assigned the same identifier, e.g., in Figure 4.1, we can ob-

serve the PropEqCatof our running example. As we shall see, this catalog will be used

for replacing each property with its corresponding identifier.

• Class Equivalence Catalog (ClEqCat): For any class c ∈ C, we store a unique ID, where

CID denotes this set of identifiers (i.e., a binary relation ⊆ CID). For constructing it,
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Figure 4.1: Running example containing four datasets.
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one should read the classes (marked in italics in Figure 4.1), the owl:equivalentClass

relationships, and compute their closure for finding the classes of equivalence. Fi-

nally, all the classes that refer to the same real world thing will take the same identi-

fier. The resulted ClEqCat for our running example can be seen in Figure 4.1. We will

exploit this catalog for replacing each class with the corresponding identifier.

In the rest of this section, we introduce algorithms for computing the transitive and

symmetric closure of equivalence relationships by using a single machine (see §4.4.1) and

by using a cluster of machines (see §4.4.2).

4.4.1 Computation of Equivalence Relationships - Single Machine Algorithm

Here, we introduce a method for computing the transitive and symmetric closure by using

a single machine.

Construction Method: We introduce a signature-based algorithm (see Alg. 1) where

each class of equivalence will get a signature (id) and the signature is constructed incre-

mentally during the computation. After the completion of the algorithm, all URIs that

belong to the same class of equivalence will have the same identifier. Alg. 1 computes

the symmetric and transitive closure of owl:sameAs relationships, however, the same algo-

rithm can be used for computing the closure of owl:equivalentPropertyand owl:equivalentClass

relationships. First, it uses two maps, a) EntEqCat where for each URI it stores a unique

identifier (an integer) , and b) Cle where it stores all the URIs having the same key (see

lines 1-2). Afterwards, it assigns to each pair (u,u′) ∈ Equiv(B, r) an identifier according to

the following rules:

1. If both URIs have not an identifier, a new identifier is assigned to both of them (see

lines 5-9). E.g. Table 4.2 contains two classes of equivalence and four URIs. In the

next step, a new owl:sameAs pair containing two URIs without identifier is inserted

resulting to a new class of equivalence which is shown in Table 4.3.

2. If u has an identifier while u′ has not, u′ gets the same identifier as u (see lines 10-13).

Table 4.4 shows such an example where a new URI (u7) is assigned the identifier of

an existing one (u3).

3. If u′ has an identifier while u has not, u gets the same identifier as u′ (see lines 14-17).

4. If both URIs have the same identifier, the algorithm continues.

5. If the URIs have a different identifier, these identifiers are concatenated to the lowest

identifier (see lines 18-23), while the entry of the highest signature of Cle is deleted

(see line 24). In case of Table 4.5, both URIs exist in the EntEqCat and have a different

identifier. For this reason, the classes of equivalence of these identifiers are merged.

Finally, Alg. 1 returns the constructed EntEqCat (see line 25). We can say that the algorithm

constructs incrementally chains of owl:sameAs,owl:equivalentPropertyand owl:equivalentClass

URIs where each URI becomes a member of a chain if and only if there is a such relation-



4.4. Cross-dataset Identity Reasoning at Global Scale 79

ship with a URI which is already member of this chain. Its correctness is based on the

following proposition.

Prop. 1. If (a, b) ∈ Equiv(B, r) and (a, c) ∈ Equiv(B, r) then (b, c) ∈ C(Equiv(B, r)).

Proof. Firstly, (b, a) ∈ C(Equiv(B, r)) because of symmetry. By taking the transitive closure

of (b, a), (a, c), we get that (b, c) ∈ C(Equiv(B, r)). �

Table 4.2:

Classes of Equivalence

ID URIs

1 u1,u2
2 u3,u4

Table 4.3:

Insert u5 owl:sameAs u6

ID URIs

1 u1,u2
2 u3,u4
3 u5,u6

Table 4.4:

Insert u3 owl:sameAs u7

ID URIs

1 u1,u2
2 u3,u4,u7

3 u5,u6

Table 4.5:

Insert u1 owl:sameAs u3

ID URIs

1 u1,u2,u3,u4,u7

2 u3,u4,u7
3 u5,u6

Time and Space Complexity. Its benefit is that it needs one pass for each equivalence

pair to compute the transitive and symmetric closure, i.e., where n is the number of all the

Equiv(B, r) pairs. By using a TreeMap for the EntEqCat, the keys are sorted, therefore the

cost of the functions lookup (i.e., u < Lef t(EntEqCat)), insert, and for replacing the value

of an entry equals O(logk), where k is number of elements that are part of EntEqCat in a

specific step. The range of k is 0 ≤ k ≤ 2 ∗ n, and k increases as we read more pairs. For the

Cle, by using also a TreeMap, the cost of the functions lookup, insert and deleteKey equals

O(logr), where r is number of elements that are part of Clein a specific step. The range of r

is 0 ≤ r ≤ n. Therefore, the time complexity of Alg. 1 is O(n logn),

Concerning space complexity, it keeps in memory chains of Equiv(B, r) in order to

connect such chains with new owl:sameAs relationships. Indeed, the space complexity

is O(m), where m is the number of unique URIs that occur in Equiv(B, r) pairs, since in the

worst case each URI is stored both in the catalog and in the classes of equivalence map,

until the end of the algorithm. Regarding the size of the catalog, we store for each URI a

distinct arbitrary number. Since each real world object is represented by exactly one iden-

tifier, the number of unique identifiers in the catalog is equal to the number of unique real
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ALGORITHM 1: Equivalence Catalog Creation

Input: Equiv(B, owl : sameAs) a binary relation containing owl:sameAs relationships

Output: A catalog containing for each class of equivalence a signature.

1 map EntEqCat{key, value} (key : URI, value : integer)
2 map Cle{key, value} (key : integer, value : set of URIs)
3 ID← 1
4 forall (u,u′) ∈ Equiv(B, owl : sameAs) do

5 if u < Lef t(EntEqCat) and u′ < Lef t(EntEqCat) then

6 EntEqCat.insert(u, ID)
7 EntEqCat.insert(u′, ID)
8 Cle.insert(ID, {u,u′})
9 ID← ID+ 1

10 else if u ∈ Lef t(EntEqCat) and u′ < Lef t(EntEqCat) then

11 uID← EntEqCat(u)
12 EntEqCat.insert(u′,uID)
13 Cle(uID)← Cle(uID) ∪ {u′}
14 else if u < Lef t(EntEqCat) and u′ ∈ Lef t(EntEqCat) then

15 u′
ID
← EntEqCat(u′)

16 EntEqCat.insert(u,u′
ID
)

17 Cle(u′
ID
)← Cle(u′

ID
) ∪ {u}

18 else if EntEqCat(u) , EntEqCat(u′) then

19 minID← min(EntEqCat(u), EntEqCat(u′))
20 maxID← max(EntEqCat(u), EntEqCat(u′))
21 Cle(minID)← Cle(minID) ∪ Cle(maxID)
22 forall uj ∈ Cle(maxID) do

23 EntEqCat(uj)← minID
24 Cle.deleteKey(maxID)
25 return EntEqCat

world objects of Equiv(B, r). In our running example, the produced catalogs are shown in

the upper right side Figure 4.1 (see step 2).

Alternatively, one can use Tarjan’s connected components (CC) algorithm [233] that

uses Depth-First Search (DFS). The input of CC algorithm is a graph which should have

been created before running the algorithm. For this reason, we have to read all theEquiv(B, r)

pairs once O(n) (i.e., each Equiv(B, r) pair represents an edge) in order to construct the

graph. The time complexity of CC algorithm isO(m+n). Regarding the space, the creation

of graph requires space n + 2m because the graph is undirected and we should create bidi-

rectional edges while the CC algorithm needs space O(m), since in the worst case it needs

to keep all the nodes in DFS stack (i.e., unique URIs). However, the graph should be loaded

in memory in order to run the CC algorithm, thereby the total space needed isO(n+m). In

§4.7 we compare the execution time of the two aforementioned approaches.
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4.4.2 Computation of Equivalence Relationships - Parallel Algorithm

The limitations of single-node process and therefore motivation for parallelization using

several machines are the following: the signature based algorithm needs a lot of memory,

thereby, as we will see in §4.7, we are unable to compute the closure for over 14 million

of equivalence relationships. For this reason, we propose an algorithm for computing the

cross-dataset identity reasoning in parallel.

Parallelization Overview. Let m be the set of available machines and mi be a single ma-

chine. Moreover, let EQ = {EQ1, ...,EQm} be a partition of the equivalence relationships,

i.e., owl:sameAs, owl:equivalentClass and owl:equivalentProperty, while we need also

partitions of URIs, whereU = {URi,URj, ..,URm} and (URi ∪ URj ∪ ... ∪ URm = U). Each

machine mi is assigned the responsibility to read a subset of equivalence pairs EQi, and a

subset of URIs URi, and to compute a partial function eqi: U → ID. In the reducer, any

equivalence catalog (EqCat) can be derived as EqCat = eq1 ∪ ... ∪ eqm. From a wide range

of proposed parallel algorithms, we selected to use Hash-to-Min algorithm [203] since it

computes the connected component in logarithmic rounds of MapReduce Jobs and has

linear communication cost per round. However, we propose some optimizations that we

apply to our context for reducing the number of MapReduce jobs and the size of interme-

diate data.

Figure 4.2: Hash-to-Min Algorithm Example - Impact of Ordering
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Construction method: Let G be a graph G = {V,E}, where V is the set of vertices, in our

case V = {u | {(u, r,u′) ∪ (u′, r,u)} ∈ T , r ∈ Eqv}, and E is the set of edges, in our case

E = Equiv(B, r). The key notion of Hash-to-Min is that it creates one cluster Cu, where

Cu = Equiv(u,D) ∪ {u}, for all the URIs belonging in the same class of equivalence (or con-

nected component), and for each u ∈ Cu it assigns to them the same signature (see an

example in step 2 of Figure 4.1). Hash-to-Min [203] algorithm takes as initial input a set of

key-value pairs having key a URI u and value a set nbrs(u) = {u′ | {(u, r,u′) ∪ (u′, r,u)} ∪

{u}} (r ∈ Eqv). Consequently, we need a single job that reads a “slice” of owl:sameAs,

owl:equivalentProperty and owl:equivalentClass pairs in the mapper and produces

the set Cu = nbrs(u), ∀ u ∈ V in the reducer, e.g., see the initialization job of the example

in Figure 4.2 (the vertices with the blue color represent the neighbors of umin). It is worth

mentioning that when |nbrs(u)| = 1, u is equivalent only to itself, e.g., in the running exam-

ple of Figure 4.1, d4:Greece does not belong to an owl:sameAs relationship. Therefore, we

can immediately assign to this URI a unique identifier (i.e., E6 for “d4:Greece”).

In the example of Figure 4.2, we have nine URIs and suppose that there exists the fol-

lowing predefined order u1 < u2 < u3 < u4 < u5 < u6 < u7 < u8 < u9, thereby, for the

cluster of vertices u1 to u5, u1 it the umin while for the cluster u6 to u9, u6 is the umin. It

is worth noting that this example contains two cases having connected components with

exactly the same structure. However, due to the impact of ordering (which is described

in §4.4.2.1) the connected components of case 1 need one additional job in order to be

computed comparing to the connected components of case 2.

Concerning Hash-to-Min algorithm, it sends in its first job the entire cluster Cu to a

reducer umin, where umin is the smallest node in the cluster Cu according to a global rank-

ing (e.g., lexicographical order or any other pre-specified order). Moreover, it sends a key-

value pair (u′,umin), for each u′ ∈ (Cu \u) in order to “inform” the other nodes of the cluster

Cu about the smallest node inside the aforementioned cluster, i.e. umin. In the reducer, the

algorithm computes for each URI umin the union of the cluster Cumin for a specific umin, e.g.,

see job 1 in Figure 4.2 (the vertices having orange color represent the cluster of umin in each

job). When the cluster of the vertex with the minimum id contains the entire connected

component, while the cluster of other vertices in the component is a singleton having the

minimum vertex, the connected component has been computed. Afterwards, for all the

URIs u ∈ Cumin , we assign them a new signature [u] (i.e., they belong to the same class

of equivalence) and we store ∀u ∈ Cumin in the corresponding catalog (e.g., in EntEqCat)

an entry comprising of URI u and [u]. For instance, in the first Hash-to-Min job of case

1 in Figure 4.2, the computation of connected component containing the URIs u6 to u9
has finished, since u6 which is the umin in this connected component contains the entire

connected component while at the same time each of the other vertices of the connected

component (i.e., u7, u8 and u9) is a singleton having the minimum vertex (i.e., u6). After-

wards, an entry in the corresponding catalog is created for each of these URIs, i.e., each of
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these URIs is assigned the same signature since they belong to the same class of equiva-

lence.

On the contrary, for the connected components that have not finished after a specific

job, a new MapReduce job is performed (e.g., see the second Hash-to-Min job of case 1

in Figure 4.2 for the URIs u1 to u5), where we send the cluster again to the umin while we

“inform” the other nodes about the umin (which is possibly different). In the reducer, the

same process is performed again (i.e., we merge the clusters for umin).

Iterations and Communication Cost. The complexity, regarding the MapReduce iter-

ations needed by this algorithm, is O(logn), where n is the number of nodes in the largest

component of a path graph (i.e. a tree with only nodes of degree 2 or 1 like in the case of

URIs u1 to u5 in Figure 4.2) while its communication cost (i.e., number of key-value pairs

that we send to the reducers) is O(logn|V|+ |E|). The proofs about the time and space com-

plexity of this algorithm are given in [203].

The result of this algorithm is a set of clusters, where each cluster Cu contains all the

URIs of the same entity. For instance, in the running example of Figure 4.1, the cluster

of “Aristotle” entity is the following one: CAristotle = {ex:Aristotle,d2:Aristotle,d3:Aristotle},

while the cluster for “birthPlace” property contains the following four URIs, i.e., CbirthPlace =

{d1:birthPlace,d2:birthPlace,d3:birthPlace,d4:wasBornIn}. For all the URIs of the same

class of equivalence, it assigns to each of them the same unique identifier, e.g., the identi-

fier of all URIs referring to Aristotle is E1, while P1 is the identifier of all the URIs referring

to the property “birthPlace”.

Combination with Signature Based Algorithm. In many cases, the size of the classes

of equivalence is small for most of real world objects (as we shall see in Figure 4.7) while

there exists only a few number of connected components that need more MapReduce jobs

in order to be finished. To avoid performing MapReduce jobs for few number of large

connected components, we can use a threshold t and when the number of remaining URIs

is lower than t, we can send the remaining data to one machine and use the signature-

based algorithm described in §4.4.1. In §4.7 we introduce comparative results showing

the gain by combining the Hash-to-Min algorithm with the signature-based one.

4.4.2.1 Deciding the Global Ranking of Nodes For Connected Components - SameAs

Prefix Index

Rationale: For many connected components parallel algorithms [203], it is important to

decide a global ranking in order to “foresee” the centre of the connected component. For

instance, in Figure 4.2 we can observe that for two graphs with the same structure, in the

first case we need two Hash-to-Min jobs for computing the connected components of the

graph while in the second case we need one Hash-to-Min job (except for the initialisation

job). The difference is that in the second case we always select as umin the centre of each
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of the connected components, while in the first one we select as umin the URI having the

lowest degree. Generally, if there is available information about the URI occurring as the

center of a connected component (URI with the minimum radius), we can select as umin

this URI, however, such a pre-processing step can be expensive [130]. As it is stated in

[130], nodes with high degree usually have small radii and is efficient to be selected as the

minimum node, i.e. umin, of a connected component. In our case, instead of computing

the degree of each URI (that requires an additional MapReduce job and to store and read

the degree of each URI in each step) we can use the SameAsPrefixIndex. In Figure 4.3,

we can see an example of SameAsPrefixIndex for the owl:sameAs relationships which are

shown in the left side of the figure. The SameAsPrefixIndex is defined as follows:

SameAsPrefixIndex: It is essentially a function sp : SAP(D) → Z>0 where SAP(D)

is the set of prefixes of the URIs occurring in the owl:sameAs relationships in D. Gen-

erally, a prefix is the initial part of a URI, which usually indicates it’s provenance (e.g.,

http://dbpedia.org/). The SameAsPrefixIndex is defined as follows: SAP(D) = { pre(u) | u ∈

(u, owl : sameAs,u′),Di ∈ D} ∪ { pre(u) | u ∈ (u′, owl : sameAs,u),Di ∈ D}, andZ>0 is the set

of positive integers.

Therefore, this index stores the frequency of each prefix in all the owl:sameAs relation-

ships. For instance, in the example of Figure 4.3, we can observe that the prefix dbp exists

in five owl:sameAs relationships, thereby, we store this information in SameAsPrefixIndex.

Figure 4.3: Example of SameAsPrefixIndex

By exploiting this index, we use the following heuristic rules in order to foresee the

”center” of the connected component: (a) select always the URI whose prefix occurs in the

most owl:sameAs relationships (this information can be taken from SameAsPrefixIndex)

(b) if more than two URIs contain a prefix that occur in the same number of owl:sameAs

relationships, compare the URIs lexicographically. Therefore, by using this heuristic we

suppose that a URI with a prefix that occurs in many owl:sameAs relationships will have a

high degree.

Construction Method: For getting the prefixes that occur in owl:sameAs relationships and

their frequency, we read each owl:sameAspair once in order to get the prefixes and then we

count in how many owl:sameAs pairs this prefix exists. It needs a single job while its com-

munication cost is O(n), where n is the number of prefixes occurring in all the owl:sameAs
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relationships.

Note. We can also create such an index for owl:equivalentPropertyand owl:equivalentClass

relationships, however, for our implementation there was no need to create such indexes,

since the number of these relationships was small. For this reason, we are able to create

the equivalence catalogs, PropEqCat and ClEqCat, by using a single machine.

4.4.3 Creation of Semantics-Aware RDF Triples

Rationale: The objective of this step is to create the set of semantics-aware triples, which

were defined in §4.2.2. These triples will be exploited for constructing semantically en-

riched indexes. This step includes the replacement of each URI with its corresponding

identifier by exploiting the equivalence catalogs, i.e., EntEqCat, PropEqCat and ClEqCat

(i.e., see §4.2.2.1), and the conversion of each literal (i.e., see §4.2.2.2). Concerning the

output of this algorithm, it replaces each triple of a dataset Di with its corresponding

semantics-aware triple by performing the above replacements and conversions (i.e., see

§4.2.2.3). There exists three different types of triples according to the type of their object,

i.e., (a) triples with a literal as object; (b) triples with a class as object; and (c) triples with

an entity as object. As we will see, for the third type of objects, an additional MapReduce

job will be performed. The resulted real world triples (of each dataset) for our running

example, is shown in the left side of Figure 4.1.

Parallelization Overview. We use a partition of triples TR = {tr1, ..., trm}, where tr1 ∪

... ∪ trm = T′ (where T′ =
⋃

Di∈D triples(Di)). Each machine mi reads a subset of triples tri,

and a subset of EntEqCat, and in the reducer each triple is replaced with its corresponding

semantical-enriched triple. Since some triples need two steps to be transformed (i.e., it

depends on object type), two MapReduce jobs are needed. After the execution of the afore-

mentioned jobs, each machine will have a specific part of real world triples (rwti), i.e., the

real world triples can be derived as RWT = rwt1 ∪ ... ∪ rwtm.

Construction Method. Algorithm 2 shows the steps for producing the set of real world

triples. First, we read in parallel a set of triples and the EntEqCat, since their size is huge.

On the contrary, since the number of properties and classes is low, we keep in memory the

other catalogs, i.e., PropEqCat and ClEqCat, which contain the identifiers of each property

and class, respectively. We check whether the input is a triple or an entry of the EntEqCat

(see line 3), and then we check the object type. In the first case (see lines 4–5), i.e., the ob-

ject is a literal, we replace the property with its identifier (by using PropEqCat), we convert

each literal to lower case, and we remove its language type and its datatype (when such

information is included). Afterwards, we put as a key the subject of the triple and as value

the rest part of the triple along with the dataset ID (for preserving the provenance). For ex-

ample, for the triple 〈ex:Aristotle,d1:birthYear,384 BC∧∧xsd:Year〉 of dataset D1 (see Figure

4.1), we replace d1:birthYear with P1, we convert the literal into lower case, we remove its
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ALGORITHM 2: Creation of Real World Triples.

Input: All triples and equivalence catalogs, EntEqCat, PropEqCat, and ClEqCat

Output: The set of Real World Triples

1 function Mapper (input = tri ∪ EntEqCat )

2 forall inp ∈ input do

3 if inp = 〈s, p, o〉,Di ∈ tri then

4 if o ∈ L then

5 emit (s, {[p]pr, oconv,Di}) ; // PropEqCat used and literal

converted

6 else if o ∈ C then

7 emit (s, {[p]pr, [o]cl,Di}) ; // PropEqCat and ClEqCat used

8 else if o ∈ E then

9 emit (s, {[p]pr, o,Di}) ; // PropEqCat used

10 else if inp = (u, [u]e) ∈ EntEqCat then

11 emit (u, [u]e)
12

13 function SubjectReducer (URI key, values = list({[p]pr, o,Di}), [key]e)
14 forall v ∈ values do

15 if (o < E) then

16 t′ ← 〈[key]e, [p]pr, o〉
17 store (t′,Di) ; // All conversions finished. t′ ∈ RWT(Di)
18 else

19 emit (o, {[key]e, [p]pr,Di}) ; // Object Replacement Needed

20 emit(key, [key]e)
21

22 function ObjectReducer (URI key, values = list({s′, p′,Di}), [key]e)
23 forall v ∈ values do

24 t′ ← 〈s′, p′, [key]e〉
25 store (t′,Di) ; // All conversions finished. t′ ∈ RWT(Di)

datatype (e.g., “384 BC”∧∧xsd:Year→ “384 bc”), and finally we emit a tuple (ex:Aristotle,

{P2,384 bc,D1}). In the second case (see lines 6–7), i.e., the object is an RDF class, we use

PropEqCat and ClEqCat for replacing the property and the object with their correspond-

ing identifiers, while in the third case (see lines 8–9), we replace only the property, and

we emit a key-value pair, having as a key the subject of the triple, and as a value the rest

part of the triple. For instance, for the triple 〈d2:Aristotle,rdf:type,d2:Gre Philosopher〉

we will emit the following key-value pair: (d2:Aristotle, {P5,C2,D2}), while for the triple

〈ex:Aristotle,d1:influences,ex:Marx〉, the following key-value pair will be sent to the re-

ducers: (ex:Aristotle, {P3,ex:Marx,D1}). On the contrary, when the input is an entry of

EntEqCat, we put as a key the URI, and as a value its corresponding class of equivalence,

e.g., we create a tuple (ex:Aristotle, E1).
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In a reduce function (see SubjectReducer in Algorithm 2), we just replace each URI oc-

curring as a subject with its identifier. For instance, the tuple (ex:Aristotle, E1) and all the

tuples having as subject ex:Aristotle, e.g., (ex:Aristotle, {P2,384 bc,D1}), will be sent to the

same reducer, therefore we can replace ex:Aristotle with E1, e.g., (E1,P2,384 bc,D1). After

replacing the URIs of the subjects with their corresponding identifier, for the triples con-

taining literals or classes as objects, we can store their corresponding real world triple (and

its provenance), i.e., 〈E1,P1,384 bc〉,D1, since we have finished with all the conversions

(see lines 15–17).

On the contrary, for the triples containing objects that belong to entities, we should

also replace these URIs with their class of equivalence (see lines 18–19). For instance, after

the execution of the first MapReduce job, the triple 〈ex:Aristotle,d1:influences,ex:Marx〉

has been transformed into 〈E1,P3,ex:Marx〉; however, we should also replace the URI

ex:Marx with its corresponding identifier. In particular, we put as a key the object and

as a value the rest part of the triple and the dataset ID, e.g., (ex:Marx, {E1,P3, D1}), while

we create again a tuple containing each URI and its corresponding identifier, e.g., (ex:Marx,

E7) (see lines 19–20 of Algorithm 2). By using an other reduce function (see ObjectReducer

in Algorithm 2), we replace the URIs occurring as objects with their identifier, and we store

the real world triple (and its provenance), i.e., 〈E1,P3,E7〉,D1.

Iterations and Communication Cost. In general, two MapReduce jobs are needed,

where in the first job we transfer all the triples and all the entries of EntEqCat from the map-

pers to the reducers, i.e., communication cost isO(|T′|+|EntEqCat|) (T′ =
⋃

Di∈D triples(Di)),

while in the second job, we transfer only the triples containing an entity as an object (and

the EntEqCat), i.e., communication cost (i.e., number of key-value pairs that we send to

the reducers) isO(|T′′|+ |EntEqCat|), where T′′ = {〈s, p, o〉 | 〈s, p, o〉 ∈ T′, o ∈ E} (all the triples

having an entity as an object).

4.5 The Set of Semantics-Aware Indexes I

Here, we define the five semantically enriched indexes that we construct, i.e., I = {Entity

Index, Property Index, Class Index, Entity-Triples Index, Literals Index}.

• Entity Index: it is a function ei : RWE → P(D), where for a [u] ∈ EID, ei([u]) =

dsetsEnt∼(u,D), i.e., for each different real world entity, this index stores all the datasets

where it occurs (see the Entity Index in Figure 4.1).

• Property Index: it is a function pi : RWP → P(D),where for a [p] ∈ RWP, pi([p]) =

dsetsProp∼(p,D), i.e., it stores all the datasets where each different real world property

occurs (see the Property Index in Figure 4.1).

• Class Index: it is a function ci : RWC → P(D), where for a [c] ∈ RWC, ci([c]) =

dsetsClass∼(c,D), i.e., it stores the datasets where a real world class occurs (see the
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Class Index in Figure 4.1).

• Literals Index: it is a function li : LIT → P(D), where for a l ∈ , li(l) = dsetsLit(l,D),

i.e., it stores all the datasets where a converted literal occurs (see the Literals Index in

Figure 4.1).

• Entity-Triples Index: it is a function eti : EID → list(RWP → list((RWE∪ RWC ∪

LIT) → P(D))), i.e., for a specific t = 〈s, p, o〉 ∈ triples(Di),Di ∈ B, eti([s], [p], [o]) =

dsetsTr∼(t,D). Therefore, it stores all the datasets where a real world triple occurs

(see the Entity-Triples Index in Figure 4.1).

For creating all these indexes, we will use the desired information from the seman-

tically enriched triples (i.e., real world triples). At first, we introduce the Entity-Triples

Index, and afterwards we show how to construct indexes for specific sets, i.e., literals, enti-

ties, classes and properties. In general, with Lef t(r) we will denote the set of elements that

occur in the left side of a binary relation. Finally, remind that the sets of EID, PIDand CID

denote the identifiers of real world entities, properties and classes, respectively.

Candidate Data Structure for each Index. We can identify two basic candidate data

structures for such indexes: (1) a bit array of length |D| that indicates the datasets to which

each element belongs (each position in the bit string corresponds to a specific dataset), or

(2) an IR-like inverted index [264], in which for each element we store the ID of the datasets

(a distinct arbitrary number). A bitmap index keeps for each element e, a bit array of length

|D|, therefore its total size is |e| ∗ |D| bits. An inverted index for each element of e keeps a

posting list of dataset identifiers. If ap is the average size of the posting lists, then the total

size is |e| ∗ ap ∗ log |D| bits (where log |D| corresponds to the required bits for encoding |D|

distinct identifiers). If we solve the inequality Bitmap ≤ InvertedIndex, we get that the size

of bitmap is smaller than the size of inverted index when ap > |D|
log |D|

.

Note. Since the average size of posting lists, for the real datasets that we use in the

experiments is quite small (see [165,168]), we decided to use an inverted index containing

posting lists of dataset identifiers (instead of a bit array).

Single Machine versus a Cluster of Machines. We should note that in this disserta-

tion, we show how to construct the semantics-aware indexes by using parallel MapReduce

methods. In our past work, we have proposed methods for creating the indexes by using

a single computer (for more details see [165]). However, we were unable to create the in-

dexes for a large number of entities, since it was a prerequisite a) to load in memory the

EntEqCat, and b) to send millions of ASK queries to a SPARQL endpoint. Indicatively, by

using these methods, we needed approximately 7 hours for constructing a single index

(i.e., for entities) for 172 million URIs and 658 million triples, whereas as we will see later

in this chapter, by using the proposed parallel methods and 96 machines, we can create all

the five indexes approximately in 81.5 minutes for 412 million URIs and 2 billion triples.
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4.5.1 Constructing the Entity-Triples Index

Rationale. We construct this index for collecting all the available real world triples (and

their provenance) for any real world entity (i.e., see §4.3.1).

Parallelization Overview. We will use a partition of real world triples RWTR = {rwt1, ..., rwtm},

where the set of real world triples can be derived as RWT = rwt1 ∪ ... ∪ rwtm. Each ma-

chine mi reads a subset of real world triples rwti and each reducer collects all the real world

triples for a subset of entities E′. After the execution of the aforementioned jobs, each ma-

chine will have a specific part of this index (etii), i.e., the entity-triples index can be derived

as eti = eti1 ∪ ... ∪ etim.

Construction Method. For each real world entity we create a multi-level index. This

index stores in the first level an entity identifier (i.e., belonging in EID) and a pointer to a

list of its (real world) properties (a set of PIDs), whereas in the second level each property

points to a list of values. Finally, in the third level, it stores for a specific entity-property

pair, all its values and the datasets (i.e., a posting list of dataset identifiers) where each

different triple (entity-property-value) occurs. In the left side of Figure 4.1, we can see the

Entity-Triples index of our running example. We selected to store together all the values of

a property for a given entity, for enabling the comparison of the values of each property,

e.g., in Figure 4.1, we can see that two datasets support that the birth date of “Socrates” is

“470 bc” and one that is “471 bc”. Such a design can be useful for data fusion algorithms,

i.e., for comparing the conflicting values of a given subject and predicate (e.g., the birth

date of a person) for deciding which value is the correct one [80].

It is worth noting that for finding fast all the available information for a specific entity,

this index stores together all the triples for a specific entity, either if that entity occurs in

a triple as a subject, or as an object, which means that some triples will be stored twice in

the index, i.e., those having entities as objects. Moreover, we also store the position of an

entity in the triple. Specifically, when an entity occurs in a triple as an object (see the entry

for “Stagira” in Entity-Triples index of Figure 4.1), we add an ∗ in the property ID of such a

real world triple. Consequently, we define this set of property IDs as PID∗. It is essential to

store such triples twice, for being able to answer queries like “Give me the all the triples for

Aristotle” (i.e., for retrieving also triples where the entity “Aristotle” occurs as an object).

We use eti(e) for denoting the entry of a specific entity e, e.g., in Figure 4.1, eti(E1) is

the entry for “Aristotle”, we use eti(e.p) for denoting the sub-entry containing all the values

for a specific entity-property pair, e.g., eti(E1.P3), is the sub-entry for the combination

“Aristotle”, “influences” while eti(e.p.o) denotes the sub-entry that contain all the dataset

for a specific combination of an entity-property-value, e.g., eti(E1.P3.E3) is the sub-entry

for the combination“Aristotle”, “influences”, “Kant”.

The Steps of the Algorithm. Algorithm 3 describes the steps for producing this index. In

the map phase, we read a set of real world triples and we emit a key-value pair consisting
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ALGORITHM 3: Construction of Entity-Triples Index.

Input: Real World Triples

Output: Entity-Triples Index

1 function Entity-Triples Index-Mapper (input = rwti)
2 forall 〈s, p, o〉,Di ∈ rwti do

3 if s ∈ EID then

4 emit (s, {p, o,Di})
5 if o ∈ EID then

6 emit (o, {p∗, s,Di})
7

8 function Entity-Triples Index-Reducer (Entity e, values = list({p, k,Di})

9 eti(e)→ ∅
10 forall v = p, k,Di ∈ values do

11 if (p < Lef t(eti(e))) then

12 eti(e)→ eti(e) ∪ {p, {{k, {Di}}}}

13 else

14 if (k ∈ Lef t(eti(e.p))) then

15 eti(e.p.k)→ eti(e.p.k) ∪ {Di}

16 else

17 eti(e.p)→ eti(e.p) ∪ {k, {Di}}

18 store eti(e)

of the entity occurring as subject and the rest part of the triple (with its provenance) as

value (see lines 3–4). For example, for the real world triple 〈E1,P2,384 bc〉, D1 (which corre-

sponds to “Aristotle”, “birth year”, “384 bc”), it will emit a key-value pair having as key E1

and as value {P2,384 bc, D1}. On the contrary, for the triples having entities as objects (and

not literals or classes), we create two key-value pairs, one having as key the subject and

one having as key the object (see lines 3–6). Moreover, for the second key-value pair (lines

5–6), we add also a “*” character in the right side of the property ID, for denoting that the

entity occurs in the triple as an object. For instance, for the real world triple 〈E1,P3,E7〉,

D1 (which corresponds to “Aristotle”, “influences”, “Marx”) two key-value pairs will be cre-

ated, i.e., one having as key the subject, which refers to “Aristotle” (E1,{P3,E7,D1}), and one

having as key the object, that refers to “Marx” (E7,{P3*,E1,D1}).

In the reduce phase (of Algorithm 3), we collect all the real world triples for a specific

entity e, i.e., we construct the whole entry of e in the Entity-Triples index. We iterate over

all the values, where each value contains a property p, the corresponding value k for that

property and the dataset where the aforementioned information occurs. We first check

(see line 11) whether p exists in the sub-entries of entity e. When it is false (see line 12),

we create a sub-entry, i.e., eti(e.p.k), and we add the dataset where this triple, i.e., e.p.k,

occurs. For instance, suppose that we first read the {P3,E3,D1} for the entity E1. In such
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a case, we just create an entry where eti(E1.P3.E3) = {D1}. When the property p exists in

the sub-entry of e (see lines 13–17), we check whether the value k also exists in the sub-

entry of eti(e.p). In such a case (see lines 14–15), we just update the posting list of eti(e.p.k).

Suppose that for the entity E1, we read the following value: {P3,E3,D2}. Since the entry

E1.P3.E3 already exists, we just update its posting list, i.e., eti(E1.P3.E3) = {D1,D2}. Oth-

erwise, we create a new sub-entry for eti(e.p), where we add the value k and its provenance

(see lines 16–17). For instance, if we read the value {P3,E7,D2}, we have already created

an entry for E1.P3; however it does not contain E7. For this reason, we create a new entry

for storing also this information, i.e., eti(E1.P3)={{E3,{D1,D2}}, {E7,{D2}}}. Finally, we can

store the entry of a specific entity on disk (see line 18).

Iterations and Communication Cost. A single MapReduce job is needed, while all the

real world triples are passed from the mappers to the reducers at least once, whereas the

set of triples RWT′ = {〈s, p, o〉|〈s, p, o〉 ∈ RWT and o ∈ EID}, which contains an entity in the

object position, is transferred twice. Consequently, the communication cost (i.e., number

of key-value pairs that we send to the reducers) is O(|RWT| + |RWT′|).

4.5.2 Constructing Semantically Enriched Indexes for Entities, Properties, Classes

and Literals

Rationale. We introduce the indexes for entities, properties, classes and literals. By using

these indexes, the target is to make it feasible to find all the datasets where a specific entity,

property, class and literal occurs (i.e., see §4.3.1).

Parallelization Overview. Each machine mi reads a subset of real world triples rwti and

each reducer creates the index of a subset of elements. In the end, each machine will have

a specific part of an inverted index (indF ∈ I), i.e., any inverted index indF can be derived

as indF = ind1 ∪ ... ∪ indm.

Construction Method. For constructing the index of each different set of elements (en-

tities, properties, etc.), one can use Algorithm 4. In particular, we read all the real world

triples and we select the part(s) of the triple that we are interested in (see lines 3–16), e.g.,

for constructing the class index, we need only the objects referring to a real world class.

In any case, we emit a key-value pair, having as key an element (e.g., a literal, a real world

entity) and as value the dataset where the triple, containing this element, occurs. In the

reducer, for any (inverted) index, we just create a posting list with dataset identifiers for a

specific element. In particular, we read a set of dataset identifiers, and we just update the

posting list of each element (see line 21). Finally, we store in the corresponding index the

element and its posting list (see line 22).

Iterations and Communication Cost. For each index, one MapReduce job is needed;

however, it is worth mentioning that all the five indexes (or any subset of them) can be

constructed simultaneously by using one MapReduce job, since the input in any case is
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the real world triples. Regarding the communication cost (i.e., number of key-value pairs

that we send to the reducers), it depends on the inverted index that we construct each

time. In particular, for the Entity Index, we need to transfer each subject or object refer-

ring to a real world entity, i.e., we define the sum of these real world entities as allRWE =

|{t ∈ rwti,Di ∈ D | t = 〈s, p, o〉, s ∈ EID}| + |{t ∈ rwti,Di ∈ D | t = 〈s, p, o〉, o ∈ RWE}|,

and the communication cost is O(allRWE). The notion is similar for the rest three in-

dexes. Concerning Property Index , i.e., we define the sum of real world properties as

allRWP = |{t ∈ rwti,Di ∈ D | t = 〈s, p, o〉, p ∈ PID}|, whereas the corresponding com-

munication cost is O(allRWP). As regards Literals Index, we define the sum of literals

as allLIT = |{t ∈ rwti,Di ∈ D | t = 〈s, p, o〉, o ∈ LIT}| and the communication cost as

O(allLIT), whereas for the Class Index, we define the sum of real world classes as allRWC =

|{t ∈ rwti,Di ∈ D | t = 〈s, p, o〉, o ∈ CID}|, and the corresponding communication cost as

O(allRWC).

A problem derived by the above analysis, is that some real world entities, classes, prop-

erties and literals of the same Dataset Di can be transferred to the reducers several times,

which results to multiple key-value pairs that are exactly the same. One possible solution

for decreasing the communication cost is a) to keep in the cache memory of each mapper

the last n key-value pairs, that were previously transferred, and b) to send a key-value pair

in a reducer only if the mentioned key-value pair cannot be found in cache memory.

4.5.3 Additional Indexes. Namespace Index

Except for the set of indexes I, we also construct an inverted index for the prefixes, i.e.,

namespaces, which is defined as:

PrefixIndex: It is a function pi : Pre(D) →P(D) where Pre(D) is the set of prefixes of

the datasets inD, i.e. Pre(D) = { pre(u) | u ∈ Ui,Di ∈ D} (pre(u) is the prefix of URI u).

Generally, most data providers publish their data using prefixes that indicate their com-

pany or university (e.g., DBpedia URIs starts with prefix http://dbpedia.org), whereas the

prefix in a schema element (a property or a class) indicates which ontology is used. There-

fore, a PrefixIndex can be important for finding all the datasets that use either entities or

schema elements from a specific dataset, ontology, etc. Moreover, it can also be exploited

for greatly reduce the cost of finding common URIs, as it is described in [165].

Construction Method: It can be easily constructed by reading the URIs of each dataset

once, as it is explained in [165, 171], by using either a single or a cluster of machines.

4.6 Comparison of Parallel Algorithms

Table 4.6 shows the number of iterations and the communication cost for each paral-

lel algorithm. Regarding the number of iterations, the execution of Hash-to-Min algo-
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ALGORITHM 4: Creation of a Semantically-Enriched Inverted Index indF for any

set of elements.
Input: Real World Triples

Output: An inverted index for a set of specific elements

1 function Inverted Index-Mapper (input = rwti)
2 forall 〈s, p, o〉,Di ∈ rwti do

3 /*For constructing the Entity Index, include lines 4-7 */

4 if s ∈ EID then

5 emit (s,Di)
6 if o ∈ EID then

7 emit (o,Di)
8 /*For constructing the Property Index, include lines 9-10*/

9 if p ∈ PID then

10 emit (p,Di)
11 /*For constructing the Class Index, include lines 12-13*/

12 if o ∈ CID then

13 emit (o,Di)
14 /*For constructing the Literals Index, include lines 15-16*/

15 if o ∈ LIT then

16 emit (o,Di)
17

18 function Inverted Index-Reducer (Element t, values = {Di,Dj, ...,Dn})

19 indF(t)← ∅
20 forall Di ∈ values do

21 indF(t)← indF(t) ∪ {Di}

22 store indF(t)

Table 4.6: Comparison of Parallel algorithms.
Algorithm Iterations

Number
Communication Cost Explanation

Hash-to-Min
(Closure)

O(logn) O(logn|V| + |E|) n: number of nodes in the largest compo-
nent of a path graph, V: nodes, E: edges

Creation of
Real World
Triples

2 1st iteration: O(|T′| +
|EntEqCat|), 2nd Iteration

O(|T′′| + |EntEqCat|)

T′: all the triples, T′′: all the triples having
entities as objects, EntEqCat: entity equiv-

alence catalog

Creation of
Entity-based
Triples Index

1 O(|RWT| + |RWT′|) RWT: real world triples, RWT′: real world
triples with entities as objects

Creation of
Entity Index

1 O(allRWE) allRWE: all the real world entities

Creation
of Property
Index

1 O(allRWP) allRWP: all the real world properties

Creation of
Class Index

1 O(allRWC) allRWC: all the real world classes

Creation of
Literals Index

1 O(allLIT) allLIT: all the literals
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rithm [203] can result to the most iterations, comparing to any other step, especially when

we have large components containing path graphs. On the contrary, for the rest steps we

need a single MapReduce job, except for the Creation of Real World Triples, where we need

two iterations. Regarding the communication cost, for the Hash-to-Min algorithm, the

communication cost can be increased if we have a large component of path graphs, and of

course if we select as umin which is not located near to the centre of the connected compo-

nent. However, one solution is to exploit the heuristics which we proposed in §4.4.2 and in

§4.4.2.1. Concerning the other steps, the most expensive step is the creation of real world

triples, since we need to read each triple at least once (and at most two times), whereas we

have to transfer to the reducers the EntEqCat. On the contrary, for the remaining indexes,

we need to transfer either some parts of the triples (e.g., properties), or all the real world

triples (for the Entity-based Triples Index). However, in the previous cases, we do not read

and we do not transfer to the reducers the EntEqCat. In the section about experimental

evaluation (in §4.7), we will see that the most time-consuming step is to create the set of

real world triples, and we will see whether our optimizations can reduce the number of

iterations and the communication cost of Hash-to-Min algorithm.

4.7 Experimental Evaluation - Efficiency

Here, we report the results concerning the computation of the closure of equivalence re-

lationships and the construction of indexes, for quantifying the speedup obtained by the

introduced algorithms and methods for over 2 billion triples and 400 LOD Cloud datasets.

4.7.1 Datasets Used.

In Table 4.7, we can see some basic metadata for 400 real datasets which are used in

our experiments (belonging in 9 domains), i.e., it shows the number of datasets, triples,

URIs, literals, unique subjects and unique objects for each domain (in descending or-

der with respect to their size in triples), which were manually derived (i.e., for this set of

400 datasets, an RDF dump was provided). In particular, we have collected over 2 billion

triples, 412 million URIs and 429 million literals manually through datahub.io, and 44 mil-

lion of equivalence relationships collected from these 400 datasets and from the LinkLion

webpage [179], i.e., we did not use any instance/schema matching tool. Moreover, the

number of unique subjects (by taking into account all the triples) is 308 million, while the

corresponding number for the unique objects is 691 million. Most datasets belong to the

social network domain; however, most triples occur in cross-domain datasets (i.e., 48%

of triples), while a large percentage of triples belong to datasets from publication domain

(i.e., 33% of triples). Concerning entities and literals, again most of them occur in datasets

from cross-domain and publications (i.e., 79.2% of entities and 86.5% of literals). Finally,
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Table 4.7: Metadata of datasets which are used in the experiments.
Domain |D| |Triples| |Entities| |Literals| |Unique Sub.| |Unique Obj.|

Cross-Domain (CD) 24 971,725,722 199,359,729 216,057,389 125,753,736 308,124,541

Publications (PUB) 94 666,580,552 127,624,700 155,052,015 120,234,530 271,847,700

Geographical (GEO) 15 134,972,105 40,185,923 25,572,791 20,087,371 47,182,434

Media (MED) 8 74,382,633 16,480,681 9,447,048 14,635,734 20,268,515

Life Sciences (LF) 18 74,304,529 10,050,139 10,844,398 9,464,532 18,059,307

Government (GOV) 45 59,659,817 6,657,014 7,467,560 10,978,458 14,848,668

Linguistics (LIN) 85 20,211,506 3,825,012 2,808,717 2,946,076 6,381,618

User Content (UC) 14 16,617,837 7,829,599 901,847 3,904,463 8,708,650

Social Networks (SN) 97 3,317,666 762,323 853,416 506,525 1,512,842

All 400 2,021,772,367 412,775,120 429,005,181 308,419,818 691,140,591

the size of all the triples on disk is 251 GB, while the size of equivalence relationships is

3.45 GB. In LODsyndesis website (http://www.ics.forth.gr/isl/LODsyndesis) one can

find the data which were used for performing the experiments, the code and guidelines

for reproducing the results, and metadata for each of the 400 datasets that were used in

the experiments.

4.7.2 Hardware & Details about the Implementation.

In our implementation, we used a cluster in okeanos cloud computing service [16], con-

taining 12 machines, each of them having 8 cores, 8 GB main memory and 60 GB disk

space (in total 96 cores, 96 GB main memory and 720 GB disk space). By using these 12

machines, we created 96 different virtual machines, each one having 1 core and 1 GB mem-

ory.

We used the previously mentioned set of 400 RDF datasets and the set of 44 million

equivalence relationships. First, we used as input this set of equivalence relationships, and

by using a cluster of machines and the algorithms described in this chapter, we computed

their transitive and symmetric closure for inferring more relationships (i.e., we inferred

over 73 million new owl:sameAs pairs, as we shall see in §5.8.2).

However note that even a single incorrect relationship can produce several erroneous

inferred ones [171], e.g., suppose that there exists an erroneous relationship, such as the

following one: 〈ex:Aristotle,owl:sameAs, d2:Socrates〉. Due to closure, we would infer that

every URI referring to “Aristotle” is equivalent to any URI of “Socrates”. For tackling this

issue, we checked the quality of the inferred relationships and we removed the erroneous

ones in a semi-manually way. In particular, we supposed that an existing equivalence re-

lationship is probably incorrect, if we inferred through this relationship that two or more

URIs from the same dataset are equivalent. Indeed, we identified such cases programmat-

ically (i.e., we found all the classes of equivalence that contain two or more URIs from the

same dataset), we removed the incorrect relationships manually, and then we created the
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Figure 4.4: EntEqCatCatalog Construction time

final versions of equivalence catalogs. Afterwards, we used as input the triples of these

400 datasets and the equivalence catalogs for creating the semantics-aware triples and the

set of indexes I, whose construction algorithms were described in this chapter. Below, we

provide some results concerning efficiency, whereas in the next Chapters, we will show

several statistics, connectivity analytics and services that were derived by exploiting the

constructed indexes.

4.7.3 Efficiency of Cross-Dataset Identity Reasoning

4.7.3.1 Efficiency in a Single Machine

Here we report measurements that quantify the speedup obtained by the introduced tech-

niques for computing the transitive and symmetric closure of equivalence relationships by

using a single machine having an i5 core, 8 GB main memory and 1TB disk space. In partic-

ular, we compare the signature-based algorithm (SBA) versus Tarjan’s connected compo-

nents (CC) algorithm [233] that uses Depth-First Search (DFS) and was described in §4.4.1.

We performed experiments for 3 to 9 million randomly selected owl:sameAs relationships

and the results are shown in Figure 4.4. As one can see, the experiments confirmed our

expectations since the signature-based algorithm is much faster than the combination of

the creation of graph and CC algorithm while it is even faster than the CC algorithm as the

number of owl:sameAs pairs increases. Regarding the space, for 10 million or more pairs

it was infeasible to create and load the graph due to memory limitations. For this reason

we failed to run the CC algorithm, however, one can use techniques like those presented

in [31] to overcome this limitation. The signature-based algorithm needed only 45 seconds

to compute the closure of 13 million of owl:sameAs pairs.
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Figure 4.5:

Number of Connected Components having

computed after the execution of each

MapReduce Job per Different Order

Figure 4.6:

Total Execution time (in seconds) after the

execution of each MapReduce Job per

Algorithm Variation

Figure 4.7: Number of Connected Components per Real world Object

4.7.3.2 Efficiency in a Cluster of Machines

Here, we report measurements performed by using the cluster in okeanos cloud comput-

ing service [16], which was described previously, by using Hash-to-Min algorithm (see

§4.4.2). We should note that we evaluate the performance of the algorithm by using also

two additional indexes for deciding the order, i.e., a PrefixIndexwhich contains 197,826

prefixes (and their provenance) and a SameAsPrefixIndex that includes 3,895 prefixes (and

their frequency). Since both indexes are small in size, we are able to load these indexes in

memory.

We compare the execution time of the creation EntEqCat and the number of connected

components computed after each job by selecting different global rankings of the URIs: a)

a lexicographical order b) an order by the frequency of each prefix in SameAsPrefixIndex

and c) an order by the frequency of each prefix in PrefixIndex (where we take into account

all the URIs and not only the URIs being part of owl:sameAs relationships as in the case of
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SameAsPrefixIndex ).

In Figure 4.5, we show the number of connected components that were computed after

each MapReduce job by using different order for “foreseeing” the center of the connected

component. By using SameAsPrefixIndex, Hash-to-Min algorithm was able to compute

in the first job correctly approximately 22 millions of connected components while with

the two other orders, it managed to compute approximately 19.5 millions of connected

components. It is worth noting that the size of approximately 19 million connected com-

ponents is two, i.e., there exists exactly two URIs for each of these 19 million real world

objects. For instance, in the example of Figure 4.1, for the entity Athens there exists two

URIs, therefore the size of the connected component of this entity is two, while for the en-

tity Aristotle there exists three URIs, thereby, its connected component size its three. The

computation of connected components having size two requires only one job (except for

the initialisation job) regardless of the order that we use. However, the proposed order

seems very effective comparing to the other two approaches, especially for the connected

components containing three or more URIs.

After the second job, both algorithm variations that use the order by the frequency

of each prefix in either SameAsPrefixIndex or PrefixIndex had computed approximately

23.5 million of connected components while the variation with the lexicographical order

less than 23 million. In the remaining four jobs, there were a few number of connected

components left, since most real world objects belong to a connected component having

either size two or three as it can be observed in Figure 4.7.

Concerning the execution time, as we can see in Figure 4.6, the variations of the algo-

rithm using the SameAsPrefixIndex are faster comparing to the other ones. This is justi-

fied since more connected components had been finished after the execution of each job.

The best execution time achieved by combining the algorithm with the Signature-Based

one, where the computation of connected components finished in less than 10 minutes in

four MapReduce jobs. More specifically, when less than 1 million of URIs left, we used the

Signature-Based for constructing the classes of equivalence for these URIs, instead of con-

tinuing to perform additional Map-Reduce jobs. Finally, the remaining variations finished

in 6 jobs and needed 10-13 minutes.

4.7.4 Efficiency of Constructing the set of Semantics-aware Indexes I.

Here, we report measurements that quantify the speedup obtained by the proposed meth-

ods for constructing the indexes. First, we report the execution time for computing the clo-

sure and for constructing the real world (RW) triples and the semantics-aware indexes. In

Table 4.8, we can see the execution time for constructing the equivalence catalogs, the real

world triples and the indexes by using 96 machines, the size of each index on disk and the

number of its’ index entries.
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Table 4.8: Construction time and size of catalogs and indexes.
Index/Catalog Execution Time (96 Machines) Size on Disk Entries

Equivalence Catalogs 9.35 min 24 GB 413,567,083

Real World Triples 33.5 min 82.4 GB 1,826,224,504

Entity-Triples Index 17 min 70.3 GB 2,498,223,345

Entity Index 13.2 min 6 GB 368,295,245

Properties Index 5 sec 2.5 MB 247,713

Class Index 8 sec 6 MB 544,250

Literals Index 8.5 min 16 GB 379,043,131

All 81.55 min 198.7 GB 5,486,145,271

Table 4.9: Exact creation time by using different number of virtual machines (VMs)
Index 12 VMs 24 VMs 48 VMs 96 VMs

Equivalence Catalogs 43 min 23.7 min 13.4 min 9.3 min

Real World Triples 190 min 98 min 56.7 min 33.5 min
Entity-Triples Index 85 min 47 min 27 min 17 min

Entity Index 79 min 41 min 22 min 13.2 min

Literals Index 49 min 25 min 13.5 min 8.5 min

All 446 min 234.7 min 132.6 min 81.5 min

For constructing the equivalence catalogs, the real world triples and the Entity-Triples

Index, 60 minutes are needed by using 96 machines, while we need additionally 21 min-

utes for constructing the other four indexes (for entities, literals, classes and properties),

i.e., the execution time for performing all the jobs (in total 10 MapReduce jobs) is 81.55

minutes. The most time-consuming job is the creation of real world triples, where we

replace all the URIs with an identifier, and we transform the literals. In particular, 33.5

minutes are needed for this job by using 96 machines, whereas the second most time-

consuming job was to create the Entity-Triples Index, which has the most entries compar-

ing to any other index.

Moreover, we managed to achieve scalability as it can be seen in Figure 4.8 and in Table

4.9. Specifically, we report the execution time for constructing the catalogs and indexes by

using 12, 24, 48 and 96 machines. As we can observe, each time that we double the number

of machines, the execution time is almost reduced in half in many cases, especially in the

construction of real world triples. Generally, by using 96 (virtual) machines instead of 12

machines, we identified from 4.62× to 6× speedup.

We didn’t manage to achieve the ideal speedup (i.e., 8×) due to the following reasons.

Concerning the computation of cross-dataset identity closure, we did not achieve the max-

imum speedup, predominantly due to the existence of some large connected components.

Concerning all the indexes, the key problem was that we used 96 virtual machines instead

of real ones. Therefore, we expect that by using 96 real machines, the execution time can

be further decreased.
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Figure 4.8: Creation time of indexes and catalogs for different number of machines.

4.7.5 Contents of Indexes

For storing the real world triples and the equivalence catalogs, which are the input for

creating the indexes, we needed 106.4 GB. In particular, we created 1.82 billion real world

triples and we needed 82.4 GB for storing them (and their provenance). Concerning EntEqCat

it contains one entry for each unique URI and we needed 24 GB for saving it on disk. On

the contrary, the size of PropEqCat is only 13.6 MB and of ClEqCat is 40.9 MB, since they

contain only 247 thousand and 544 thousand entries, respectively.

The size of all the indexes on disk are 92.3 GB, where the size of Entity-Triples index,

which contains all the triples (occurring either as a subject or as an object) for each unique

entity is 70.3 GB. It is worth mentioning that approximately 672 million triples contain an

entity as object, therefore these triples can be found twice in the Entity-Triples index. For

this reason, this index contains approximately 2.5 billion triples, i.e., approximately 6.7

triples per entity. Concerning Entity Index, it contains 339 million entries (i.e., unique real

world entities), and its size is 6 GB, which is less smaller than the size of EntEqCat since we

have replaced each URI with a unique identifier, which is usually quite smaller than a URI

(e.g., E1 instead of “http://www.dbpedia.org/reource/Aristotle”). Regarding Literals Index,

it contains 379 million entries, however since some literals are quite large, the size of the

index on disk is 16 GB. Finally, the rest two indexes, i.e., Property Index and Class Index are

quite small.
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4.8 Epilogue

In this chapter, we introduced algorithms for computing the cross-dataset identity rea-

soning among different datasets, i.e., the transitive and symmetric closure of equivalence

relationships, either by using a single machine or a cluster of machines. Moreover, we

introduced methods for creating in parallel semantics-aware indexes for different sets of

elements, i.e., entities, triples, classes, properties and literals. By using these indexes, one

can find and compare all the triples of a given entity from large number of datasets.

As regards the experiments, we showed that with the proposed algorithm for cross-

dataset identity reasoning, it takes only 45 seconds to compute the transitive and symmet-

ric closure for 13 million owl:sameAs relationships. However, since this algorithm is not

highly scalable, by using the parallel algorithm that we proposed, we were able to compute

the closure for 44 millions of owl:sameAs relationships in less than 10 minutes by using 96

virtual machines. Moreover, we managed to construct all the indexes for 2 billions of RDF

triples from 400 real datasets in 81 minutes. Finally, we performed experiments by using

different number of machines, which showed that the algorithms for performing cross-

dataset identity reasoning and for constructing the semantics-aware indexes are scalable.

In the next chapters, we will exploit all these indexes and equivalence catalogs for per-

forming metrics among any subset of datasets and for creating several services, which are

related to tasks A-E. Moreover, we will introduce much more statistics derived from these

indexes and equivalence catalogs in §5.8, where we provide a wide range of connectivity

analytics for 400 real RDF datasets.
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Chapter 5

Content-based Intersection, Union and

Complement Metrics Among Several

Linked Datasets

In this chapter, our target is to propose methods for tackling Challenge 3 , i.e., to provide

Dataset Discovery services, by using content-based measurements among two or more

datasets. Specifically, we focus on answering the research questions RQ4, RQ5 and RQ6.

By answering these research questions, we desire to provide services predominantly for

the tasks of Connectivity Analytics and Dataset Search, Discovery and Selection (i.e., tasks

B-C) and secondarily for the tasks of Data Enrichment and Data Quality (i.e., tasks D-E).

In particular, our main focus is to answer the queries Qconnectivity, Qcoverage, Qenrichment and

Quniqueness. For each of these queries, we provide a running example in Figure 5.1, which

contains queries from scientists that desire to perform a study for endangered species (see

the left part of Figure 5.1). Specifically, this example includes an Entity Index that contains

seven species and an Entity-Triples Index which contains data for three different endan-

gered species, “Tiger”, “Giant Panda” and “Snow Leopard”. Concerning the contributions

of this chapter:

• We introduce content-based metrics (formalized as maximization problems) among

any possible subset of datasets, which rely on intersection, union and complement,

i.e., we introduce the metrics commonalities, coverage, information enrichment and

uniqueness,

• we describe why plain SPARQL implementations are not enough for performing such

measurements,

• we propose lattice-based incremental algorithms that exploit the posting lists of semantics-

aware indexes, set theory properties and pruning and regrouping methods, for speed-

ing up the computation of the intersection, union and complement among any sub-

103
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set of datasets,

• we introduce methods for performing the lattice-based measurements in parallel

even for trillions of lattice nodes,

• we measure the efficiency and the scalability of the proposed methods through com-

parative results,

• we report connectivity measurements for a subset of the current LOD Cloud that

comprises 400 datasets and 2 billion triples.

The rest of this chapter is organized as follows: §5.1 introduces the problem state-

ment, §5.2 shows the limitations of SPARQL implementations for computing these mea-

surements, and §5.3 introduces the lattice of measurements and provides some notations

that are required for the algorithms which are proposed. Moreover, in §5.4 we show how to

compute the content-based metrics by exploiting the set of semantics-aware indexesI, in

§5.5 we introduce lattice-based algorithms for computing the metrics among any subset

of datasets incrementally, whereas in §5.6 we show how to compute the metrics in parallel.

§5.7 reports comparative results for all the metrics for evaluating the efficiency of the pro-

posed algorithms, while §5.8 introduces connectivity analytics for 400 RDF real datasets.

Finally, §5.9 concludes the chapter.

Publications related to this chapter. The work presented in this chapter has been

published in [165, 168, 171, 174].

5.1 Problem Statement

Remind thatD = {D1, ...,Dn} be a set of datasets, P(D) denote the power set of D, and B

is any set of datasets B ⊆ D. Let F = {RWE,RWP,RWC, LIT,RWT,RWTE′} be the mea-

surements types that we focus on. We shall use F to denote a specific measurement type

(F ∈ F ), andF(Di) to denote the measurement typeFapplied to a datasetDi, e.g., RWE(Di)

correspond to all the entities that can be found in Di. Our objective is to be able to answer

the queries: Qconnectivity,Qcoverage, Qenrichment and Quniqueness (introduced in Table 3.1) for any

measurement type F ∈ F . Each is a maximization problem that is defined formally below.

5.1.1 Commonalities

The answer of Qconnectivity queries corresponds to cmnBest(K,F) defined as:

Input: An integer K, where 2 ≤ K< |D| and a measurement type F ∈ F .

Output: A subset B⊆ D, s.t. |B| = K, that maximizes the following criterion:

Maximization Criterion:

cmnBest(K,F) = argBmax |cmn(B,F)| where cmn(B,F) = ∩Di∈BF(Di) (5.1)
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Note. For answering queries such as QdatConnectivity for a given dataset Di, it is a require-

ment that the subset B that maximizes the criterion cmnBest(K,F) contains the dataset Di.

5.1.2 Coverage

The answer of Qcoverage queries corresponds to covBest(K,F) defined as:

Input: An integer K, where 1 ≤ K< |D| and a measurement type F ∈ F .

Output: A subset B⊆ D, s.t. |B| = K, that maximizes the following criterion:

Maximization Criterion:

covBest(K,F) = argBmax |cov(B,F)|where cov(B,F) = ∪Di∈BF(Di) (5.2)

5.1.3 Information Enrichment

The answer of Qenrichment queries corresponds to enrichBest(K,F,Dm) defined as:

Input: An integer K (1 ≤ K < |D| − 1), a measurement type F ∈ F and a dataset Dm

(Dm ∈ D).

Output: A subset B⊆ D, s.t. |B| = K and Dm < B, that maximizes the following criterion:

Maximization Criterion:

enrichBest(K,F,Dm) = argBmax |enrich(B,F,Dm)|where

enrich(B,F,Dm) = cov(B,F) \ F(Dm)

5.1.4 Uniqueness

The answer of Quniqueness queries corresponds to uniqBest(Dm,F,K), defined as:

Input: An integer K (1 ≤ K < |D| − 1), a measurement type F ∈ F , and a dataset Dm

(Dm ∈ D).

Output: A subset B⊆ D, s.t. |B| = K and Dm < B, that maximizes the following criterion:

Maximization Criterion:

uniqBest(Dm,F,K) = argBmax |uniq(Dm,F,B)|where

uniq(Dm,F,B) = F(Dm) \ cov(B,F)

5.1.5 Difficulty and Challenge

From the above definitions we can see that the computation of cmn(B,F), cov(B,F), enrich(B,F,Dm)

and uniq(Dm,F,B) is reduced to the computation of intersection, union, absolute comple-

ment and relative complement, respectively. However, even for a single subset of datasetsB

and a measurement type F, these set operations are quite expensive if Bcontains datasets

whoseF(Di) is very big. Moreover, the number of possible solutions (for finding the datasets



106 Chapter 5. Content-based Intersection, Union and Complement Metrics

that maximize the required formulas), can be exponential in number (specifically the pos-

sible solutions for a given K is given by the binomial coefficient formula: nCK ≡













n

K













≡

n!
(n−K)!K!

), which is prohibitively expensive for such maximization problems.

For tackling these issues, the objective is to solve the above maximization problems

by reducing the number of set operations between different datasets for any measure-

ment type F and subset of datasets B. For this reason, we propose a solution based on

the set of dedicated indexes I (introduced in Chapter 4) for each measurement type F,

and we use set theory properties and pruning and regrouping methods for further reduc-

ing the number of set operations, i.e., we reuse the measurements |cmn(B,F)|, |cov(B,F)|,

|enrich(B,F,Dm)| and |uniq(Dm,F,B)|, between two subsets of datasets Band B′ (where B⊂

B′).

5.2 Why plain SPARQL implementations are not enough

Here, we show how one can exploit SPARQL query language [200] for computing the met-

rics among any subset of datasets for real world entities, properties, classes, triples and

literals. Suppose that there exists |D| datasets. At first, one should upload and store in a

SPARQL endpoint, e.g., Virtuoso [89] or Blazegraph [2], all the triples of each dataset (a sep-

arate graph is needed for each dataset), and upload also all the equivalence relationships.

By using SPARQL syntax, it is possible for one to write a query for computing the met-

rics for several subsets of datasets; however, each subset can contain exactly L datasets,

e.g., L = 2 corresponds to pairs of datasets, L = 3 to triads of datasets, and so forth. For

instance, for computing the measurements for all the pairs and triads of datasets, two dif-

ferent queries are needed, and for |D| datasets, there exists |D|+1 such levels. Alternatively,

one can use one SPARQL query for each different subset of datasets, i.e., 2|D| queries.

Below, we show nine SPARQL queries, for computing the metrics for properties, classes,

entities, literals, and triples, respectively, which can be executed by using OpenLink Vir-

tuoso database engine [89] or/and Blazegraph (http://www.blazegraph.com). Concern-

ing OpenLink Virtuoso, one should follow some steps for enabling the computation of

closure for schema elements on query time (http://vos.openlinksw.com/owiki/wiki/

VOS/VirtSPARQLReasoningTutorial\#Step4.:SettingUpInferenceRules). For instance

elements, one should put the command “define input:same-As “yes”” for enabling the

computation of closure on query time for owl:sameAs relationships. On the contrary, Blaze-

graph does not support inference in the quads mode out of the box (more details are given

here1). For avoiding the computation of transitive and symmetric closure on query time,

one can exploit the semantics-aware triples that we have already constructed (which are

described in Chapter 4).

1https://wiki.blazegraph.com/wiki/index.php/InferenceAndTruthMaintenance
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5.2.1 Real World Properties

For computing the metrics for the real world properties, among all the combinations con-

taining exactly Ldatasets, one should use the complex queries which are shown in Listings

5.1-5.4, where forD datasets, we need |D| − 1 queries. Moreover, it is required to compute

the closure of owl:equivalentProperty relationships on query time (for Virtuoso case), if

we do not use the set of semantics-aware triples. In particular, for enabling the computa-

tion of closure on query time, in the query of Listing 5.1, we have defined an inference rule

with name “SchemaEquivalence”.

Listing 5.1: SPARQL Query for computing the cardinality of commonalities for F=RWP

DEFINE input : infe re nce ‘ ‘ SchemaEquivalence ’ ’

s e l e c t ? Di ? Dj . . . ?Dn ( count ( d i s t i n c t ? property )

as ? commonProperties )

where {

{ graph ? Di { ? s ? property ? o } } .

{ graph ? Dj { ? s1 ? property ? o1 } } .

. . .

{ graph ?Dn { ? sn ? property ?on } } .

f i l t e r ( ? Di >? Dj && . . . && ?Dn−1>?Dn) }

group by ? Di ? Dj . . . ?Dn

Listing 5.2: SPARQL Query for computing the cardinality of coverage for F=RWP.

DEFINE input : infe re nce ‘ ‘ SchemaEquivalence ’ ’

s e l e c t ? Di ? Dj . . . ?Dn ( count ( d i s t i n c t ? property )

as ? cove ra ge OfP rope rt ie s )

where {

{ graph ? Di { ? s ? property ? o } } union

{ graph ? Dj { ? s1 ? property ? o1 } } union

. . .

{ graph ?Dn { ? sn ? property ?on } } union

f i l t e r ( ? Di >? Dj && . . . && ?Dn−1>?Dn) }

group by ? Di ? Dj . . . ?Dn

For all the queries, one should include a filter statement for denoting that each dataset

is different with the other ones, otherwise, it will even compute the metric for the same

dataset Di, e.g., |cmn(Di,RWP)| ∩ |cmn(Di,RWP)|. We use the > operator instead of the

in-equivalence one (i.e., ! =), for not computing many times the metrics of a specific com-

bination of datasets. For instance, for pairs of datasets, if we put ?Di != ?Dj (instead of

?Di >?Dj), the query will compute the metric of all the pairs of datasets twice, i.e., it will
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compute the metrics for all the possible permutations, e.g., for two datasets D1 and D2, it

will compute the metrics for both orders < D1,D2 > and < D2,D1 >. Moreover, a group by

clause should be used, where each such group corresponds to a subset of datasets.

Listing 5.3: SPARQL Query for computing the cardinality of information enrichment

for F=RWP and for a given dataset Dm

DEFINE input : infe re nce ‘ ‘ SchemaEquivalence ’ ’

s e l e c t ? Di ? Dj . . . ?Dn ( count ( d i s t i n c t ? property )

as ? enrichmentToDm )

where {

{ graph ? Di { ? s ? property ? o } } union

{ graph ? Dj { ? s1 ? property ? o1 } } union

. . .

{ graph ?Dn { ? sn ? property ?on } } union

. FILTER NOT EXISTS { graph <Dm> { ?sm ? property ?om} }

f i l t e r ( ? Di >? Dj && . . . && ?Dn−1>?Dn ) }

group by ? Di ? Dj . . . ?Dn

Concerning the differences for the four metrics, for coverage (see Listing 5.2) the key

difference is that we should use the “union” term instead of the dot “.”, which is used for the

case of commonalities (see Listing 5.1). Concerning information enrichment (see Listing

5.3), we should also use term “union”, however, we should also include a “FILTER NOT EX-

ISTS” statement, for not counting properties that belong to the datasetDm (since we desire

to find enrich(B,F,Dm)). Finally, for uniqueness (see Listing 5.4), we count only properties

belonging in a dataset Dm but not in any other dataset, therefore, we add a “FILTER NOT

EXISTS” statement for each other dataset (except for Dm).

Listing 5.4: SPARQL Query for computing the uniqueness of a dataset Dm for F=RWP.

DEFINE input : infe re nce ‘ ‘ SchemaEquivalence ’ ’

s e l e c t ? Di ? Dj . . . ?Dn ( count ( d i s t i n c t ? property )

as ? uniquenessOfDm )

where {

{ graph <Dm> { ? s property ? o } }

. FILTER NOT EXISTS { graph ? Di { ? s ? property ? o } }

. FILTER NOT EXISTS { graph ? Dj { ? s1 ? property ? o1 } }

. . .

. FILTER NOT EXISTS { graph ?Dn { ? sn ? property ? on } } union

f i l t e r ( ? Di >? Dj && . . . && ?Dn−1>?Dn ) }

group by ? Di ? Dj . . . ?Dn
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5.2.2 Real World Classes

Here, we show indicatively how to compute the commonalities for F = RWC. In particular,

one should use the query which is introduced in Listing 5.5, where it is a requirement to

compute the closure of owl:equivalentClass relationships on query time (i.e., for Virtu-

oso).

Listing 5.5: SPARQL Query for computing the cardinality of commonalities for F=RWC.

DEFINE input : infe re nce ‘ ‘ SchemaEquivalence ’ ’

s e l e c t ? Di ? Dj . . . ?Dn ( count ( d i s t i n c t ? c l a s s ) as ? commonClasses )

where {

{ graph ? Di { ? s r d f : type ? c l a s s } } .

{ graph ? Dj { ? s1 r d f : type ? c l a s s } } .

. . .

{ graph ?Dn { ? sn r d f : type ? c l a s s } } .

f i l t e r ( ? Di >? Dj && . . . && ?Dn−1>?Dn)

} group by ? Di ? Dj . . . ?Dn

5.2.3 Real World Entities

Here, we show indicatively how to compute the commonalities for F = RWE, i.e., see

Listing 5.6. For this query, we need a unique line for each dataset for finding the union of

all its subjects and objects that are URIs (but not classes), which can be time-consuming.

Finally, for Virtuoso case, one should put the command “define input:same-As “yes”” for

enabling the computation of closure on query time for owl:sameAs relationships.

Listing 5.6: SPARQL Query for computing the cardinality of commonalities for F=RWE.

DEFINE input : same−As ‘ ‘ yes ’ ’

s e l e c t ? Di ? Dj . . . ?Dn ( count ( d i s t i n c t ?u ) as ? commonEntities )

where {

{ graph ? Di { { ? u ?p ? o } union { ? o ?p ?u . f i l t e r ( ? p ! = r d f : type ) } }

. f i l t e r ( isURI ( ? u ) ) } .

{ graph ? Dj { { ? u ? p2 ? o2 } union { ? o2 ? p2 ?u . f i l t e r ( ? p2 ! = r d f : type ) } } } .

. . .

{ graph ?Dn { { ? u ?pn ?on } union { ? on ?pn ?u . f i l t e r ( ? pn ! = r d f : type ) } } } .

f i l t e r ( ? Di >? Dj && . . . && ?Dn−1>?Dn)

}

group by ? Di ? Dj . . . ?Dn
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5.2.4 Literals

Here, we show indicatively how to compute the commonalities for F = RWE, i.e., see

Listing 5.7.

Listing 5.7: SPARQL Query for computing the cardinality of commonalities for F=LIT.

s e l e c t ? Di ? Dj . . . ?Dn ( count ( d i s t i n c t ? l ) as ? commonLiterals )

where {

{ graph ? Di { ? s ?p ? l } . f i l t e r ( i s L i t e r a l ( ? l ) ) } .

{ graph ? Dj { ? s1 ? p1 ? l } } .

. . .

{ graph ?Dn { ? sn ?pn ? l } } .

f i l t e r ( ? Di >? Dj && . . . && ?Dn−1>?Dn)

}

group by ? Di ? Dj . . . ?Dn

5.2.5 Real World Triples

For the computation of metrics of real world triples, we need to compute the closure for

finding the equivalences for both instance and schema relationships (which is computed

on query time). Listing 5.8 shows the corresponding query for measuring the number of

common triples among several datasets.

Listing 5.8: SPARQL Query for computing the cardinality of commonalities for F=RWT.

DEFINE input : infe re nce ‘ ‘ SchemaEquivalence ’ ’

DEFINE input : same−As ‘ ‘ yes ’ ’

s e l e c t ? Di ? Dj . . . ?Dn ( count ( * ) as ? commonTriples )

where {

{ graph ? Di { ? s ?p ? o } } .

{ graph ? Dj { ? s ?p ? o } } .

. . .

{ graph ?Dn { ? s ?p ? o } } .

f i l t e r ( ? Di >? Dj && . . . && ?Dn−1>?Dn)

}

group by ? Di ? Dj . . . ?Dn
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5.2.6 Comparison of a SPARQL implementation with the proposed lattice-based

incremental approaches.

The queries above can be exploited for performing such measurements, however, this ap-

proach has many limitations comparing to the proposed one. This set of limitations con-

cern four different categories, i.e., A. Computation of Closure, B. Indexes, C. Number of

Joins, and D. Set theory Properties. Below, we analyze each of these categories.

A. Computation of Closure. At first, by using Virtuoso the computation of closure is

performed on query time, which can be time consuming. Therefore, for n queries, the

closure will be computed n times. On the contrary, we have computed the closure of

equivalence relationships once. Moreover, Blazegraph does not support inference in the

quads mode. One possible solution for both tools is one to use the semantics-aware triples

(where we have pre-computed the closure) and then to upload all the triples (including the

inferred ones) to Virtuoso.

B. Indexes. The indexes offered by Virtuoso and Blazegraph are applicable for offering

fast response to specific queries, such as for queries where only the subject or object is

specified. For this reason, they offer indexes having as a primary key a subject, a predicate

or an object, i.e., the indexing process of Virtuoso is explained here2 and of Blazegraph in

this link3. In this way, it is not so easy to have access to all the distinct literals, entities, etc.

For instance, for the case of literals, the whole index having as key the objects should be

scanned, which contains both literals and URIs. Therefore, the cost is increased, because

such an implementation should check which objects are literals. On the contrary, our

constructed indexes enable the fast access to the provenance of distinct entities, triples,

literals, and schema elements.

C. Number of Joins For both SPARQL implementations, one (complex) query is needed

for each different size of datasets combinations (e.g., pairs, triads), i.e., in total |D| + 1

queries are needed for all the possible combinations of datasets, while as the number

of datasets grow, such a query can be huge. Moreover, several joins (and comparisons)

should be performed for each subset of datasets for computing the metrics. For exam-

ple, suppose that we want to find the intersection of entities between a pair of datasets

Di and Dj and suppose that each dataset contains million of URIs and triples. For each of

these two datasets, a SPARQL implementation scans all the triples and keeps the distinct

URIs (that are not classes) occurring as a subject or an object. Afterwards, a join should

be performed between the distinct URIs of these datasets, which is very time-consuming

when the number of (distinct) URIs is large. On the contrary, we will use incremental algo-

rithms taking as input the distinct posting lists of a specific index, whose size is very small

comparing to the distinct URIs, in our indexes their size is less than 0.02%.

2http://docs.openlinksw.com/virtuoso/rdfperfrdfscheme/
3https://wiki.blazegraph.com/wiki/index.php/About_Blazegraph
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D. Exploitation of Set Theory Properties. For both SPARQL implementations, each

query computes the metrics for a fixed number of combinations of datasets, i.e., pairs,

triads, etc. Therefore, it is not possible to exploit set theory properties, which hold between

two or more subsets of datasets, B and B′, where B ⊆ B′. On the contrary, we take into

consideration set theory properties for reusing the measurements in an incremental way.

In §5.7, we introduce some indicative experiments containing the execution time for

measuring the number of commonalities among several datasets, by using Virtuoso query

engine, Blazegraph, and an incremental “lattice”-based approach (which is described later

in this chapter).

5.3 The Lattice of Measurements by using the set of Semantics-

aware Indexes I

Our target is to use the semantics-aware indexes I, for computing the metrics between

any subset of datasets in D. For (a) speeding up the computation of the metrics and (b)

visualizing these measurements (for aiding understanding), we propose a method that is

based on a lattice (specifically on a meet-semilattice). If the number of datasets is not high,

the lattice can be shown entirely, otherwise (i.e. if the number of datasets is high) it can

be used as a navigation mechanism, e.g. the user could navigate from the desired dataset

(at the bottom layer) upwards, as a means for dataset discovery. Specifically, we propose

constructing and showing the measurements in a way that resembles the Hasse Diagram

of the poset, partially ordered set, (P(D),⊆). The lattice can be represented as a Directed

Acyclic Graph G = (V,E) where the empty set is the unique source node of G (i.e., node

with zero in-degree) and the set containing all the datasets (i.e. D) is the unique sinknode

of G (i.e., node with zero out-degree).

A lattice ofD datasets contains |V| = 2|D| nodes (see examples in Figures 5.2 and 5.3) ,

where each node corresponds to a subset of datasets B∈ P(D), and |E| = |D| ∗2|D|−1 edges,

where each edge points towards the direct supersets, i.e., an edge is created from a subset

B to a superset B′, where B′ = B∪ {Dk},Dk < B. Moreover, it contains |D|+1 levels, and the

value of each level L (0 ≤ L ≤ |D|) indicates the number of datasets that each subset of

level Lcontains, e.g., L= 2 corresponds to pairs of datasets.

5.3.1 Direct Counts

Here, we show how to exploit an index indF ∈ I for computing the metrics for a measure-

ment type F. Let k ∈ Lef t(indF) be a single entry in the left part of the index indF, meaning

that k is a key while indF(k) corresponds to the value of this key (i.e., it is a posting list).

Below we define the number of times a subset Boccurs in the posting lists of an index

indF.
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Figure 5.1: Running example for four datasets D1 −D4 and two indexes.

Definition 1. directCount(B,F) = |{k ∈ Lef t(indF) | indF(k) = B}| ⋄

The value of directCount(B,F) is computed by scanning the corresponding index (indF)

once. The result of this process is a directCount list, where each entry contains in the left

side a subset Band in the right side the directCount score of B. In Table 5.1, we can observe

how to find directCount(B,F) for any measurement type F, which are essential for perform-

ing the measurements of the desired measurement type (which were introduced in §5.1).

For instance, in Figure 5.1, for finding the directCount list for the Entity Index, we scan that

index and we compute how many times each subset of datasets exists in the right part of

the index, e.g., the directCount value of {D1,D2,D3,D4} is 2, since it exists two times in the

index. Moreover, in Figure 5.1, one can see in the middle right side the directCount list for

the entry of “Tiger” in the Entity-Triples index, and in the lower right side the directCount

list for the whole Entity-Triples index. If m is the total number of entries of an index, then

the time complexity for constructing that list is O(m).

How to Use Only a Part of the directCount List? In many cases, i.e., for computing
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Table 5.1: directCount of different measurement types.
Measurement Type F Which directCount(B,F) to Use.

RWE directCount(B,RWE) = | { [u] ∈ Lef t(ei) | ei([u]) = B} |
RWC directCount(B,RWC) = | { [u] ∈ Lef t(ci) | ci([u]) = B} |
RWP directCount(B,RWP) = | { [u] ∈ Lef t(pi) | pi([u]) = B} |
LIT directCount(B,LIT) = | { l ∈ Lef t(li) | li(l) = B} |
RWT directCount(B,RWT) = | { s.p.o ∈ Lef t(eti) | eti(s.p.o) = B} |
RWTE′ directCount(B,RWTE′) = | { s.p.o ∈ Lef t(eti) | eti(s.p.o) = B, s ∈ E′ or o ∈ E′} |

|cmn(B,F)|, |enrich(B,F,Dm)|, |uniq(Dm,F,B)| and for the incremental algorithms that will

be introduced in this chapter, it is a prerequisite to exclude or to keep some posting lists

containing specific datasets. For this reason, we introduce four definitions, while for each

of them we show an example for the directCount list of Entity Index (see the upper right

side of Figure 5.1).

First, for a given measurement typeF, we define the posting lists (i.e., subsets of datasets)

which contain at least one dataset Di ∈ B, i.e., we define the set occur(B,F) as follows:

Definition 2. occur(B,F) = {Bi ∈ P(D) | directCount(Bi,F) > 0,Bi ∩ B, ∅}

Obviously, occur(B,F) is a finite set. In the extreme case when B= D, occur(D,F) contains

all the entries in the left side of the directCount list for a given F, e.g., for the Entity Index of

Figure 5.1, occur(D,F) = {{D1,D2,D4}, {D1,D2,D3,D4},{D1,D3,D4}, {D2,D3}}.

For the computation of |cmn(B,F)|, we will see that the target is to find all the posting

lists that are supersets of B. For this reason, we define the set Up(B,F) as follows:

Definition 3. Up(B,F) = {Bi ∈ P(D) | B⊆ Bi, directCount(Bi,F) > 0}

Obviously, Up(B,F) is a finite set. For instance in the Entity Index of Figure 5.1, if B =

{D1,D2}, Up(B,F) = {{D1,D2,D4}, {D1,D2,D3,D4}}.

In many cases, especially for computing |enrich(B,F,Dm)| and for the incremental al-

gorithms of §5.5, we should keep only the posting lists containing at least one Dj ∈ B′,

but not any Di ∈ B (i.e., we exclude such posting lists). For this reason, we define the set

occur(B′,F)\B as follows:

Definition 4. occur(B′,F)\B = occur(B′,F) \ occur(B,F) ⋄

Obviously, occur(B′,F)\B is a finite set. For instance, in the directCount list which is shown

in the upper right of Figure 5.1, if we want to exclude the posting lists containing D3 (and

to keep all the remaining ones), we will construct the set occur(D,F)\{D3} = {{D1,D2,D4}}.
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Finally, for computing |uniq(Dm,F,B)| (in §5.4.4), we should keep all the posting lists

containing the datasetDm and at least one datasetDi ∈ B, i.e., we define the set occur(B,F)Dm

as follows:

Definition 5. occur(B,F)Dm = occur(B,F) ∩ occur({Dm},F) ⋄

Obviously, occur(B,F)Dm is a finite set. For the directCount list of the Entity Index of Figure

5.1, if B = {D1,D3} and Dm = D2, then occur({D1,D4},F)D2
= {{D1,D2,D4}, {D1,D2,D3,D4}},

i.e., we keep a posting list if it contains D2 and at least one dataset of B, i.e., D1 or D4.

5.3.2 Lemmas

Here, we provide some lemmas that are used for providing the proofs for the propositions

in the rest of this chapter.

Lemma 1. If k ∈ F(Di), then k ∈ Lef t(indF), indF(k) = Bi,Di ∈ Bi. In particular, since we

store any element k and its provenance, k occurs also in the left side of the corresponding

index, and its posting list Bi ⊆ D contains Di.

Lemma 2. For a subset of datasetsB∈P(D), if∀Di ∈ B, k ∈ F(Di), then k ∈ Lef t(indF), indF(k) =

Bi,B ⊆ Bi. In particular, the posting list Bi of k contains at least all the datasets Di ∈ B (i.e.,

Bi is a superset of B) .

Lemma 3. If Bi , Bj (Bi ∈ P(D),Bj ∈ P(D)), then {k ∈ Lef t(indF)|indF(k) = Bi} ∩ {k ∈

Lef t(indF)|indF(k) = Bj} = ∅, i.e., they are disjoint. It holds because each element k ∈

Lef t(indF) has a unique posting list of dataset IDs.

Lemma 4. From the set theory, we know that for n disjoint sets {A1,A2, ...,An}, |A1 ∪ A2 ∪

... ∪ An| = |A1| + |A2| + ... + |An| (Proof can be found in [126]).

Lemma 5. From the set theory, we know that for n sets {A1,A2, ...,An}, |An \ {A1∪A2∪ ...∪

An−1}| = |An| − |An ∩ {A1 ∪ A2 ∪ ... ∪ An−1}| (Proof can be found in [126]).

5.4 Content-Based Intersection, Union and Complement Metrics

Here we show how to compute the metrics by exploiting a directCount list in a trivial way,

for computing Commonalities (in §5.4.1), Coverage (in §5.4.2), Information Enrichment (in

§5.4.3) and Uniqueness (in §5.4.4).

5.4.1 Computation of Commonalities

Here, we show how to exploit a pre-constructed directCount list for computing the com-

monalities, i.e., the value |cmn(B,F)|, for any measurement type F ∈ F .
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Prop. 2. The key point is that the sum of the directCount of Up(B,F) gives the intersection

value of each subset B for a measurement type F.

|cmn(B,F)| =
∑

B′∈Up(B,F)

directCount(B′,F) (5.3)

|cmn(B,F)| = | ∩Di∈B F(Di)| = | ∩Di∈B {k | k ∈ F(Di)}| = |{k | ∀Di ∈ B, k ∈ F(Di)}|

(Lemma 2)
= |{k ∈ Lef t(indF) | indF(k) = Bi,B⊆ Bi}|

(Lemma 1)
= | ∪Bi∈P(D) {k ∈ Lef t(indF)|indF(k) = Bi,B⊆ Bi}|

(Def . 3)
= | ∪

Bi∈Up(B,F) {k ∈ Lef t(indF)|indF(k) = Bi}|

(Lemma 3)
= |{k ∈ Lef t(indF)|indF(k) = B1} ∪ ... ∪ {k ∈ Lef t(indF)|indF(k) = Bn}|

(Lemma 4)
= |{k ∈ Lef t(indF)|indF(k) = B1}| + ... + |{k ∈ Lef t(indF)|indF(k) = Bn}|

(Def . 1)
= directCount(B1,F) + ... + directCount(Bn,F)

(Def . 3)
=

∑

Bi∈Up(B,F)

directCount(Bi,F) ⋄

5.4.1.1 Baseline Model for Computing |cmn(B,F)| (BM method).

For each different subset B, we iterate over the set occur(D,F) once, for creating the set

Up(B,F). In particular, ∀Bi ∈ occur(D,F), we check if B ⊆ Bi, and if it holds, we add Bi to

Up(B,F). Afterwards, we read the set Up(B,F) once, for computing |cmn(B,F)| (see Prop.

2). For computing the |cmn(B,F)| for a finite set of subset of datasets BV = {Bi, ...,Bm}, the

time complexity is O(|BV| ∗ |occur(D,F)|), since we traverse once the whole set occur(D,F)

for each B ∈ BV (in the worst case |BV| = 2|D|). The space complexity is O(|occur(D,F)|)

(i.e., we keep in memory the directCount list).

Example. In Figure 5.2, we show the steps for computing the number of common

species among all the different subsets of datasets (we exclude the measurements concern-

ing single datasets), therefore F = RWE. In particular, we scan the Entity Index for creating

the directCount list. The next step is for each subset B to scan the whole set occur(D,F) for

finding the set Up(B,F) (in Step B of Figure 5.2), and we compute cmn(B,F) by taking the

sum of the directCount value of the Up(B,F). For example, for B = {D1,D2,D4}, we con-

structed the set Up({D1,D2,D4},F) = {{D1,D2,D3,D4}, {D1,D2,D4}}. By taking the sum of

their directCount score, i.e., directCount({D1,D2,D3,D4},F) = 2 and directCount({D1,D2,D4},F) =

2, we computed |cmn({D1,D2,D4},F)| = 4. As we can see in the the results in Step C of

Figure 5.2, the triad with the most common species for the scientist is cmnBest(3,F) =
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Figure 5.2: Query Qconnectivity. Computation of Commonalities

{D1,D2,D4}, since these three datasets contain four species in common, while any other

possible triad of sources share a smaller number of entities.

5.4.2 Computation of Coverage

Here, we show how to exploit a pre-constructed directCount list (i.e., the set occur(D,F) and

the corresponding directCount scores) for computing coverage, i.e., |cov(B,F)|.

Prop. 3. The sum of the directCount score of all Bi ∈ occur(B,F) gives the cardinality of

coverage for a subset Band a given measurement type F:

|cov(B,F)| =
∑

Bi∈occur(B,F)

directCount(Bi,F) (5.4)
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|cov(B,F)| = | ∪Di∈B F(Di)| = | ∪Di∈B {k|k ∈ F(Di)}|

(Lemma 1)
= | ∪Bi∈P(D) {k ∈ Lef t(indF)|indF(k) = Bi,B∩Bi , ∅}|

(Def . 2)
= | ∪Bi∈occur(B,F) {k ∈ Lef t(indF)|indF(k) = Bi}|

(Lemma 3)
= |{k ∈ Lef t(indF)|indF(k) = B1} ∪ ... ∪ {k ∈ Lef t(indF)|indF(k) = Bn}|

(Lemma 4)
= |{k ∈ Lef t(indF)|indF(k) = B1}| + ... + |{k ∈ Lef t(indF)|indF(k) = Bn}|

(Def . 1)
= directCount(B1,F) + ... + directCount(Bn,F)

(Def . 2)
=

∑

Bi∈occur(B,F)

directCount(Bi,F) ⋄

5.4.2.1 Baseline Model for Computing |cov(B,F)| (BM method).

For each different subset B, we iterate over the set occur(D,F) once, for creating the set

occur(B,F). In particular, ∀Bi ∈ occur(D,F), we check if Bi ∩ B , ∅, and if it holds, we

add Bi to occur(B,F). Afterwards, we read the set occur(B,F) once, for computing |cov(B,F)|

(see Prop. 3). For computing the |cov(B,F)|, for a finite set of subset of datasets BV =

{Bi, ...,Bm}, the time complexity is O(|BV| ∗ |occur(D,F)|), since we traverse once the whole

set occur(D,F) for each B ∈ BV (in the worst case |BV| = 2|D|). The space complexity is

O(|occur(D,F)|) (i.e., we keep in memory the whole directCount list).

Concerning the checkBi∩B, ∅ it has time complexityO(m∗logn)wherem = max(|Bi|, |B|)

and n = min(|Bi|, |B|), since both Bi and Bi are ordered sets. We ignore this complexity in

O(2|D| ∗ |occur(D,F)|), since even in the worst case (when m = n = |D|), the cost is quite

smaller comparing to the number of possible subsets (2|D|) and to the size of occur(D,F),

i.e., in the extreme case when the index contains any B ∈ P(D) as a posting list, its size

equals 2|D|.

Example. In Figure 5.3, we show the steps for computing the coverage of triples for

“Tiger” species (i.e., F = RWT{E1}). For each subset of datasets B, we scan the whole

set occur(D,F) (in Step A of Figure 5.3), for creating the set occur(B,F), and we compute

|cov(B,F)| (in Step B in Figure 5.3). For example, for B = {D1,D2}, we constructed the set

occur({D1,D2},F) = {{D1}, {D1,D2}, {D2,D3}, {D2,D4}}. By taking the sum of their directCount

score (i.e., directCount({D1},F) = 2, directCount({D1,D2},F) = 1, directCount({D2,D3},F) =

2, directCount({D2,D4},F) = 1) we computed |cov({D1,D2},F)| = 6. By seeing the results

in Step C of Figure 5.3, we observe that the best triad for the scientist is covBest(3,F) =

{D1,D3,D4}, since its union contains the maximum number of triples for “Tiger”.
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Figure 5.3: Query Qcoverage. Computation of Coverage

5.4.2.2 Extra/Derived Coverage-related Metrics

Here we describe some extra coverage-related metrics.

Coverage Percentage. We define the coverage percentage of a subset of datasets B for a

given F:

covPer(B,F,D) =
|cov(B,F)| ∗ 100

|cov(D,F)|
(5.5)

It can be used for answering questions, such as, “What percentage of all the available

triples for “Tiger” species is covered from the union of DBpedia and YAGO datasets?”. For

example, in Figure 5.3, the covPer({D1,D3,D4},RWT{E1},D) = 100%, since the union of

these datasets contain all the available triples for “Tiger” (in total 8 triples), in our running

example of Figure 5.1.

Coverage Gain. We define the coverage gain between a subset B and its superset B′,

(B⊂ B′), for a given F as follows:

covGain(B′,F,B) =
(|cov(B′,F)| − |cov(B,F)|) ∗ 100

|cov(B,F)|
(5.6)
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We measure whether there is an increase in coverage, if we add (i.e., integrate) more datasets

to a given subset of datasets. For instance, suppose that in Figure 5.3 we want to measure

the gain between B= {D1,D3,D4} and B′ = {D1,D2,D3,D4}. Since |cov(B,RWT{E1})| = 8 and

|cov(B′,RWT{E1})| = 8, the coverage gain is covGain(B′,RWT{E1},B) = 0%. It means that

for this task, the addition of D2 to the subset {D1,D3,D4} is useless, i.e., D2 does not offer

additional unique triples for “Tiger”.

5.4.3 Computation of Information Enrichment given a Dataset Dm

Here, we exclude any posting list containing Dm (since we want to compute the comple-

ment to a dataset Dm), i.e., we use as input the set occur(D,F)\{Dm} instead of occur(D,F).

Prop. 4. For a subset B, a dataset Dm and a given F, the sum of the directCount score of all

the Bi ∈ occur(B,F)\{Dm} gives the cardinality of information enrichment:

|enrich(B,F,Dm)| =
∑

Bi∈occur(B,F)\{Dm }

directCount(Bi,F) (5.7)

Proof.

|enrich(B,F,Dm)| = |(cov(B,F) \ F(Dm))| = |{∪Dj∈BF(Dj)} \ F(Dm)|

= | ∪Dj∈B {k|k ∈ F(Dj), k < F(Dm)}|

(Lemma 1)
= | ∪Bi∈P(D) {k ∈ Lef t(indF)|indF(k) = Bi,Bi ∩ B, ∅,Dm < Bi}|

(Def . 4)
= | ∪Bi∈occur(B,F)\{Dm }

{k ∈ Lef t(indF)|indF(k) = Bi}|

(Similarly to Proof of Prop.3)
=

∑

Bi∈occur(B,F)\{Dm}

directCount(Bi,F) ⋄

�

5.4.3.1 Baseline Model for Computing |enrich(B,F,Dm)| (BM method).

For a single subset B, we iterate over the set occur(D,F)\{Dm} once, for constructing the set

occur(B,F)\{Dm}. In particular, for each Bi ∈ occur(D,F)\{Dm}, we check if Bi ∩ B, ∅, and if it

holds, we add Bi to occur(B,F)\{Dm}. In the end, we sum the directCount(Bi,F) score of each

Bi ∈ occur(B,F)\{Dm}, for computing |enrich(B,F,Dm)| (see Prop. 2). For a finite set of subset

of datasets BV = {Bi, ...,Bm}, the time complexity is O(|BV| ∗ |occur(D,F)\{Dm}|), where in

the worst case |BV| = 2|D|−1, i.e., we compute |enrich(B,F,Dm)| for all the possible subsets

of datasets that do not contain Dm. Moreover, the space complexity is O(|occur(D,F)\{Dm}|).

For the complexity of checking non-null intersection, i.e., Bi ∩ B, ∅, see §5.4.2.
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Figure 5.4: Query Qenrichment. Computation of Information Enrichment

Example. In Figure 5.4, the publisher of D3, desires to find two datasets containing

additional information for D3 endangered species (i.e., “Tiger” and “Giant Panda”). There-

fore, we focus on F = RWT{E1,E2}, since E1 corresponds to “Tiger” and E2 to “Giant Panda”.

For this reason, in Step A, we scan only their entries in the Entity-Triples index, i.e., green

and orange boxes in Figure 5.1, for constructing the set occur(D,F). However, since our tar-

get is to find the complementary triples for D3 entities, in Step B we exclude all the posting

lists containing D3, i.e., we construct the set occur(D,F)\{D3} = {{D1}, {D1,D2}, {D1,D4}, {D2},

{D2,D4}, {D4}}, and we store their corresponding directCount score. By traversing the set

occur(D,F)\{D3}, for each subset B, we create the set occur(B,F)\{D3}, and we compute the

corresponding |enrich(B,F,D3)|, e.g., see Step C of Figure 5.4. For instance, for computing

|enrich({D1,D2},F, {D3})|, we constructed occur({D1,D2},F)\{D3} = {{D1}, {D1,D2}, {D1,D4}, {D2}, {D2,D4}}

and we computed the sum of their directCount score, for finding |enrich({D1,D2},F, {D3})| =

6. In Step D of Figure 5.4, we observe that the best pair is enrichBest(2,F,D3) = {D1,D4},

since it offers 7 additional triples for the species of D3.

5.4.3.2 Extra/Derived Information Enrichment related Metrics

Here, we show one extra metric related to information enrichment.

Information Enrichment Percentage for a single dataset Dm. We define the increase per-

centage of information enrichment for a dataset Dm in a subset of datasets B, for a given F,
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as follows:

enrichPer(B,F,Dm) =
|enrich(B,F,Dm)| ∗ 100

|cov({Dm},F)|
(5.8)

This metric shows the percentage that the information of a given dataset Dm increases, in

a possible integration with the datasets of subset B. For example, in Query Qenrichment of Fig-

ure 5.4, by integrating {D1,D2} with D3, enrichPer({D1,D2},RWT{E1,E2},D3) = 120%, since

{D1,D2} offers 6 new triples for the entities of D3, i.e., |enrich({D1,D2},RWT{E1,E2},D3)| = 6,

which is divided by the total number ofD3 triples of these species, i.e., |cov({D3},RWT{E1,E2})| =

5.

5.4.4 Computation of Uniqueness given a Dataset Dm

Here, the input is only the set occur({Dm},F) (and not occur(D,F)), since we focus only on

elements that can be found in Dm.

Prop. 5. For a subset B, a dataset Dm and a given F, the uniqueness of a dataset Dm to

a subset B can be given by subtracting from the cardinality of all the elements of Dm, the

cardinality of all the elements that co occur in Dm and in at least one Di ∈ B.

|uniq(Dm,F,B)| = |cov({Dm},F)| −
∑

Bi∈occur(B,F)Dm

directCount(Bi,F) (5.9)

|uniq(Dm,F,B)| = |(F(Dm) \ cov(B,F))|
(Lemma 5)

= |F(Dm)| − |(F(Dm) ∩ cov(B,F))|

= |cov({Dm},F)| − | ∪Dj∈B {k|k ∈ F(Dj), k ∈ F(Dm)}|

= |cov({Dm},F)| − | ∪Bi∈P(D) {k ∈ Lef t(indF)|indF(k) = Bi,Dm ∈ Bi,B∩Bi , ∅}|

(Def . 5)
= |cov({Dm},F)| − | ∪Bi∈occur(B,F)Dm

{k ∈ Lef t(indF)|indF(k) = Bi}|

(Similarly to Proof of Prop.3)
= |cov({Dm},F)| −

∑

Bi∈occur(B,F)Dm

directCount(Bi,F)

5.4.4.1 Baseline Model for Computing |uniq(Dm,F,B)| (BM method).

First, we should compute |cov({Dm},F)| by scanning the occur({Dm},F) once, since it is

required for the computation of |uniq(Dm,F,B)|, for any subset of datasets B (see Prop.

3). For a single subset B, we traverse the set occur({Dm},F) once, for constructing the set

occur(B,F)Dm . For each Bi ∈ occur({Dm},F), we check if Bi ∩ B , ∅, and if it holds, we

add Bi to occur(B,F)Dm
. In the end, we compute the sum of the directCount(Bi,F), for each
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Figure 5.5: Query Quniqueness. Computation of Uniqueness

Bi ∈ occur(B,F)Dm Finally, we subtract this sum from the value |cov({Dm},F)| for computing

the |uniq(Dm,F,B)| (see Prop. 3). For a finite set of subset of datasets BV = {Bi, ...,Bm}, the

time complexity is O(|BV| ∗ |occur({Dm},F)|), where in the worst case |BV| = 2|D|−1 (we ex-

clude the subsets containing Dm), and the space complexity is O(|occur({Dm},F)|). For the

complexity of checking non-null intersection (Bi ∩ B, ∅) see §5.4.2.

Example. In Figure 5.5, the publisher of D2 desires to know how unique are the triples

of D2 comparing to the other datasets. In Step A, we scan the whole Entity-Triples index

of Figure 5.1 for creating the directCount list, i.e., we focus on F = RWT. However, we

keep only the subsets of the directCount list containing the dataset D2, i.e., we create the

set occur({D2},F). In Step B of Figure 5.5, we compute the value |cov({D2},F)| = 6, while

in Step C, we construct the set occur(B,F)D2
and we compute |uniq(D2,F,B)| for each sub-

set B. Finally, in Step D we show a visualization of the results. For example, for measur-

ing the uniqueness of D2 triples versus {D1,D3}, we created the set occur({D1,D3},F)D2
=

{{D1,D2}, {D2,D3}}, where the sum of the directCount score of the entries of occur({D1,D3},F)D2

equals 3. We subtracted that value from |cov({D2},F)| (which equals 6), for computing

|uniq(D2,F, {D1,D3})| = 3, i.e., there are 3 triples of D2 that cannot be found either in D1

or in D3.
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5.4.4.2 Extra/Derived Uniqueness-related Metrics

Here, we show two additional metrics related to uniqueness for a given dataset Dm.

Unique Content Percentage of a dataset Dm. We define the uniqueness of a dataset Dm

for a given measurement type F, comparing to a subset of datasets Bas follows:

uniqPer(Dm,F,B) =
|uniq(Dm,F,B)| ∗ 100

|cov({Dm},F)|
(5.10)

It can be used for answering questions like “What it the percentage of the triples of DB-

pedia, that cannot be found in Wikipedia, YAGO, and Freebase?”. For example, in Query

Quniquenessof Figure 5.5, for B = {D1,D3} the uniqPer(D2,RWT, {D1,D3}) = 50%, since 3 out

of 6 triples of D2 cannot be found in any of the datasets of B, i.e., neither to D1 nor to D3.

Unique Contribution of a Dataset Dm We define the “unique contribution” percentage

that a dataset Dm offers to the “universe” for a measurement type F as follows:

uniqCont(Dm,F,D) =
|uniq(Dm,F,D)| ∗ 100

|cov(D,F)|
(5.11)

It can be used for answering queries, such as “What percentage of triples of “Tiger” species

is offered only by DBpedia?”. For example, for the“Tiger” species of Figure 5.1, dataset D3

offers only one triple that cannot be found in any other dataset (i.e., the triple 〈Tiger, food-

Source, Ungulate〉). In total, there are 8 available triples for “Tiger”, thereby, the percentage

is the following: uniqCont(D3,RWT{E1},D) = 12.5%.

5.5 Incremental Computation of Intersection, Union & Comple-

ment Metrics

Since the possible subsets of datasets for solving the maximization problems (described

in §5.1) can be exponential in number, it is very time-consuming (as we shall see experi-

mentally in §5.7) to traverse the whole set occur(D,F) for each possible subset of datasets

B, which is a requirement in the baseline method (BM) of §5.4 for all the metrics. For

being able to solve such maximization problems, the target is to reduce the number of

directCount entries that we read for each subset B. In this way, we propose incremental

algorithms, based on set-theory properties and pruning methods, that reuse the measure-

ments between two subsets of datasets B and B′ (where B ⊂ B′). In particular, in §5.5.2,

we propose two incremental algorithms and a pruning method for computing the com-

monalities, and in §5.5.3, we propose an incremental algorithm, and pruning methods for

computing the coverage. Moreover, in §5.5.4 and §5.5.5, we show how to compute incre-

mentally the information enrichment and uniqueness, respectively.
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Figure 5.6: The bottom-up depth first search traversal

5.5.1 Lattice Traversals

Here, we introduce two different lattice traversals, a bottom-up depth-first search traver-

sal, which will be used for all the four metrics, i.e., Commonalities, Coverage, Information

Enrichment and Uniqueness, whereas we describe also a top-down breadth first search

approach, which will be used in the case of Commonalities.

5.5.1.1 The Bottom-Up Depth-First Search (DFS) Traversal

Figure 5.6 shows the exact visiting order for four datasets, which is used for performing the

measurements through the bottom-up approach. For visiting each lattice node (subset of

datasets) once, we create a directed edge from B to B′, only if B = prev(B′). In particular,

it holds that B = prev(B′), only if B′ = B∪ {Dk} (Dk < B), and ∀Di ∈ B, k > i, therefore, we

follow a strict numerical ascending order. By following such a DFS traversal, we always go

upwards (see Figure 5.6), i.e., we compute first the metrics for all the supersets of D1, then

for all the supersets of D2 that do not contain D1 and so on, and we create |E| = |V| − 1

directed edges (instead of |E| = |D| ∗2|D|−1). Due to this traversal, we visit and compute the

metrics for any B∈P(D) at run time, i.e., there is no need to pre-construct a data structure

for the lattice, whereas it allows us to stop the computation at any desired level L, e.g., for

computing the metrics for triads of datasets, we can stop at level L= 3.

5.5.1.2 The Top-Down Breadth-First Search (BFS) Traversal

An alternative approach is to follow a top-down breadth-first search BFS traversal. As we

can see in Figure 5.7, by using this traversal we start from the top of the lattice, and we

compute the metrics for all the subsets of a specific level L, before continuing with the

subsets of the previous level of L, i.e., Lprev = L− 1. Therefore, we first start with the level
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Figure 5.7: The top-down breadth first search traversal

L= |D|, we compute the metrics and then we continue with the previous level, i.e., |D| − 1,

by creating all the edges between these two levels. Afterwards, we compute the metrics for

all the nodes of level |D| − 1, before continuing with the nodes of its’ previous level, and

so on. As in the case of DFS traversal, we visit and we compute the metrics for each node

once, however, it is a requirement to create all the possible edges.

5.5.2 Lattice-Based Incremental Algorithms for computing cmnBest(K,F).

Here, we introduce two different ways to compute the lattice measurements incremen-

tally. The main notion is that we exploit the following property: the elements belonging

to the intersection of a subset of datasets, is a superset of the elements that belong to the

intersection of each of the supersets of this subset, as stated in the following proposition.

Prop. 6. Let M and M′ be two families of sets. If M ⊆ M′ then ∩S
S∈M
⊇ ∩S

S∈M′
. (The proof can be

found in [126].)

5.5.2.1 Lattice-Based Depth-First Search Approach for Intersection

Rationale. We show a bottom-up lattice-based (LB) incremental algorithm, that can be

used for solving cmnBest(K,F) for any measurement type F, for queries such as Qconnectivity.

Input. The input of Alg. 5 is the set occur(D,F), the corresponding directCount(Bi,F)

score for each Bi ∈ occur(D,F), and a parameter L, for stopping the computation of met-

rics, when level L is reached, e.g., for finding cmnBest(K,F), L = K. In Figure 5.8, one can

see the occur(D,F) and the corresponding directCount list (which was created by scanning

the Entity-Index of this example).

Output. It computes at query time the |cmn(B,F)| for all the subsets until a level L, e.g.,

if L = |D| it computes the metrics for all the possible subsets B ∈ P(D). For finding the
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Figure 5.8: Execution of Bottom-up Lattice-Based Incremental Algorithm for comput-

ing cmnBest

cmnBest(K,F) it computes the metrics until the level L = K, and it keeps in memory the

subset having the argBmax |cmn(B,F)|.

The Initial Phase. Alg. 5 starts from the bottom part of the lattice, i.e., from the pairs

(lines 1-3), e.g., in Figure 5.8, we start from the pair {D1,D2}. For each pair of datasets, we

first find the Up(B,F) by traversing the set occur(D,F) once (see lines 5-7). Afterwards,

the recursive function cmnLB is called (line 8), which takes as parameters the subset of

datasets that will be visited, the set Up(B,F), and the stop level L.

Computation of Measurements for the Current Node & Exploration of Supersets Alg.

5 computes |cmn(B,F)| by taking the sum of the directCount score of Up(B,F), and prints

(or stores) the result (see lines 10-11). Afterwards, the target is to visit the supersets of the

current node. By following the dfs traversal, we visit a superset B′ from a subset B (lines

12-19), e.g., see Figure 5.6. Since we know that Up(B,F) ⊇ Up(B′,F) (see Prop. 6), we check

which entries of Up(B,F) should be transferred to B′, i.e., which of them belong also to

Up(B′,F) (see line 17). In this way, we create the latter set (i.e., Up(B′,F)) and we visit the

superset B′. Thereby, a new recursive call starts, where we perform exactly the same steps.

It is obvious that since Up(B′,F) ⊆ Up(B,F), the size of the input decreases as we continue

upwards. For instance, in Figure 5.8, we first visit the pair B = {D1,D2}, we compute its’

|cmn(B,F)| (which is 4), and then we go upwards to the triad B′ = {D1,D2,D3}. From the set
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ALGORITHM 5: Computing |cmn(B,F)| incrementally for any possible subset of

datasets B
Input: The set occur(D,F), the directCount values, the stop Level L
Output: The commonalities |cmn(B,F)|, for each possible subset B∈ P(D)

1 forall Di ∈ D do

2 forall Dj ∈ D, i > j do // Visit each pair of datasets once

3 B← {Di,Dj}

4 Up(B,F)← ∅
5 forall Bi ∈ occur(D,F) do // Traverse the directCount list
6 if B⊆ Bi then

7 Up(B,F)← Up(B,F) ∪ {Bi}

8 cmnLB(B,Up(B,F),L)

// The recursive function for computing the metrics incrementally

9 function cmnLB(Subset B,Up(B,F), level L ) // Visit B
10 |cmn(B,F)| ←

∑

Bi∈Up(B,F) directCount(Bi,F)

11 print B, |cmn(B,F)|
12 if |B| < L then // Continue until the stop level

13 forall Dk ∈ D do // A strict numerical dfs order is followed

14 B′ = B∪ {Dk} // Add one more dataset to B (B= prev(B′))
15 Up(B′,F)← ∅
16 forall Bi ∈ Up(B,F) do // Traverse the set Up(B,F)
17 if Bi ⊆ B′ then

18 Up(B′,F)← Up(B′,F) ∪ {Bi}

19 cmnLB(B′,Up(B′,F),L) // Visit B′

Up(B,F), only the entry {D1,D2,D3,D4} belongs also to Up(B′,F), therefore we transfer it

to B′. On the contrary, we do not transfer the entry {D1,D2,D4}, i.e., it is not a superset of

B′.

When the Execution of the Algorithm Finishes. We always continue upwards, until

there are no other supersets to explore (e.g., in Step 4 of Figure 5.8 we reached the top

of the lattice), or we have reached the desired level L (line 12 in Alg. 5), e.g., for finding

the triad having cmnBest(3,F), we should stop at level L = K = 3. In any of the previous

cases, the recursion ends, thereby, we return to the previous node and we check if there

are other supersets that have not been visited, e.g., in Step 6 of Figure 5.8, when we return

to the node {D1,D2}, we visit also its superset {D1,D2,D4}, and we perform again the check

of which of the Up({D1,D2},F) belong to the Ups of {D1,D2,D4}.

LB versus BM. For computing |cmn(B,F)| for a subset of datasets B, we scan the set

Up(B,F) instead of occur(D,F) (in BM approach), where Up(B,F) ⊆ occur(D,F).

Time & Space Complexity. Since we follow a depth-first search, we visit each node

(subset of datasets) once and we create one edge per node, i.e., |V| + |V|, and we need
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Figure 5.9: Computing the metrics for all the supersets of D1,D4

to keep in memory the nodes (subsets of datasets) that exist in the maximum depth of

the lattice (which is at most |D| + 1). For each visited subset B′, we iterate over |Up(B,F)|

entries (see line 16 of Alg. 5), for finding |Up(B′,F)|. Therefore, for a given set of subsets BV

(BV = {Bi, ...,Bn}), the average number of such iterations per subset B′ is: avgItLB(BV) =
∑

B′∈BV |Up(B,F)|,prev(B′)=B
|BV| . The time complexity is O(|BV| ∗ avgItLB(BV)), which is exponential

in number when |BV| = 2|D|. Concerning space complexity, it is O(|BVd| ∗ avgItLB(BVd))

where BVd = {Bi, ...,Bn} are the subsets that occur in the maximum depth d of lattice (since

d is at most |D| + 1, then |BVd| ≤ |D| + 1).

5.5.2.1.1 Removing Redundant Dataset from Up(B,F) and Regrouping (LB+UPGR).

The target is to further decrease the size of Up(B,F) that is transferred to a superset from a

subset in lines 12-19. In particular, we propose an approach, where we remove the redun-

dant datasets from eachBi ∈ Up(B,F), and we perform a regrouping. First, let maxID(B) be

the largest dataset ID in a subset of datasets B, i.e., maxID(B) = {k |Dk ∈ Band ∀Dj ∈ B, k ≥ j}

(e.g., maxID({D1,D3,D4}) = 4). By using the dfs traversal of Figure 5.6, we visit a superset

B′, where B′ = B∪ {Dk} and k = maxID(B′). For instance, suppose that we visit the subset

B = {D1,D4}. Afterwards, all the supersets of B that will be visited, will contain datasets

having ID larger than 4, therefore, we will never visit a superset of Bcontaining either D2

or D3. In this way, when we visit a dataset B, we define as redundant datasets in a subset

Bi ∈ Up(B,F) the following set of datasets Drdnt(Bi,B) = {Di ∈ Bi |Di < B, i < maxID(B)}.

In particular, for a specific B we can replace each Bi ∈ Up(B,F) with Bk
i , where Bk

i =

Bi \Drdnt(Bi,B), and then we regroup the “pruned” entries, i.e., we group the same entries

and we sum their directCount score. In this way, a new directCount list is created in each

lattice node. This list contains in its left side the setUpPr(B,F) =
⋃

Bi∈Up(B,F)Bi\Drdnt(Bi,B),

and in its right side the directCount score of each Bk
i , i.e., directCountPr(Bk

i ,F,B)

=
∑

Bi∈Up(B,F),Bki =Bi\Drdnt(Bi,B)
directCount(Bi,F).

Example. In Figure 5.9, we can see an example for a subset B = {D1,D4}. In this exam-

ple, suppose that the set Up(B,F) contains 7 entries. As we go upwards through the DFS
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approach, we will visit supersets of B, which do not contain either D2 or D3. Therefore,

we can remove these datasets from each entry of Up(B,F). This process results to a new

directCount list that contains some posting lists that are repeated. For instance, {D1,D4,D5}

exists 4 times in the new list, with different values. For this reason, we keep each posting

list once, however, we sum their directCount values, e.g., for {D1,D4,D5} the new value is

18. As a result, we will use 3 entries instead of 7 in this example. Thereby, as we continue

upwards, we create (and transfer) a new smaller directCount list.

LB+UPGR versus LB. It is obvious that |UpPr(B,F)| ≤ |Up(B,F)|, therefore, we read

and transfer smaller number of entries comparing to LB in Alg. 5. For each visited subset

B′, we can iterate over |UpPr(B,F)| entries (see line 16 of Alg. 5), for finding |UpPr(B′,F)|.

Therefore, for a given set of subsets BV , the average number of such iterations per sub-

set B′ is: avgItLB+UPGR(BV) =
∑

B′∈BV |UpPr(B,F)|,prev(B′)=B
|BV| and the time complexity is O(|BV| ∗

avgItLB+UPGR(BV)) Concerning space complexity, it is O(|BVd| ∗ avgItLB+UPGR(BVd))

5.5.2.2 Alternative Approach. Top-Down Breadth-First Search

Rationale. We introduce a top-down lattice-based (topDownLB) incremental algorithm

(i.e., Alg. 6), which uses a breadth-first search traversal and can be used for solving cmnBest(K,F)

for any measurement type F.

Input. Similarly to the case of bottom-up approach, the input is the set occur(D,F),

the corresponding directCount(Bi,F) score for each Bi ∈ occur(D,F), and a parameter L, for

stopping the computation of metrics, when level L is reached.

Output. The output is the same as in the bottom-up approach, i.e., it computes on

query time the |cmn(B,F)| for all the subsets until a level L.

The Algorithm. The top-down approach starts from the maximum level (i.e., the max-

imum level equals |D|), as one can see in Figure 5.7 and in line 1 of Alg. 6. It first computes

the metrics for all the subsets of datasets of each level (see line 2) before continuing with

the previous level. When a node B is visited, we check if B ∈ occur(D,F), i.e., if the current

subset of datasets Bcan be found in the directCount list (in line 4). In case it holds, we add

B to Up(B,F) and then we compute the value |cmn(B,F)|.

Afterwards, the list Up(B,F) of the current node is “transferred” to all the subsets B′

of the lower level (in lines 8-9), since B′ ⊂ B implies that Up(B,F) ⊆ Up(B′,F) (see Prop.

6). For example, for the lattice of Figure 5.8, since {D1,D2,D3,D4} ∈ Up({D1,D2,D3,D4},F)

then surely it belongs to theUps of all triads of datasets, e.g., {D1,D2,D3,D4} ∈ Up({D1,D2,D3},F),

{D1,D2,D3,D4} ∈ Up({D1,D2,D4},F), and so on. After finishing with the nodes of the cur-

rent level, we continue with the nodes of the previous level (i.e., see line 10 and Figure

5.7).

Time & Space Complexity. For this algorithm, we should create in the worst case all

the nodes and edges, i.e., |V| = 2|D| and |E| = |D| ∗ 2(|D|−1), therefore its time complexity
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ALGORITHM 6: Computing |cmn(B,F)| incrementally for any possible subset of

datasets B through a top-down approach

Input: The set occur(D,F) the directCount values, the stop Level L
Output: The commonalities |cmn(B,F)|, for each possible subset B∈ P(D)

1 currentL← |D|
2 while currentL≥ Ldo

3 forall B∈ B(currentL) do // B(currentL) = {Bi ∈ P(D) | |Bi| = currentL}
4 if B∈ occur(D,F) then

5 Up(B,F)← Up(B,F) ∪ {B}
6 |cmn(B,F)| ←

∑

Bi∈Up(B,F) directCount(Bi,F)

7 print B, |cmn(B,F)|
8 forall B′ ∈ down(B) do // down(B) = {Bi ∈ P(D) | Bi ⊂ B, |B| = |Bi| + 1}
9 Up(B′,F)← Up(B′,F) ∪Up(B,F)

10 currentL← currentL− 1

is O(|V| + |E|), The major problem is that since it follows a breadth-first search, we have to

keep in memory each subset B(and Up(B,F)) of a specific level L (the number of nodes Vk

of level L is given by VL =
(|D|
L

)

), i.e., its space complexity is O(|V′
L
|), where L′ is the lattice

level containing the highest number of nodes.

5.5.2.3 Comparison of Approaches

For all the lattice-based algorithms (i.e., top-down and bottom-up), we pass from each

node once, and we construct the Up(B,F) for each subset Bby exploiting set theory prop-

erties. On the contrary, by using a baseline method we should read the whole directCount

list, which is usually quite large. For instance, for the bottom-up approach we should

read |Up(B,F)| entries instead of |occur(D,F)|, and obviously it holds that |Up(B,F)| ≤

|occur(D,F)|.

Below, we analyze the differences between the top-down and the bottom-up approaches.

The main disadvantage of top-down approach is that we should create all the edges, i.e.,

the top-down approach requires creating |D|/ 2 times more edges than bottom-up ap-

proach, and to keep all the subsets of a specific level in memory. On the contrary, for the

bottom-up approach, there is no need to create all the edges. However, we should check

which of the Up(B,F) belong also to Up(B′,F), where B ⊂ B′, whereas in the top-down

approach we can add Up(B′,F) to Up(B,F) (B⊂ B′) without performing such a check.

A major advantage of bottom-up approach is that we need to keep in memory only d

subsets of datasets, where d is at most |D| + 1, whereas for the top-down approach, we

should keep in memory a high number of datasets (indeed the exact number is given

through the binomial coefficient formula). Another advantage of bottom-up approach is
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that it is more beneficial to be used for computing only the |cmn(B,F)| of subsets that sat-

isfy a specific threshold (e.g., |cmn(B,F)| ≥ 20). Indeed, fewer nodes will be created since

we can exploit Prop. 6 to avoid creating nodes that are impossible to satisfy the threshold,

e.g., we know that if |cmn(B,F)| < 20, then all for each of the supersets B′ of B it holds

that |cmn(B′,F)| < 20. In the past, we have performed a power-law study [165], which

has shown that the bottom-up approach is more efficient as the number of dataset grows,

which is also confirmed by the experiments that are presented in §5.7.

Concerning the comparison between the two bottom-up approach that follows a DFS

traversal, by using the LB+UPGR approach versus the standard version (without removing

the redundant datasets), we read and transfer (from a subset to a superset) a smaller num-

ber of entries, since |UpPr(B,F)| ≤ |Up(B,F)|. However, we should perform some extra

operations for pruning and regrouping the entries of Up(B,F), which can be time consum-

ing in some cases, as we will see experimentally in §5.7.

5.5.3 Lattice Based Incremental Algorithm for computing covBest(K,F) (LB method).

Here, we show how to use a lattice-based depth-first search traversal and set theory prop-

erties for computing coverage.

Rationale. We present a lattice-based (LB) incremental algorithm, that can be used

for solving covBest(K,F). It reuses measurements between a subset B and a superset B′

(B⊂ B′), by following a depth-first search traversal and by exploiting set theory properties,

as it is described below.

How to Reuse the Measurements. For reusing the measurements in an incremental

way, we exploit the following set theory property:

Lemma 6. From the set theory, we know that for n sets {A1,A2, ...,An}, |A1∪A2∪ ...∪An| =

|A1 ∪ A2 ∪ ... ∪ An−1| + |An \ {A1 ∪ A2 ∪ ... ∪ An−1}| (Proof can be found in [126]).

By exploiting the above property, for a subset Band a superset B′ (where B′ = B∪ {Dk}), we

can add to |cov(B′,F)|, the value |cov(B,F)|. The only requirement for computing |cov(B′,F)|,

is to find which are the directCount entries that contain the newly added datasetDk, but not

any Di ∈ B, i.e., we should construct the set occur({Dk},F)\B, as it is stated below.

Prop. 7. If B′ = B∪ {Dk}, then,

|cov(B′,F)| = |cov(B,F)| +
∑

Bi∈occur({Dk},F)\B

directCount(Bi,F) (5.12)
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Proof.

|cov(B′,F)|
B′=B∪{Dm}= |{∪Di∈BF(Di)} ∪F(Dm)|

(Lemma 6)
= | ∪Di∈B F(Di)| + |F(Dm) \ {∪Di∈BF(Di)}|

= |cov(B,F)| + |{k|k ∈ F(Dm), and ∀Di ∈ B, k < F(Di)}|

(Lemma 1)
= |cov(B,F)| + | ∪B′i∈P(D) {k ∈ Lef t(indF)|indF(k) = B′i ,Dm ∈ B

′
i ,B∩ B′i = ∅}|

(Def . 4)
= |cov(B,F)| + | ∪B′i∈occur({Dm},F)\B {k ∈ Lef t(indF)|indF(k) = B′i }|

(Similarly to Proof of Prop.3)
= |cov(B,F)| +

∑

B′i∈occur({Dm},F)\B

directCount(B′i ,F) ⋄

�

Alg. 7 shows the exact steps for computing the coverage incrementally, while Figure

5.10 depicts an example of Alg. 7, for the 5 “lattice nodes” in green color, of Query Qcoverage

(see Figure 5.3) .

Input. The input is the set occur(D,F) and the corresponding directCount(Bi,F) score,

for each Bi ∈ occur(D,F), e.g., see the input in the lower right side of Figure 5.10, and a

parameter L, for stopping the computation of metrics, when level L is reached, e.g., for

finding covBest(K,F), L= K .

Output. It computes at query time the |cov(B,F)| for all the subsets until a level L, e.g.,

if L = |D| + 1 it computes the metrics for all the possible subsets B ∈ P(D). In particular,

for finding the covBest(K,F) it computes the metrics until the level L = K, and it keeps in

memory the subset having the argBmax |cov(B,F)|.

The Initial Phase. We start from the bottom part of the lattice, thereby, we first explore

the nodes containing a single dataset (lines 1-4 of Alg. 7), e.g., in Figure 5.10, we start

from the dataset D1. For each single dataset the recursive function covLB is called, which

takes as parameters the subset of datasets that will be visited, the dataset Dk which was

just added, the coverage of the previous visited node, i.e., |cov(B,F)|, the set occur(D,F)\B,

and the stop level L. For the case of single datasets, we suppose that the previous node

is the empty set, therefore, |cov({∅},F)| = 0, while occur(D,F)\{∅} contains all the entries of

the directCount list, i.e., occur(D,F) (lines 1-2).

Computation of Measurements for the Current Node. The target is to construct the

set occur({Dk},F)\B (see Lemma 6). For this reason, we read the entries of the input set

occur(D,F)\B, and ∀ Bi ∈ occur(D,F)\B we check whether Dk ∈ Bi (see lines 6-12 of Alg.

7). When Dk ∈ Bi, we add Bi to occur({Dk},F)\B. On the contrary, if Dk < Bi, we store Bi

in another set, i.e., occur(D,F)\B′ , since Bi should be scanned again when we reach the

supersets of B′. Therefore, we divide the input set occur(D,F)\B in two disjoint sets, i.e.,
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ALGORITHM 7: Computing |cov(B,F)| incrementally for any possible subset of

datasets B
Input: The directCount list including the set occur(D,F) and the directCount values, the

stop Level L
Output: The coverage |cov(B,F)|, for each possible subset B∈ P(D)

1 occur(D,F)\{∅} ← occur(D,F) // The starting node is the empty set

2 |cov({∅},F)| = 0
3 forall Dk ∈ D do // Visit each single dataset once

4 covLB({Dk},Dk, |cov({∅},F)|, occur(D,F)\{∅},L)

// The recursive function for computing the metrics incrementally

5 function covLB(Subset B′,Dataset Dk, |cov(B,F)|, occur(D,F)\B, level L ) // Visit B′

6 occur({Dk},F)\B← ∅
7 occur(D,F)\B′ ← ∅
8 forall Bi ∈ occur(D,F)\B do // Divide occur(D,F)\B into two disjoint sets
9 if Dk ∈ Bi then

10 occur({Dk},F)\B← occur({Dk},F)\B∪ {Bi}

11 else if Dk < Bi then
12 occur(D,F)\B′ ← occur(D,F)\B′ ∪ {Bi}

13 |cov(B′,F)| ← |cov(B,F)| +
∑

Bi∈occur({Dk},F)\B
directCount(Bi,F)

14 print B′, |cov(B′,F)|
15 if |B′| ≤ L then // Continue until the stop level

16 forall Dj ∈ D, j > k do // A strict numerical dfs order is followed

17 B′′ = B′ ∪ {Dj} // Add one more dataset to B′(B′ = prev(B′′))
18 covLB(B′′,Dj, |cov(B

′,F)|, occur(D,F)\B′ ,L) // Visit B′′

occur(D,F)\B = occur({Dk},F)\B ∪ occur(D,F)\B′ . Finally, Alg. 7 computes |cov(B′,F)| by

taking the sum of |cov(B,F)| and the sum of the directCount score of occur({Dk},F)\B, and

prints (or stores) the result (see lines 13-14).

In Figure 5.10, we first visit the datasetD1, and we iterate over the set occur(D,F). Then,

we create the sets occur(D,F)\{D1} = {{D2,D3}, {D2,D4}, {D3}, {D4}} and occur({D1},F)\B =

{{D1}, {D1,D2}}. Finally, we sum the directCount score of occur({D1},F)\Bentries (which equals

3) and the |cov(B,F)| of the previous subset, which is the empty set (|cov({∅},F)| = 0), for

computing |cov({D1},F)| = 3.

How to explore the Supersets of the Current Node. By following the dfs traversal in

a recursive way, we visit a superset B′′ from a subset B′ (lines 16-18), e.g., see Figure 5.10.

Indeed, when we visit B′′, we add a parameter for “highlighting” the dataset Dj that was

last added, we transfer the value |cov(B′,F)| and the set occur(D,F)\B′ . Thereby, a new

recursive call starts, where we perform exactly the same steps. It is obvious that since

occur(D,F)\B′ ⊆ occur(D,F)\B, the size of the input (which is scanned in lines 8-12) de-

creases as we continue upwards.

In Step 2 of Figure 5.10, we “transferred” from D1 to {D1,D2} the value |cov({D1},F)| and

the set occur(D,F)\{D1}. In the second recursion, we iterated over the set occur(D,F)\{D1}
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Figure 5.10: Execution of Incremental Algorithm for the 5 lattice nodes in green color

once, and we constructed the sets occur({D2},F)\{D1} = {{D2,D3}, {D2,D4}} and occur(D,F)\{D1,D2} =

{{D3}, {D4}}. Finally, we took the sum of the directCount score of occur({D2},F)\{D1} entries

(i.e., equals 3), and of |cov({D1},F)| (i.e., 3), for computing |cov({D1,D2},F)| = 6. Finally, the

set occur(D,F)\{D1,D2} will be transferred to the supersets of {D1,D2}, e.g., in Steps 3 and 7

of Figure 5.10.

When the Execution of the Algorithm Finishes. We always continue upwards, until

there are no other supersets to explore (e.g., in Step 4 of Figure 5.10 we reached the top of

the lattice), or we have reached the desired level L (line 15 in Alg. 7), e.g., for finding the

triad having covBest(3,F), we stop at level L= K = 3.

LB versus BM. For computing |cov(B′,F)| for a subset B′, we reuse |cov(B,F)| and we

scan the set occur(D,F)\B instead of occur(D,F) (in BM approach), where occur(D,F)\B ⊆

occur(D,F).

Time & Space Complexity. For each visited subset B′, we iterate over |occur(D,F)\B|

entries (see line 8 of Alg. 7). Therefore, for a given set of subsets BV (BV = {Bi, ...,Bn}), the

average number of such iterations per subsetB′ is: avgItLB(BV) =
∑

B′∈BV |occur(D,F)\B|,prev(B
′)=B

|BV| .
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The time complexity isO(|BV| ∗ avgItLB(BV)), which is exponential in number when |BV| =

2|D|. Concerning space complexity, it isO(|BVd| ∗avgItLB(BVd)) where BVd = {Bi, ...,Bn} are

the subsets that occur in the maximum depth d of lattice (since d is at most |D| + 1, then

|BVd| ≤ |D| + 1).

5.5.3.1 Pruning & Regrouping the directCount List for computing covBest(K,F)

Here, the target is to decrease the size of the set occur(D,F)\B, which is transferred in line

18 of Alg. 7 from a subset B to a superset B′ (B = prev(B′)), and is scanned in lines 8-12

of Alg. 7 when B′ is visited, for solving covBest(K,F) by performing less set operations in

the aforementioned lines. For this reason, we propose in §5.5.3.2 a process for pruning

the totally redundant entries, and in §5.5.3.3 a process for pruning and regrouping all the

entries of the directCount list.

5.5.3.2 Pruning Totally Redundant Entries (LB+TPR)

First, we provide some definitions. Remind that maxID(B) = {k | Dk ∈ Band ∀Dj ∈ B, k ≥ j}.

Moreover, we define as D≤k = {Di ∈ D | i ≤ k,Dk ∈ D} all datasets whose ID is equal or

smaller than the ID of Dk (e.g., in Figure 5.11, D≤4 = {D1,D2,D3,D4}). Finally, let D>k =

D \ D≤k be all datasets whose ID is larger than the ID of Dk (e.g., in Figure 5.11, D>4 =

{D5,D6,D7}).

LB+TPR Approach. The target is to remove the redundant entries from the set occur(D,F)\B′ ,

which is created in line 12 of Alg. 7. By using the dfs traversal of Figure 5.6 (and the nu-

merical ascending order), we visit a superset B′, where B′ = B∪ {Dk} and k = maxID(B′).

Due to this traversal, in lines 11-12 of Alg. 7, it is redundant to add Bi to occur(D,F)\B′ if

maxID(Bi) < k, i.e., in this case, all the IDs of Bi datasets are smaller than k. Indeed, for

such a Bi and for any B′′ (where B′′ ⊃ B′) it holds that Bi ∩ B′′ = ∅, which means that

Bi will be “transferred” forever, as we go upwards (i.e., it will never pass the check in line

9). Therefore, in line 11 we check if maxID(Bi) > k and only in case it holds, in line 12 we

add Bi to the set occur(D>k,F)\B′ (instead of occur(D,F)\B′), and then we transfer the set

occur(D>k,F)\B′ to the supersets of B′ (in line 18).

Example. In Figure 5.11, we desire to compute the metrics for all the supersets of D4

that have not visited yet, i.e., those that do not contain D1, D2 or D3. Due to dfs traversal,

we have already computed the measurements for any combination containing D1, D2 or

D3. Since each time we will add datasets belonging to D>3 = {D4,D5,D6,D7}, in Step A of

Figure 5.11 we prune the totally redundant entries, containing only datasets belonging to

D≤3, but not any Di ∈ D>3. In this way, we use 6 directCount entries instead of 9, i.e., we

removed the entries {D1,D3}, {D2} and {D2,D3}.

LB+TPR versus LB. Since D>k ⊆ D, for any subset B it holds that occur(D>k,F)\B ⊆

occur(D,F)\B, therefore, we transfer (line 18 of Alg. 7) and iterate (line 8 of Alg. 7) over
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Figure 5.11: Pruning Example-Computing the metrics for all the supersets of D4, that

have not been explored yet

smaller (or in the worst case the same) number of entries comparing to LB approach of

§5.5.3 (see time and space complexity of LB+TPR in Table 5.2). However, we should per-

form an extra check (i.e., maxID(Bi) > k).

5.5.3.3 Pruning & Regrouping (LB+PRGR)

The target is to further reduce the size of occur(D>k,F)\B′ , which is used for computing

|cov(B,F)| for the supersets of B′. In this way, we propose an approach, where we remove

both the totally redundant directCount entries and the redundant datasets from each re-

maining directCount entry, and we perform a regrouping. In particular, for a specific B′

(where maxID(B′) = k), we replace each Bi ∈ occur(D>k,F)\B′ (constructed in lines 8-12

by using LB+TPR) with Bk
i , where Bk

i = Bi \ D≤k, and then we regroup the “pruned” en-

tries, i.e., we group the same entries and we sum their directCount score. In this way, a

new directCount list is created in each lattice node. This list contains in its left side the set

occurPr(D>k,F)\B′ =
⋃

Bi∈occur(D>k,F)\B′
Bi \D≤k (where k = maxID(B′)), and in its right side the

directCount score of eachBk
i , i.e., directCountPr(Bk

i ,F,B′) =
∑

Bi∈occur(D>k,F)\B′ ,B
k
i=Bi\D≤k

directCount(Bi,F).

Example. In Step B of Figure 5.11, we prune in each entry the datasets belonging

to D≤3 = {D1,D2,D3}, i.e., we have already visited all the nodes containing any of these

datasets. Due to pruning, some entries exist multiple times, e.g., {D4,D5} exists twice,

with directCount scores 2 and 3. For this reason, in Step C, we regroup the entries, e.g.,

we keep {D4,D5} once, with a new directCount score, i.e., 5. Due to this process, we use only

4 directCount entries, instead of 6 (by using LB+TPR). Certainly, as we continue upwards,

we create (and transfer) a new smaller directCount list.

LB+PRGR versus LB+TPR. It is obvious that |occurPr(D>k,F)\B′ | ≤ |occur(D>k,F)\B′ |,

therefore, we read and transfer smaller number of entries comparing to LB+PRGR in lines

8 and 18 of Alg. 7. However, we should perform additional operations for creating the set

occurPr(B′,F) and the directCountPr(Bk
i ,F,B′) of each Bk

i . Table 5.2 presents the time and
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Approach avgIt per B′ in line 8 of Alg. 7 (B= prev(B′)) Time Complexity Space Complexity

BM |occur(D,F)| O(|BV| ∗ |occur(D,F)|) O(|occur(D,F)|)

LB avgItLB(BV) =
∑

B′∈BV |occur(D,F)\B|
|BV| O(|BV| ∗ avgItLB(BV)) O(|BVd | ∗ avgItLB(BVd))

LB+TPR avgItLB+TPR(BV)
∑

B′∈BV |occur(D>k ,F)\B|
|BV| O(|BV| ∗ avgItLB+TPR(BV)) O(|BVd | ∗ avgItLB+TPR(BVd))

LB+PRGR avgItLB+PRGR(BV) =
∑

B′∈BV |occurPr(D>k,F)\B|
|BV| O(|BV| ∗ avgItLB+PRGR(BV)) O(|BVd | ∗ avgItLB+PRGR(BVd))

Table 5.2: Comparison of different approaches for computing |cov(B′,F)|, for a set of

“visited” subsets BV.

space complexity of LB+PRGR.

5.5.3.4 Complexity Summary

Table 5.2 compares the presented approaches in terms of the average iterations per sub-

set B for computing |cov(B,F)|, and of time and space complexity. As we have seen in

this section, for a specific subset Bwhere k = maxID(B), it holds that |occurPr(D>k,F)\B| ≤

|occur(D>k,F)\B| ≤ |occur(D,F)\B| ≤ |occur(D,F)|. Therefore, for any given subset B, the

number of iterations required for computing |cov(B,F)| (and thus the number of set op-

erations in lines 8-12 of Alg. 7), and the size of the set which is transferred to supersets

(line 18 of Alg. 7), is reduced as we go downwards in Table 5.2. In this way, (in lines 8-

12) less operations are required for finding the covBest(K,F). However, we should note

that for the case of LB+TPR we need to perform an extra check comparing to LB, i.e.,

maxID(Bi) > k. By using LB+PRGR, we perform the previous check, and we also replace

each Bi ∈ |occur(D>k,F)\B|, with Bk
i = Bi \ D≤k, and to compute the directCount score of Bk

i .

However, as we shall see experimentally in §5.7, despite these extra operations, the two

latter approaches (mainly LB+PRGR) are faster comparing to the other ones.

5.5.4 Lattice-Based Incremental Algorithm for computing enrichBest(K,F,Dm)

We use a variation of the incremental algorithm (i.e., Alg. 7) for coverage. The key differ-

ence is that we do not take into account the posting lists and lattice nodes containing Dm.

Input. We give as input the occur(D,F)\{Dm} instead of occur(D,F), and the lattice level L,

e.g., for stopping the computation when L= K.

Output. It computes at query time the |enrich(B,F,Dm)| for all the subsets of datasets (that

do not contain Dm) until a level L. For finding the enrichBest(K,F,Dm) it computes the met-

rics until the levelL= K, and it keeps in memory the subset having the argBmax |enrich(B,F,Dm)|.

Differences with Alg. 7. Below, we analyze the differences comparing to Alg. 7.

•We transfer from a subset B to a superset B′ (B′ = B∪ {Dk}) the value |enrich(B,F,Dm)|

and the set occur(D,F)\{B∪{Dm}} (instead of |cov(B,F)| and occur(D,F)\B).
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• In each recursive call, we read the set occur(D,F)\{B∪{Dm}} , and we divide that set into

two disjoint sets, i.e., occur({Dk},F)\{B∪{Dm}} and occur(D,F)\{B′∪{Dm}}.

•We exploit the set theory property described in Lemma 6, for computing |enrich(B′,F,Dm)|

as follows, |enrich(B′,F,Dm)| = |enrich(B,F,Dm)| +
∑

Bi∈occur({Dk},F)\{B∪{Dm}}
directCount(Bi,F).

Time & Space Complexity. Given a set of subsets BV (BV = {Bi, ...,Bn}), the average num-

ber of iterations per B′ ∈ BV is: avgItenrichLB(BV) =
∑

B′∈BV |occur(D,F)\{B∪{Dm}}|,B=prev(B
′)

|BV| . The time

complexity is O(|BV| ∗ avgItenrichLB(BV)) (where |BV| ≤ 2|D|−1), and the space complexity is

O(|BVd| ∗ avgItenrichLB(BVd)) where BVd = {Bi, ...,Bn} (BVd ≤ |D|). For reducing the number

of iterations, one can use the pruning and regrouping mechanisms of §5.5.3.1.

5.5.5 Lattice-Based Incremental Algorithm for computing uniqBest(Dm,F,K)

We use a variation of the incremental algorithm (i.e., Alg. 7) which is used for coverage.

The key difference is that we compute the union of the elements of the datasets in B that

also occur in Dm.

Input. We give as input the occur({Dm},F) instead of occur(D,F), and the level L, i.e., the

level where we stop the computation.

Output. It computes at query time the |uniq(Dm,F,B)| for all the subsets of datasets (that

do not contain Dm) until a level L. For finding the uniqBest(Dm,F,K) it computes the met-

rics until the levelL= K, and it keeps in memory the subset having the argBmax |uniq(Dm,F,B)|.

Differences with Alg. 7. Below, we analyze the differences comparing to Alg. 7.

•We initialize |uniq(Dm,F, {∅})| = |cov({Dm},F)| (all the elements of Dm are unique com-

paring to the empty set), and we transfer from a subset Bto a supersetB′ (B′ = B∪{Dk}) the

value |uniq(Dm,F,B)| and the set occur({Dm},F)\B (instead of |cov(B,F)| and occur(D,F)\B).

• In each recursive call, we read occur({Dm},F)\B, and we divide that set into two dis-

joint sets, i.e., occur({Dm},F)\B′ and occur({Dk},F)Dm,\B, where the set occur({Dk},F)Dm,\B is

defined as occur({Dk},F)Dm,\B = occur({Dk},F)Dm \ occur(B,F)Dm.

• By exploiting the set theory property of Lemma 6, we compute the |uniq(Dm,F,B′)| as

follows: |uniq(Dm,F,B′)| = |uniq(Dm,F,B)| −
∑

Bi∈occur({Dk},F)Dm,\B
directCount(Bi,F).

Time & Space Complexity. Given a set of subsets BV (BV = {Bi, ...,Bn}), the average num-

ber of iterations per B′ ∈ BV is: avgItuniqLB(BV) =
∑

B′∈BV |occur({Dm},F)\B|,B=prev(B
′)

|BV| . The time

complexity is O(|BV| ∗ avgItuniqLB(BV)) (where |BV| ≤ 2|D|−1), and the space complexity is

O(|BVd| ∗ avgItuniqLB(BVd)) where BVd = {Bi, ...,Bn} (|BVd| ≤ |D|). One can use the pruning

and regrouping methods of §5.5.3.1, for reducing the number of iterations.
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5.6 Computing Lattice-Based Measurements in Parallel

Here, we show how to parallelize the bottom-up lattice based approach, by splitting the

lattice into smaller pieces.

5.6.1 Overview of the Parallelization.

Ideally we would like each machine to compute the measurements for the same (or ap-

proximately the same) number of lattice nodes and this is quite challenging. Let LMi

denote the subset of lattice nodes for machine mi. Ideally we would like ∀i ∈ [1, ...,m],

|LMi| = 2|D|
m . The challenge here is to split the lattice in “slices”, where for each “slice” we

want to be able to exploit the set-theory properties described earlier in this chapter and to

perform the lattice-based measurements of its “slice” incrementally. For this reason, we

create a parallelized version of the bottom-up incremental algorithm where we split the

lattice in such “slices”, where each “slice” of the lattice corresponds to the upper set or a

part of the upper set of a specific node.

In particular, let LP = {L1, ...,Lz} denote a partition of the power set of 2|D| nodes, i.e.,

L1∪...∪Lz =P(D), and if i , j,Li∩Lj = ∅. Moreover, let θ be a threshold where θ = 2|D|
t , t ≥ 1

(t can be given by the user). The size of the nodes that each “slice” contains is less or equal

θ, i.e., |Li| ≤ θ and each machine mi computes the measurements for a subset of lattice

“slices” LP, i.e., LMi = {Lj, ...,Ln}. Therefore, we split the power set of the lattice in z “slices”

where z depends on θ, e.g., by having a big value for θ, fewer “slices” will be created, each

of them containing a big number of nodes, whereas by choosing a small value for θ, larger

number of “slices” will be created, each of them having fewer number of nodes. As we shall

see, each “slice” of the power set corresponds to a unique key-value pair and the “slices”

are distributed randomly to the available machines.

5.6.2 Why to parallelize the bottom-up approach.

We decided to generalize the bottom-up approach since (a) it is faster comparing to the

top-down as the number of dataset grows [165], (b) it uses depth-first traversal, where

there is no need to create all the edges of the lattice and (c) its computation can be divided

into the computation of the upper sets of different pairs. The proposed approach can be

used for constructing either the whole lattice or a part of it (e.g., measurements until level

L). As we have described, the main notion of the bottom-up algorithm is that we always

start from a subset B containing a pair of sources, we compute the measurements of all

the nodes of its upper set (including B) before continuing with the upper set of the next

pair and so forth. Therefore, one possible way to traverse in parallel the lattice is to split

the lattice in smaller “slices”, where each “slice” corresponds to the upper set of each pair.

However, the size of the upper set of each pair (or triad, quad and so on) is not the same.
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Let Ups(B) be the upper set of a subset B, i.e., a subset of the supersets of B, where for

each B′ ∈ Ups(B) there does not exist a dataset Dj in B′ whose ID (i.e. j) according to the

numerical order is lower than the dataset ID i for any Di ∈ B. For instance, 〈D1,D2,D3〉 is a

superset of 〈D2,D3〉, however, it does not belong to Ups(D2,D3) because the ID of dataset

D1, i.e. 1, is lower than the dataset ID for any dataset in 〈D2,D3〉 (i.e. 1 is lower than 2 and

3). Therefore, Ups(B) is defined as follows: Ups(B) = {B′ |B⊆ B′ s.t ∄ j > i,Dj ∈ B,Di ∈ B
′\B}.

The key notion is that the size of each “slice” (i.e., Ups(B)) is a power of two (as it is stated in

Prop. 8), and for this reason we define (later in this section) a threshold θ which is always

a power of two number.

Prop. 8. LetD = {D1, ...,Dn}, and B = 〈Dj, ...,Dk〉 where j < k ≤ n and n = |D|. The upper

set of subset B, i.e. Ups(B), contains 2n−k subsets.

Proof. The upper set of Bcontains the nodes Ups(B) = {B′ | B ⊆ B′ s.t ∄ j > i,Dj ∈ B,Di ∈

B′ \ B}. It means that each dataset that belongs to B, belongs also to B′, i.e. for each Di ∈

B,Di ∈ B′ and each of the datasets that belongs to B′ and not to B, i.e., for each Dj ∈ B′

where Dj < B, it holds that j > k. From the n datasets, j > k holds for |D′| = n − k in number

datasets: D′ = {Dk+1, ...,Dn}where (k + 1 < k + 2 < ... < n). Each Dj ∈ D
′ can either belong

to a particular subsetB′ ∈ Ups(B), i.e., Dj ∈ B
′ or not belong to B′, i.e., Dj < B

′. It means that

there exists two different options for each dataset. Therefore, for n−kdatasets, the number

of all possible combinations are 2 × 2 × ... × 2 (n − k times) = 2n−k, i.e., |Ups(B)| = 2n−k. �

In our case, we have |D| datasets where D = {D1, ...,Dn} and for the pair 〈D1,D2〉, its

upper set contains the power set of the setD′ = {D3, ...,Dn}, i.e, 2|D|−2 nodes which corre-

sponds to 1/4 of all the nodes (2
|D|−2

2|D|
). Indeed, in such a case one machine will compute at

least 1/4 of the nodes regardless of the number of the available machines. For this reason,

we propose a distributed version of the bottom-up algorithm where we split the power

set in smaller “slices”, where the size of each “slice” Li is less than or equal to a threshold

|Li| ≤ θ where θ = 2|D|/ t, t ≥ 1. For instance, if t equals 16, each “slice” of the power set will

be equal to or lower than 2|D|/ 16 of the nodes of the power set. In Figure 5.12, we can see

an example of 6 datasets and (26 nodes). We assume that there are 16 machines, thereby,

we can choose t = 16 which implies that θ = 64/ 16 = 4. It means that the size of each slice

of the lattice that will be sent to the reducer will contain 4 or less nodes. It is worth men-

tioning that the size of each “slice” is always a power of two (as it follows by proposition 8),

while for each “slice” we just emit a single key-value pair, as we shall see below.

5.6.3 Bottom-up Lattice-Based Algorithm in Parallel

Here, we show how to compute the commonalities by using a parallel version of the algo-

rithm. However, this algorithm can be easily adjusted for computing also the other three

metrics, i.e., coverage, information enrichment and uniqueness.
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Map Phase. Let UpsR(B) be all the nodes belonging in the upper set of a subset B

that the algorithm have not explored yet (obviously UpsR(B) ⊆ Ups(B)). The Bottom-up

parallel algorithm for commonalities (shown in Alg. 8 and Alg 9) starts in the mapper by

computing θ, traverses a subset of pairs, i.e., the set Bpairs = {Bi ∈ P(D) | |Bi| = 2}, and

calls the recursive function BupMapper, for each subset B (a pair of datasets) that belongs

in Bpairs (lines 3-4). The recursive function BupMapper computes the size of Ups(B) (lines

6-7) and checks whether its upper set size is less than or equal to θ (line 8). In such a case

(lines 9-10), it sends to the reducer a key-value pair having as key the subset Band as value

the following two different parts: a) Up(B,F) and b) a value zero which indicates that the

reducer will compute the measurements for the whole upper set of subset L. In particular,

when the algorithm reaches line 9, the reducer function (see the first function of Alg. 9) will

be triggered for computing the measurements for the upper set of B. Otherwise it assigns

|UpsR(B)| = |Ups(B)| (line 11) and then it starts to explore its supersets of the next level

(lines 12-13).

Each time it checks whether |UpsR(B)| ≤ θ (line 14) and if yes (i.e., the number of the

nodes of this upper set is equal to or lower than θ), it sends to the reducer the subset B,

Up(B,F) and a node B′ indicating the node from which we will start the computation of

the measurements of the nodes belonging in Ups(B) (lines 15-16). Specifically, when line

15 is triggered, the aforementioned key-value pair will be given as an input to the Reducer

function (see the first function of Alg. 9). Otherwise, it continues upwards (since we follow

a Depth-First Search traversal) with a superset B′ where, B′ ⊃ B,B′ ∈ UpsR(B) and calls the

recursive function again (lines 17-22).

Figure 5.12 shows an example where we have selected θ = 4. At first (see step 1 of node

〈D1,D2〉), |Ups(D1,D2)| > θ, therefore we continue with the triad 〈D1,D2,D3〉 (i.e., edge 1 is

created). In the case of 〈D1,D2,D3〉 (see step 2), the size of its upper set is greater than θ,

therefore we continue upwards with the quad 〈D1,D2,D3,D4〉 i.e., edge 2 is created. Then,

the size of the upper set of the quad 〈D1,D2,D3,D4〉 is equal to θ (see step 3), so we send this

“slice” (i.e., nodes in yellow) to a reducer. Therefore, for this “slice”, Alg. 8 sends as key the

subset 〈D1,D2,D3,D4〉 and a value with two parts: a) Up({D1,D2,D3,D4},F) and b) a value

’0’ indicating that for this “slice” we should perform the measurements for all the nodes be-

longing in the upper set of 〈D1,D2,D3,D4〉. Afterwards, we return to the previous node (see

step 4), i.e., 〈D1,D2,D3〉 (see the edge 3 in Figure 5.12), and we check if the remaining nodes

of its upper set, i.e., |UpsR(D1,D2,D3)| = |Ups(D1,D2,D3)|−|Ups(D1,D2,D3,D4)|, is less than

or equal to θ (see step 5). In particular, |UpsR(D1,D2,D3)| equals θ, therefore we send to the

reducer the remaining upper set of the node 〈D1,D2,D3〉 in a reducer (nodes in cyan color).

Concerning Alg. 8, in this case it emits a key-value pair consisting of subset 〈D1,D2,D3〉 as

key, and a value with two parts: a)Up({D1,D2,D3},F) and b) 〈D1,D2,D3,D5〉 (starting node).

In this case, we would like to compute the measurements for the upper set of 〈D1,D2,D3〉

but we should exclude from the computation the upper set of 〈D1,D2,D3,D4〉 which will
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Figure 5.12: Example of splitting the Upper Set of a set of nodes in 4 “Slices”, each hav-

ing 4 nodes
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be computed separately, i.e. see “slice” 1 of Figure 5.12. For this reason, we put as a start-

ing node the subset 〈D1,D2,D3,D5〉 for starting exploring in the reducer the upper set of

〈D1,D2,D3〉 from this node and not from 〈D1,D2,D3,D4〉. Afterwards, we return to node

〈D1,D2〉 (see step 6 and edge 4) and we check in step 7 whether |UpsR(D1,D2)| < θ. Since

it is greater than θ, edge 5 is created and we reach the node 〈D1,D2,D4〉. The size of the

upper set of this node equals θ (see step 8), and we send its upper set (nodes in gray) to a

reducer. Finally, we return again to node 〈D1,D2〉 (see step 9 and edge 6) and we send its

remaining upper set (nodes in green) to a reducer (see step 10) since |UpsR(D1,D2)| equals

θ. Therefore, each time that we reach a node Bwhose upper set is equal to or lower than θ,

we send a key-value pair to the reducer for computing the measurements for the subsets

of Ups(B). Then, we return back to its subset of the previous node and we recheck the size

of the “remaining” upper set of the previous node B. Then, we send it to the reducer to

compute the “remaining” upper set nodes of Bwhen |UpsR(B)| ≤ θ.

We can observe in Figure 5.12, that we finally split the upper set of 〈D1,D2〉 in four

different “slices” (and consequently 4 key-value pairs), where the number of the nodes

of all of these parts equals 4. Each of these “slices” corresponds to a unique key-value

pair, and the “slices” are distributed randomly to the available machines. Therefore, the

communication cost (from the mappers to the reducers) of the proposed algorithm isO(z),

where z is the number of “slices”.
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ALGORITHM 8: Bottom-up parallel

Incremental algorithm Mapper

Input: Pairs Bpairs, Up of pairs and

threshold t

Output: Splitting the Lattice in “Slices”

1 function Mapper (Bpairs,Up of pairs,t)

2 θ← 2|D|
t

3 forall B∈ Bpairs do

4 BupMapper(B,Up(B,F), θ)

5 function BupMapper (subset

B,Up(B,F),θ)

6 D′ = {Di ∈ D| ∀Dk ∈ B, Di > Dk}

7 |Ups(B)| ← 2|D
′|

8 if |UpsR(B)| ≤ θ then

9 emit(B, Up(B,F) | sNode → 0)

10 return |Ups(B)|

11 |UpsR(B)| ← |Ups(B)|

12 Bup ← {Bi |Bi ⊃ B, |Bi| =

|B| + 1,Bi ∈ Ups(B)}

13 forall B′ ∈ Bup do

14 if |UpsR(B)| ≤ θ then

15 emit(B, Up(B,F) | sNode → B′)

16 return |Ups(B)|

17 else

18 forall Bi ∈ Up(B,F) do

19 if Bi ⊆ B′ then

20 Up(B′,F)←

Up(B′,F) ∪ {Bi}

21 |Ups(B)| ← BupMapper(B′,Up(B′), θ)

22 |UpsR(B)| ← |UpsR(B)| − |Ups(B′)|

23 return 0

ALGORITHM 9: Bottom-up parallel

Incremental algorithm Reducer

Input: Subset B, Up(B,F), starting node

sn

Output: Computation of |cmn(B,F)|

1 function Reducer (B,Up(B) | sNode sn)

2 |cmn(B,F)| =
∑

Bi∈Up(B,F) directCount(Bi,F)

3 BupReducer(B,Up(B,F) | sn)

4 function BupReducer

(B,Up(B,F) | sn)

5 Bup ← {Bi |Bi ⊃ B, |Bi| =

|B| + 1,Bi ∈ Ups(B)}

6 forall B′ ∈ Bup,B
′ ≥ sn do

7 forall Bi ∈ Up(B,F) do

8 if Bi ⊆ B′ then

9 Up(B′,F)←

Up(B′,F) ∪ {Bi}

10 |cmn(B′,F)| =
∑

Bi∈Up(B′,F) directCount(Bi,F)

11 BupReducer(B′,Up(B′,F),0)

Reduce Phase. In the reducer (see Alg. 9), the bottom-up algorithm is used for comput-

ing the measurements for the nodes of each “slice”. In particular, it computes |cmn(B,F)|

(line 2 in the right column) and then it starts exploring the upper set of Bby calling the re-

cursive function BupReducer (line 3). This function computes the measurements for a spe-

cific part of Ups(B), i.e., UpsR(B), starting from a specific superset belonging in UpsR(B),

i.e., the “starting” node (lines 5-6). Then, for each such superset B′, it assigns Up(B′,F)
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Table 5.3: Statistics of indexes for 400 datasets, and for the 25 most popular datasets

of each index

Index Index Size |occur(D,F)| Direct Count % of Index Size

Entities (|D| = 400) 368 million 23,357 0.0063%

Literals (|D| = 400) 379 million 336,570 0.0887%

Triples (|D| = 400) 1.8 billion 13,772 0.0007%

Entities (|D| = 25) 303 million 11,139 0.0036%

Literals (|D| = 25) 353 million 64,907 0.0183%

Triples (|D| = 25) 1.6 billion 5,250 0.0003%

where Up(B′,F) ⊆ Up(B,F), it finds |cmn(B′,F)| for a specific superset and continues up-

wards (lines 6-11). For instance, for the subset 〈D1,D2〉 of Figure 5.12, Alg. 9 computes its’

intersection cardinality (line 2), i.e., |cmn({D1,D2},F)| . Afterwards, BupReducer function is

called (line 3) in order to explore its “remaining” upper set starting from 〈D1,D2,D5〉. In

particular, we ignore 〈D1,D2,D3〉, 〈D1,D2,D4〉 since the aforementioned nodes and their

upper sets belong to another “slices” and the measurements for them will be computed in

another reducers. As we shall see in the experiments, with the parallel version of bottom-

up algorithm, we are able to compute the commonalities for the whole lattice even for

trillion of nodes (240 subsets of datasets) approximately in 6 hours.

5.7 Experimental Evaluation - Efficiency

Here, we report the results concerning measurements that quantify the speedup obtained

by the introduced techniques. We exploit the three largest of the constructed semantics-

aware indexes, i.e., Entity, Literals and Entity-Triples index, for evaluating the efficiency

of the proposed methods by using a single machine. More information about the datasets

which were used for constructing the indexes and statistics about the indexes can be found

in Chapter 4 (e.g., see the datasets in Table 4.7 and statistics in Table 4.8).

5.7.1 Datasets & Models

Table 5.3 contains statistics for the three indexes that we use in our experiments (see the

first 3 rows). For each index, we provide efficiency measurements for the 25 most popular

datasets (see the last 3 rows). We observe that in all the cases, the size of |occur(D,F)| (i.e.,

the size of each directCount list) is extremely smaller than the number of total entries of

each index (see the fourth column of Figure 5.3). Indeed, in the worst case (for the Literals

Index), the size of the directCount list is only 0.0887% of the size of the corresponding index.

Models. Concerning commonalities, we compare the efficiency of five different mod-

els: a) SPARQL implementations by using Virtuoso and Blazegraph query engines (see
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§5.2), b) a baseline method, i.e., BM (see §5.4), c) the lattice-based incremental top-down

approach, i.e., Top-Down (BFS) (see §5.5.2.2), d) the lattice-based incremental bottom-up

approach, i.e., LB (DFS) (see §5.5.2.1) and e) the previously mentioned approach by prun-

ing and regrouping the redundant datasets in Up(B,F), i.e., LB+UPGR (see §5.5.2).

As regards the rest metrics (coverage, information enrichment and uniqueness) we

compare the following four models: i) a baseline approach, i.e., BM (see §5.4), ii) the

lattice-based incremental bottom-up approach, i.e., LB, for all the metrics (see §5.5.3,

§5.5.4 and §5.5.5), iii) the lattice-based incremental approach by pruning the totally redun-

dant entries, i.e., LB+TPR, (see §5.5.3.2), and iv) the lattice-based incremental approach

with pruning and regrouping, i.e., LB+PRGR (see §5.5.3.3).

The Selected Performance Metrics. Here, we evaluate the speedup obtained by the

proposed methods for computing the metrics for all the possible subsets of datasets. Cer-

tainly, for finding the covBest(K,F) (or cmnBest(K,F), etc.) for a given query, e.g., “I desire to

find the triad of datasets containing the most triples for entity e”, we compute the metrics

only for a small part of the lattice, i.e., we stop at level L= K = 3. However, the objective is

to evaluate the worst case, i.e., how fast are the proposed methods when the metrics for all

the possible subsets of datasets should be computed. Indeed, we measure the execution

time for 10 − 25 datasets (i.e., the 25 most popular datasets in each index) by using pre-

constructed directCount lists, i.e., we compute the metrics for 1,024 (210) to 33 million (225)

subsets of datasets. Moreover, we compute the average number of entries (i.e., Up(B,F)

and occur(B,F)) that are transferred from a subset B to its superset B′ (B = prev(B′)) and

scanned for computing the metrics of B′.

Plots. For most of the experiments that concern the lattice-based measurements, the

y-axis of plots is in log4 scale and shows the seconds that were needed for computing the

measurements. Concerning the x-axis, it shows the number of datasets which were used

for each experiment, e.g., if x = 20 it means that we used 20 datasets and we computed

the metrics for 220 (1,048,576) subsets of datasets.

Hardware Setup & Code. For all the experiments presented in this section (except

for the measurements for the parallel version of algorithms), we used a single machine

having an i5 core, 8 GB main memory and 1TB disk space. One can have access to all

the datasets and the code (in JAVA programming language), in http://www.ics.forth.gr/

isl/LODsyndesis.

5.7.2 Efficiency of Commonalities Metrics

Here, we provide results for computing commonalities concerning the efficiency of SPARQL

implementations, and of the proposed methods that rely on the semantics-aware indexes

(i.e., a baseline one and the lattice-based methods).
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Figure 5.13: Execution Time for finding the commonalities among any subset of 10

datasets (i.e., 45 pairs of datasets), by using Virtuoso and Blazegraph and

2 million triples

5.7.2.1 Comparison of SPARQL implementations - Virtuoso versus Blazegraph

Here, we compare the execution time of two different SPARQL implementations. In partic-

ular, we have used a Virtuoso triplestore i.e., Openlink Virtuoso Version 06.01.3127 (http:

//virtuoso.openlinksw.com/), and a Blazegraph triplestore (http://www.blazegraph.com),

i.e., Blazegraph Version 2.1.4.

Since Blazegraph does not support inference in quads mode, we compare these im-

plementations by using a subset of the semantics-aware triples presented in Chapter 4

(where we have already computed the inference). Indeed, we have selected 10 datasets

which contain in total 2 million triples and we have uploaded them to each triplestore. Af-

terwards, we sent queries for finding the number of common entities, triples and literals

between any pair of these 10 datasets, i.e., in total 45 pairs of datasets.

As we can see in Figure 5.13, the SPARQL implementation of Virtuoso is faster compar-

ing to Blazegraph for all the different cases. Virtuoso needed for all the 45 pairs of datasets,

6.7 seconds for finding the common triples, 65 seconds for the case of literals, and 349 sec-

onds for entities, whereas the corresponding execution times of Blazegraph are far higher

(especially in the case of triples), i.e., 332, 85 and 680 seconds, respectively. Since Virtuoso

offers faster execution times for the given problems, below we evaluate the performance

of Virtuoso, by adding even more triples, whereas we evaluate the efficiency of Virtuoso by

computing the closure on query time.
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Table 5.4: Execution time for SPARQL queries for measuring the commonalities be-

tween pairs and triads of 10 datasets, by using Virtuoso and 58 million

triples.

Measurement Time for 45 Pairs Time for 120 Triads

Common Entities 44.9 min 87.55 min

Common URIs (without closure) 15 min 29.1 min

Common Triples 50 min 92 min

Common Triples (without closure) 1.45 min 7 min

Common Literals 6.8 min 15 min

5.7.2.2 Efficiency of Virtuoso SPARQL implementation by Adding more triples

For evaluating Virtuoso triplestore by using much more triples, we selected and uploaded

10 datasets, having 58 million triples and 1 million equivalence relationships. Afterwards, we sent

queries for finding the number of common entities, triples and literals of these 10 datasets.

In particular, we report the execution time for computing the commonalities between

pairs (45 different pairs) and triads (120 different pairs) for this 10 datasets. As we can

see in Table 5.4, by using Virtuoso, for finding the common real world entities between

all the pairs of datasets, we needed approximately 45 minutes (on average 1 minute per

pair of datasets). If we do not take into account the owl:sameAs relationships and their

transitive and symmetric closure (like in the case of §5.7.2.1) 15 minutes were needed for

computing the common entities between the pairs of datasets (on average 20 seconds for

each pair of datasets). Concerning the triples, we needed even more minutes for find-

ing the common triples, i.e., 50 minutes, since we should compute the closure for both

instance and schema elements. On the contrary, by avoiding the computation of infer-

ence on query time (i.e., by using the semantics-aware triples) the execution time was 1.5

minute. Regarding the common literals, the execution time was 7 minutes (approximately

10 s per pair on average). Concerning triads of sources, we can see that the execution time

increased for each measurement, from 1.84 to 4.82 times.

5.7.2.3 Efficiency of Lattice-based Incremental Algorithms

In comparison to a SPARQL implementation, here we will show that by using even a single

machine and the lattice-based algorithms, we can compute the metrics far faster.

Lattice-Based approaches versus a SPARQL implementation. The difference compar-

ing to the plain SPARQL implementations is obvious. Even by having pre-computed the

closure and by using much less triples (i.e., 58 million), we need on average 20 seconds

for computing the common entities of a specific pair of datasets, while the lattice-based

approaches require much less time for performing the measurements even for million sub-

sets of datasets and higher number of triples (i.e., billions of triples), as it can be seen in
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Figure 5.14:

Execution time of |cmn(B,RWE)| of Entities

Index among any combination of

10-25 datasets (210 − 225 subsets B)

Figure 5.15:

Execution time of |cmn(B,LIT)| of Literals

Index among any combination of

10-25 datasets (210 − 225 subsets B)

Figure 5.16:

Execution time of |cmn(B,RWT)| of Triples

Index among any combination of

10-25 datasets (210 − 225 subsets B)

Figure 5.17:

Execution time of commonalities by using

LB+UPGR among any combination of

20-30 datasets (220 − 230 subsets B)

Figures 5.14, 5.15 and 5.16. In particular, for computing the common entities for 1 million

subsets of datasets (220), we needed a) 13 seconds by using the Top-Down BFS approach,

b) 7.5 seconds by using the bottom-up LB (DFS) approach, and c) 4 seconds by using the

bottom-up approach with regrouping. Finally, even the baseline approach is much faster

comparing to a SPARQL implementation, i.e., it can compute the metrics for thousands of

lattice nodes in 10 seconds.

Baseline method vs Lattice-Based approaches. As we can see in Figures 5.14, 5.15 and

5.16, the incremental algorithms are much more efficient than a baseline approach. In the

first three rows of Table 5.6 we show the maximum speedup obtained in the experiments

through the incremental approaches versus the BM approach. In particular, we achieved

even 4,921× speedup by using the LB+UPGR approach comparing to a baseline one (it

is quite slow as the number of datasets grows). Generally, for all the different models, we

can see in Figures 5.14, 5.15 and 5.16, that the execution time increases exponentially as
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Table 5.5:

Statistics for measuring |cmn(B,F)| for

each index incrementally, for 220 subsets

Category Top-

Down

LB
(DFS)

LB+
UPGR

avgIt (Entities) - 37 6.1

avgIt (Triples) - 1.4 1.2

avgIt (Literals) - 53.1 7

Exec. Time (Entities) 13s 7.4s 4s

Exec. Time (Triples) 6.5s 0.4s 0.9s

Exec. Time (Literals) 24s 9.7s 3.6s

Table 5.6:

Max Speedup by using different models for

measuring |cmn(B,F)|, for each index

Max Speedup of Entities Triples Literals

Top-Down vs BM 684× 446× 3,076×

LB (DFS) vs BM 1,409× 3,555× 4,350×

LB+UPGR vs BM 3,555× 1,785× 4,921×

LB (DFS) vs Top-Down 3.6× 21× 2.46×

LB+UPGR vs Top-Down 12.9× 11.7× 9.7×

LB+UPGR vs LB (DFS) 3.5× - 5.61×

we add more datasets, which is rational since each time that we add one more dataset, the

number of possible subsets of datasets increases exponentially.

Bottom-Up (LB DFS) vs Top-Down (BFS) Approach. Concerning the two incremental

approaches, we can clearly see the trade-off in all the experiments. Indeed, for lower num-

ber of datasets the top-down approach is faster, since the cost of creating more edges is

lower than the cost for checking the Up(B,F) of each subset B. As the number of datasets

grows (for ≥ 15 datasets in Figures 5.14, 5.15 and 5.16), the bottom-up approach is faster,

since the number of edges (and their cost) increases greatly for the top-down approach.

Moreover, in all the experiments for |D| > 23, it was infeasible to use the top-down ap-

proach due to memory limitations while with the bottom-up approach we can compute

the metrics even for billions of subsets. Finally, as we can see in Table 5.6, we observed

even 21× speedup by using the bottom-up LB (DFS) approach versus the top-down one.

The Gain of Regrouping the Up(B,F) for the bottom-up approach. By removing the

redundant datasets in each entry of Up(B,F), we achieved a speedup concerning the mea-

surements for entities and literals, i.e., even 3.5× for entities and 5.6× for literals. This

difference can be explained by the number of iterations of each approach, i.e., see Table

5.5. In particular, for 220 subsets of datasets, for computing the commonalities of entities

the average number of iterations for the LB (DFS) is 37, whereas the corresponding num-

ber for the LB+UPGR is 6.1. Regarding literals, the average number of iterations is 53.1

for LB (DFS) and for LB+UPGR is 7. However, concerning triples, the LB approach was

faster than the LB+UPGR, because there was not a big gain by the regrouping approach,

i.e., in both cases the average number of iterations was very small. Finally, the best ex-

ecution time that we achieved for 220 subsets of datasets for the three different indexes

were the following: a) 4 seconds for computing the commonalities of entities through the

LB+UPGR, b) 0.4 seconds for computing the commonalities for literals through LB, and c)

3.6 seconds for the case of literals through LB+UPGR.

Experiments for billions of subsets of datasets In Figure 5.17, we can see experiments
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Table 5.7: Execution time for finding the commonalities for subsets of 400 RDF

Datasets by using the bottom-up lattice-based algorithm.

Connectivity Measurement Number of Subsets Measured Execution Time

Common RW Entities 18,531,752 51 s

Common RW Triples 1,776,136 3 s

Common Literals 4,979,482 (pairs and triads) 328 s

even for 1 billion of subsets (230) by using the LB+UPGR approach. Specifically, for com-

puting the commonalities for 1 billion subsets, we needed 7.5 minutes for the case of en-

tities, 7 minutes for triples and 17 minutes for literals. For the literals, the input (i.e., the

number of posting lists) is quite larger comparing to triples and entities, therefore we ex-

pected that the execution time of literals would be longer.

Experiments for all the 400 RDF datasets. In Table 5.7, we introduce the execution

time for computing by using the bottom-up lattice-based algorithm the number of com-

mon entities, triples and literals for pairs, triads, quads, and quintets i.e., 2 ≤ L ≤ 5, of

400 datasets, that share at least one common element (we ignore subsets that do not share

elements). For measuring the cardinality of intersection of common entities for 18 million

subsets (belonging to pairs, triads and quads and quintets), we needed 51 s, i.e., approx-

imately 363,000 subsets per second. Regarding the computation of common real world

triples, the execution time was 3 s for computing the commonalities between 1.7 million

subsets, i.e., 592,000 subsets per second, since only a small number of subsets of datasets

share common triples. On the contrary, a lot of subsets of datasets share common liter-

als, and for this reason we measured the common literals of datasets only for pairs and

triads of sources. The execution time for measuring the common literals for 4.9 million

subsets was 328 s, i.e., 15,000 subsets per second. Moreover, the size of the directCount list

affects the execution time. In particular, the size of the directCount list of common literals

is 14 times bigger than the directCount list of common entities, and 24 times bigger than the

corresponding list of triples. As a consequence, in one second we can measure 39 times

more subsets containing common triples, and 24 times more subsets having common en-

tities, in comparison to the number of subsets containing common literals.

5.7.3 Efficiency of Coverage

Here, we provide results for computing coverage that concern the efficiency of the pro-

posed methods (i.e., a baseline one and the different lattice-based methods).

Baseline method versus Lattice-based approaches. Figures 5.18, 5.20 and 5.19 show

experiments for computing |cov(B,F)|, for all the three indexes. It is obvious that the incre-

mental approaches are extremely faster comparing to the baseline BM model for all the

three cases. More specifically, in the first three rows of Table 5.9 we show the maximum



5.7. Experimental Evaluation - Efficiency 153

Figure 5.18:

Execution time of |cov(B,RWE)| of Entities

Index among any combination of

10-25 datasets (210 − 225 subsets B)

Figure 5.19:

Execution time of |cov(B,LIT)| of Literals

Index among any combination of

10-25 datasets (210 − 225 subsets B)

Figure 5.20:

Execution time of |cov(B,RWT)| of Triples

Index among any combination of

10-25 datasets (210 − 225 subsets B)

Figure 5.21:

Execution time of coverage by using

LB+PRGR among any combination of

20-30 datasets (220 − 230 subsets B)

speedup obtained in the experiments of Figures 5.18, 5.20 and 5.19, by using each of the

incremental approaches versus the BM one. For computing the coverage for literals, the

LB was even 1,099× faster than BM, while the LB+TPR and the LB+PRGR approaches were

up to 1,459× and 6,000× faster, respectively. Indicatively, BM needs more than 10 min-

utes for computing the coverage of entities for 65,536 (216) subsets of datasets, while by

using the best incremental approach (LB+PRGR), we computed the coverage, for millions

of subsets (i.e., 220subsets), for entities in 1.3 seconds, for triples in 1.4 seconds and for

literals in 3.2 seconds. Finally, similarly to the case of commonalities, for all the different

models, the execution time in many cases increases exponentially.

The Gain of Removing the Totally Redundant Entries. In Figures 5.18, 5.19 and 5.20,

we can see a clear speedup by using LB+TPR instead of LB, especially as the number of

datasets grows. In particular, we observed up to 3×, 5× and 2.37× speedup comparing
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Table 5.8:

Statistics for measuring |cov(B,F)| for

each index incrementally, for 220 subsets

Category LB LB+TPR LB+PRGR

avgIt (Entities) 110 44 6.1

avgIt (Triples) 191 87 6.6

avgIt (Literals) 473 263 12.9

Exec. Time (Entities) 18s 9s 1.3s

Exec. Time (Triples) 55s 19.8s 1.4s

Exec. Time (Literals) 151s 64s 3.2s

Table 5.9:

Max Speedup by using different models for

measuring |cov(B,F)|, for each index

Max Speedup of Entities Triples Literals

LB vs BM 565× 136× 1,099×

LB+TPR vs BM 891× 214× 1,459×

LB+PRGR vs BM 5,773× 2,284× 6,000×

LB+TPR vs LB 3× 5× 2.37×

LB+PRGR vs LB 28× 68× 97×

LB+PRGR vs LB+TPR 10× 14× 33×

to LB (see Table 5.9) for entities, triples and literals, respectively. Indicatively, LB needs

55 seconds for computing the union of triples for 220 subsets of datasets, while by using

LB+TPR only 19.8 seconds were needed. This difference is rational according to the anal-

ysis of §5.5.3.4, and to the statistics presented in Table 5.8. Indeed, for each different in-

dex, we transfer to a superset B′ and iterate over smaller directCount entries for computing

|cov(B′,F)|, by using LB+TPR instead of LB. In particular, we performed on average 44 iter-

ations (in line 8 of Alg. 7) by using LB+TPR versus 110 by using LB for entities, 87 iterations

versus 191 for triples, and 263 iterations versus 473 for literals.

The Gain of Pruning and Regrouping. Figures 5.18-5.19 show a clear speedup due

to the pruning and regrouping approach (LB+PRGR). In particular, we identified even 33×

speedup comparing to LB+TPR and 97× speedup comparing to LB (i.e., see Table 5.9). The

difference between all the other models is big, especially as more datasets are added. This

difference can be explained by measuring the number of iterations for computing the met-

ric for a superset B′ (and by the analysis of §5.5.3.4). For instance, for computing the met-

rics for 220 subsets of datasets, on average we iterate over only 6.1 directCount entries for

entities, 6.6 for triples and 12.9 for literals, while even for the second best approach, the

corresponding numbers are far higher (see Table 5.8). Indeed, for the case of literals, we

performed on average 20×more iterations by using LB+TPR instead of LB+PRGR.

Measurements for Billions of Subsets. LB+PRGR can compute the coverage even for

billions of subsets of datasets (230) as we can see in Figure 5.21. In particular, it needs

approximately 12 minutes for entities, 14 minutes for triples and 22 minutes for literals.

5.7.4 Efficiency of Information Enrichment and Uniqueness

For computing |enrich(B,F,Dm)| and |uniq(Dm,F,B)|, the algorithms are similar to |cov(B,F)|.

The main difference is that for the |enrich(B,F,Dm)|, we use as input the set occur(D,F)\{Dm},

and for the |uniq(Dm,F,B)| the set occur({Dm},F). Here, we show an indicative experiment

for each case by using the Entity Index. We have selected a specific dataset Dm whose

|occur({Dm},RWE)| = 4,031 and its |occur(D,RWE)\{Dm}| = 7, 108. We expect that their
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Figure 5.22:

Execution time of |enrich(B,RWE,Dm)|
among any combination of 10-24 datasets

Figure 5.23:

Execution time of |uniq(Dm,RWE,B)|
among any combination of 10-24 datasets

execution time will be lower comparing to coverage, since its input (|occur(D,RWE)| =

11, 139) is larger comparing to |occur(D,RWE)\{Dm}| and |occur({Dm},RWE)|.

Information Enrichment. We can observe in Figure 5.22, that the incremental ap-

proaches are very fast comparing to BM, e.g, LB is up to 935× faster. Moreover, the LB+TPR

method offered up to 2.82× speedup versus LB, while we obtained up to 11.7× speedup by

using LB+PRGR instead of LB+TPR. Since the input is smaller in this case, the computation

of |enrich(B,RWE,Dm)|was up to 1.23× faster comparing to |cov(B,RWE)|. Indicatively, by

using LB+PRGR we needed 1.1 seconds to compute |enrich(B,RWE,Dm)| for over 1 million

subsets of datasets (220 subsets).

Uniqueness. We can observe in Figure 5.23, that LB, LB+TPR and LB+PRGR approaches

are far faster comparing to BM, e.g., LB is up to 635× faster than SFBM. Moreover, LB+TPR

was even 5.48× faster than LB and LB+PRGR was up to 4.1× faster than LB+TPR. Com-

paring to |cov(B,RWE)| and |enrich(B,RWE,Dm)|, the computation of |uniq(Dm,RWE,B)|

was up to 2.6× and 2.3× faster, respectively, which is rational since the input was much

smaller. Indicatively, by using LB+PRGR we needed 0.8 seconds to compute |uniq(Dm,RWE,B)|

for 220 subsets of datasets.

5.7.5 Efficiency of Parallel Lattice-Based Measurements

Here we compare the execution time of the creation of Lattice by selecting different num-

ber of machines for computing |cmn(B,RWE)|. For performing the experiments, we use a

cluster of 64 virtual machines, each of them having a single core and 1GB main memory.

In particular, we perform experiments for a) the same number of datasets (i.e., 35

datasets), different thresholds and 64 machines (see Table 5.10), b) a specific threshold for

a different number of machines (from 1-64 machines) and c) execution time for different

size of datasets (from 20-40 datasets), a specific threshold and 64 machines. Regarding a),
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Table 5.10: Lattice Measurements for 35 datasets & 235 nodes (34.35 Billions of Nodes)

Size of each “slice”
Number of

“slices”

Maximum Nodes
/all Nodes

from one mi

Distance from Ideal
(Ideal is 1.56%)

Execution Time
(Minutes)

≤ 1/4 of all Nodes 595 25.10% 23.54% 185.00

≤ 1/8 of all Nodes 596 18.80% 17.24% 147.00

≤ 1/ 16 of all Nodes 600 12.60% 11.04% 95.00

≤ 1/32 of all Nodes 611 7.90% 25.1% 59.00

≤ 1/64 of all Nodes 637 6.00% 6.34% 45.00

≤ 1/ 128 of all Nodes 694 4.10% 2.54% 31.50

≤ 1/256 of all Nodes 814 3.10% 1.54% 25.00

≤ 1/512 of all Nodes 1,061 2.85% 1.29% 22.50

≤ 1/ 1024 of all Nodes 1,563 2.79% 1.23% 20.20

≤ 1/2048 of all Nodes 2,576 1.64% 0.08% 12.10

≤ 1/4096 of all Nodes 4,612 1.62% 0.06% 12.30

≤ 1/8192 of all Nodes 8,695 1.60% 0.04% 12.50

we can observe in Table 5.10 measurements concerning the lattice of 35 nodes by using 64

machines. In this experiment, we change the threshold each time. In particular, we split

the power set in smaller “slices” where the size of each “slice” is less or equal than a specific

number of nodes. Since we use 64 machines, the ideal case is each machine to compute

the measurements for 1/64 of all the nodes, i.e., 1.56%. We can observe that when we split

the lattice in 595 “slices”, i.e. a “slice” for each pair of datasets (number of pairs= |D|∗|D−1|2 ),

where the number of the nodes of each “slice” is less or equal than 1/4 of all the nodes,

the execution time of the measurements was over 3 hours and one machine computed

the measurements for 25.1% of all the nodes. On the contrary, by choosing the number

of each “slice’s” nodes to be less or equal than 1/2048 of all the nodes, 2,576 “slices” are

created. In that case, the algorithm needed just 12 minutes for performing the measure-

ments, whereas there was not a single machine that computed more than 1.64% of all the

nodes (which is close to the ideal case). Moreover, by creating more “slices” where the size

of each “slice” is smaller (e.g., each “slice” to be ≤ 1/ 4096 or ≤ 1/ 8192 of all the nodes of

the power set), we can go “closer” to the ideal case, however, this can lead to an increase in

execution time (but no so much as it is shown in the last column of Table 5.10), since the

number of key-value pairs, i.e, “slices” are larger, and the communication cost increases.

The “slices” are distributed randomly in the machines, therefore, it seems that by choosing

to create more “slices”, where each “slice” does not contain a large number of nodes, it is

not so possible for a single machine to compute a large proportion of nodes comparing to

the number of nodes that each of the other machines will compute.

In Figure 5.24, we can observe the scalability which is achieved by using different num-

ber of machines. More specifically, we can see that each time that we double the number

of machines, the execution time is reduced in half. One machine needs over 11 hours for
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Figure 5.24:

Lattice-based Measurements for Different

Number of Machines & 35 datasets

Figure 5.25:

Lattice-based Measurements for Different

Number of Datasets and 64 Machines

computing the measurements of 235 subsets while 64 machines need 12 minutes. Con-

cerning the measurements for different number of datasets (by using 64 machines), in

Figure 5.25, we can see that for 1 billion or less nodes (e.g. 30 or less datasets), less than

1 minute is needed for computing the lattice of all the nodes. As the number of datasets

increase, the execution time is increased exponentially. However, this algorithm was able

to compute the measurements for over 1 trillion of nodes, i.e., lattice of 40 datasets, ap-

proximately in 6 hours.

5.8 Connectivity Analytics over LOD Cloud Datasets

Here, we show some indicative connectivity measurements for 400 LOD Cloud datasets

and 2 billion triples, by using the semantics-aware indexes of Chapter 4 and the content-

based metrics that were introduced in this chapter. At first, we show the impact of tran-

sitive and symmetric closure. Second, we introduce some general connectivity measure-

ments that indicate the power-law distribution for any category of elements, and after-

wards we show subsets of datasets that are highly connected. Moreover, we show indica-

tive measurements by using the proposed union and complement metrics. Finally, we

describe some conclusions derived by the experiments.

5.8.1 Datasets Used.

We use the set of 400 real RDF datasets (see Table 4.7) and the 44 million equivalence

relationships, which are described in Chapter 4 (i.e., in §4.7).
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Table 5.11: Statistics for equivalence relationships.
Category Value

owl:sameAsTriples 44,853,520

owl:sameAsTriples Inferred 73,146,062

RW Entities having at least two URIs 26,124,701

owl:equivalentPropertyTriples 8157

owl:equivalentPropertyTriples Inferred 935

RW Properties having at least two URIs 4121

owl:equivalentClassTriples 4006

owl:equivalentClassTriples Inferred 1164

RW Classes having at least two URIs 2041

5.8.2 Connectivity Gain from transitive and symmetric closure computation.

In Table 5.11, we report the results of the transitive and symmetric closure for owl:sameAs,

owl:equivalentProperty and owl:equivalentClass relationships. By computing the clo-

sure, we inferred more than 73 million new owl:sameAs relationships, i.e., the increase

percentage of owl:sameAs triples was 163%. Moreover, for 26 million entities there exists

at least two URIs that refer to them (on average 2.6 URIs for the aforementioned entities).

Furthermore, we should note that the computation of closure had as a result 2,725 new

connected pairs of datasets and 37,445 new connected triads that share at least one com-

mon real world entity.

On the contrary, we inferred only 935 owl:equivalentProperty relationships (i.e., in-

crease percentage was 11.46%) and 1164 owl:equivalentClass triples (i.e., increase per-

centage was 29%), while there exists 4121 properties and 2041 classes containing having

at least two URIs that describe them (on average 2.05 for such properties and 2.11 for such

classes).

5.8.3 Statistics Derived by the Indexes.

In Table 5.12, we can see that only a small percentage of each set of elements exists in two

or more datasets. In particular, only 0.8% of triples occur in ≥ 2 datasets and 0.24% in ≥ 3

datasets. The corresponding percentages of entities (i.e., 7.73%) and literals (i.e., 11.88%)

occurring in ≥ 2 datasets are far higher comparing to triples. However, again most entities

and literals occur in 1 dataset. Regarding classes and properties, only a small percentage

of them (i.e., less than 1%) occur in ≥ 2 datasets, which means that possibly there is a lack

of equivalence relationships between schema elements. For investigating such a case, we

created also a different index of triples, where we ignore the property of each triple i.e.,

we find the common subject-object pairs. For constructing such an index, one can use

Algorithm 3; however, one should replace in the mapper (in lines 4 and 6) all the prop-

erty IDs with a fixed value. As we can see in Table 5.12, if we ignore the property of each
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Table 5.12: Elements per number of datasets.
Category Exactly in 1 Dataset Exactly in 2 Datasets ≥ 3 Datasets

RW Entities 339,818,971 (92.27%) 21,497,165 (5.83%) 6,979,109 (1.9%)

Literals 336,915,057 (88.88%) 29,426,233 (7.77%) 12,701,841 (3.35%)

RW Triples 1,811,576,438 (99.2%) 10,300,047 (0.56%) 4,348,019 (0.24%)

RW Properties 246,147 (99.37%) 569 (0.23%) 997 (0.4%)

RW Classes 542,549 (99.68%) 1096 (0.2%) 605 (0.11%)

RW Subject-Object Pairs 1,622,784,858 (97.18%) 37,962,509 (2.27%) 9,241,676 (0.55%)

Figure 5.26: Number of datasets where different sets of elements occur.

triple, 2.82% of subject-object pairs occur in two or more datasets, whereas, by taking into

account the properties, the corresponding percentage was 0.8%. However, we should men-

tion that it is possible that two or more common subject-object pairs use different proper-

ties for describing different facts. For instance, suppose that two different datasets contain

the following triples in two datasets Di and Dj, 〈di:Aristotle, di:wasBornIn, di:Stagira〉 and

〈dj:Aristotle, dj:livedIn, dj:Stagira〉. These two triples describe different things, however,

their subject and objects refer to the same entities.

Moreover, in Figure 5.26, we can observe the distribution of different elements (e.g.,

triples, entities, etc.), i.e., the number of elements that can be found in a specific number

of datasets. We can clearly see a power-law distribution for any category of elements, i.e.,

there exists a large number of elements (e.g., literals, entities) that occur in a small num-

bers of datasets, while only a small number of elements can be found in a lot of datasets.

It is worth mentioning that there exists over 300,000 entities and over 500,000 of literals

that occur in 10 or more datasets; however, less than 1600 real world triples can be found

in more than 10 datasets.
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Table 5.13: Connected subsets of datasets.
Category Connected Pairs Connected Triads Disconnected Datasets (of 400)

Literals 62,266 (78%) 4,917,216 (46.44%) 3 (0.75%)

Real World Entities 9075 (11.3%) 132,206 (1.24%) 87 (21.75%)

Real World Triples 4468 (5.59%) 35,972 (0.33%) 134 (33.5%)

Real Subject-Object Pairs 7975 (10%) 107,083 (1%) 129 (32.2%)

Real World Properties 19,515 (24.45%) 569,708 (5.38%) 25 (6.25%)

Real World Classes 4326 (5.42%) 53,225 (0.5%) 107 (26.7%)

5.8.4 Connectivity analytics based on content-based intersection metrics.

In Table 5.13, we show the connectivity among pairs and triads of datasets for different

elements, while we also mention the number of datasets that are disconnected, i.e., for a

specific measurement type (e.g., number of common literals), these datasets do not have

commonalities with other ones. Generally, a big percentage of pairs of datasets share liter-

als, i.e., 78%. It is rational, since each literal can be used for describing several things. For

example, the literal “1980” can be the birth year of several people, the year when a movie

released, and so forth. Thereby, a lot of datasets can contain this literal, for describing dif-

ferent facts. On the contrary, for the real world entities and triples, only 11.3% of datasets

pairs have common entities and 5.59% of pairs of datasets contain same triples. It means

that only half of the dataset pairs containing common entities, share also common triples.

On the other hand, if we compute the number of common triples by ignoring the

property of each triple (i.e., common subject-object pairs), 10.45% of datasets pairs share

common subject-object pairs. It means that almost every pair of datasets that contain at

least one common entity, share also common subject-object pairs. Concerning schema

elements, almost all pairs of datasets share one property (99%), since most datasets use

properties from popular ontologies such as rdf and rdf s, f oaf and xmlns. However, by ex-

cluding properties belonging to the aforementioned popular ontologies, 24.5% of datasets

pairs share properties. Finally, a lot of datasets pairs (i.e., 30.2%) have at least one class

in common; however, if we exclude again classes from popular ontologies, the percentage

decreases (i.e., 5.42%).

However, it is also important to check the “degree” of connectivity of the connected

pairs of datasets, i.e., how many common elements the aforementioned connected pairs

of datasets share. In Figure 5.27, we show the number of datasets’ pairs, whose cardinality

of common elements belong to a specific interval of integers, e.g., for the interval [1, 10)

we show how many connected pairs have from 1 to 9 common elements (e.g., entities).

In particular, most pairs of datasets share less than 10 elements for each set of elements

(literals, triples, and entities, properties and classes). In general, we observe a power-law

distribution, since many pairs of datasets share a few elements, while only a few pairs

of datasets share thousands or millions of elements. Furthermore, we can observe the
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Figure 5.27: Number of connected pairs of datasets per interval for each measurement

type F.

difference in the level of connectivity among literals and other elements, e.g., over 10,000

pairs of datasets share at least 100 literals, whereas 1525 pairs of datasets have at least

100 common entities. Concerning common triples, the 84% of connected pairs share less

than 100 triples, while as we can see in Figure 5.27, less than 10 pairs share more than

one million triples. Regarding entities, most connected pairs (83.2%) have in common 100

or less entities, and only a few pairs share thousands or millions of entities, while for the

literals, 77.5% of connected pairs share less than 100 literals. For the remaining categories,

most connected pairs sharing properties (96.9% of pairs) and classes (99.4% of pairs) have

in common less than 10 properties and classes, respectively.

For the triads of datasets, the percentages are even smaller. In particular, approxi-

mately 1% of triads share common elements, classes and triples. However, for the literals

the percentage is quite high, i.e., 46.44% of triads share common literals, while 5.38% of

triads share a property. In Figure 5.28, we can observe the “degree” of connectivity of tri-

ads. Similarly to the case of pairs, we observe a power-law distribution, i.e., most triads of

datasets have in common from 1 to 10 elements for each different set of elements. More-

over, it is worth noting that 140 triads of datasets share over 100,000 entities, only 5 triads

of datasets contain over 100,000 common triples and 180 triads over 100,000 common lit-

erals.

Finally, the last column of Table 5.13 shows the number of datasets that do not have

commonalities with other ones for each specific elements. It is worth noting that 87 datasets

do not have common entities with other ones, while only 3 datasets do not share common

literals. On the contrary, the number of disconnected datasets increases in the cases of

common triples and common classes.
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Figure 5.28: Number of connected triads of datasets per interval for each measure-

ment type.

5.8.4.1 Connectivity of each domain

Figure 5.29 shows the unique real world entities and the maximum subset (e.g., subset

with the most common entities per lattice level for each domain). The mix corresponds to

subsets that possibly contain datasets from more than one domain. The most connected

domain from level 3 to 5 is the cross domain whereas from level 6 to 10 publications do-

main is the most connected one. In the remaining levels (from 11 to 20) the domain with

the most common entities is the social networking domain. Moreover, regarding combina-

tions with datasets from different domains, there are 13 datasets that shares thousands of

entities and 20 datasets sharing over a hundred of entities. Most of these real world entities

predominantly refer to geographical places and to popular persons. Generally, cross do-

main datasets take part in the most combinations with datasets from different domains.

Finally, in [169], one can find more connectivity analytics for the publications domain,

which is one of the most connected domains (as we mentioned above).

5.8.4.2 The most connected subsets of datasets

Table 5.14 shows the ten subsets of size three or more having the most common real world

objects (e.g., in descending order according to the number of common real world entities).

The most connected triad contains three cross domain datasets. Particularly, the subset

comprising of the datasets DBpedia4, Freebase5 and Wikidata6 shares over 3.5 million of

real world entities, while the quad that contains also Yago7 (apart from these datasets) con-

tains approximately 3 million of common real world entities. Afterwards, triads of datasets

4http://dbpedia.org/
5http://developers.google.com/freebase/
6http://wikidata.org
7http://yago-knowledge.org
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Figure 5.29: Unique(RWE) - Max Subset per Level

Table 5.14: Top-10 Subsets ≥ 3 with the most common RWE
Datasets of subset B Common Entities

1: {DBpedia,Yago,Wikidata} 3,520,964

2: {DBpedia,Freebase,Wikidata} 3,474,682

3: {DBpedia,Yago,Freebase} 2,995,419

4: {Yago,Freebase,Wikidata} 2,944,415

5: {DBpedia,Yago,Freebase,Wikidata} 2,943,852

6: {DNB,id.loc.gov,VIAF} 1,333,836

7: {bl.uk,id.loc.gov,VIAF} 1,040,862

8: {BNF,id.loc.gov,VIAF} 1,007,312

9: {Wikidata,id.loc.gov,VIAF} 682,296

10: {DNB,VIAF,Wikidata} 642,658

belonging in publication domain follow, such as VIAF8, DNB9 ,bl.uk10, id.loc.gov11 and

BNF12. Finally, Wikidata shares a lot of common real world entities with datasets of the

publication domain.

In Table 5.15, we can see the top ten subsets containing ≥ 3 datasets that have the most

common literals. In particular, the triad YAGO, Wikidata and Freebase share 5.6 million

literals, while the quad with the four popular datasets from the cross-domain are again

highly connected, i.e., they share 3.4 millions of literals. Moreover, the aforementioned

datasets share a large number of literals with VIAF Dataset which belongs to publications

domain (see positions 6-10 in Table 5.15).

In Table 5.16, we introduce measurements for the 10 subsets (containing 3 or more

8http://viaf.org/
9http://www.dnb.de/

10http://www.bl.uk/
11http://id.loc.gov/
12http://www.bnf.fr
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Table 5.15: Top-10 Subsets ≥ 3 with the most common Literals
Datasets of subset B Common Literals

1: {Yago,Freebase,Wikidata} 5,652,667

2: {DBpedia,Freebase,YAGO} 4,543,208

3: {DBpedia,YAGO,Wikidata} 4,397,132

4: {DBpedia,Freebase,Wikidata} 3,858,660

5: {DBpedia,Yago,Freebase,Wikidata} 3,423,764

6: {DBpedia,VIAF,YAGO} 1,720,303

7: {Wikidata,VIAF,YAGO} 1,528,431

8: {Freebase,VIAF,YAGO} 1,400,834

9: {DBpedia,Freebase,VIAF} 1,396,376

10: {DBpedia,Freebase,VIAF,YAGO} 1,229,087

Table 5.16: Top-10 subsets with ≥ 3 datasets having the most common real world triples.
Datasets of subset B Common RW Triples

1: {DBpedia,Yago,Wikidata} 2,683,880

2: {Freebase,Yago,Wikidata} 2,653,641

3: {DBpedia,Freebase,Wikidata} 2,509,702

4: {DBpedia,Yago,Freebase} 2,191,471

5: {DBpedia,Yago,Freebase,Wikidata} 2,113,755

6: {DBpedia,Wikidata,VIAF} 396,979

7: {bl.uk,DBpedia,Wikidata} 92,462

8: {BNF,Yago,VIAF} 52,420

9: {bl.uk,DBpedia,VIAF} 24,590
10: {DBpedia,Wikidata,JRC-names} 18,140

datasets) having the most common triples. As we can see, the combinations of the four

popular cross-domain datasets (DBpedia [4], Yago [26], Freebase [8] and Wikidata [25])

share a lot of triples, Concerning other subsets of datasets, some datasets from publica-

tions domain (i.e., bl.uk [21], BNF [1] and VIAF [22]), and one dataset from government

domain (i.e., JRC-names [12]) share many triples with the aforementioned cross-domain

ones. Regarding the connectivity for other sets of elements, the most connected triad

of datasets, concerning classes, contains the following set of datasets (DBpedia, Open-

cyc [17], ImageSnippets [10]) with 188 common classes, while for the properties, the most

connected triad includes (VIVO Wustl [24], FAO [7], VIVO scripps [23]) with 68 common

properties. All the measurements for pairs, triads, and quads of subsets of datasets (in to-

tal 11,689,103 million subsets) for each different measurement type are accessible through

LODsyndesis and datahub.io (http://datahub.io/dataset/connectivity-of-lod-datasets),

in CSV and RDF format, by using VoID-WH ontology [163], which is an extension of VoID

ontology [132] (in total we have created 99,221,766 million triples).
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Table 5.17: Top-10 datasets with the most entities, triples and literals existing at least

in 3 datasets.

Position
Dataset-RW Entities

in ≥ 3 Datasets
Dataset-RW Triples

in ≥ 3 Datasets
Dataset-Literals in
≥ 3 Datasets

1 Wikidata 4,580,412 Wikidata 4,131,042 Yago 9,797,331

2 DBpedia 4,238,209 DBpedia 3,693,754 Freebase 8,653,152

3 Yago 3,643,026 Yago 3,380,427 Wikidata 8,237,376

4 Freebase 3,634,980 Freebase 3,143,086 DBpedia 7,085,587

5 VIAF 3,163,689 VIAF 485,356 VIAF 3,907,251

6 id.loc.gov 2,722,156 bl.uk 125,484 bl.uk 1,819,223

7 d-nb 1,777,553 bnf 55,237 GeoNames 1,501,854

8 bnf 1,056,643 JRC-names 28,687 id.loc.gov 1,272,365

9 bl.uk 1,051,576 Opencyc 26,310 bnf 968,119

10 GeoNames 554,268 LMDB 20,465 radatana 957,734

5.8.4.3 The most popular datasets

Table 5.17 shows the top ten datasets that contain the most entities, literals and triples that

can be found in three or more datasets. As we can see, Wikidata contains the most entities

and triples that can be found in three or more datasets, while Yago is the dataset having

the most literals that occur at least in three datasets. In all categories, the four datasets

from the cross-domain are the most popular, while we can observe that VIAF dataset (from

publications domain) occurs in the fifth position in all cases. Concerning the remaining

positions, most datasets belong to publications domain (e.g., id.loc.gov [13], DNB [5], Ra-

datana [18], and others). Moreover, there exists also a dataset from the geographical do-

main, i.e., GeoNames [9], which contains a lot of entities and literals that occur in three or

more datasets, and a dataset from media domain, i.e., LMDB [14], which contains several

triples that occur in more than two datasets.

5.8.5 Indicative Union and Complement Measurements

Here, we show indicative measurements, by exploiting the union and complement metrics.

For each of the measurements below, the results retrieved approximately in 1 second by

using LB+PRGR.

5.8.5.1 Coverage Measurements.

Tables 5.18 and 5.19 show examples for selecting the most relevant datasets for a specific

task. Regarding Table 5.18, suppose that we desire to find K datasets having the most

triples for the “Seafood red list species”, i.e., a set of 55 fishes from unsustainable fish-

eries, for 5 different lattice levels. In total, there are 14,660 triples for these fishes in 16
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Table 5.18:

Best subset of datasets of each level Lhaving

the most triples for Seafood red list species

L covBest(K,F) |cov(B,F)| covPer covGain

1 Fishbase 3,785 25.8% -

2 Fishbase, Freebase 7,036 47.9% 85.0%

3 Fishbase, Freebase,
DBpedia

9,745 66.4% 38.5%

4 Fishbase, Freebase,
DBpedia, WoRMS

11,032 75.2% 13.2%

5 Fishbase, Freebase,
DBpedia, WoRMS,
Wikidata

11,507 78.4% 4.3%

Table 5.19:

Top-5 triads of datasets that cover

the most triples for EDGE species

Triad of Datasets |cov(B,F)| covPer

DBpedia, Freebase,
Wikidata

12,139 62.3%

DBpedia, Freebase, Tax-
onconcept

11,771 60.4%

DBpedia, Free-
base,Geospecies

11,750 60.3%

Freebase, Taxoncon-
cept, Wikidata

11,531 59.1%

Freebase, Geospecies,
Wikidata

11,507 59.0%

Table 5.20:

Top-5 dataset pairs providing complementary

triples for the entities of DBpedia

Pair of Datasets |enrich(B,F,Dm)| enrichPer

Freebase, YAGO 179,582,545 115.0%

Freebase, Wikidata 176,053,104 112.8%

Wikidata, YAGO 153,894,606 98.6%

Freebase, GeoNames 126,031,309 80.7%

Freebase, VIAF 112,948,225 72.3%

Table 5.21:

|uniq| of Wikidata (WD) & YAGO (YG),

vs DBpedia (DB) and Freebase (FR)

|uniq| of Versus uniqPer

Wikidata Triples DB,FR,YG 92.5%

Wikidata Entities DB,FR,YG 77.5%

Wikidata Literals DB,FR,YG 68.3%

YAGO Triples DB,FR,WD 93.6%

YAGO Entities DB,FR,WD 73.3%

YAGO Literals DB,FR,WD 68.5%

(out of 400) datasets. Table 5.18 shows for each level L, the subset of datasets Bwith the

argBmax |cov(B,F)|, the covPer(B,F), and the covGain(B′,F,B) as we go from a subset Bto a

superset B′. The best single dataset is FishBase, while as we add more datasets, the covGain

decreases, e.g., if we add Wikidata to the quad of datasets {Fishbase,Freebase,DBpedia,WoRMS},

the covGain is only 4.3%. Concerning Table 5.19, our target is to find the top-5 triads

of datasets whose union contains the most triples for all the 115 entities belonging to

EDGE (“Evolutionarily Distinct and Globally Endangered”) species, and their correspond-

ing covPer(B,F). For these species, there exists 19,485 unique triples in 13 datasets (out of

400). The triad having the argBmax |cov(B,F)| is {Wikidata, Freebase, DBpedia}, i.e., their

union contains 12,139 triples for EDGE species (i.e, 62.3% of all the available triples).

5.8.5.2 Information Enrichment Measurements.

Table 5.20 shows the top five pairs of datasets that contain the maximum number of com-

plementary triples for the entities of DBpedia, and their corresponding |enrich(B,F,Dm)|

and enrichPer. In particular, the pair {Freebase, YAGO} enriches the content for DBpedia

entities with over 179 millions of new triples, while all the top five pairs of datasets offer

over 112 millions of new triples, i.e., triples that are not included in DBpedia.
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5.8.5.3 Uniqueness Measurements.

Table 5.21 shows the percentage of the unique entities, triples and literals of Wikidata (WK)

and YAGO (YG), comparing to the other popular Knowledge Bases (KBs), i.e., i) Wikidata

versus Freebase (FR), DBpedia (DB) and YAGO, and (ii) YAGO versus the three remaining

ones. We can see that both KBs have a high percentage (over 90%) of unique triples com-

paring to the other KBs. Concerning entities, the percentage is 77.5% for Wikidata and

73.3% for YAGO, meaning that 22.5% of Wikidata entities and 26.7% of YAGO entities,

occur at least in one of the three other popular KBs. As regards literals, we can see that the

percentages are decreased, however, both KBs contain a high percentage of unique literals

(i.e., over 68%).

5.8.6 Conclusions about the Connectivity at LOD Scale

The measurements revealed the sparsity of LOD Cloud. In general, we observed a power-

law distribution, i.e., a large percentage of elements (entities, classes, etc.) occur in one

dataset, while most connected datasets contain a small number of common elements,

which means that a lot of publishers do not connect their entities with other datasets. Most

subsets of datasets share literals, while only a few pairs and triads of datasets share triples.

Moreover, most datasets share some properties from popular ontologies (such as rdf, rdfs,

etc.): however, it seems that there is a lack of connections for schema elements. Con-

sequently, it is hard to find common triples among the datasets, even between datasets

sharing a lot of common entities and common literals. Indeed, by ignoring the property of

each triple, we identified that there exists 3,465 pairs of datasets having common subject-

object pairs, but not common triples. Concerning the most connected datasets, they are

the four datasets belonging to cross-domain (i.e., DBpedia, Yago, Freebase and Wikidata),

while there are also combinations containing datasets from cross-domain and publication

domain that are highly connected. Moreover, the most popular datasets (containing ele-

ments that can be found in three or more datasets) are predominantly the four popular

cross-domain datasets, while in this list one can find also datasets from publications and

geographical domains.

5.9 Epilogue

We proposed content-based intersection, union and complement metrics among any sub-

set of RDF datasets, that are applicable for several real world tasks. For the computation

of intersection union and complement metrics, it is a requirement to solve four maximiza-

tion problems, which are prohibitively expensive by using a baseline model or an imple-

mentation of SPARQL query language. For solving such maximization problems and for

making feasible their computation at large scale, we proposed lattice-based incremental
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algorithms that exploit a set of pre-constructed semantics-aware indexes. In particular, we

proposed two different traversals for computing the cardinality of intersection (a bottom-

up depth first search and a top-down breadth first search), whereas for the rest metrics, we

proposed bottom-up depth-first search algorithms that rely on set-theory properties and

pruning and regrouping methods. Furthermore, we introduced methods for computing

the metrics in parallel.

Concerning the evaluation results, for all the metrics, the lattice-based incremental ap-

proaches were extremely faster than a SPARQL implementation, which needed on average

even 1 minute for computing the metrics for one pair of datasets, while lattice-based ap-

proaches can compute the metrics for million subsets of datasets in a few seconds. More-

over, they were very fast comparing to a baseline model which does not exploit set theory

properties (even more than 5000× faster).

As regards intersection metrics, we were able to compute the cardinality of intersection

for millions of subsets of datasets for entities, triples, and literals in a few seconds (4, 0.9

and 3.6 seconds, respectively), whereas we were able to perform the measurements even

for billions of combinations of datasets in less than 10 minutes. Concerning the different

methods, we achieved even a 21× speedup by using a bottom-up approach instead of a

top-down and a 5.61× speedup by combining the bottom-up approach with a regroup-

ing method. Regarding the rest three metrics, by combining the bottom-up incremental

approach with pruning and regrouping methods, we observed up to 97× speedup, and we

managed to compute the cardinality of the union for millions of subsets of datasets, for en-

tities, triples, and literals in 1.3, 1.4 and 3.2 seconds, respectively. Moreover, we computed

the cardinality of the absolute and relative complement of entities for a single dataset, with

respect to millions of subsets of datasets, in 1.1 and 0.8 seconds. Furthermore, by using the

parallel version of the bottom-up algorithm for intersection, and a cluster of 64 machines

we were able to compute the lattice of billions of nodes in less than 1 minute.

Finally, we exploited the semantics-aware indexes and the content-based metrics for

making various measurements over the entire LOD. A few indicative follow. Regarding

owl:sameAs relationships, the transitive and symmetric closure of the owl:sameAs rela-

tionships of all datasets yielded more than 73 million new owl:sameAs relationships, and

this increases the connectivity of the datasets: over 30% of the 9,075 connected pairs of

datasets that share entities (URIs) are due to these new relationships. The measurements

also reveal the “sparsity” of the current LOD cloud and make evident the need for better

connectivity. Generally, only a small percentage of entities, triples, and schema elements

exist in two or more datasets, indicatively, only 1.9% of real world entities and 0.33% of

triples are part of three or more datasets. On the contrary, a high percentage of pairs

(i.e., 78%) and triads (i.e., 46.44%) of datasets share literals. Concerning the most popu-

lar datasets, i.e., they are highly connected with other ones, they belong predominantly to

cross-domain (e.g., DBpedia) and publications domain (e.g., VIAF).
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The LODsyndesis Suite of Services

In this chapter, we introduce methods and services that exploit the semantics-aware in-

dexes and the content-based measurements, for offering global scale services for any en-

tity. Moreover, we use the indexes for offering Data Enrichment, i.e., for creating fea-

tures and word embeddings for Machine-Learning tasks. Indeed, we provide services

for making it feasible to answer all the queries of Table 3.1. Furthermore, we describe

in more details two data enrichment tools, called LODsyndesisML and LODVec, that can be

exploited for Machine-Learning based tasks, and finally an ongoing research prototype,

called LODQA, for Question Answering over hundreds of linked datasets. Concerning the

contributions of this chapter:

• we provide an overview of the LODsyndesis services for each of the tasks A-E (intro-

duced in Chapter 1.2), and we describe how one can use these services (e.g., through

a REST API),

• we describe LODsyndesisML, which is a research prototype that exploits LODsyndesis

services for creating features for machine learning tasks,

• we introduce LODVec, which is a tool that can create URI embeddings by exploiting

all the 400 datasets that are indexes through LODsyndesis,

• we describe in brief LODQA which is an ongoing work that exploits severalLODsyndesis

services for offering Question Answering over hundreds of linked datasets.

The rest of this chapter is organized as follows. In §6.1 we introduce all the services of

LODsyndesis for all the tasks A-E. In §6.2 and §6.3, we describe the tools LODsyndesisML

and LODVec, which can be exploited for Machine-Learning based tasks, whereas §6.4 intro-

duces the Question Answering System LODQA. Finally, §6.5 concludes this chapter.

Publications related to this chapter. The work presented in this chapter has been

published predominantly in [166, 169, 172], and secondarily in [73, 167, 170, 189].

169
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6.1 LODsyndesis Services for Tasks A-E

Here, we introduce all the services for the tasks A-E (see Chapter 3) that are offered by

the webpage of LODsyndesis (http://www.ics.forth.gr/isl/LODsyndesis) and from the

REST [206] API of LODsyndesis. First, in §6.1.1, we show how to find the URI of one or more

keywords (e.g., the URI of Aristotle). Afterwards, in §6.1.2 we introduce services for Object

Coreference and All Facts for an entity (i.e., task A), whereas in §6.1.3, we show services re-

lated to task B (i.e., Connectivity Analytics and Visualization). Moreover, in §6.1.4, we intro-

duce several advanced Dataset Search, Discovery and Selection services (i.e., task C), which

are based on the intersection, union and complement metrics presented in Chapter 5. In

§6.1.5, we show how to exploit LODsyndesis, for offering Data Enrichment services (i.e.,

task D), by focusing on tools that can be exploited for Machine-Learning based datasets,

while in §6.1.6 we introduce services that can be used for improving Data Quality (i.e., task

E).

6.1.1 How to find the URI of an Entity

For most of the services offered by LODsyndesis the input is a URI, e.g., http://dbpedia.

org/resource/Aristotle. For this reason, we offer a keyword to entity service, which can

be used in order to find the URI for one or more keywords (e.g., Aristotle).

How to use it: For the services that are offered through the HTML page, we offer an

auto-complete mechanism, i.e., the users can type a keyword and the webpage automat-

ically shows to the users a list of URIs, containing that keyword. For instance, by typing

“Aristotle”, it will automatically show to the users the URI http://dbpedia.org/resource/

Aristotle. Moreover, one can use our REST API (see the first service in Table 6.1) to

find the corresponding URIs for a specific keyword, e.g., one can send the following GET

request: LODsyndesis/rest-api/keywordEntity?keyword=Aristotle, to find the URI of

Aristotle. The REST API provides the output in CSV [3], JSON [11] or XML [6] format.

6.1.2 Task A. Object Coreference and All Facts for an Entity Service

6.1.2.1 Object Coreference Service

We offer an object coreference service for answering queries QobjectCor and Qprov, i.e., for

retrieving for a given URI u all its equivalent URIs or/and all the datasets where that entity

occurs. We offer this service for 412 million URIs, for both instance and schema elements

(properties and classes).

Which indexes are used for offering this service. For providing such functionality, we

need to exploit the equivalence catalogs, i.e., EntEqCat,PropEqCatand ClEqCat, for retriev-

ing the equivalent URIs for a given URI, and the Entity-Index, Property-Index and Class In-

dex for retrieving the provenance of each real world entity, property and class, respectively.
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Figure 6.1: Object Coreference Service. Find all the equivalent URIs to “Aristotle”

Figure 6.2: Provenance Service. Find all the datasets where the entity “Aristotle” occurs

How to use it: We offer an HTML page1 where a user can type a URI and select whether

they desire to find equivalent URIs or/and datasets where that entity occurs. In Figure 6.1,

one can see an example for finding all the equivalent URIs of “Aristotle” (i.e., we have found

31 equivalent URIs) and in Figure 6.2 we show an example for retrieving all the datasets

where that entity occurs (i.e., 19 datasets from 3 different domains provide information

for “Aristotle”). Moreover, one can use our REST API (see the second service in Table 6.1),

to exploit these services programmatically. For instance, all the equivalent URIs for Aris-

totle can be found by sending to LODsyndesis the following GET request: LODsyndesis/

rest-api/objectCoreference?uri=http://dbpedia.org/resource/Aristotle, while for

finding all the datasets containing information about Aristotle, one should use the follow-

ing request LODsyndesis/rest-api/objectCoreference?uri=http://dbpedia.org/resource/

1https://demos.isl.ics.forth.gr/lodsyndesis/Config?type=objectCoreference
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Aristotle&provenance=true. The results are offered in N-Triples [20], JSON or XML for-

mat. This service needs on average less than one second for retrieving the equivalent URIs

and the provenance of an entity (e.g., 0.1 s to retrieve in JSON format the equivalent URIs

of Aristotle).

6.1.2.2 Service for Finding all the Facts for an Entity

We offer a service for retrieving all the triples for any entity for 412 million URIs and two

billion triples, i.e., for answering the query QallFacts for all these URIs. By using such a ser-

vice, one can browse or export all the available triples for an entity, and the provenance

of each triple. These data could be used for various purposes, e.g., creating a mediator or

a semantic warehouse for a set of entities, finding complementary information for one or

more entities, comparing the values for an entity from several datasets and others.

Which indexes are used for offering this service. We exploit the Entity-Triples index,

where we have already stored in the same place all the triples (and their provenance) for

a specific real world entity. Moreover, we use the equivalence catalogs, i.e., EntEqCat,

PropEqCat and ClEqCat, as it is described below.

How to use it: In the same HTML page as in the case of Object Coreference, by typing a

URI, one can select to see (or to export) all the available triples for a specific entity. For in-

stance, in Figure 6.3, we show an example for retrieving all the triples and their provenance

for the URI http://dbpedia.org/resource/Aristotle, i.e., we retrieved 3,720 triples. In

our indexes, we have replaced each URI with a unique identifier. For not returning to the

users such identifiers (since they are not human-readable), we use the equivalence cata-

logs, i.e., EntEqCat,PropEqCat and ClEqCat, and we replace each such identifier with a sin-

gle URI (which of course corresponds to that identifier). Moreover, by clicking to that URI,

one can also see all its equivalent URIs. For example, in Figure 6.3 we replaced the iden-

tifier of the entity “Stagira (Ancient City)” with its’ URI in DBpedia, and by clicking that

URI, one can see all its’ equivalent URIs (i.e., four unique URIs for that entity). Moreover,

through our REST API (see the third service in Table 6.1), one can retrieve all the triples for

this entity by sending the following GET request LODsyndesis/rest-api/allFacts?uri=

http://dbpedia.org/resource/Aristotle. The results of this service can be downloaded

in N-Quads [19], JSON or XML format. This service needs on average less than 10 seconds

to retrieve all the facts for an entity (e.g., 3.5 s for collecting all the triples for Aristotle in

JSON format).

6.1.2.3 Global Namespace Service

In many cases, one would like to find fast all the datasets that contain a specific namespace

(or prefix), i.e., remind that a namespace is the first part of the URI, and it usually indicates

the provenance of a URI, e.g., for the URI http://dbpedia.org/resource/Aristotle, the
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Figure 6.3: All Facts Service. Find all the triples of the real world entity “Aristotle”

namespace is http://dbpedia.org. Moreover, one can also find the datasets which con-

tain terms from a specific ontology (e.g., http://www.cidoc-crm.org). We offer such a

service for approximately 1 million namespaces.

Which index is used for offering this service. For this service, we use the PrefixIndex,

which stores all the datasets where a namespace occurs.

How to use it: We offer an HTML page, where a user can type a namespace, and it re-

turns back all the datasets that contain it, and the number of distinct URIs, where the given

prefix occurs. Alternatively, through our REST API (see the last service in Table 6.1) one

can send such a GET request to LODsyndesis LODsyndesis/rest-api/namespaceLookup?

namespace=http://www.cidoc-crm.org. The output can be an HTML page, or N-Triples,

XML and JSON (through the REST API). It needs less than 1 s for deriving all the datasets

for a namespace (for the previous example, 0.1 s was needed).
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6.1.3 Services for Task B. Connectivity Analytics & Visualization

6.1.3.1 Connectivity Analytics.

We provide measurement concerning the number of common real world entities, triples,

classes, properties and literals among any pair, triad, and quad of 400 LOD Cloud Datasets,

which can be exploited for offering connectivity analytics (see §5.8), i.e., for answering

queries such as Qconnectivity.

Which measurements are used for offering this service. We use the connectivity mea-

surements described in Chapter 5, which were produced through the bottom-up lattice-

based incremental approach for intersection.

How to download the results of these measurements. The results of the connectivity

metrics have been published in CSV and in N-Triples format (through VoID-WH ontology

[162]) in datahub (http://old.datahub.io/dataset/connectivity-of-lod-datasets). In

total, we have created 99 million triples for publishing the connectivity measurements.

6.1.3.2 3D Visualizations of LOD Cloud Datasets

We exploit the connectivity metrics for offering 3D visualizations of hundreds of LOD

Cloud datasets, as it is described in [189]. An example can be seen in Figure 6.4. In par-

ticular, in the left side we can see the classical visualization of the LOD cloud, where each

dataset is as a circle (whose size indicates the size of the dataset in triples), and the com-

monalities between two datasets (in terms of common URIs) are made evident by an edge

that connects the dataset’s circles. On the contrary, through a 3D visualization which is

shown in the right side of Figure 6.4, we adopt a quite familiar metaphor, specifically that

of an urban area, where each dataset is visualized as a building. By using such a visualiza-

tion, we can use all the dimensions of a building for representing different statistics about

each dataset, e.g., the height of a building can indicate the size of a dataset in terms of

triples. Concerning the commonalities, if two datasets share common entities, then a line

segment is created, which can be represented either as a road or as a bridge, that connects

the corresponding buildings (see these two different representations in Figure 6.5).

Which measurements are used for offering 3D visualizations. First, for constructing

the buildings, we have used some major statistics of each dataset, such as the number of

triples, URIs, and others. Concerning the commonalities, we mainly exploit the measure-

ments between pairs of datasets. In particular, the width of these bridges/roads, indicates

the strength of the connection that the correlated datasets have, and it is calculated by

the division of the number of common entities between two datasets Di and Dj with the

number of common entities of the most connected pair (i.e., cmnBest(2,RWE)).

How to use this 3D Visualization. The 3D visualization is offered through the following

link https://www.ics.forth.gr/isl/3DLod/ (all the details are given in [189]).
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Figure 6.4: Left: The LOD cloud diagram. Right: One perspective of the introduced

interactive LOD 3D model.

Figure 6.5: Two ways to visualize the connections

6.1.4 Services for Task C. Dataset Search, Discovery and Selection

The proposed intersection, union and complement measurements can be directly used for

dataset search discovery and selection services. We offer three different types of services,

i.e., Dataset-Based services, where the focus is a specific dataset, i.e., Entity-Based Search,

where the focus is one or more entities and hybrid services, where the focus can be both a

dataset and one or more entities.

6.1.4.1 Dataset-Based Connectivity Service

We offer a connectivity service for finding the top-K connected pairs, triads or quads of

datasets to a dataset Di, for several measurement types, e.g., entities, literals, triples and

others. Therefore, the objective of this service is to answer the query QdatConnectivity.

Which methods are used for offering this service. We exploit the bottom-up lattice-

based incremental for intersection, which was described in Chapter 5.

How to use this service: We offer an HTML page, where a user can select a dataset Di

from a list of 400 datasets, for finding the most connected datasets to Di for a specific mea-
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Figure 6.6: Dataset-Based Connectivity Service. Find the top-5 most connected

datasets to GeoNames according to the number of common literals

surement type. For instance, in Figure 6.6, we selected to find the top-5 most connected tri-

ads of datasets containing GeoNames dataset according to the number of common literals.

As we can see, the triad GeoNames, YAGO and Wikidata share over 1 million literals. More-

over, one can use the REST API (see the fifth service in Table 6.1) for retrieving the most

connected datasets to a given one, programmatically. For instance, for discovering the

five most connected triads of datasets (w.r.t. the number of common entities) that contain

the dataset of British Museum, one should send the following GET request: LODsyndesis/

rest-api/datasetDiscovery?dataset=http://collection.britishmuseum.org/\&connections\

_number=5\&subset\_size=triads\&measurement\_type=Entities. One can see the out-

put of this service in N-Triples, CSV, JSON and XML format. This service needs on average
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less than 5 s for returning the most connected datasets for a given one, e.g., for retrieving

the most connected triads containing British Museum, the execution time was 1.5 s.

6.1.4.2 Entity-Based Connectivity and Coverage Services

For this kind of services, the user should always select a set of entities, i.e., the target is to

answer the queries Qcoverage, and Qconnectivity for a given set of entities E′. The user can pro-

vide either i) a list of URIs or ii) the URI of a specific class. In the second case, LODsyndesis

retrieves automatically all the URIs of the given class. These services focus on the triples

E′, therefore F = RWTE′ . In particular, one can find the K single, pairs, triads, quads or

quintets of datasets that a) maximize the number of triples for E′ (i.e., coverage), or b)

having the most common triples for E′ (i.e.,commonalities).

Which methods are used for offering this service. We exploit the bottom-up lattice-

based incremental approach for intersection, and the corresponding method for union

(with pruning and regrouping), which were described in Chapter 5.

How to use this service: We offer an HTML page, where a user can type a URI of a class

or a set of URIs, the desired measurement type, the size of subsets of datasets and a value

for selecting the top-K results. The result is a table containing a ranked list of subsets of

datasets. For instance, in Figure 6.7, we selected to find the top-10 triads of datasets that

maximize the available triples for all the entities belonging to “Ancient Philosophers” class.

As we can see, the union of YAGO, VIAF and Freebase contain the maximum number of

triples for these 329 entities, i.e., they contain 44,976 triples for them, which corresponds

to the 64.97% of all the triples for that entities.

6.1.4.3 Hybrid Services

For the hybrid services, the user should select both a dataset Di and a set of entities E′. For

the selected datasetDi and set of entities E′, we offer services based on information enrich-

ment and uniqueness metrics, i.e., the is to answer the questions Qenrichment and Quniqueness.

Concerning E′, the user can select to give i) a list of URIs (manually), ii) a URI of a given

RDF class, or iii) all the entities of dataset Di. Concerning information enrichment, one

can find the top-K single, pairs, triads and quads of datasets with the the most comple-

mentary triples to Di for the set of entities E′. Regarding uniqueness, one can check the

number of unique triples of dataset Di versus single, pairs, triads and quads of datasets,

given the entities E′.

Which methods are used for offering this service. We exploit the bottom-up lattice-

based incremental methods (with pruning and regrouping) for complement metrics (in-

formation enrichment and uniqueness), which were described in Chapter 5.

How to use this service: We offer an HTML page, where a user can select a dataset Di

and a set of entities, the desired measurement type, the size of subsets of datasets and the
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Figure 6.7: Entity-Based Services. Find the top-5 triads of datasets that maximize the

number of triples for Ancient Philosophers

value K, and it returns to the user a ranked list of subsets of datasets. For instance, in Fig-

ure 6.8, we selected to find the top-5 pairs of datasets that offers complementary triples

for all the entities of Ecoscope dataset. As we can see, the pair of datasets including Free-

base and Fishbase offer the maximum number of complementary triples for the entities of

Ecoscope, i.e., they offer over 26 thousand complementary triples for Ecoscope entities and

the enrichment percentage was over 500%.

6.1.5 Services for Task D. Data Enrichment

First, one can use the information enrichment service described in §6.1.4.3, for finding the

datasets containing complementary information for the entities of a given dataset Di, i.e.,
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Table 6.1: LODsyndesisREST API - GET Requests.

ID Service URL Description Parameters Response

Types

1 LODsyndesis/rest-

api/ keywordEn-

tity

Finds all the

URIs, containing

one or more

keywords.

keyword: Put one or more

keywords.

text/csv,

applica-

tion/json,

applica-

tion/xml

2 LODsyndesis/rest-

api/ objectCoref-

erence

Finds all the

equivalent en-

tities of a given

URI or the

datasets where it

occurs.

uri: Put any URI (Entity or

Schema Element). prove-

nance: It is an optional pa-

rameter. Put true for show-

ing the datasets where the se-

lected entity occurs.

application/n-

triples, appli-

cation/json,

applica-

tion/xml

3 LODsyndesis/rest-

api/ allFacts

Finds all the

facts (and their

provenance) for

a given URI (or

an equivalent

one).

uri: Put a URI that represents

an entity.

application/n-

quads, appli-

cation/json,

applica-

tion/xml

4 LODsyndesis/rest-

api/ factCheck-

ing

Checks a specific

fact for a given

entity.

uri:Put a URI that represents

a single entity. fact: Put a

fact, separate words by using

space. threshold: Ratio of

how many words of the fact

should exist in the triple.

application/n-

triples, appli-

cation/json,

applica-

tion/xml

5 LODsyndesis/rest-

api/ datasetDis-

covery

Finds the most

connected

datasets to a

given one for

several measure-

ment types.

dataset: Put a URI of an

RDF Dataset. connec-

tions number:It is optional.

It can be any integer greater

than zero, i.e., for showing

the top-k connected datasets.

subset size: It can be any of

the following: [pairs, triads,

quads] (e.g., select pairs for

finding the most connected

pairs of datasets). measure-

ment type: It can be any

of the following: [Entities,

Literals, Properties, Triples,

Classes, SubjectObject].

application/n-

triples, appli-

cation/json,

applica-

tion/xml

6 LODsyndesis/rest-

api/ names-

paceLookup

Finds all the

datasets where

a namespace

occurs.

namespace: Put any names-

pace.

text/csv,

applica-

tion/json,

applica-

tion/xml
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Figure 6.8: Hybrid Services. Find the top-5 pairs of datasets that offer the maximum

number of complementary triples for the entities of Ecoscope Dataset

for answering Qenrichment. Moreover, we propose two Data Enrichment tools that exploit

the indexes of LODsyndesis i.e., LODsyndesisML [166] and LODVec [172], for improving the

execution of several Machine-Learning based tasks. These tools are described in §6.2 and

§6.3, respectively.

6.1.6 Services for Task E. Quality Assessment

6.1.6.1 Services for Data Veracity

By collecting all the available information for an entity, one can easily search whether a

specific fact is verified from one or more datasets for a given entity (i.e., to verify the cor-
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Figure 6.9: Fact Checking Service. Compare the values for the birth place of “Aristotle”

rectness and veracity of information), e.g., “Had Aristotle lived in Athens?”. One can also

compare all the values for a specific fact (i.e., for answering queries such as Qveracity), e.g.,

“I want to find all the values for the birth date of Aristotle, and their provenance”. For the

first type of questions, we can see which datasets verify that fact, while for the second type

of questions, two or more datasets can provide conflicting answers, therefore, we can com-

pare them for deciding which is the correct one. Moreover, one can submit comparative

questions, e.g., “Which was the relationship between Socrates and Aristotle?”. For compar-

ing the values for all these questions, we offer a fact checking service, that contains over 2

billions of facts.

Which indexes are used for offering this service. We exploit the Entity-Triples index,

where we have already stored in the same place all the values (and their provenance) for a

specific real world fact.

How to exploit this service. We offer an HTML page where a user can type a URI and a

set of words representing a fact, e.g., in Figure 6.9 we show an example for comparing the

values for the birth place of “Aristotle”. Moreover, one can use our REST API (see the fourth

service in Table 6.1) to check for a fact programmatically. For instance, in order to find

which is the birth date of Aristotle, one can send the following GET request: LODsyndesis/

rest-api/factChecking?uri=http://dbpedia.org/resource/Aristotle\&fact=birthdate.

The output of this service can be seen as tables in HTML page, while the REST API offers

the output in N-Quads, JSON or XML format. This service needs on average less than 10 s

to check a fact, e.g., to find the birth date of Aristotle we needed 3.5 s.

6.1.6.2 Services for Assessing Dataset Quality

For assessing the quality of a dataset, one can use the dataset-based connectivity services,

described in §6.1.4.1, and the hybrid services, introduced in §6.1.4.3. By using such ser-

vices, it is feasible to answer queries Quniqueness, QdatConnectivity, QdatQuality. In particular, one

can assess the quality of a datasets in terms of connectivity, information enrichment and

uniqueness, i.e., to evaluate the level of connectivity of a dataset, whether a dataset con-

tains unique information comparing to other datasets, if the dataset offers complemen-
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tary to other datasets, and so forth. Through all these measurements, we make it also

feasible to answer query QdatReuse, e.g., a dataset sharing a high number of common enti-

ties with other datasets, and offers complementary information to them is more valuable

to be reused, comparing to a dataset that is either disconnected or contains redundant

information.

6.2 LODsyndesisML. How Linked Data can aid Machine Learning-

based tasks

Here, we show how the wealth of Linked Data and the ML machinery can be jointly ex-

ploited for improving the quality of automated methods for various time consuming and/or

tedious tasks, which are important also in the area of digital libraries, like automatic se-

mantic annotation or classification, completion of missing values, clustering, or comput-

ing recommendations. Specifically, we focus on exploiting Linked Data for discovering

and creating features for a set of entities. We introduce a tool (research prototype) LODsyndesisML

that we have designed and implemented, that (i) discovers datasets and URIs contain-

ing information for a set of entities by exploiting LODsyndesis [165], (ii) provides the user

with a large number of possible features that can be created for these entities (including

features for direct and indirect related entities of any path) and (iii) produces automati-

cally an enriched dataset for the features selected by the user. For testing whether this

enriched dataset can improve ML tasks, we report experimental results over two datasets

(from [209]) for predicting the popularity of a set of movies and books. Figure 6.10 illus-

trates the running example, where we create features for classifying whether a book is

Popular or Non-Popular, containing data discovered from DBpedia [142] and British Na-

tional Library [196]. We evaluate this approach by performing a 5-fold cross validation for

estimating the performance of different models for the produced datasets. The evaluation

showed that the additional features did improve the accuracy of prediction.

The rest of this section is organized as follows: §6.2.1 discusses related approaches,

while §6.2.2 introduces the placement of LODsyndesisML in the Data Integration Land-

scape. §6.2.3 states the problem and describes the functionality of the proposed tool (re-

search prototype), §6.2.4 discusses the steps of the process, §6.2.5 reports the results of

the evaluation and discusses the effectiveness of the proposed features.

6.2.1 Related Work.

There are several proposals for using Linked Data for generating features. LiDDM [176] is

a tool that retrieves data from Linked Data cloud by sending queries. For finding possi-

ble features the users can either construct their own queries or use an automatic SPARQL

query builder that shows to the users all the possible predicates that can be used (from a
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specific SPARQL endpoint). It offers also operators for integrating and filtering data from

two or more sources. The authors in [58] presented a modular framework for construct-

ing semantic features from Linked Data, where the user specifies the SPARQL queries that

should be used for generating the features. Another work that uses SPARQL queries is de-

scribed in [175], where the user can submit queries which are combined with SPARQL ag-

gregates (e.g., count). Comparing to our approach, the previous tools presuppose that the

user is familiar with SPARQL, and they do not assist the user in discovering automatically

datasets containing information for the same entities. The closest tool to our approach is

FeGeLOD [193] which combines data from several datasets by traversing owl:sameAspaths

and generates automatically six different categories of features. RapidMiner Semantic Web

Extension tool [208] (which is the extension of FeGeLOD) supports the same features while

it integrates the data that are derived from multiple sources. Instead we show the prove-

nance of the data without integrating them, i.e., if a feature is provided by two or more

sources, the user can decide which source to select for creating this feature. Moreover,

we also discover datasets containing the same entities by exploiting LODsyndesis where

the class of equivalence for each entity has already been pre-computed for 400 datasets,

whereas the aforementioned tool finds relevant data by traversing links on-the-fly. Finally,

we also provide other kinds of features, such as degree of an entity, boolean features for

each value of a predicate, as well as features for “sub-entities”, i.e., entities correlated with

the entities that one wants to classify (e.g., actors of a movie).

6.2.2 Placement of LODsyndesisML in the Data Integration Landscape

LODsyndesisML can be considered as special data integration scenario that involves sev-

eral basic services, e.g., dataset discovery, query answering, which however should be re-

lated to one particular dataset (the dataset to be enriched). With respect to the data in-

tegration landscape (see §2.3), LODsyndesisML, we could say that the process that is fol-

lowed includes several dimensions. In particular, it includes Dataset Discovery and Dataset

Selection, i.e., for identifying and selecting the datasets that will be used, Fetching and

Transformation, i.e., for offering a common data representation, Instance Matching since

it exploits the cross-identity reasoning among several datasets, and Publishing, because it

produces a new enriched dataset. Finally, its’ Basic Service to Deliver is Question Answering

for machine-learning based tasks.

6.2.3 Linked Data-based Feature Creation Operators

Let E be the set of entities for which we want to generate features. Below we will show

how we can derive a set of features (f1, ..., fk) where each fi is a feature and fi(e) denotes

the value of that feature for an entity e ∈ E. Each fi(e) is actually derived by the data that

are related to e. Specifically we have identified the following nine (9) frequently occurring
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Figure 6.10: Running Example of LODsyndesisML

Linked Data-based Feature Creation Operators, for short FCOs. In their definition, shown

in Table 6.2, P denotes the set of properties, p, p1 and p2 are properties and T denotes the

triples for the entities that are indexed by LODsyndesis.

In our running example of Figure 6.10, FCO1 can be used for representing whether a

book has been nominated for winning an award or not. FCO2 suits to properties that are

functional (one-to-one), e.g. person’s birth country, number of pages of the book, and

its value can be numerical or categorical. FCO3 counts the values of a property, e.g. the

number of genres of a book. FCO4 measures the number of distinct triples that involve e,

in our running example the degree of the author of “The Green Mile” book is 3, while the

degree of the author of “An episode of Sparrows” is 2. FCO5-FCO9 correspond to features

related to “sub-entities” or “related” entities to e. Specifically, FCO5 corresponds to one

characteristic of a “sub(related)-entity” of e, e.g. whether at least one actor of a movie has

won an award in the past or not. FCO6 counts the distinct values of one characteristic of

the “sub-entities”, e.g. the total number of movies where the actors of a movie have played.

FCO7 finds the most frequently occurring characteristic of these entities, e.g. the country

where most of the actors of a movie were born. FCO8 measures the average number of
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Table 6.2: Feature Creation Operators

id Operator defining fi Type fi(e)

1 p.exists boolean fi(e) = 1 if (e, p, o) or (o, p, e) ∈ T , other-

wise fi(e) = 0
2 p.value num/categ fi(e) = { v | (e, p, v) ∈ T }
3 p.valuesCard int fi(e) = |{ v | (e, p, v) ∈ T }|
4 degree double fi(e) = |{(s, p, o) ∈ T | s = e or o = e}|
5 p1.p2.exists boolean fi(e) = 1 if ∃ o2 s.t.

{(e, p1, o1), (o1, p2, o2)} ⊆ T
6 p1.p2.count int fi(e) = |{ o2 | (e, p1, o1), (o1, p2, o2) ∈ T }|
7 p1.p2.value.maxFreq num/categ fi(e) = most frequent o2 in

{ o2 | (e, p1, o1), (o1, p2, o2) ∈ T }

8 average degree double fi(e) =
|triples(C)|
|C| s.t. C = { c | (e, p, c) ∈ T }

and triples(C) = {(s, p, o) ∈ T | s ∈ C or o ∈
C}

9 p.values.AsFeatures boolean for each v ∈ { v | (e, p, v) ∈ T } we get the

feature fiv(e) = 1 if (e, p, v) or (v, p, e) ∈ T ,

otherwise fiv(e) = 0

distinct triples for a set of “sub-entities”, e.g., the average number of triples for the actors

of a movie. The last one, FCO9, does not create one feature but a set of features, e.g. one

boolean feature for each genre that a book can possibly belong to. In our running exam-

ple, we take all genres of both books and for each genre (e.g., novel) we create a distinct

boolean feature (both books belong to the genre Novel, but only “The Green Mile” book

belongs to the genre Crime). Generally, the operators FCO1-FCO4 and FCO9 concern a

single entity (e.g., a book, a person, a country, etc.) while operators FCO5-FCO8 a set of

entities (e.g., all actors of a movie). Consequently, for the “sub-entities” that are connected

through a functional property (one-to-one) with the entities that we want to classify, op-

erators FCO1-FCO4 and FCO9 are used instead of operators FCO5-FCO8. The user can

explore direct or indirect “sub-entities”, e.g., authors of a book, countries of authors of a

book and so forth, for any formulated path, while the list of operators can be easily ex-

tended by adding more operators.

Additional Functionality of LODsyndesisML.

Here we introduce some useful (for the user) metadata and restrictions for feature se-

lection .

“Completeness” of a Property for a given set of entities. We compute the percentage

of instances for which a given property exists, e.g., the percentage of books for which we

have information about the number of their pages. If E′p is the set of entities being subject
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Table 6.3: Restrictions of features with respect to the characteristics of a property

Feature Operators Can be Applied for

Boolean (FCO1, FCO5) All properties having
|E′p |

|E| < 1

Boolean for each Value (FCO9) All properties p ∈ PMany, range(p) ,
Numeric

One-to-one Relationship (FCO2) All properties p ∈ P1−1

Count (FCO3, FCO6) All properties p ∈ PMany

Degree (FCO4, FCO8) All properties having range(p) =U

or object of triples with predicate p, i.e. E′p = {e ∈ E | (e p o) or (o p e) ∈ T }, then the

percentage is given by
|E′p|

|E| .

Multiplicity & Range of a Property. Here we find the multiplicity of a specific property,

i.e., whether it is a one-to-one or one-to-many relation. We define the set of one-to-one

properties as P1−1 = {p | (e p oi) ∈ T and ∄ (e p oii) ∈ T , oi , oii,∀ e ∈ E }. The rest

properties, i.e., one-to-many, are defined as PMany = P\P1−1, while we denote as range(p) ∈

{String,Numeric,U} a property’s range, i.e., whether it is a set of Strings, Numeric Values or

URIs.

Restrictions derived from metadata. Table 6.3 shows the restrictions which are de-

rived by taking into account the “completeness”, the multiplicity and the range of a prop-

erty. It is worth mentioning that the “completeness” of a property can also be exploited

for discovering missing values for the entities. In addition, the users can define their own

restrictions, e.g., they can exclude properties that belong to popular ontologies such as rdf ,

rdf s, f oaf and owl.

Figure 6.11: Process of LODsyndesisML

6.2.4 The Steps of the Proposed Approach

Here we describe the tool (research prototype) LODsyndesisML that we have designed

and implemented. It is worth noting that LODsyndesisML discovers and creates features
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by exploiting Linked Data for any domain. Even a user that is not familiar with Seman-

tic Web technologies and SPARQL can use it for creating features for feeding a Machine

Learning problem. The process is shown in Figure 6.11 and is described in brief below.

First, it takes as input a file containing a set of URIs that refer to particular entities, i.e.,

movies, books and so forth. In case of knowing the entities but not their URIs, one can

exploit an entity identification tool like DBpedia Spotlight [151] and XLink [92] for detect-

ing automatically a URI for a specific entity. Then, it connects to LODsyndesis for dis-

covering automatically datasets containing information for the same entities and shows

to the user the available datasets. Afterwards, it discovers and shows to the user pos-

sible features that can characterize the entities (or related “sub-entities”) of the dataset

and the user selects which features to create. The next step is to create the features and

to produce the output dataset to be used in any ML problem. Below, we describe in

more detail the whole process, while additional information and a demo can be found

in http://www.ics.forth.gr/isl/LODsyndesis.

1. Input: The input of LODsyndesisML is a file in tab separated value (tsv) format contain-

ing URIs describing entities and possibly their class, e.g., URIs for a book and if each book

is Popular or Non-Popular.

2. Discover Data by using LODsyndesis: LODsyndesisML reads the tsv file and connects

to LODsyndesis in order to discover (a) datasets containing information for the same enti-

ties and (b) the URIs for these entities for each dataset (the indexes of LODsyndesis have

already pre-computed the closure of owl:sameAs relationships for 400 datasets). Then, the

user selects the desired datasets. Concerning the running example of Figure 6.10, we ob-

serve that we found two different datasets containing information for the books of that

example .

3. Discover Possible Features: LODsyndesisML sends SPARQL [200] queries for a sample

of the aforementioned entities to the SPARQL endpoints of the selected datasets. After-

wards, a number of possible features and their provenance are discovered and returned

to the user. Therefore, in this step we do not create any feature, we just discover possible

features and we apply the restrictions described in §6.2.3. The result is a table where each

row corresponds to a possible feature derived from a specific source while each column

consists of a checkbox for a specific feature category. The order that the features appear in

the rows is descending with respect to the “completeness” of each property. Particularly,

when a property occurs for all the entities, it is placed first in the list, while those with the

smallest number of occurrences are placed at the end of the list. Moreover, the user can

view the metadata described in §6.2.3. Afterwards, the user can select the desired features

(by taking into account their provenance) and can also explore features for (direct or indi-

rect) “sub-entities” of any formulated path and create more features.

4. Feature Selection and 5. Feature Creation: The user selects the desired features and

clicks on a button for initiating the dataset creation. Then, the tool sends SPARQL queries
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for creating the features. For each feature operators category, it sends |E| in number SPARQL

queries (one query per entity e for each operator). It is worth noting that for values that

are neither numeric nor boolean, it performs a mapping for converting them to numeric.

Concerning missing values, we just put a unique constant value. However, for improving

datasets’ quality, several transformations could be applied after this step, like those pro-

posed in [41] for removing erroneous and inconsistent data or filling missing values. Here,

we do not focus on this task and the data used in the experiments have not been trans-

formed or cleaned by using such techniques.

6. Production of Features’ Dataset and 7. Exploitation of the Produced Dataset in a ML

problem: The user is informed that the process is completed and that two csv files have

been produced: one for the categorical and one for the continuous features. Then, the pro-

duced datasets can be given as an input for a ML problem (e.g., classification of books).

6.2.5 Evaluation

The datasets, which are used in our experiments (derived from [209]), contain the URIs

of movies and books from DBpedia [142] and the corresponding classification value, i.e.,

Popular or Non-Popular according to the number of Facebook users’ likes. We use 1,570

entities for Movies Dataset and 1,076 entities for Books Dataset. The initial datasets are

loaded and then more data are discovered by using LODsyndesisML from the following

sources: British National Library [196], Wikidata [251] and DBpedia [142]. In particu-

lar, we exploit LODsyndesisML for discovering, selecting and creating a number of differ-

ent features for predicting the class of these entities. Afterwards, MATLAB [15] is used

for performing a) a 5-fold cross validation for model selection and b) a comparison of

a number of different models for measuring accuracy, which is defined as: accuracy =
True Positive+True Negative

True Positive+True Negative+False Positive+False Negative [255]. For each dataset, we repeat the 5-fold cross

validation process 15 times for different sizes of the test set, i.e. 10%, 20%, & 30%. Each

time a chi-square test of independence [263] is performed (for excluding variables that are

independent of the class variable) for 4 different values of significance level (or threshold)

a: 0.01, 0.05, 0.1, 1. For each value of threshold a we test 10 different models: (a) 2 Naive

Bayes models (Empirical & Uniform), (b) 3 Random Forest models with 50 trees and differ-

ent min leaf sizes: 1, 3 & 5, (c) 3 K-Nearest Neighbours models with K: 3, 5 &15, (d) a linear

SVM model and (e) the trivial model. In each iteration the best model is obtained for the

training set (by using cross validation). Finally, the accuracy of the best model is estimated

on the test set.

Creation of Features. In Figure 6.12 we can observe how the number of possible fea-

tures increases when a) more datasets are added and b) features of “sub-entities” are cre-

ated, i.e., approximately the possible features are doubled when we explore a “sub-entity”

(e.g. the authors of a book). Moreover, Figure 6.13 shows the time for generating a feature
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Figure 6.12:

Features Number Per Dataset For Books
& Movies

Figure 6.13:

Generation Time for each Feature Operators
Category and Dataset

Figure 6.14: Selected Features for Books & Movies with their Provenance

Table 6.4: Accuracy for each Feature Operators Category (Movies & Books test size 0.2)

Feature Operators Category
Average Max Average Max

(Movies) (Movies) (Books) (Books)
All Features (FCO1-FCO9) 0.871 0.906 0.730 0.762

Continuous Features 0.861 0.896 0.709 0.739

New Features (FCO4-FCO9) 0.835 0.865 0.650 0.675

Existing Features (FCO1-FCO3) 0.827 0.855 0.694 0.716

Count (FCO3,FCO6) 0.830 0.862 0.706 0.709

1-1 Relationship (FCO2) 0.791 0.808 0.570 0.607

Categorical Features 0.760 0.818 0.673 0.694

Boolean (FCO1, FCO5, FCO9) 0.750 0.774 0.634 0.656

Degree (FCO4,FCO8) 0.741 0.780 0.608 0.627

Most Frequent Value (FCO7) 0.698 0.758 0.560 0.595

Trivial Case 0.495 0.532 0.508 0.551

for each different category (and each dataset) for 1,076 books. As we can see, the genera-

tion time depends highly on the dataset to which we send SPARQL queries, e.g., DBpedia’s

response time is much shorter than Wikidata’s. Concerning the generation time of a spe-

cific feature operators category, the degree operators (FCO4, FCO8) and the boolean for

each value of a predicate (FCO9) need more time to be generated while the remaining

ones need approximately the same time on average for being generated. Finally, the exe-

cution time for retrieving the similar entities from LODsyndesiswas 105 seconds.
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Figure 6.15:

Accuracy in Each Iteration & Test Size
for Dataset Books and Movies

Figure 6.16:

Average Accuracy of Models in Cross Validation
for Movies with Test Size 0.2

Results for Movies Dataset. Figure 6.14 shows the selected features (and their cate-

gory) for the dataset of movies (features belonging in the additional categories that we

propose are underlined). In total we sent 39,250 queries and we created 159 features (147

categorical and 12 continuous). In Figure 6.15 we can see a plot with the accuracy of each

test size (using the best model selected by the cross validation process) and we can ob-

serve that the accuracy is much higher comparing to a trivial case while the highest vari-

ation occurred for test size equal to 0.1. In all iterations, the best model was a Random

Forest (with different parameters in many cases). Figure 6.16 shows the average accuracy

for each model (and each threshold a) in the cross validation process for test size 0.2. We

observe that Random Forest models achieved higher accuracy (mainly when min leaf size

equals 1, i.e., Random Forest 1) comparing to the other models. The next ones with the

highest accuracy is the linear SVM, followed by the two Naive Bayes models and finally

the K-NN ones. However, all these models are better comparing to the trivial one whose

accuracy is approximately 0.5. Table 6.4 shows the average and maximum accuracy for

each different features’ category in descending order with respect to their average accu-

racy. The continuous ones (mainly the count features, i.e., FCO3 and FCO6) seem to be

the most predictive while all the categories achieved high accuracy comparing to a trivial

case. Moreover, the average accuracy of features that other approaches also support (i.e.,

FCO1-FCO3) was 0.827 while for the additional features that we propose (e, FCO4-FCO9

in Table 6.4) the average accuracy was 0.835. By combining all the categories of features,

the average accuracy was 0.871, which means that the additional features improved the

accuracy in this particular problem.

Results for Books Dataset. Figure 6.14 shows the selected features (and their cate-

gories) for the books dataset. In total we sent 21,520 queries and we created 190 features

(180 categorical and 10 continuous). In Figure 6.15 we can see a plot with the accuracy of

each test size and we observe that the accuracy is much higher comparing to the trivial

case while the highest variation occurred for test size equal to 0.1. In 42 iterations, the best
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model was a Random Forest (with different parameters in many cases) while in 3 cases the

best model was a linear SVM while the variations of K-NN algorithms were more effective

than the Naive Bayes ones. As we can observe in Table 6.4, the combination of all features

gave the maximum accuracy, while the continuous features, and especially the count fea-

tures (FCO3, FCO6), were more predictive comparing to the remaining ones. Moreover,

for the feature operators FCO1-FCO3 the average accuracy was 0.694 while for the feature

operators FCO4-FCO9 was 0.65. However, by combining both types of features the aver-

age accuracy improved, i.e., 0.73, therefore the additional features improved the accuracy

for books’ dataset, too.

6.2.6 Synopsis.

We have shown how we can exploit the wealth of Linked Data and the ML machinery for

improving the quality of automatic classification. We presented a tool, called LODsyndesisML,

which exploits Linked Data (and the related technologies) for discovering automatically

features for any set of entities. We categorized the features and we detailed the process for

producing them. For evaluating the benefits of our approach, we used two datasets and

the results showed that the additional features did improve the accuracy of predictions,

while the most effective model for both datasets was a Random Forest one.

6.3 LODVec. Knowledge Graph Embeddings over Hundreds of Linked

Datasets

There is an increasing trend of exploiting LOD (Linked Open Data) for creating embed-

dings for URIs (Uniform Resource Identifiers), which can be exploitable for a number of

tasks. Indicatively, they can be exploited i) for machine learning-based tasks [211], such as

classification, regression, etc., ii) for similarity-based tasks [72], e.g. “Give me the top-K re-

lated entities to a given one”, iii) for link prediction purposes [177], and others. There have

been proposed several novel methods [211] taking as input RDF (Resource Description

Frameworks) knowledge graphs and producing URI sequences for a set of given entities,

i.e., sequences starting from a focused entity (or URI) that contains a path of URIs which

is reachable from that entity. These sequences are given as input for producing URI em-

beddings which can be exploited in the aforementioned tasks.

However, current approaches exploit usually a single dataset for creating URI embed-

dings for one or more URIs (or entities). Moreover, many approaches are difficult to be

configured by non-experts, since they do not provide an interactive service. Our objec-

tive is to make it feasible to exploit hundreds of RDF datasets simultaneously, for creating

URI sequences and URI embeddings for any given entity (i.e., a URI). Concerning our re-

search hypothesis, we assume that it is better to exploit multiple datasets for creating URI
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sequences and embeddings, instead of using one or few datasets, whereas we assume that

there is not a single knowledge graph that can outperform all the others for any possible

task.

Generally, it is not easy to combine all the available information for a given entity as we

have seen in Chapter 2. For example, each of the three datasets of Figure 6.17 uses a dif-

ferent URI for representing the movie “Inception” and the schema element “actor”, while

these datasets are located in different places. Indeed, for combining information from sev-

eral datasets, one should collect the desired data by performing cross-dataset reasoning.

For tackling the above difficulties, we exploit LODsyndesis, since its’ indexes offer di-

rect and fast access to all the available information for any entity (see Chapter 4). In

this way, it is feasible to create URI sequences for the same entity from multiple datasets,

therefore, the number of possible URI sequences that can be created is highly increased

(as we shall see in §6.3.4). For example, suppose that the required task is to predict the

exact rating of a movie, e.g., “Inception” (see Figure6.17), and for this reason we plan

to create embeddings from URI sequences for using them in such a machine learning

task. In Figure6.17, by using only one dataset, say DBpedia (http://dbpedia.org/), we

can find data such as the genres of this movie. However, it does not contain informa-

tion about the awards won by this movie, e.g., in Figure 6.17 such data occur in Wikidata

(http://wikidata.org/). On the contrary, by using LODsyndesis (see the lower side of

Figure 6.17), it is feasible to create URI sequences by using all the three datasets of Figure

6.17.

We introduce a research prototype, i.e., LODVec, that (i) takes as input one or more enti-

ties (as URIs or in plain text), (ii) it offers several configurable options for creating URI se-

quences and embeddings for these entities from hundreds of datasets through LODsyndesis

and (iii) it produces URI sequences based on user’s selections. Moreover, LODVec (iv) con-

verts the produced sequences into vector representations (i.e., embeddings) by exploiting

word2vec approach [153, 154] through dl4j API (https://deeplearning4j.org/). Finally,

it can (v) exploit the produced vectors for several purposes, e.g., for finding the most com-

mon words for a given one through dl4j library or/and for performing classification and

regression tasks by using WEKA API [255]. For testing the proposed approach, we report

experimental results for machine learning classification and regression tasks by using two

datasets containing movies and music albums, i.e., the target of classification task is to

classify whether a movie or a music album has a high or low rating, whereas the target

of regression task is to predict their exact rating. We introduce experiments showing the

impact of using multiple datasets and cross-dataset reasoning in terms of effectiveness,

whereas, we compare the performance of different configurations.

The rest of this section is organized as follows: §6.3.1 introduces the background and

related work, while §6.3.2 discusses the placement of LODVec in the Data Integration Land-

scape. §6.3.3 provides the problem statement, the algorithm for creating URI sequences
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Figure 6.17: Running example containing 3 knowledge graphs and LODsyndesis

and all the steps and functionalities that our approach supports, whereas §6.3.4 includes

the experimental evaluation about the effectiveness of our approach.

6.3.1 Background & Related Work

6.3.1.1 Background

Word2Vec. It is a shallow two-layer neural network model for producing word embeddings

[153, 154]. It takes as input a text, and it produces a vector with several (usually hundreds

of) dimensions for each unique word appearing in the text. The target of word2Vec [153,

154] is to group the vectors of similar words closely in the vector space. Here, we will

exploit this model for creating vectors for entities, by using the skip-gram model, which is

a method that uses a specific word for predicting a target context, since “it produces more

accurate results for large datasets” 2. Our target is to use this model for placing similar

entities (e.g., similar movies) to a close position in the vector space.

6.3.1.2 Related work

Knowledge graph embedding approaches. RDF2Vec [211] is an approach that takes as in-

put an RDF knowledge graph, produces URI sequences based on several strategies, such

as random graph walks, and uses word2vec for creating vectors. They have also proposed

strategies for performing biased graph walks [61], which are based on a number of met-

rics and statistics, such as the frequency of properties, objects, pagerank and others. They

have tested these strategies for multiple tasks, such as classification and regression, by us-

ing two datasets Wikidata and DBpedia, whereas they have used the GloVe model [195] for

creating RDF embeddings by exploiting global patterns. The authors in [111] used several

bibliographic RDF datasets and word2vec for enriching the data of scientific publications

with information from multiple data sources, while in [123] the authors exploited enriched

ontology structures for producing RDF embeddings which were used for the task of Entity

2https://deeplearning4j.org/docs/latest/deeplearning4j-nlp-word2vec
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Linking. In [177], the authors combined embeddings from DBpedia and social network

datasets for performing link prediction, whereas in [72] Wikipedia knowledge graph was

exploited for finding the most similar entities to a given one for a specific time period.

Concerning other graph-based models, such as TransH [253] and TransR [146], they use

algorithms for creating entity and relation graph embeddings, i.e., the relationships be-

tween two entities are represented as translations in the embedding space.

Feature extraction approaches combining data from several datasets. In [166], the au-

thors proposed a tool that can send SPARQL queries in several endpoints for creating fea-

tures. However, it does not produce embeddings and it cannot collect all the data for a

given entity (i.e., cross-dataset reasoning is required). Moreover, RapidMiner Semantic

Web Extension [208] creates features by integrating data from a lot of datasets. However, it

performs the integration task by traversing owl:sameAs paths on-the-fly (through SPARQL

queries, which can be time-consuming), and not by exploiting pre-constructed indexes.

Novelty & Comparison with other approaches. To the best of our knowledge, this is the

first work providing an interactive tool which can easily create URI embeddings for any

set of entities by combining data from hundreds of datasets simultaneously. Since current

approaches do not take into account the equivalences in schema and instance level, they

have been mainly tested on a single dataset. At this point our objective is a) to offer a

simple way for creating URI sequences for multiple datasets, and b) to investigate whether

the creation of even simple URI sequences and embeddings from different datasets can

improve the effectiveness of several tasks (e.g., machine-learning tasks). Concerning the

limitations of our approach, for the time being we do not support methods for creating

longer URI sequences (e.g., through random walks [60]), and algorithms that have been

successfully applied to knowledge graphs (e.g., [146, 253]).

6.3.2 Placement of LODVec in the Data Integration Landscape

LODVec can be also considered as special data integration scenario. Similarly to LODsyndesisML,

it includes the steps of Dataset Discovery and Dataset Selection, i.e., for selecting the most

appropriate datasets. Moreover, it performs Fetching and Transformation, i.e., for con-

verting the data to embeddings, Instance & Schema Matching i.e., by exploiting the cross-

dataset identity reasoning, and Publishing, i.e., it produces a new dataset containing em-

beddings. Finally, its’ Basic Service to Deliver is Question Answering for machine-learning

based tasks.

6.3.3 LODVec: The Proposed Approach

§6.3.3.1 introduces the problem statement, §6.3.3.2 shows some useful notations and meta-

data, and §6.3.3.3 describes all the steps of LODVec.
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6.3.3.1 Problem Statement

Creating URI Sequences. The input is a set of entities E′ ⊆ E, and the first target for each

e ∈ E′ is to create a finite set of URI sequences SeqU(e). Each URI sequence s ∈ SeqU(e) is

of the form 〈e, p, o〉 ∈ T where p ∈ P and o ∈ (C ∪ E) (remind that C is the set of classes).

Here, we exploit the neighborhood of an entity eby following both direct and inverse edges,

therefore each URI sequence corresponds to a single triple containing e either as a subject

or as an object. Our target is to collect all the produced SeqU(e) for each e ∈ E′, i.e., we

construct the set SeqUE
′ =
⋃

e∈E′ SeqU(e), where SeqUE
′ ⊆ T′.

From URI Sequences to URI Embeddings. The target is to map each entity e to a vector

space v(e) by using the set SeqUE
′, and word2vec algorithm (by using skip-gram model).

We expect that if two entities e and e′ are similar, then their produced vectors v(e) and v(e′)

will be close to the vector space.

Output Exploitation. Our target is the output vectors to be directly exploitable for ma-

chine learning classification and regression tasks, and for finding the top-K similar entities

to a given entity e. Concerning the first case, one should also provide as input the corre-

sponding categorical or continuous variable Y(e) for a given entity e. On the second case,

there is no need for additional input.

6.3.3.2 Metadata & Notations

First, remind that D = {Di, ...,Dn} is a set of datasets, and as triples(Di) the set of triples

for a given dataset Di (e.g., DBpedia). Table 6.5 represents a set of notations and metadata

that can aid users to select what type of URI sequences will be created. The first one corre-

sponds to the datasets containing a triple t, while the second one indicates which datasets

contain at least one triple for an entity e. The third one denotes the datasets that contain at

least one triple, for one or more entities e ∈ E′. The fourth is used for showing how many

of the entities in E′ can be found in a single dataset Di (i.e., a number in range [0, |E′|]),

whereas the fifth and the sixth formulas denote all the properties of an entity e and of all

the entities E′, respectively. The seventh formula shows the number of entities, for whom

there is at least one triple that contain a property p. Formula 8 shows all the objects of

a triple whose subject is e and predicate is p (e.g., all the actors of a movie). The last for-

mula shows the frequency (popularity) of a URI in the whole graph, i.e., how many triples

contain a URI u.

6.3.3.3 The Steps & Algorithm for Creating URI Sequences

Here, we describe the functionality and all the steps of LODVec (see Figure 6.18).

Steps 1-4. Input & Configuration. The first step (see Figure 6.18) is to receive the input

entities E′ (we support over 412 million URIs), which can be given a) as a list of URIs (e.g.,
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ID Notation or Metadata Formula

1 Provenance of Triple t prov(t) = {Di ∈ D | t = 〈s, p, o〉, t ∈ triples(Di)}
2 Provenance of Entity e dsets(e) = {Di ∈ D | ∃〈e, p, o〉 ∈ triples(Di)}
3 Provenance of Entities E′ dsetsE′ =

⋃

e∈E′ dsets(e)
4 Coverage of a Dataset given E′ covD(Di,E′) = |{e ∈ E′ |Di ∈ dsets(e)}|
5 Coverage of Properties given E′ covP(p,E′) = |{e ∈ E′, | ∃〈e, p, o〉 ∈ T′}|
6 Properties of an Entity e Prop(e) = {p ∈ P | 〈e, p, o〉 ∈ T′}
7 Properties of Entities E′ PropE′ =

⋃

e∈E′ Prop(e)
8 Objects of an entity-prop. pair Obj(e, p) = {o ∈ U|〈e, p, o〉 ∈ T′}
9 Frequency of a given URI u f req(u) = |{t ∈ T′ | t = 〈s, p, o〉, s = u or o = u}|

Table 6.5: Notations-Metadata

Figure 6.18: The steps of LODVec approach.

dbp:Inception), b) as a list of entities in plain text (e.g., “Inception”), or c) just a URI that

represents an RDF class or a category (e.g., dbc:Films about dreams)! In the latter case,

LODVec retrieves automatically the desired URIs. By exploiting LODsyndesis, LODVec can

optionally show to the user (i) the datasets containing the input entities (i.e., dsetsE′), in

descending order according to their covD(Di,E
′), and (ii) the list of available properties

for the given entities, i.e., PropE′ , in descending order according to their covP(p,E′) (i.e.,

Steps 2 and 3). In Step 4 of Figure 6.18, the user selects which configuration will be used,

i.e., the input of Alg. 10. In particular, one can select the datasets Dsel that will be used

(Dsel ⊆ dsetsE′), the desired properties Propsel (Propsel ⊆ PropE′) and whether all the possible

sequences or the top-K ones will be created. For creating the top-K URI sequences, one

should give as input the exact number K (i.e., a positive integer), and the method to sort

the triples according to the frequency of each triple’s object (i.e., in ascending, descending

or random order).

Step 5. Algorithm for Creating URI Sequences. Alg. 10 creates URI sequences for a

set of entities E′. First, it initializes the desired output (line 1). Then, it iterates over all

the input entities and for each entity e (lines 2-3), it initializes its corresponding set of URI

sequences and a frequency map (it is used for creating only the top-K sequences). The

next step is to traverse each direct or inverse property p of entity e (i.e., Prop(e)) that be-
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ALGORITHM 10: Creating URI sequences for a set of entities E′

Input: Entities E′, properties Propsel, datasets Dsel, cardinality crd ({“All” | “Top-K”}),

Integer K, sortType ({“asc”| “desc”| “rand”})

Output: URI Sequences SeqUE
′ for all the entities E′

1 SeqUE
′ ← ∅

2 forall e ∈ E′ do

3 SeqU(e)← ∅, f reqMap(e)← ∅
4 forall p ∈ (Prop(e) ∩ Propsel) do

5 forall o ∈ Obj(e, p), prov(〈e, p, o〉)∩Dsel , ∅ do

6 if crd ≡ “All” then

7 SeqU(e)← SeqU(e) ∪ {〈e, p, o〉}
8 else if crd ≡ “Top-K” then

9 f reqMap(e)← f reqMap(e) ∪ {〈e, p, o〉, f req(o)}
10 if crd ≡ “Top-K” then

11 sortSeq(e)← mergeSortByValue(f reqMap(e))sortType
12 forall 〈e, p, o〉 ∈ Lef t(sortSeq(e)) do

13 SeqU(e)← SeqU(e) ∪ {〈e, p, o〉}
14 if |SeqU(e)| ≡ K then

15 break

16 SeqUE
′ ← SeqUE

′ ∪ SeqU(e)
17 Return SeqUE

′

long also to the desired properties given by the user (i.e., Propsel). Remind that the indexes

of LODsyndesis store in the same place all the objects for each entity-property pair (e.g.,

movie-actor). Therefore, for each p we traverse all the possible objects, and we check if at

least one dataset containing that triple, belongs to the desired datasets Dsel (lines 4-5). In

such a case, we check the cardinality variable, i.e., if the user desires to find all the possi-

ble URI sequences, we add the URI sequence (i.e., triple) to Sequ(e) (lines 6-7). Otherwise,

we add the triple and its object’s frequency, i.e., f req(o) (retrieved by sending a request to

LODsyndesisREST services [169]), to the frequency map (lines 8-9). After traversing all the

desired triples for the entity e, if the user wants to create the top-KURI sequences, we sort

the values according to the given sortType (lines 10-11), e.g., if sortType equals “desc”, we

will sort the K triples, which are found in the left side of f reqMap(e), in descending order

with respect to their object’s frequency. We iterate over the sorted map (i.e., sortSeq(e)), that

contains in its left side (i.e., Lef t) a URI sequence and in its right side the f req(o), and we

add to Sequ(e) the top-K results (lines 12-15). Finally, we add the SeqU(e) to SeqUE
′, whereas

after all the iterations, Alg. 10 returns all the URI sequences.

The time complexity of Alg. 10 is O(|triplesE′)|), since in the worst case we read all the

triples for the entities E′. The space complexity is O(SeqUE′), since we keep in memory

all the produced sequences. We do not load in memory the triples of each entity, since
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we use random access methods for reading the desired part of the indexes. Finally, for

creating the top-K sequences for each entity e we also use a sorting algorithm whose time

complexity is O(n ∗ logn).

Steps 6-7. Creation of Embeddings & Exploitation. The next step (Step 6 of Figure

6.18) is to exploit the produced set SeqUE
′ for creating one vector per entity e. Indeed, we

use the word2vec implementation of dl4j library, which produces as output a vector v(e)

for each e ∈ E′. These vectors can be exploited for (i) machine-learning and (ii) similarity

tasks. Regarding task (i), the vectors can be downloaded in “.arff” format for performing

classification and regression through WEKA API (Step 7a of Figure 6.18), while LODVec of-

fers a service for producing automatically such results. Concerning task (ii), they can be

downloaded in “.txt” format, which is directly accessible from dl4j API. Finally, LODVec of-

fers a service for finding the top-K related entities to a given one (Step 7b of Figure 6.18).

6.3.4 Experimental Evaluation

In §6.3.4.1, we evaluate the impact of cross-dataset reasoning and of using multiple datasets,

for four machine-learning tasks, while §6.3.4.2 shows a small example for the task of find-

ing similar entities. All the experiments were performed on a single machine with an i5

core, 8GB RAM, and 1 TB disc space.

6.3.4.1 Machine Learning Tasks - The Gain of Using Multiple Datasets

Movies & Music Albums Datasets. We use the Metacritic Movies and Music Albums datasets

(derived from [209]) containing the DBpedia URIs of 2,000 movies and of 1,600 music al-

bums. Both datasets contain an average rating of all time reviews for each movie and mu-

sic album. Concerning movies, 1,000 of them have high rating (> 60), and the remaining

1,000 ones have low rating (< 40). Regarding music albums, 800 of them have high rating

(> 79), and the other 800 ones have low rating (< 63). The goal of (binary) classification is

to predict whether a movie or a music album has a high or a low rating, whereas the target

of regression is to find the exact rating of each movie and music album.

Word2Vec Parameters. For building our word2vec model, we use the skip-gram model

of dl4j library, we exclude URIs existing< 5 times in the produced sequences (minWordFrequency =

5), we use 10 iterations and we select the window size parameter to be 2 (windowSize = 2).

For each entity e, we produce a single vector v(e) with 100 dimensions (layerSize = 100),

and we expect that movies and albums with similar rating will be placed closely in the

vector space.

Machine Learning Models & Metrics. The vectors produced by LODVec are given as

input in WEKA API [255], for performing classification and regression, by using a 10-fold

cross validation [255]. Regarding classification (CF), we use the default implementation of

Naive Bayes (NB) and Support Vector Machine (SMO) of WEKA. For each model, we mea-
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Datasets Prop. crd |SeqU(e)|
Average

Creation
Time

NB
(CF)

SVM
(CF)

LR
(Reg)

SMOreg
(Reg)

Freebase (FR) All All 112.0 4.3 min 79.71% 82.02% 16.37 16.56

DBpedia (DB) All All 23.8 4.0 min 68.42% 71.14% 20.02 20.71

Wikidata (WK) All All 22.5 4.2 min 66.88% 67.66% 20.81 21.40

DB,WK All All 38.3 4.4 min 68.62% 74.92% 19.18 19.90

DB,FR All All 132.0 4.5 min 79.75% 82.51% 16.11 16.35

FR,WK All All 129.0 4.6 min 81.20% 83.32% 16.25 16.55

DB,FR,WK All All 144.7 4.7 min 82.11% 84.10% 16.01 16.31

All 14 dsets(E′) All All 170.1 5.7 min 82.41% 84.70% 15.57 15.65

FR type All 5.5 3.5 min 67.49% 71.40% 19.18 19.59

All 14 dsets(E′) type All 18.3 4.0 min 67.53% 72.92% 18.90 19.42

All 14 dsets(E′) ct+tp All 30.9 4.7 min 73.13% 74.90% 18.80 19.04

All 14 dsets(E′) All 30 asc 30.0 120 min 66.95% 72.50% 19.58 20.05

All 14 dsets(E′) All 30 rand 30.0 6.0 min 69.24% 73.10% 19.86 20.26

All 14 dsets(E′) All 30 desc 30.0 120 min 71.43% 75.86% 19.07 19.46

Table 6.6: Classification and regression experiments on Movies dataset

sure the accuracy percentage (percentage of correct predictions), i.e., the goal is to maxi-

mize that percentage. Concerning regression (Reg), we use the default implementation of

Linear Regression (LR) and Support Vector Machine for Regression (SMOreg) of WEKA, and

we measure the root mean squared error (RMSE), i.e., the target is to minimize the RMSE

value. Finally, we measure the accuracy and the RMSE for the trivial Vote method, that

selects randomly a class and a rating for each entity.

Results for both Tasks and Datasets. Tables 6.6 and 6.7 show several statistics and

experiments for movies and music albums, respectively. In each Table, the first column

shows the used RDF datasets, the second the properties, the third one the cardinality, the

fourth one the average URI sequences per entity, and the fifth one the total creation time

of all URI sequences. The columns 6 and 7 show the accuracy of the classification task (SF)

and the last two columns the RMSE value for the regression task (Reg), by using different

models.

Results for Movies. In rows 2-9 of Table 6.6, we show experiments by using all the pos-

sible properties and by creating all the possible URI sequences, however, in each case we

use a different subset of datasets. We can see how the average number of URI sequences

increases as we add more datasets (see the fourth column of Table 6.6), e.g., by using DBpe-

dia we created 23.8 URI sequences per movie, whereas with all the datasets we created on

average 170.1 URI sequences. Moreover, as we add more datasets, the total time for creat-

ing all the URI sequences did not increase so much, i.e., by using only DBpedia we needed

4 minutes (i.e., 0.12 seconds per entity), whereas by using all datasets the corresponding

time was 5.7 minutes (i.e., 0.17 seconds per entity).

Classification and Regression Results. First, for the trivial Vote method, we obtained

50% accuracy, whereas the RMSE value was 23.1. The single dataset with the highest
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accuracy and the lowest RMSE was FreeBase (http://freebase.com), i.e., we obtained

82% accuracy through SVM model, whereas its RMSE value was 16.37 (through LR model).

The corresponding percentages for DBpedia and Wikidata were much smaller. However,

by taking each pair of these 3 datasets, the accuracy increased, and the RMSE value de-

creased in all cases (versus using only one dataset from each pair). Certainly, by using

only FreeBase, we achieved better results comparing to use both DBpedia and Wikidata,

which seems rational, since from Freebase we created a large number of sequences. How-

ever, by combining Freebase with either DBpedia or Wikidata, or by using all 3 datasets

(these combinations are feasible due to cross-dataset reasoning), we obtained better re-

sults. By using all the 14 available datasets (out of 400 datasets) having data about these

movies, we achieved the highest accuracy (84.7%) and the lowest RMSE (15.57). However,

we should note that 8 of these 14 datasets offered very few URI sequences for this task.

Finally, SVM outperformed NB in all classification cases, while LR was more effective in

regression tasks.

Other Configurations. In rows 10-15 of Table 6.6, we show indicatively some experi-

ments with different configurations. By creating URI sequences containing only the prop-

erty rdf:type, we obtained better results by using all datasets in comparison to use only

Freebase, while by creating sequences that contain both rdf:type and dcterms:subject (ct+tp)

the results improved. Regarding experiments containing the top-K sequences, by creating

only the top-30 URI sequences according to objects frequency for each movie in descend-

ing order (i.e., triples with the 30 most popular objects per movie), we achieved the highest

accuracy and the lowest RMSE. On the contrary, a random order was more effective ver-

sus an ascending one. Concerning the creation time of desc and asc, is it slower versus

the other configurations (i.e., 3.6 seconds per entity), since we send several requests to

LODsyndesis [169] for retrieving the frequency of objects.

Results for Music Albums. Table 6.7 shows experiments by creating all the URI se-

quences, each time by using a different subset of datasets. By using only DBpedia (see the

fourth column), we created on average 16.3 URI sequences per album, whereas by using

all the datasets, we created 35.9. Concerning the creation time of URI sequences, it is again

low (i.e., 0.11 seconds per entity).

Classification and Regression Results. For the trivial Vote method, we obtained 50%

accuracy, whereas the RMSE value was 13.95. The single dataset having the best perfor-

mance was DBpedia (see Table 6.7), whereas Freebase was not so accurate for this task.

Therefore, even by selecting to use exactly one dataset for both movies and music albums

(i.e., the same dataset in both cases), we will not be able to obtain good results for both

tasks. Similarly to movies, as we add more datasets, the results are better for both regres-

sion and classification, except for the pairs containing the dataset Wikidata. By including

all the 5 available datasets for music albums, we obtain the highest accuracy (i.e., 71.31%)

and the lowest RMSE value (i.e., 12.41). Finally, similarly to the case of movies, the best
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Datasets Prop. crd |SeqU(e)|
Average

Creation
Time

NB
(CF)

SVM
(CF)

LR
(Reg)

SMOreg
(Reg)

Freebase (FR) All All 9.2 2.1 min 52.75% 56.57% 13.74 14.08

DBpedia (DB) All All 16.3 2.3 min 64.01% 68.21% 12.75 13.07

Wikidata (WK) All All 6.7 1.9 min 60.38% 61.37% 13.89 14.68

DB,WK All All 20.5 2.3 min 63.42% 67.61% 12.85 13.10

DB,FR All All 25.5 2.3 min 64.30% 68.64% 12.60 13.03

FR,WK All All 16.0 2.2 min 54.10% 57.65% 14.00 14.50

DB,FR,WK All All 29.8 2.4 min 64.73% 69.02% 12.55 13.01

All 5 dsets(E′) All All 35.9 2.5 min 67.21% 71.31% 12.41 12.72

Table 6.7: Classification and regression experiments on Music Albums dataset

Datasets Position 1 Position 2 Position 3 Position 4 Position 5

DB Pink Panther 2 Ratatouille Shrek 2 Rain Mant Space Chimps

DB,FR Finding Nemo Toy Story 2 Incredibles Toy Story Princess and the Frog

All Finding Nemo Ratatouille Incredibles Toy Story 3 Toy Story

Table 6.8: Top-5 related movies to “Wall-E” movie by using different datasets

model was the SVM for classification and the LR for regression.

6.3.4.2 Finding Similar Entities

LODVec can produce the top-K similar entities for a given one, since it uses word2vec from

dl4j API. Table 6.8 shows an indicative example, i.e., finding the 5 most similar movies

(from the set of 2,000 movies) to the animated movie “WALL-E”, by creating all the URI

sequences and by using a) only DBpedia, b) DBpedia and Freebase and c) all datasets. For

evaluating the results, we typed in Google Search Engine the keywords “WALL-E related

movies”, and we retrieved a list with related movies that “People also search for WALL-E”.

By using only DBpedia, 2 of 5 movies were in the list of related movies (the bold ones in

Table 6.8), whereas by using both Freebase and DBpedia, 4 of 5 movies were at that list.

Finally, by exploiting all the datasets, all the 5 movies were part of the list.

6.3.5 Epilogue.

We introduced a prototype called LODVec that exploits the semantically enriched indexes

of LODsyndesis knowledge graph, and offers configurable options for creating URI se-

quences and embeddings through word2vec algorithm, for over 400 million entities from

400 RDF datasets. The produced embeddings can be exploited in several tasks. In our

case, we evaluated the gain of using multiple datasets (and cross-dataset reasoning) for

four machine-learning tasks, e.g., for classifying whether a movie has a high or low rat-

ing. Indicatively, by using data from DBpedia we created 23.8 URI sequences per movie,

while by combining information from 14 datasets, the corresponding number was 170.1.

We identified even 13% increase in the accuracy of predicting if a movie is highly rated by
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using multiple datasets, instead of using only DBpedia.

6.4 LODQA. Question Answering over large number of datasets

Open domain (as opposed to closed domain) Question Answering (QA) is a challenging

task, since it requires to tackle a number of issues: (i) the issue of data distribution, i.e.,

several datasets, that are usually distributed in different places, should be exploited for

being able to support open domain question answering, (ii) the difficulty of word sense

disambiguation, because the associated vocabulary is not restricted to a single domain,

and (iii) the difficulty (or inability) to apply computationally expensive techniques, such

as deep NLP analysis, due to the huge size of the underlying sources.

For tackling these challenges, recently we have focused on Open Domain Question

Answering over Linked Data. In particular, we have created LODQA [73], which is an ongo-

ing research prototype, that is able to answer factoid, confirmation, and definition ques-

tions. In particular, it is a Linked Data-based Question Answering system that exploits

LODsyndesis since it offers two distinctive features for the QA process, which are not sup-

ported by a single source: (a) it is feasible to verify an answer to a given question from

several sources, and (b) the number of questions that can be answered is highly increased,

because datasets usually contain complementary information for the same topics and en-

tities (i.e., see Chapter 4).

Essentially, we try to find the best triple(s) for answering the incoming question; we do

not carry out any other information integration techniques (like those surveyed in [173]).

Regarding (a), suppose that the given question is “What is the population of Heraklion?”,

and the system retrieves two candidate triples, i.e., (Heraklion, population, 140,730), (Her-

aklion, population, 135,200). The two triples contain a different value for the population

of that city, however, suppose that the first triple can be verified from four datasets (say D1,

D2, D3, D4), whereas the second one only from a single dataset (say D5). In this example,

LODQA will return as correct answer the first triple, because it can be verified from a larger

number of datasets, thereby, we have more evidence about its correctness. Regarding (b),

suppose that LODQA receives the two following questions for an other domain (say marine

domain), “Is Yellowfin Tuna a predator of Atlantic pomfret?” and “Which is the genus of Yel-

lowfin Tuna”. These two questions are addressed to the same entity i.e. “Yellowfin Tuna”,

however there is not a single dataset where we can find the desired information for an-

swering both questions. Indeed, LODQA is able to answer the first question by using data

from Ecoscope dataset, whereas the second question is answerable by a triple that occur

in DBpedia knowledge base.
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6.4.1 The process offered by LODQA

LODQA is an information extraction approach that consists of three main phases (i) Ques-

tion Analysis (QA), (ii) Entities Detection (ED) and (iii) Answer Extraction (AE), where each

of them includes multiple steps. To make these steps more clear, Figure 6.19 shows a run-

ning example i.e., the steps for answering the factoid question “What is the population of

Heraklion?”.

Figure 6.19: The QA Process over the running example

Concerning the Question Analysis process, it performs question cleaning (e.g., removal

of stopwords) and it identifies the question type (e.g., factoid) by exploiting heuristics,

e.g., in Figure 6.19 it identified that the question is factoid and it removed the stopwords

{which,is,the,of}. Regarding the Entities Detection step, it recognizes the entities of the

question and it performs linking and disambiguation, by using both pure NLP methods

and Linked Data-based methods, specifically Stanford CoreNLP [98, 149] and DBpedia
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Spotlight [151], whereas it also exploits the keyword-to-URI service of LODsyndesis (see

§6.1.1) for identifying the URI for a given keyword. In the example of Figure 6.19, LODQA

found that the entity of the input question is “Heraklion”.

Concerning the Answer Extraction step, it uses WordNet [155] for tackling the possible

lexical gap between a given question and the answer which can be found in the underly-

ing sources (e.g., it extracts synonyms for expanding the keywords for the given question).

Then, it exploits the Fact Checking service of LODsyndesis (see §6.1.6.1), for retrieving can-

didate triples for the identified entity and a set of keywords. Afterwards, it scores each can-

didate triple for producing the final answer (by taking also into account the provenance),

e.g., in Figure 6.19, it produced the answer “the population of Heraklion is 140,730”, since

we were able to verify that answer from two datasets.

More details for all the aforementioned steps can be found in [73].

6.4.2 Evaluation

We have performed a comparative evaluation over the SimpleQuestions(v2) collection

[48], for evaluating the whole process by selecting randomly a set 1,000 factoid questions,

where each question contained on average 7 words. The subset of the collection that was

used in the experiments, is accessible online3.

6.4.2.1 Effectiveness and Efficiency

As regards effectiveness, by using all the question words expansion steps, we achieved the

highest accuracy (i.e., 49%), whereas by taking into account only the questions that passes

the Entities Detection Step (i.e., all the questions that we detected the correct entities), the

accuracy increases (i.e., 64%). Concerning efficiency, it needs on average 5.33 seconds to

answer a question. The most time consuming steps are to retrieve the candidate triples

(57.2% of the required time) and to detect the entities of the question (30% of the required

time). Furthermore, it is worth noting that the minimum time for answering a question

was 1.6 seconds and the maximum one was 37.46. Finally, half of the questions (i.e., me-

dian value) were answered in less than 3.7 seconds. More details about the experiments

can be found in [73].

6.4.2.2 The Benefits of using Multiple Datasets through LODsyndesis

LODsyndesis contains information for over 28 million entities from at least two datasets,

whereas for 6.9 million entities we can retrieve information from at least three datasets. It

is worth noting that there exists 28.4 million of possible questions that can be verified by

more than one dataset, i.e., corresponds to simple questions answerable from at least two

3http://islcatalog.ics.forth.gr/tr/dataset/simplequestions-v2-1000-questions
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datasets. Therefore, it is evident that by using multiple datasets, we increase the probabil-

ity of answering a given question, whereas the number of verifiable questions is increased,

too. Moreover, for the entities existing in at least two datasets, if we use only a single

dataset (even the dataset containing the most triples for each entity), the average number

of triples per entity is 17.3. On the contrary, due to the cross-dataset reasoning (i.e., com-

putation of transitive and symmetric closure of equivalent relationships), LODsyndesiscol-

lects all the available information for each entity from all the datasets. Due to this process,

the average number of triples of each of these entities highly increases (i.e., it becomes

29.3).

Figure 6.20: An example of the LODQA demo

6.4.3 Web Demo and Related Links

LODQA is currently hosted and runs in a single machine with an i5 core, 8 GB main memory

and 60 GB disk space. Although the hosting machine has a low computational power, the

interaction is real time, i.e., few seconds are needed to answer a question.

In the website https://demos.isl.ics.forth.gr/LODQA/DemoQuestions, we offer a list
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of demo factoid, confirmation and definition questions, enabling the user to run questions

for each of these categories. Three indicative question-answer pairs, one for each question

type, are in order: (Which was the birth place of Socrates?, Athens), (Is Nintendo located

in Kyoto?, Yes!), (What is Parthenon?, the parthenon, a temple built in honor of athena...).

As we can see in Figure 6.20, for the question “Which is the birth place of Lebron

James?”, LODQA returns the answer (i.e., “Ohio” in this example), and also a complete anal-

ysis for the question (see the right part of Figure 6.20). Specifically, except for the short an-

swer, one can find more information about its provenance, its type and its confidence score.

Moreover, it returns the triple (in RDF format) where we found the question, whereas one

can explore more information for each entity which is part of the triple, by using the ser-

vices of LODsyndesis which were introduced in this chapter. Finally, a tutorial video is

accessible in https://youtu.be/bSbKLlQBukk.

6.5 Epilogue

In this chapter, we presented LODsyndesis which is a suite of services over the datasets

of the entire Linked Open Data Cloud. LODsyndesis exploits the methods, algorithms

and semantics-aware indexes described in this dissertation for offering advanced services

for tasks A-E. In particular, we described how to exploit these services either through our

HTML webpage or by using the provided REST API, for over 400 million entities and 2 bil-

lion triples from 400 real RDF datasets. As a product, to the best of our knowledge, the

indexes of LODsyndesis (which is the suite of services that exploits the aforementioned in-

dexes and measurements) constitute the biggest knowledge graph of LOD that is complete

with respect to the inferable equivalence relations.

Moreover, we introduced two Data Enrichment tools that can be exploited for several

Machine-Learning tasks, i.e., the tools LODsyndesisML and LODVec. Concerning LODsyndesisML,

it exploits several Linked Datasets and provides a configurable tool for creating automat-

ically features for any set of entities by sending SPARQL queries. Regarding LODVec, it

exploits the indexes of LODsyndesis, for offering configurable options for creating URI

sequences and embeddings through word2vec algorithm from hundreds of datasets. By

using these two tools which exploit several datasets simultaneously, we identified an in-

crease in the accuracy of predictions for several Machine-Learning tasks (particularly for

classification and regression tasks).

Finally, we presented in brief the ongoing work LODQA, which is an approach that ex-

ploit hundreds of datasets simultaneously through LODsyndesis, and follows a variety of

methods, for answering a question expressed in natural language.



Chapter 7

Conclusion

7.1 Synopsis of Contributions

In this thesis, we focused on proposing novel methods, supported by special indexes and

algorithms, for covering the needs of several tasks that are related to the connectivity and

semantic integration among large number of Linked Datasets. In particular, the objec-

tive was to provide services for fulfilling the requirements and needs of scientists of any

scientific field (or even simple users) for the following tasks: (a) for obtaining complete

information about one particular entity, (b) for assessing the connectivity between any

subset of datasets and monitoring their evolution over time, (c) for discovering the most

relevant datasets for a given task or for a given dataset, (d) for enriching the content of a

given datasets from several ones, and (e) for improving and estimating the quality of data.

At first, we identified the major challenges for achieving the above targets. In particular,

we identified that even seemingly simple tasks, such as finding all the available informa-

tion for an entity, presupposes knowledge of all datasets, and it is a requirement to perform

cross-dataset identity reasoning, i.e., to compute the symmetric and transitive closure of

the equivalence relationships that exist among entities and schemas. Moreover, we iden-

tified that Dataset Discovery is also a big challenge, since current approaches exploit only

the metadata of datasets, without taking into consideration their contents.

For analyzing the work that has been done in the area in the past decade, we provided a

survey about Large Scale Semantic Integration of Linked Data. In particular, we described

the Linked Data Ecosystem, by identifying the main actors and use cases and the main

difficulties of the data integration process. Since the integration landscape is wide and

complex, we factorized the process according to five dimensions, we discussed the spec-

trum of binding types that are used for achieving integration, as well as the kinds of ev-

idence that are usually used for creating such bindings. Subsequently we used these di-

mensions for describing the work that has been done in the area, by giving emphasis on

approaches for large scale semantic integration. We identified and discussed 18 in num-

ber tools for linked data integration and 15 services that are available for large in number

RDF datasets, including LODsyndesis, which is the suite of services that has been devel-
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oped in this dissertation. By taking into account the above analysis, we described the

placement of this dissertation in the Data Integration Landscape, we identified the major

research gaps and the research directions by introducing several motivating scenarios for

each task, and we described the novelty of our approach, i.e., this is the first work provid-

ing cross-dataset identity reasoning for both schema and instance elements at large scale

and content-based Dataset Discovery metrics among any subset of datasets.

For tackling the challenges, we introduced algorithms for performing cross-dataset

identity reasoning among different datasets, i.e., computing the transitive and symmet-

ric closure of equivalence relationships, either by using a single machine or a cluster of

machines. Moreover, we introduced parallel MapReduce methods [69] for creating five

semantics-aware indexes (for entities, triples, classes, properties and literals), for enabling

the fast access to all the available information of any entity. Concerning efficiency, we

needed only 45 seconds to compute the transitive and symmetric closure for 13 million

owl:sameAs relationships by using an algorithm for a single machine. Since that algo-

rithm was not scalable, we used a variation of Hash-to-Min algorithm [203] for comput-

ing the closure for 44 millions of owl:sameAs relationships in less than 10 minutes by us-

ing 96 virtual machines. Moreover, by using the aforementioned cluster of machines, we

constructed the five semantics-aware indexes for 2 billion triples (derived from 400 RDF

datasets) in 81 minutes, whereas we reported experiments which revealed the scalability

of the parallel algorithms.

For offering content-based Dataset Discovery among any subset of datasets, we pro-

posed several content-based metrics that are based on intersection, union and comple-

ment. We showed that for computing these metrics, it is a prerequisite to take into ac-

count the whole contents of datasets (and not only metadata) and to solve maximization

problems. First, we showed that it is prohibitively expensive to computet such metrics

by using either a baseline method or a SPARQL implementation. For making feasible the

computation of these metrics at large scale we proposed lattice-based incremental algo-

rithms that exploit the posting lists of the semantics-aware indexes and set-theory prop-

erties. In particular, we proposed two different traversals for computing the cardinality

of intersection, i.e., a bottom-up depth first search and a top-down breadth first search

traversal. On the contrary, for computing the cardinality of union, absolute complement

and relative complement, we proposed bottom-up depth-first search algorithms that are

based on set-theory properties and pruning and regrouping methods. Furthermore, we

introduced methods for computing the metrics in parallel by splitting the lattice in small

pieces.

Concerning efficiency, for all the metrics, the lattice-based incremental approaches

were even more than 5000× faster than a SPARQL implementation and a baseline method

which does not exploit set theory properties. Indicatively, a SPARQL implementation needs

even on average one minute to perform the metrics for a pair of datasets, whereas the pro-
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posed incremental approaches can compute the metrics for millions of subsets even in

one second. As regards intersection metrics, by using a bottom-up lattice-based approach,

we computed the cardinality of intersection for millions of subsets of datasets for entities,

triples, and literals in a few seconds (4, 0.9 and 3.6 seconds, respectively), whereas it was

feasible to perform the measurements even for billions of combinations of datasets in less

than 10 minutes. Concerning the different methods, we achieved even a 21× speedup by

using a bottom-up approach instead of a top-down and a 5.61× speedup by combining

the bottom-up approach with a pruning method.

Regarding union and complement metrics, by combining the bottom-up lattice-based

incremental approach with pruning and regrouping methods, we observed up to 97×

speedup, and we managed to compute the cardinality of the union for millions of subsets

of datasets, for entities, triples, and literals in 1.3, 1.4 and 3.2 seconds, respectively. More-

over, we computed the cardinality of the absolute and relative complement of entities for

a single dataset, with respect to millions of subsets of datasets, in 1.1 and 0.8 seconds. By

using the parallel version of the bottom-up lattice-based algorithm for intersection, we

managed to split the lattice in small slices in a very efficient way, i.e., in the experiments,

where we used a cluster of 64 machines, we managed each machine to compute the met-

rics for almost the same number of lattice nodes. With this algorithm, we computed the

cardinality of intersection for 1 billion nodes in less than 1 minute and for one trillion

nodes in approximately 6 hours.

Moreover, we reported connectivity analytics by exploiting the semantics-aware in-

dexes and the content-based metrics over 400 Linked Datasets. Regarding owl:sameAs

relationships, the computation of cross-identity reasoning yielded more than 73 million

new owl:sameAs relationships, and this increases the connectivity of the datasets: over

30% of the 9,025 of connected pairs of datasets that share entities are due to these new

relationships. However, the measurements also reveal the “sparsity” of the current LOD

cloud and make evident the need for better connectivity. Only a small percentage of enti-

ties, triples and literals exist in two or more datasets, i.e., 7.73%, 11.88% and 0.7% respec-

tively, whereas the percentages are even worse for the schema elements (i.e., less than 1%

of properties and classes are used in at least two datasets). Moreover, only 1.9% of real

world entities are part of three or more datasets. Concerning the connectivity among dif-

ferent datasets, there exists 11.3% of pairs and 1.24% of triad of datasets that share at least

one entity. On the contrary, a high percentage of pairs (i.e., 78%) and triads (i.e., 46.44%)

of datasets share literals, but only a small percentage of pairs (i.e., 5.59%) and triads (i.e.,

0.33%) have triples in common. Concerning the most popular datasets, which are highly

connected with other datasets, they belong predominantly to cross-domain (i.e., DBpedia,

Freebase, YAGO and Wikidata), and secondarily to the publications domain. It is worth

noting that these four cross-domain datasets share over 2.9 million entities and 3.4 mil-

lion literals.
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For exploiting the semantics-aware indexes and the content-based measurements, we

presented the LODsyndesis suite of services, which includes services for all the tasks pre-

sented in this dissertation. Indeed, we described how one can use these services for over

400 million entities and 2 billion triples by accessing our webpage (which also offers a

REST API). Moreover, we presented two tools which use the semantics-aware indexes and

LODsyndesis services for improving the execution of Machine-Learning tasks, i.e., LODsyndesisML

and LODVec. By using these tools, we created features and word embeddings by using sev-

eral datasets simultaneously, and we managed to improve the accuracy of predictions for

several Machine-Learning tasks, (e.g., predicting whether a movie is popular or not, ac-

cording to user ratings). Furthermore, we introduced an ongoing work (i.e., LODQA) for

enabling question answering over hundreds of Linked Datasets.

Finally, we should notice that the proposed methods indexes and algorithms are ap-

plicable for any given RDF dataset of any domain, whereas as a product, to the best of

our knowledge, LODsyndesis constitutes the biggest knowledge graph of LOD that is com-

plete with respect to the inferable equivalence relationships. All the services, offered by

LODsyndesis, can be directly exploited as core services, for various higher level Data Inte-

gration services at large scale.

7.2 Directions for Future Work and Research

There are several aspects that are worth further work and research.

Content-Based Metrics for Complex Queries

The proposed lattice-based algorithms can compute the lattice of measurements for mil-

lions of subsets of datasets in a few seconds. However, in the worst case where more

datasets (i.e., even hundreds of datasets) should be pre-selected for a given query (e.g.,

for entities that occur in a large number of datasets), it is prohibitively expensive to com-

pute the metrics even with the proposed methods. One potential solution is to pre-select

the top-Kdatasets according to some heuristics (such as their cardinality value |cov(Di,F)|,

their domain, etc.) and to apply the algorithms for these Kdatasets, however, it is a prob-

lem that requires further research. Moreover, we would like to be able to propose methods

for answering complex queries that combine two or more metrics, e.g., queries such as

“Give me the K datasets that contain at least 1,000 common entities with my dataset, and

these datasets increase the degree of the entities of my dataset at least 2 times”. Such a

query requires the computation of both intersection and complement metrics.

Providing LOD Scale Analytics for a Dataset On-The-Fly

The propose Dataset Discovery metrics require that a dataset Di should be indexed, for

providing measurements for it. However, we plan to propose methods for receiving as in-
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put any RDF dataset Di on-the-fly, and to offer as an output LOD Scale analytics about it at

real time. Such a process could require to update the indexes at real time and to perform

content-based measurements by using the updated posting lists that contain the dataset

Di. By offering such a service, a publisher would be able to identify whether his/her dataset

a) is connected to others, b) offers unique information comparing to the other datasets,

and c) contains common facts with other datasets. Finally, one research direction which

is related to this task, is to create indexes and provide such LOD scale analytics by using as

input streaming data.

Quality of Equivalence Relationships

We plan to work on automatic ways for evaluating/improving the quality of equivalence re-

lationships among different datasets (which are required for creating the semantics-aware

indexes and for computing the metrics), since it is time-consuming to evaluate them in a

semi-manually way.

Exploitation of Indexes for Several Tasks

One possible future direction could be to exploit the constructed indexes for several tasks,

such as Keyword Search, Instance and Schema Matching, Entity Recognition and others.

Embeddings over Large Number of Datasets

As a future work for LODVec we plan (a) to create longer URI sequences, (b) to create vec-

tors through other models, such as GloVe [195], and (c) to apply graph-based techniques,

such as [61, 253]. Moreover, our goal is to train the whole knowledge graph for retrieving

the top-K similar entities for any given entity quickly.

Evaluation Collections and Reproducible Results

There is a lack of large collections and challenges for evaluating the quality of automated

methods for data integration and consequently for reporting reproducible and compara-

tive results. Such collections could be useful for having a systematic method for testing

the quality of the overall integration processes, and measuring the human effort that is

required. That would allow the community to investigate and evaluate novel ideas.

Novel Processes for Large Scale Data Integration

It would be interesting to propose novel automatic processes, by supporting both bottom-

up and top-down schema mapping, automatic contextualization of resources, and to com-

bine inductive and deductive methods, which could include machine-learning based meth-

ods, that will be applicable to thousands of datasets.
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Comparing the Efficiency of different frameworks

It would be interesting to execute the algorithms by using not only MapReduce [69] , but

also other popular big data frameworks, such as SPARK [259], and to perform experiments

for comparing the efficiency of these frameworks for each of the proposed algorithms.

SPARQL Extension for Computing Content-Based Metrics Among any Subset of Datasets

One future direction could be a SPARQL extension, which will be applicable for comput-

ing content-based metrics among any subset of datasets. Such an implementation could

require the construction of dedicated indexes and algorithms for the given problem.

Question Answering over Large Number of Datasets

We plan to improve LODQA system for making it capable of returning responses to more

complex questions, i.e., list questions or questions that require combining paths of triples,

by exploiting the indexes of LODsyndesis.



Bibliography

[1] Bibliotheque nationale de France. http://www.bnf.fr. Accessed: 2020-01-10.

[2] Blazegraph database. http://www.blazegraph.com/. Accessed: 2020-01-10.

[3] Common format and MIME type for Comma-Separated Values (CSV) Files. http:

//tools.ietf.org/html/rfc4180. Accessed: 2020-01-10.

[4] DBpedia. http://dbpedia.org. Accessed: 2020-01-10.

[5] Deutschen National Bibliothek. http://www.dnb.de. Accessed: 2020-01-10.

[6] Extensible markup language (XML). http://www.w3.org/XML/, note = Accessed:

2020-01-10.

[7] Food and Agriculture Organization of the United Nations. http://www.fao.org/.

Accessed: 2020-01-10.

[8] Freebase. http://developers.google.com/freebase/. Accessed: 2020-01-10.

[9] GeoNames geographical database. http://www.geonames.org/. Accessed: 2020-01-

10.

[10] ImageSnippets. http://www.imagesnippets.com/. Accessed: 2020-01-10.

[11] The javascript object notation (JSON) data interchange format. http://buildbot.

tools.ietf.org/html/rfc7158. Accessed: 2020-01-10.

[12] JRC-Names. http://ec.europa.eu/jrc/en/language-technologies/jrc-names.

Accessed: 2020-01-10.

[13] Library of Congress Linked Data Service. http://id.loc.gov/. Accessed: 2020-01-

10.

[14] Linked Movie Data Base (LMDB). http://linkedmdb.org/. Accessed: 2020-01-10.

[15] MATLAB - MathWorks. https://www.mathworks.com/products/matlab.html.

[16] Okeanos cloud computing service. http://okeanos.grnet.gr. Accessed: 2020-01-

10.

213



214 Bibliography

[17] OpenCyc. http://www.cyc.com/opencyc/. Accessed: 2020-01-10.

[18] Radatana. http://data.bibsys.no/. Accessed: 2020-01-10.

[19] RDF 1.1 N-Quads. http://www.w3.org/TR/n-quads/, note = Accessed: 2020-01-10.

[20] RDF 1.1 N-Triples. http://www.w3.org/TR/n-triples/, note = Accessed: 2020-01-

10.

[21] The British Library. http://bl.uk. Accessed: 2020-01-10.

[22] The Virtual International Authority File. http://viaf.org. Accessed: 2020-01-10.

[23] VIVO Scripps. http://vivo.scripps.edu/. Accessed: 2020-01-10.

[24] VIVO Wustl. http://old.datahub.io/dataset/vivo-wustl. Accessed: 2020-01-10.

[25] Wikidata. http://www.wikidata.org. Accessed: 2020-01-10.

[26] YAGO. http://yago-knowledge.org. Accessed: 2020-01-10.

[27] Alberto Abello, Oscar Romero, Torben Bach Pedersen, Rafael Berlanga, Victoria

Nebot, Maria Jose Aramburu, and Alkis Simitsis. Using semantic web technologies

for exploratory OLAP: a survey. IEEE TKDE, 27(2):571–588, 2015.

[28] Maribel Acosta, Elena Simperl, Fabian Flöck, and Maria-Esther Vidal. Enhancing an-
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[50] Alison Callahan, José Cruz-Toledo, Peter Ansell, and Michel Dumontier. Bio2RDF

release 2: improved coverage, interoperability and provenance of life science Linked

Data. In Extended Semantic Web Conference, pages 200–212. Springer, 2013.

[51] Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov, Davide

Lanti, Martin Rezk, Mariano Rodriguez-Muro, and Guohui Xiao. Ontop: Answering

sparql queries over relational databases. Semantic Web, 8(3):471–487, 2017.

[52] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and

Riccardo Rosati. Information integration: Conceptual modeling and reasoning sup-

port. In Proceedings of 3rd IFCIS Conference, pages 280–289, 1998.

[53] Diego Calvanese, Martin Giese, Dag Hovland, and Martin Rezk. Ontology-based in-

tegration of cross-linked datasets. In International Semantic Web Conference, pages

199–216. Springer, 2015.

[54] Diego Calvanese, Domenico Lembo, and Maurizio Lenzerini. Survey on methods

for query rewriting and query answering using views. Integrazione, Warehousing e

Mining di sorgenti eterogenee, 25, 2001.

[55] Silvana Castano, Alfio Ferrara, Stefano Montanelli, and Gaia Varese. Ontology and

instance matching. In Knowledge-driven multimedia information extraction and

ontology evolution, pages 167–195. Springer, 2011.

[56] Adriane Chapman, Elena Simperl, Laura Koesten, George Konstantinidis, Luis-
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[159] Gabriela Montoya, Luis-Daniel Ibáñez, Hala Skaf-Molli, Pascal Molli, and Maria-

Esther Vidal. Semlav: Local-as-view mediation for SPARQL queries. In TLDKS XIII,

pages 33–58. Springer, 2014.

[160] Camilo Morales, Diego Collarana, Maria-Esther Vidal, and Sören Auer. MateTee: a
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Appendix A

Publications and Systems

Publications

The research activity related to this thesis has so far produced the following publications

(ordered by publication date):

(1) M. Mountantonakis and Y. Tzitzikas, On Measuring the Lattice of Commonalities Among

Several Linked Datasets, Proceedings of the VLDB Endowment (PVLDB), 2016

(2) M. Mountantonakis and Y. Tzitzikas, How Linked Data can aid Machine Learning-

based Tasks, 21st International Conference on Theory and Practice of Digital Libraries

(TPDL), (pp. 155-168), September 2017, Thessaloniki, Greece

(3) M. Mountantonakis and Y. Tzitzikas, Scalable Methods for Measuring the Connectiv-

ity and Quality of Large Numbers of Linked Datasets, ACM Journal of Data and Infor-

mation Quality (JDIQ), 9(3), 15, 2018

(4) M. Mountantonakis and Y. Tzitzikas, High Performance Methods for Linked Open

Data Connectivity Analytics, Information 2018, 9, 134.(Special Issue Semantics for

Big Data Integration)

(5) M. Mountantonakis and Y. Tzitzikas, LODsyndesis: Global Scale Knowledge Services,

Heritage. Open Access Journal (ISSN 2571-9408), 1(2), 335-348, MDPI.(Special Issue:

On Provenance of Knowledge and Documentation: Select Papers from CIDOC 2018),

2018.

(6) M. Mountantonakis and Y. Tzitzikas, Large Scale Semantic Integration of Linked Data:

A survey, ACM Computing Surveys, 52(5), Sept. 2019

(7) M. Mountantonakis and Y. Tzitzikas, Knowledge Graph Embeddings over Hundreds

of Linked Datasets, 13th International Conference on Metadata and Semantics Re-

search, Rome, Italy, October 2019

(8) M. Mountantonakis and Y. Tzitzikas, Content-based Union and Complement Metrics

for Dataset Search over RDF Knowledge Graphs, ACM Journal of Data and Informa-

tion Quality (JDIQ), 2020

In more details and with regard to the contributions of this thesis:
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• In (1) we proposed algorithms for computing the cross-dataset identity closure, for

constructing the semantics-aware indexes for URIs, and for computing the cardinal-

ity of intersection (through lattice-based incremental methods) among any subset

of datasets by using a single machine.

• In (2) we introduced the tool LODsyndesisML, which enables the creation of features

for Machine-Learning based tasks by using multiple datasets.

• In (3) and (4), we introduced algorithms a) for computing in parallel the transitive

and symmetric closure of equivalence relationships, b) for creating in parallel semantics-

aware indexes for the whole contents of datasets, and c) for computing in parallel

lattice-based measurements. Moreover, we reported connectivity analytics for a big

subset of the entire LOD Cloud.

• In (5) we described the suite of services that are available through LODsyndesis.

• In (6) we presented the survey that includes the work that has been done in the area

of Linked Data integration in the last decade.

• In (7) we described how to compute union and complement metrics by using the

semantics-aware indexes and special lattice-based incremental algorithms.

• In (8) we introduced LODVec, which enables the creation of URI embeddings by using

hundreds of datasets, simultaneously.

Other Publications

Here, we show some other related publications to this thesis (ordered by publication date):

(9) M. Mountantonakis and Y. Tzitzikas, Services for Large Scale Semantic Integration of

Data, ERCIM News 2017 (111), October 2017

(10) M. Mountantonakis and Y. Tzitzikas, LODsyndesis: The Biggest Knowledge Graph of

the Linked Open Data Cloud that Includes all Inferred Equivalence Relationships,

ERCIM News 2018 (114), July 2018

(11) M. Mountantonakis, N. Minadakis, Y. Marketakis, P. Fafalios, Y. Tzitzikas, Connectiv-

ity, Value, and Evolution of a Semantic Warehouse. In Innovations, Developments,

and Applications of Semantic Web and Information Systems (pp. 1-31). IGI Global,

2018

(12) ME Papadaki, P Papadakos, M Mountantonakis and Y Tzitzikas, An Interactive 3D

Visualization for the LOD Cloud., EDBT/ICDT Workshops, 100-103, 2018

(13) E. Dimitrakis, K. Sgontzos, M. Mountantonakis, and Y. Tzitzikas, Enabling efficient

question answering over hundreds of linked datasets, International Workshop on In-

formation Search, Integration, and Personalization. Springer, Cham, 2019.

In more details (and with regard to the contributions of this thesis):

• In (9) and (10) we introduced in brief the LODsyndesis services.

• In (11) we described in brief the connectivity metrics over large number of datasets

• In (12) the connectivity metrics used for offering more informative 3D visualization
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for the LOD Cloud.

• In (13) we exploited several LODsyndesis services for offering Question Answering

over hundreds of Linked datasets.

Systems

In the context of this thesis, the following systems were developed:

Web pages of Systems.

• LODsyndesis: http://www.ics.forth.gr/isl/LODsyndesis

• LODsyndesisML: https://demos.isl.ics.forth.gr/lodsyndesis/LODsyndesisML

• LODVec: https://demos.isl.ics.forth.gr/lodvec/

• LODQA: https://demos.isl.ics.forth.gr/LODQA

Videos of Systems.

• LODsyndesis: https://youtu.be/UdQDgod6XME

• LODsyndesisML: https://youtu.be/S_ILRTZarjA

• LODVec: https://youtu.be/qR9RFZVs4TY

• LODQA: https://youtu.be/bSbKLlQBukk
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Appendix B

Acronyms

BFS Breadth-First Search

CC Connected Component

DFS Depth-First Search

FCO Feature Creation Operator

IRIS Internationalized Resource Identifiers

LB Lattice-Based

LOD Linked Open Data

ML Machine Learning

QA Question Answering

RDF Resource Description Framework

RWC Real World Classes

RWE Real World Entities

RWP Real World Properties

RWT Real World Triples

URI Uniform Resource Identifiers
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