Towards IoT Orchestrations with Security, Privacy,
Dependability and Interoperability Guarantees

Konstantinos Fysarakis*, Manos Papoutsakis’, Nikolaos Petroulakis, and George Spanoudakis*
*Sphynx Technology Solutions AG, Zug, Switzerland
Email: {fysarakis, spanoudakis} @sphynx.ch
fnstitute of Computer Science, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
Email: {paputsak, npetro}@ics.forth.gr

Abstract—The advent of the Internet of Things opens a
plethora of possibilities, provided the research and industry com-
munities are able to overcome a number of challenges such as the
dynamicity, scalability, heterogeneity and end-to-end security and
privacy requirements of such environments. Motivated by these
challenges, this paper proposes leveraging architectural patterns
to provide, in an integrated manner, security, dependability,
privacy, and interoperability guarantees, across horizontal and
vertical compositional structures of IoT applications. The pattern
language design process and definition is presented, along with an
implementation enabling the automated, pattern-driven property
verification and adaptation of IoT orchestrations.

Index Terms—internet of things, pattern-based engineering,
security, privacy, dependability, interoperability

I. INTRODUCTION

As we approach towards the realisation of the Internet of
Things (IoT) vision, the enormous potential for new genera-
tions of IoT applications is becoming more evident, enabled
by leveraging synergies arising through the convergence of
consumer, business and industrial Internet, and the creation
of an open, global network connecting people, data, and
things [1] [2] [3]. Nevertheless, early adopters are faced with
numerous challenges [4] [5] [6] stemming from the intricacies
of the IoT environment, such as their dynamicity, scalability,
and heterogeneity, as well as the end-to-end security, privacy
and Quality of Service (QoS) requirements of each of these
applications domains.

Motivated by the above, project SEMIoTICS
(https://www.semiotics-project.eu/) aims to enable and
guarantee secure and dependable actuation and semi-
autonomic behaviour in IoT/IIoT applications, through a
pattern-driven approach. Patterns are re-usable solutions
to common problems and building blocks to architectures.
In SEMIoTICS, patterns are used to encode proven
dependencies between security, privacy, dependability and
interoperability (SPDI) properties of individual smart objects
and corresponding properties of orchestrations (composition)
involving them. The encoding of such dependencies will
enable: (i) the verification that a smart object orchestration
satisfies certain SPDI properties, and (ii) the generation (and
adaptation) of orchestrations in ways that are guaranteed to
satisfy required SPDI properties.

In this context, the work presented herein focuses on pre-
senting a core enabling element of the above approach: the

definition of a language for specifying machine-interpretable
SPDI patterns and the development, using this language,
patterns encoding horizontal and vertical ways of composing
parts of or end-to-end IoT applications that can evidently
guarantee SPDI properties. The pattern language itself is based
on a system model defined and presented within this paper.
Said system model is encompassing smart objects in the
field layer (IoT sensors, actuators and gateways), the network
layers (e.g., SDN controllers) and at the backend (e.g., cloud
services), and the associated SPDI properties, as well as their
orchestrations. This model forms the basis of the language
definition, while a grammar is also defined to specify the exact
structure of the language. The translation from this language
to a machine-processable format is also presented, along with
a preliminary proof of concept, to validate the feasibility of
the automated verification of properties and the triggering of
relevant adaptations

II. RELATED WORKS

The pattern-driven approach of SEMIOTICS follows the
security-by-design concept, which aims to guarantee system-
wide security properties by virtue of the design of the involved
systems and their subsystems. This is leveraged to provide
orchestration-level SPDI guarantees, while encompassing all
involved components and entities which are composed to
create the orchestrations (e.g., physical devices and software).
A key capability required in security-by-design is the ability
to verify the desired security properties as part of the design
process. A typical way to achieve this is using model-based
techniques [7]-[9], whereby software component and service
compositions are modelled using formal languages and the
required security properties are expressed as properties on
the model [10]. The satisfiability of the required properties
is based on model checking [11], [12]. Other approaches
focus on software service workflows using business process
modelling languages (e.g., Sec-MoSC [13]). Pino et al. [15]
use secure service orchestration (SSO) patterns to support the
design of service workflows with required security properties,
leveraging pattern-based analysis to verify security proper-
ties. This avoids full model checking that is computationally
expensive and non-scalable to larger systems, such as the
IoT. Moreover, some model-based approaches (e.g., [15])
support the transformation of security requirements to code for

978-1-7281-0962-6/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Foundation for Research and Technology (FORTH). Downloaded on September 07,2020 at 11:43:43 UTC from IEEE Xplore. Restrictions apply.

automated checking of the required properties, both at design
and at runtime.

The pattern-driven approach presented herein is inspired
from similar pattern-based approaches used in service-oriented
systems [14], [16], cyber-physical systems [17], and networks
[18], [19], while covering the intricacies of IoT deployments
and more properties in addition to Security, and also providing
guarantees and verification capabilities that span both the
service orchestration and deployment perspectives.

III. PATTERN LANGUAGE DEFINITION
A. System Modeling

The overall objective of this work is to develop a framework
that will be capable of managing the IoT applications based on
patterns. Therefore, it is necessary to develop a language for
specifying the components that constitute such applications
along with their interfaces and interactions. To enable this,
the definition of the various functional and non-functional
properties of such components and their orchestrations is
required. A model with such characteristics will effectively
serve as a general “architecture and workflow model” of the
IoT application. Once defined, this model can be used in
conjunction with patterns to enable the reasoning required
for verifying SPDI patterns in specific IoT applications and
subsequently enable different types of adaptations. Working
towards this goal, the system model appearing in Fig. 1 was
defined; from an implementation perspective this was derived
using the Eclipse Modeling Framework (EMF), visualising
the Ecore part of the EMF metamodel, which contains the
information about the defined classes.

The language for defining IoT application models adopts an
orchestration-based approach. Orchestrations are modelled by
the class Orchestration in Fig. 1. An orchestration of activities
may be of different types depending on the order in which the
different activities involved in it must be executed. According
to this criterion, an orchestration may be defined as follows:

o Sequence refers to several activities executed in sequence
under a single thread of control.

o Parallel refers to two or more activity instances executed
in parallel within the workflow, giving rise to multiple
threads of control.

e Merge is a point in the workflow where two or more
parallel executing/alternative activities converge into a
single common thread of control.

o Choice is a point within the workflow where a single
thread of control makes a decision upon which branch to
take when encountered with multiple alternative workflow
branches, based on a choice condition.

o lIterates is a workflow cycle involving the repetitive
execution of one (or more) activity(s) until a condition
is met.

Moreover, an orchestration involves orchestration activities
(class OrchestrationActivity in Fig. 1). At any instance of
time, these activities may have a known implementation or
not. In the former case, the activity will be a linked activity

(class LinkedActivity in Fig. 1). Such an activity requires a
ThingDescription (following W3C Thing Descriptions), which
provides the details on how the activity is implemented,
the characteristics of the underlying devices and relevant
parameters (e.g., IP address, exposed endpoints, available
resources), the corresponding SDPI properties, etc. In the
latter, the activity will be an unassigned activity (see class
UnassignedActivity in Fig. 1). Unassigned activities in an IoT
application orchestration may exist during the design of the
IoT application, when the exact implementation of a specific
orchestration activity might not have been decided yet or at
runtime when the particular component that used to provide
the implementation of the activity can no longer be used
(because, for example, it might be unavailable or because
it no longer fulfils the properties required of it) and must
be replaced. The implementation of an activity in an IoT
application orchestration may be provided by:

i) A software component, i.e., a software module with an
available and modifiable implementation that encapsulates
a set of functions and data and makes them available
through a programmatic interface.

ii) A software service, i.e., a software module that encapsu-
lates a set of functions and data and makes them available
through a programmatic interface, accessible remotely
over a network, whose implementation is neither available
to the owner nor modifiable.

iii) A network component, such as software defined network
controllers, software switches/vSwitches, and potentially
legacy networking components.

iv) An IoT sensor, i.e., a device that collects data from the
environment or object under measurement and turns it
into useful data.

v) An IoT actuator, i.e., a device that takes electrical input
and transforms the input into tangible action.

vi) An IoT gateway, i.e., a physical device or software
program that serves as the connection point between the
field devices and the backend, via the software-defined
network layer.

vii) A (sub)orchestration of 10T application activity imple-
menters of types (i) to (vi).

The above types of IoT application activity implementers
are grouped under the general concept of a placeholder (see
the class Placeholder in Fig. 1). A placeholder is accessible
through a set of interfaces. An interface is a named set of
operations through which the functions and the data of the
placeholder can be accessed from any element outside it; this
is represented by the class Interface in Fig. 1. The interfaces
through which a placeholder can be accessed are linked to
the placeholder as the interfaces that it provides (see provides
association end between the class Placeholder and Interface
in Fig. 1). In addition, placeholders may require additional
interfaces provided by other placeholders for them to function
properly. A placeholder P1 that provides access to a set
of data may, for example, authenticate data access requests
by relying to another placeholder P2 with responsibility for

Authorized licensed use limited to: Foundation for Research and Technology (FORTH). Downloaded on September 07,2020 at 11:43:43 UTC from IEEE Xplore. Restrictions apply.

£ Verification

= verificationType : VerificationType = patternbased

= means : Means = pattern

[1..1] verification

El PropertyPlan E Property

[0..*] properties = propertyName ; EString

= category : Category = confidentiality
= dataState : DataState = at rest

[PropertySubject

..*] property

= propertyType : PropertyType = required

[1..*] subject

H Parameter | | £l Operation

= parameterName : EString = operationName : EString

£l Placeholder

[1..1] placeholderB H Link

= placeholderID : EString

= parameterType : ParameterType = SOAP

[1..*] operation

fo*outputs

[0.*] interf

[1..1] placeholderA | = |inkiD : EString

to—Hnputs
E Interface

= interfaceName : EString

= interfaceType : InterfaceType = provided

£ Means
B ‘ 2 ParameterType © DataState
©
£ Caty
- interface | Caﬂ(ﬂ | = SOAP = at_rest
~ confidentiality = REST = in_transit
= integrity = in_processing
= availability = end_to_end
e = privacy [2..*] placeholder
| 2 PropertyType = dependability 5 E P @ \arfeat:
requred | | - interoperability 101 Rl Eholder # InterfaceType | #Veifictioglyey
= confirmed = QoS - provided = patternbased
= required ~ monitoring
= testing
£ LinkedActivity] Orchestrat\'onActivi!}{ I El Orchestration = certificate
= linkedActivityName : EString
= certifiedProperties : EString
Ly T
E loTGateway H loTActuator |Ei NetworkComponent E 1oTSensor E Choice ‘ | E Sequence | | E iterate
B SoftwareService| |Q SoftwareComponent] H UnassignedActivity H parallel | I H Merge

= description : EString

= unassignedActivityName : EString

Fig. 1. IoT Orchestrations System Model

authentication and authorisation checks over users. In this case,
P2 would be modelled as a placeholder that provides two
interfaces, i.e., an authentication and an authorisation interface,
and P1 as a placeholder that requires these two interfaces.
Requires relations between placeholders and interfaces are
modelled through the requires association end between the
class Placeholder and Interface in Fig. 1. The individual
operations that constitute the interface of a placeholder are
represented by the class Operation in Fig. 1. As shown in
the figure an operation has a set of parameters: i) name; ii)
input, and; iii) output. Name is used as an identifier for the
Operation and the input and output are a set of Parameters.
If we assume that an activity PaymentService is to be

invoked, the name of the operation could be payment and the
input/output could be the items to be purchased, the number
of the credit card and the address for the items to be delivered.
Placeholders may also be characterized by their SPDI and QoS
properties. A property (class Property in Fig. 1) has: i) name;
ii) type; iii) verification; iv) category, and; v) dataState. The
attribute type refers to the state of the property, which can be
required or confirmed. A required property is a property that
a placeholder must hold to be included in an orchestration.
For example, if the required property of an orchestration is
Confidentiality, then all placeholder activities involved in the
orchestration and the links between them may be required
to have the Confidentiality property. On the other hand, a

Authorized licensed use limited to: Foundation for Research and Technology (FORTH). Downloaded on September 07,2020 at 11:43:43 UTC from IEEE Xplore. Restrictions apply.

confirmed property is a property that is verified at runtime,
through a specific means as defined in the Verification. Ver-
ification is a class that describes the way a Property of a
Placeholder is verified. The verification process can be done
through monitoring, testing, a certificate or via a pattern. The
first two cases require the existence of a monitoring service or
a testing tool allows the verification of the SPDI property of a
placeholder activity. The third case refers to a service allowing
the verification of validity of certificates verifying that the
placeholder satisfies a certain property. Thus, while in the case
of a pattern, the verification points to a specific pattern rule, in
all the other cases the verification must point to the interface
of a monitoring tool, testing service or certificate repository.
Moving on with category attribute, the Category enumerator
in Fig. 1, shows the different categories. A Property can refer
to confidentiality, integrity, availability (covering the Security
property), privacy, dependability, interoperability or QoS. In
this way a classification of the properties is achieved. The
final attribute, dataState, is referred to state of the data of
a Placeholder (see enumerator DataState in Fig. 1). In this
work all three data states are considered, i.e. data in transit, at
rest or in processing. If the property requirement is referred
to a link between activities, then the state of the data will be
”in_transit”. If we have to do with an OrchestrationActivity
bound to a storage service, dataSate could be at_rest. If
the OrchestrationActivity is bound to a service or device
that processes and transforms data, then dataSate could be
in_processing. Complex orchestrations can involve data in all
three data states. Finally, the set of all the SPDI properties that
are inferred for the different placeholders of an orchestrator
by a pattern are aggregated into a PropertyPlan object.

B. Language Constructs

The orchestration-based model view presented in Fig. 1
can be used to define activities, as well as basic control flow
operations enabling their composition into complex orchestra-
tions, and to define the associated individual and composition
properties. Upon instantiating the orchestration, the abstract
definition of the orchestration structure is replaced with actual
components (e.g., specific endpoints, network addresses, and
functions). In this context, language constructs need to be used
to define an orchestration pattern. A textual representation of
the model in Fig. 1 in the form of an EBNF [20] grammar
is used as input to the Eclipse ANTLR4 [21] plugin for the
creation of lexer and parser. In this way, any input can be
checked for compliance with the defined grammar. For the
sake of brevity the whole grammar is , a sample for the
definition of a Placeholder is presented below and not the
whole grammar:

placeholder : placeholdertitle OPEN_PAREN
(COMMA
(COMMA

orchestration |

placeholderid COMMA interfacename
interfacename) COMMA propertyname
CLOSE_PAREN |

orchestrationactivity ;

propertyname)

C. SPDI Patterns Specification

SPDI patterns encode proven dependencies between SPDI
properties of individual placeholders implementing activities
in IoT applications orchestrations (i.e. activity-level SPDI
properties) and SPDI properties of these orchestrations (i.e.
workflow-level SPDI properties). The specification of an SPDI
pattern consists of four parts:

I. The Activity Properties (AP) part; defines the activity-
level SPDI properties required of the activity placehold-
ers present in the workflow of the pattern, to allow
for the guarantee of the OP properties detailed in the
corresponding part of the pattern.

II. The Orchestration (ORCH) part; defines the abstract
form of the orchestration that the pattern applies to, thus
the ORCH is specified as an orchestration of abstract
activity placeholders. When the pattern is matched to a
specific orchestration, the placeholders in its ORCH may
be bound to specific activities or sub-orchestrations of it.

III. The Conditions part; defines the functional requirements,
the states or the constraints that a system should define,
or what a system must do, and how it reacts on specific
inputs or situations.

IV. The Orchestration Properties (OP) part; defines the
orchestration-level SPDI properties that the pattern guar-
antees for the orchestration specified in its ORCH part.

Based on the above, a semantic interpretation of an SPDI
pattern having the above structure is that if the AP properties
that have been specified for the activity placeholders in the
orchestration of the pattern and the Conditions of the pattern
hold (verified as True), then the OP property specified in the
pattern also holds for the whole ORCH. Formally, this can be
expressed as:

AP AN ORCH A Conditions = OP (1)

where = denotes the entailment relation that has been es-
tablished by the proof of the pattern. APs are materialized
using the Property class in Fig. 1; Property name identifies
uniquely the SPDI property and the PropertySubject depicts
the Placeholder that implements the activity for which the
property is required or verifiable (PropertyType). In the latter
case, PropertyVerification depicts how the verification takes
place. PropertyCategory classifies the SPDI property, while
DataState show that state of the data used by the Placeholder.
ORCH is an Orchestration object including Placeholders of
type UnassignedActivity, making our model parametric since
it does not have to refer to exact placeholders. Conditions
are materialized using the Operation and Parameters classes.
Inputs and outputs of the activity placeholders of the SPDI
pattern are defined in the objects of those two classes. Finally,
OP is an orchestration-wide Property object. That means that
values of some of its attributes are pre-defined, such as the
PropertySubject, which is the ORCH described above, and the
DataState that is set to end-to-end to indicate it refers to
an orchestration-wide property.

Authorized licensed use limited to: Foundation for Research and Technology (FORTH). Downloaded on September 07,2020 at 11:43:43 UTC from IEEE Xplore. Restrictions apply.

IV. IMPLEMENTATION APPROACH

A. Machine-processable Pattern Encoding

An important requirement for implementing the SPDI
pattern-driven management and adaptation of the IoT infras-
tructure is to support the automated processing of developed
patterns. To achieve this, the SPDI patterns can be expressed as
Drools [23] business production rules, and the associated rule
engine, by applying and extending the Rete algorithm [24].
The latter is an efficient pattern-matching algorithm known to
scale well for large numbers of rules and data sets of facts,
thus allowing for an efficient implementation of the pattern-
based reasoning process. A Drools production rule has the
following generic structure: rule name <attributes>x
when <conditional element>* then <action>x
end. Thus, herein Drools are leveraged to encode the relation
between AP and OP properties in SPDI patterns in a way
that allows the inference of the AP properties required of the
activity placeholders present in the ORCH of said pattern in
order for the ORCH to have the SPDI property guaranteed
by the pattern. In more detail, the when part of the rule
encodes the ORCH part of the pattern, conditions regarding
the inputs and outputs of activities within the ORCH, as
well as the OP property guaranteed by the patterns for the
specific ORCH; the then part encodes the AP (i.e. activity-
level) properties which, if satisfied by the ORCHs activity
placeholders will guarantee the OP property. Leveraging the
above, a Drools rule expressing an SPDI pattern encodes
ORCH A Conditions NOP = AP,;(i = 1,,n), where AP,
are the AP properties required of the individual nodes bound
to the activity placeholders of the SPDI pattern. This is the
opposite of the dependency relation proven in the pattern
equation (1) defined above. Thus, this encoding allows the
inference of the AP; properties which, if satisfied by the
individual activities participating in the ORCH, guarantee the
satisfaction of the ORCH-level SPDI property of it, as encoded
in the pattern. This satisfaction of the OP property allows for
the design (but also the adaptation at runtime) of the ORCH
in a manner that preserves the ORCH-level SPDI property
defined in the pattern.

B. Pattern Rule Example - Confidentiality

The preservation of Confidentiality requires that the disclo-
sure of information happens only in an authorised manner; i.e.
non-authorised access to information should not be possible.
The Perfect Security Property (PSP, [25]) requires low-level
users (i.e. a user with restricted access, in contrast to high-
level users having full access) who are only allowed to view
public information, should not be able to determine anything
concerning high-level (confidential) information. Considering
the above, let us consider a sequential orchestration P with
two activity placeholders, A and B, whereby B is executed
after A, and that for each z in {P, A, B} the following hold:

— IN? and OUT?® are the sets of inputs and outputs of x,
and E* = IN*UOUT*

- V@ and C¥ are two disjoint subsets of E¥, portioning
into public parts and confidential parts respectively.

— The inputs of A are the inputs of the orchestration P

— The inputs of B are the outputs of A

— The outputs of the orchestration P are the outputs of B

Based on the above, the SPDI pattern for preserving PSP
(i.e. confidentiality) on the service orchestration P can be
defined as follows:

AP: - PSP(A,VA,CY and VAC VP and CANVP =g
- PSP(B,VE,CB)and VE C VP and CBENVF = o
OP: - SecReq” = PSP(P, VT, CT)

Interpreting the pattern above, and as proven in [26], PSP then
holds on the orchestration P if, for all activity placeholders x
in {A, B}, the following are true:

- VX C VP ie. the actions of x that reveal public
information are part of the actions of P that reveal public
information, and

- CXNVP =g ie. the actions of x that reveal
confidential information do not include any action of P that
reveal public information.

The above conditions are expressed as AP properties of the
pattern and entail the PSP property on P, as expressed in the
OP part of the pattern. Based on the above, the confidentiality
(PSP) pattern can be represented in Drools as shown in
Table I. The when part of the rule specifies: the two activity
placeholders A and B, the order in which A and B are executed
and the conditions between the outputs of A and the inputs
of B, as required by the PSP pattern (lines 3-9), and; the
OP property that can be guaranteed by applying said pattern
(lines 10-11). The then part of the rule generates a security
plan that includes the AP security properties that (if satisfied
by the activity placeholders selected) would lead to a ORCH
satisfying the OP (i.e. the PSP property). Based on the proof
of the PSP property detailed earlier, PSP is defined as the AP
property that both placeholders should satisfy (lines 17 and
22, respectively). Moreover, the additional conditions defined
are also added to the corresponding AP, as can be seen in lines
18-19 and 23-24, respectively.

C. Experimental Results

As an early verification of the feasibility of the

proposed approach, a proof of concept environment
has been setup based JBoss Drools 7.15, and gRPC
(https://www.grpc.io/) with Protocol Buffers Version 3

(https://developers.google.com/protocol-buffers/). A gRPC
server is created loading the Pattern Engine with a basic set
of Drools on a desktop system (Core 17, 8§GB RAM), while a
test client is used to make gRPC calls to the server to request
verification of the confidentiality pattern rule presented above.
Based on the complexity of the modelled IoT environment,
i.e. the number of placeholders stored as facts within the
Drool knowledge base, the execution time ranges from
19ms for 10 placeholders to 82ms for 100 placeholders.

Authorized licensed use limited to: Foundation for Research and Technology (FORTH). Downloaded on September 07,2020 at 11:43:43 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SPECIFICATION OF PSP PROPERTY VIA DROOLS

1. rule "PSP on Cascade"

2. when

3. SA: Placeholder ($input operation.inputs,

4. $intData : parameters.outputs)

5. SB: Placeholder (parameters.inputs == $intData,
6. Soutput parameters.outputs)

7. SORCH: Sequence (parameters.inputs == $inputs,
8. parameters.outputs == $outputs,

9. firstActivity == $A, secondActivity == $B)
10. $SOP: Property(propertyName == "PSP",

11. subject == $ORCH, satisfied == false)

12. $SP: PropertyPlan (properties contains $OP)
13. then

14. PropertyPlan newPropertyPlan = new
— newPropertyPlan ($SP);
15. newPropertyPlan.removeProperty ($0P) ;
16. Set V_P = $OP.getAttributesMap () .get ("V");

17. Property AP_A = new Property ($OP, "PSP", S$SA);
18. AP_A.getAttributesMap () .put ("V", new
< Operation ("subset", V_P));
19. AP_A.getAttributesMap () .put ("C", new
— Operation ("subset", new
< Operation ("complement",V_P)));
20. newPropertyPlan.getProperty () .add (AP_A);
21. insert (AP_A);
22. Property AP_B = new Property ($0P, "PSP", S$B);
23. AP_B.getAttributesMap () .put ("V", new
< Operation ("subset", V_P));
24. AP_B.getAttributesMap () .put ("C", new

<~ Operation ("subset", new
< Operation ("complement",V_P)));
25. newPropertyPlan.getProperties () .add (AP_B) ;
26. insert (AP_B);
27. insert (newPropertyPlan);
28. end

While a more detailed performance evaluation will follow,
investigating in more detail the performance impact of
modeling more complex environments and supporting and
evaluation a larger set of pattern rules, these initial results
validate the feasibility of real-time SPDI property verification
and the timely triggering of needed adaptations.

V. CONCLUSIONS

This paper presented a novel approach enabling pattern-
driven IoT orchestrations with guarantees for SPDI properties
across horizontal and vertical compositional structures of IoT
deployments. The developed solution, along with the early
proof of concept validation results of its feasibility, pave
the way for the creation of reasoning engines supporting the
execution of patterns at runtime to realize the overall process
of monitoring, forming, adapting and managing smart object
orchestrations in [oT applications. As future work, said pattern
engines will be developed and deployed in the various layers
of IoT deployments (field, network, backend), enabling their
semi-autonomous operation as well as the centralized (from
the backend) definition of IoT orchestrations, along with addi-
tional pattern rules covering more SPDI properties. Moreover,
approaches for user-friendly definition of orchestrations will
be explored, while a comprehensive performance evaluation
of the pattern engines will be carried out on heterogeneous
platforms.

ACKNOWLEDGMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No. 780315 (SEMIoTICS).

REFERENCES

[1]1 G. Hatzivasilis, K. Fysarakis, O. Soultatos, I. Askoxylakis, I. Papaef-
stathiou, and G. Demetriou, The Industrial Internet of Things as an
enabler for a Circular Economy Hy-LP: A novel IIoT protocol, evaluated
on a wind parks SDN/NFV-enabled 5G industrial network, Comput.
Commun., vol. 119, pp. 127137, Apr. 2018.

[2] S. Katsikeas et al., Lightweight & secure industrial IoT communications
via the MQ telemetry transport protocol, in 2017 IEEE Symposium on
Computers and Communications (ISCC), 2017, pp. 11931200.

[3] S. Tennina et al., WSN4QoL: WSNs for remote patient monitoring
in e-Health applications, in 2016 IEEE International Conference on
Communications (ICC), 2016, pp. 16.

[4] A. Botta et al., Integration of Cloud computing and Internet of Things:
A survey, Futur. Gener. Comput. Syst., 2016.

[5] 1. Lee and K. Lee, The Internet of Things (IoT): Applications, invest-
ments, and challenges for enterprises, Bus. Horiz., vol. 58, no. 4, pp.
431440, Jul. 2015.

[6] E. Kartsakli et al., A survey on M2M systems for mhealth: a wireless
communications perspective, Sensors (Switzerland). 2014.

[71 M. Bartoletti et al., Semantics-based design for secure web services,
IEEE Trans. Softw. Eng., 2008.

[8] Deubler M., et al. ”’Sound development of secure service-based systems.”
In Proc. of the 2nd Int. Conf. on Service oriented computing. ACM,
2004.

[91 G. Georg et al., Verification and trade-off analysis of security properties

in UML system models, IEEE Trans. Softw. Eng., 2010.

J. Dong, T. Peng, and Y. Zhao, Automated verification of security pattern

compositions, Inf. Softw. Technol., 2010.

I. Siveroni, A. Zisman, and G. Spanoudakis, A UML-based static

verification framework for security, Requir. Eng., 2010.

S. Rossi, Model checking adaptive multilevel service compositions, in

Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012.

A. R. R. Souza et al., Incorporating security requirements into ser-

vice composition: From modelling to execution, in Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2009.

L. Pino et al., Discovering secure service compositions, in CLOSER

2014 - Proceedings of the 4th International Conference on Cloud

Computing and Services Science, 2014.

L. Pino et al., Designing secure service workflows in BPEL, in Lecture

Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 2014.

L. Pino et al., Pattern Based Design and Verification of Secure Service

Compositions, IEEE Trans. Serv. Comput., 2017.

A. Maa et al., Extensions to Pattern Formats for Cyber Physical

Systems, in Proceedings of the 21st Conference on Pattern Languages

of Programs, 2014, pp. 15:1-15:8.

N. E. Petroulakis et al., Patterns for the design of secure and dependable

software defined networks, Comput. Networks, 2016.

N. E. Petroulakis et al., Fault Tolerance Using an SDN Pattern Frame-

work, in 2017 IEEE Global Communications Conference, GLOBECOM

2017 - Proceedings, 2018.

Extended Backus-Naur Form, https://tomassetti.me/ebnf

ANother Tool for Language Recognition, https://www.antlr.org

G. Eason et al., On Certain Integrals of Lipschitz-Hankel Type Involving

Products of Bessel Functions, Philos. Trans. R. Soc. A Math. Phys. Eng.

Sci., 1955.

Business Rules Management System (BRMS), https://www.drools.org

C. L. Forgy, Rete: A fast algorithm for the many pattern/many object

pattern match problem, Artif. Intell., vol. 19, no. 1, pp. 1737, Sep. 1982.

A. Zakinthinos and E. S. Lee, General theory of security properties, in

Proceedings of the IEEE Computer Society Symposium on Research in

Security and Privacy, 1997.

M. Maidl, Common fragment of CTL and LTL, in Annual Symposium

on Foundations of Computer Science - Proceedings, 2000.

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]
[22]

[23]
[24]

[25]

[26]

Authorized licensed use limited to: Foundation for Research and Technology (FORTH). Downloaded on September 07,2020 at 11:43:43 UTC from IEEE Xplore. Restrictions apply.

