Combining Classifiers: Boosting
Horse Race Prediction
How to Make $$$ In Horse Races?

- Ask professional.
- Suppose:
 - Professional **cannot** give single highly accurate rule
 - But presented with a set of races, can always generate better-than-random rules
- Can you get rich?
Idea

- Ask expert for rule-of-thumb
- Assemble set of cases where rule-to-thumb fails (hard cases)
- Ask expert again for selected set of hard cases
- And so on…

- Combine all rules-of-thumb
- Expert could be “weak” learning algorithm
Questions

- **How to choose races on each round?**
 - concentrate on “hardest” races
 (those most often misclassified by previous rules of thumb)

- **How to combine rules of thumb into single prediction rule?**
 - take (weighted) majority vote of rules of thumb
Boosting

- **boosting** = general method of converting rough rules of thumb into highly accurate prediction rule

- more technically:
 - given “weak” learning algorithm that can consistently find hypothesis (classifier) with error $\leq 1/2 - \gamma$
 - a boosting algorithm can provably construct single hypothesis with error $\leq \varepsilon$
 - theory suggests often generalizes well
This Lecture

- Introduction to boosting (AdaBoost)
- Analysis of training error
- Analysis of generalization error based on theory of margins
- Extensions
- Experiments
Background

- [Valiant’84]
 introduced theoretical PAC model for studying machine learning

- [Kearns&Valiant’88]
 open problem of finding a boosting algorithm

- [Schapire’89], [Freund’90]
 first polynomial-time boosting algorithms

- [Drucker, Schapire&Simard ’92]
 first experiments using boosting
Backgroung (cont.)

- [Freund&Schapire ’95]
 - introduced AdaBoost algorithm
 - strong practical advantages over previous boosting algorithms

- experiments using AdaBoost:
 - [Drucker&Cortes ’95] [Schapire&Singer ’98]
 - [Jackson&Cravon ’96] [Maclin&Opitz ’97]
 - [Freund&Schapire ’96] [Bauer&Kohavi ’97]
 - [Quinlan ’96] [Schwenk&Bengio ’98]
 - [Breiman ’96] [Dietterich’98]

- continuing development of theory & algorithms:
 - [Schapire,Freund,Bartlett&Lee ’97] [Schapire&Singer ’98]
 - [Breiman ’97] [Mason, Bartlett&Baxter ’98]
 - [Grive and Schuurmans’98] [Friedman, Hastie&Tibshirani ’98]
A Formal View of Boosting

- Given **training set** \(X = \{(x_1,y_1),..., (x_m,y_m)\} \)
- \(y_i \in \{-1, +1\} \) correct label of instance \(x_i \in X \)

- for \(t = 1, ..., T \):
 - construct distribution \(D_t \) on \(\{1, ..., m\} \)
 - Find **weak hypothesis** ("rule of thumb")
 \[h_t : X \rightarrow \{-1, +1\} \]
 with small error \(\varepsilon_t \) on \(D_t \):
 \[\varepsilon_t = \Pr_{D_t}[h_t(x_i) \neq y_i] \]
 - output **final hypothesis** \(H_{\text{final}} \)
AdaBoost [Freund&Schapire ’97]

- constructing D_t:
 - $D_1(i) = \frac{1}{m}$
 - given D_t and h_t:
 $$D_{t+1} = \frac{D_t}{Z_t} \cdot \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$
 $$= \frac{D_t}{Z_t} \cdot \exp(-\alpha_t \cdot y_i \cdot h_t(x_i))$$

 where: $Z_t =$ normalization constant

 $$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right) > 0$$

- final hypothesis: $H_{\text{final}}(x) = \text{sgn} \left(\sum_t \alpha_t h_t(x) \right)$
AdaBoost Magnified

\[\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right) > 0 \]

\[D_{t+1} = \frac{D_t}{Z_t} \cdot \begin{cases}
 e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\
 e^{\alpha_t} & \text{if } y_i \neq h_t(x_i)
\end{cases} \]

\[H_{\text{final}}(x) = \text{sgn} \left(\sum_t \alpha_t h_t(x) \right) \]
Toy Example

\[D_1 \]

\begin{array}{ccc}
 + & + & - \\
 + & - & - \\
 + & - & - \\
\end{array}
Round 1

$\varepsilon_1 = 0.30$

$\alpha_1 = 0.42$
Round 2

\[\varepsilon_2 = 0.21 \]
\[\alpha_2 = 0.65 \]
Round 3

$\epsilon_3 = 0.14$

$\alpha_3 = 0.92$
Final Hypothesis

\[H_{\text{final}} = \text{sign} \left(\begin{array}{c} 0.42 \, + \, 0.65 \, + \, 0.92 \end{array} \right) \]
Cool Boosting Applet

Analyzing the Training Error

Theorem [Freund&Schapire ’97]:

write ε_t as $\frac{1}{2} - \gamma_t$

then training error(H_{final}) $\leq \exp\left(-2 \sum_t \gamma_t^2\right)$

so if $\forall t: \gamma_t \geq \gamma > 0$ then

training error(H_{final}) $\leq e^{-2\gamma^2T}$

Remark: AdaBoost is adaptive:

• does not need to know γ or T a priori
• can exploit $\gamma_t >> \gamma$
Proof Intuition

- on round t:
 increase weight of examples incorrectly classified by h_t

- if x_i incorrectly classified by H_{final}
 then x_i incorrectly classified by weighted majority of h_t’s
 then x_i must have “large” weight under final dist. D_{T+1}

- since total weight ≤ 1:
 number of incorrectly classified examples “small”
A First Attempt at Analyzing Generalization Error

we expect:

- training error to continue to drop (or reach zero)
- test error to increase when H_{final} becomes “too complex” (Occam’s razor)
A Typical Run

(Boosting on C4.5 on “letter” dataset)

- Test error does not increase even after 1,000 rounds (~2,000,000 nodes)
- Test error continues to drop after training error is zero!
- Occam’s razor wrongly predicts “simpler” rule is better.
A Better Story: Margins

Key idea: Consider confidence (margin):

- with
 \[H_{\text{final}}(x) = \text{sgn}(f(x)) \quad f(x) = \frac{\sum_t \alpha_t h_t(x)}{\sum_t \alpha_t} \in [-1,1] \]

- define: margin of \((x,y) = y \cdot f(x)\)
Margins for Toy Example

\[f = \left(0.42 + 0.65 + 0.92 \right) \]

\[= \left(0.42 + 0.65 + 0.92 \right) \]
The Margin Distribution

<table>
<thead>
<tr>
<th>epoch</th>
<th>5</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>training error</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>test error</td>
<td>8.4</td>
<td>3.3</td>
<td>3.1</td>
</tr>
<tr>
<td>%margins≤0.5</td>
<td>7.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Minimum margin</td>
<td>0.14</td>
<td>0.52</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Boosting Maximizes Margins

- Can be shown to minimize

\[\sum_i e^{-y_i f(x_i)} = \sum_i e^{-y_i \sum_t \alpha_t h_t(x_i)} \]

\(\propto \) to margin of \((x_i, y_i)\)
Analyzing Boosting Using Margins

generalization error bounded by function of training sample margins:

\[
\text{error} \leq \hat{\Pr}[\text{margin}_f(x, y) \leq \theta] + \tilde{O}\left(\sqrt{\frac{\text{VC}(H)}{m \theta^2}}\right)
\]

- larger margin \(\Rightarrow\) better bound
- bound \textbf{independent} on # of epochs
- boosting tends to increase margins of training examples by concentrating on those with smallest margin
Relation to SVMs

SVM: map x into high-dim space, separate data linearly
Relation to SVMs (cont.)

\[
H(x) = \begin{cases}
+1 & \text{if } 2x^5 - 5x^2 + x > 10 \\
-1 & \text{otherwise}
\end{cases}
\]

\[
\tilde{h}(x) = (1, x, x^2, x^3, x^4, x^5)
\]
\[
\tilde{\alpha} = (-10, 1, -5, 0, 0, 2)
\]

\[
H(x) = \begin{cases}
+1 & \text{if } \tilde{\alpha} \cdot \tilde{h}(x) > 0 \\
-1 & \text{otherwise}
\end{cases}
\]
Relation to SVMs

- Both maximize margins:

\[\theta = \max_w \min_i \frac{(\alpha \cdot h(x_i))y_i}{\| \alpha \|} \]

- SVM: \(\| \alpha \|_2 \) Euclidean norm (\(L_2 \))
- AdaBoost: \(\| \alpha \|_1 \) Manhattan norm (\(L_1 \))

- Has implications for optimization, PAC bounds

See [Freund et al ‘98] for details
Extensions: Multiclass Problems

Reduce to binary problem by creating several binary questions for each example:

- “does or does not example x belong to class 1?”
- “does or does not example x belong to class 2?”
- “does or does not example x belong to class 3?”

 ...
Extensions: Confidences and Probabilities

- Prediction of hypothesis \(h_t : \) \(\text{sgn}(h_t(x)) \)

- Confidence of hypothesis \(h_t : \) \(|h_t(x)| \)

- Probability of \(H_{\text{final}} : \) \(\Pr_f[y = +1 | x] = \frac{e^{f(x)}}{e^{f(x)} + e^{-f(x)}} \)

[Schapire & Singer '98], [Friedman, Hastie & Tibshirani '98]
Practical Advantages of AdaBoost

- (quite) fast
- simple + easy to program
- only a single parameter to tune (T)
- no prior knowledge
- flexible: can be combined with any classifier (neuro net, C4.5, …)
- provably effective (assuming weak learner)
 - shift in mind set: goal now is merely to find hypotheses that are better than random guessing
- finds outliers
Caveats

- performance depends on data & weak learner
- AdaBoost can fail if
 - weak hypothesis too complex (overfitting)
 - weak hypothesis too weak ($\gamma_t \rightarrow 0$ too quickly),
 - underfitting
 - Low margins \rightarrow overfitting
- empirically, AdaBoost seems especially susceptible to noise
UCI Benchmarks

Comparison with
- C4.5 (Quinlan’s Decision Tree Algorithm)
- Decision Stumps (only single attribute)
UCI Results

boosting C4.5

boosting Stumps
Text Categorization

- Decision stumps: presence of word or short phrase. Example:

"If the word Clinton appears in the document predict document is about politics”

database: AP

database: Reuters
Many More Applications

...in many recent papers on boosting!
Conclusion

- boosting useful tool for classification problems
 - grounded in rich theory
 - performs well experimentally
 - often (but not always) resistant to overfitting
 - many applications

- but
 - slower classifiers
 - result less comprehensible
 - sometime susceptible to noise