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Land Classification Using Remotely
Sensed Data: Going Multilabel

Konstantinos Karalas, Grigorios Tsagkatakis, Michael Zervakis, and Panagiotis Tsakalides

Abstract—Obtaining an up-to-date high-resolution description
of land cover is a challenging task due to the high cost and labor-
intensive process of human annotation through field studies. This
work introduces a radically novel approach for achieving this goal
by exploiting the proliferation of remote sensing satellite imagery,
allowing for the up-to-date generation of global-scale land cover
maps. We propose the application of multilabel classification, a
powerful framework in machine learning, for inferring the com-
plex relationships between the acquired satellite images and the
spectral profiles of different types of surface materials. Introduc-
ing a drastically different approach compared to unsupervised
spectral unmixing, we employ contemporary ground-collected
data from the European Environment Agency to generate the label
set and multispectral images from the MODIS sensor to generate
the spectral features, under a supervised classification framework.
To validate the merits of our approach, we present results using
several state-of-the-art multilabel learning classifiers and evaluate
their predictive performance with respect to the number of an-
notated training examples, as well as their capability to exploit
examples from neighboring regions or different time instances. We
also demonstrate the application of our method on hyperspectral
data from the Hyperion sensor for the urban land cover estimation
of New York City. Experimental results suggest that the pro-
posed framework can achieve excellent prediction accuracy, even
from a limited number of diverse training examples, surpassing
state-of-the-art spectral unmixing methods.

Index Terms—CORINE, data processing, land cover, MODIS,
pattern classification, remote sensing, satellite applications, time
series, unmixing.

I. INTRODUCTION

AND cover analysis aims at monitoring and mapping
the geobiophysical parameters of the Earth’s surface, a
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process critical in environmental and urban sciences studying
the ever-changing evolution of our planet [1]. The characteriza-
tion of the natural resources and their dynamics is the singular
most important way of providing sound answers to the greatest
environmental concerns of humanity today, including climate
change, biodiversity loss, and pollution of water, soil, and
air. These vital needs mandate an increased effort in creating
accurate and timely high spatial resolution land cover maps.
Despite the urgency, such endeavors are hindered by various
constraints, the most prominent of which is the labor-intensive
manual process of collecting ground-based data from field
surveys. To that end, remote sensing systems represent a major
resource for monitoring global-scale variations in land cover
[2], where high-resolution imaging sensors retrieving optical,
radar, multispectral, and hyperspectral data are being employed
to achieve this demanding objective.

During the remote sensing mapping procedure, a classifi-
cation technique has to be applied in order to annotate the
acquired pixels with additional metadata. In typical satellite
image classification [3], especially in situations where multiple
spectral bands are acquired, each pixel is restricted in its
characterization to a single class from a set of two or more
mutually exclusive classes [4]. Unfortunately, this approach
is guided by an assumption that is often violated in real-life
scenarios where airborne and spaceborne imagery pixels are
simultaneously characterized by multiple classes/labels. This is
due to the mixing of multiple signals, a phenomenon attributed
to the physical properties of light, the interactions of photons
with matter and the atmosphere, and the characteristics of the
acquisition process [5]. Consequently, single class assignment
is unrealistic and can lead to map ambiguities.

State-of-the-art methods try to address this problem by a
process known as spectral unmixing [6], which is able to
distinguish different materials contributing to a pixel. Despite
the importance of the unmixing methods, the majority of the
proposed approaches rely on extremely limited and outdated
hand-labeled data sets, such as the Cuprite mining district
data. A consequence of the lack of real data is that typically
one artificially applies a theorized forward mixing process and
tests the capabilities of the proposed algorithm on performing
the inverse process [7]. The utilization of simulated/synthetic
data can provide some intuition regarding the merits of each
approach; however, it makes generalization of the behavior of
these algorithms very difficult when they are applied under real
conditions [8].

In this paper, we propose a novel approach for modeling
the relations between spectral pixels and ground characteristics
through the introduction of multilabel learning [9], a pow-
erful supervised machine learning paradigm. Departing from
traditional single-label classification, in multilabel learning,
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each sample is associated with multiple labels simultaneously.
More importantly, the labels are also ranked according to their
relevance to the given sample [10], a premise that is appealing
for remote sensing applications.

We claim that multilabel learning can provide valuable infor-
mation on remotely sensed data, especially in the case of land
cover estimation, where the heterogeneity of different regions
introduces significant mixing of the corresponding signals.
Compared to typical spectral unmixing, the proposed multilabel
approach offers numerous advantages. In multilabel learning,
one does not have to assume prior generating processes, in
contrast to unmixing algorithms which rely on the expected
type of mixing [11] and on the presence of pixels containing a
single material, an assumption that is neither trivial nor univer-
sal. Moreover, multilabel classification employs a wide range
of performance evaluation measures [10] which can provide a
detailed characterization of the procedure from various view-
points, whereas unmixing, being in principle an unsupervised
procedure, has a limited number of well-established perfor-
mance quantification metrics and largely relies on the visual
interpretation of abundance maps. Finally, the multilabel com-
munity has recognized that exploiting the dependence between
related labels and samples during the classification process
is critical in order to improve prediction performance [12].
Thus, most of the state-of-the-art algorithms take into account
such correlations, typically implicitly, in contrast to unmixing
methods. All in all, multilabel classification can be thought as
an alternative model to single-label classification for remotely
sensed data, while in parallel, it can provide supplementary
solutions to the tasks of unmixing.

II. REASSESSING SATELLITE IMAGE CLASSIFICATION

Interestingly, there is a plethora of large unlabeled remote
sensing data sets which remain unexploited, an issue which has
fueled a lot of research around the identification of the optimal
ways to utilize such data. One main obstacle is the problem
of scale incompatibility. Whereas field-based measurements
can be conducted at meter scales, distance to the ground and
motion of the moving platforms are directly responsible for
the considerably lower spatial resolution of remote sensing
imagery. This spatial scale incompatibility between field-based
and satellite-based samplings inevitably hinders the exploita-
tion of the acquired measurements. On the other hand, despite
their lower resolution, airborne and spaceborne platforms can
provide imagery at significantly high temporal sampling rates,
as more and more of these platforms are in flight and in orbit
around the Earth.

Our proposed scheme, based on a multilabel learning con-
cept, manages to jointly model ground-based land cover data
and multispectral satellite imagery of different spatial reso-
Iutions into composite useful representations. This way, we
provide a genuine answer to the scale incompatibility problem
which arises naturally through the sampling procedure. More
specifically, we combine data from the CORINE Land Cover
(CLC) maps of 2000 and 2006 compiled by the European
Environment Agency (EEA) [13] at 100-m? spatial resolu-
tion, corresponding to the European environmental landscape
annotated by experts, with satellite data products from the
MODIS database [14] at 500-m? spatial resolution. Due to
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this difference in scale, each multispectral pixel may be asso-
ciated with multiple labels, leading to the case of multilabel
annotation.

The multilabel learning framework has attracted consider-
able attention in the literature over the last decade due to
its numerous real-world applications [15]. Traditionally, it is
applied in text [16], audio [17], and image classification [18],
where a document could belong to several topics, a music song
could fit to different genres, and an image could be annotated
by many tags, respectively. One of the main challenges in
multilabel learning is how to effectively utilize the correlations
among different labels during classification [12]. In order to
conceptually understand the significance of label dependence,
one can think of two images with a blue background depicting
a ship and an airplane. Distinguishing these two images based
solely on the color features is a challenging task for a classifier
since both contain large regions with blue color. However, if the
system is confident enough that the image should be annotated
with the “airplane” label, then it is more likely that the blue
regions of the image should be annotated with “sky,” rather
than “sea.”

According to the proposed learning approach, the output of
our (software) system corresponds to the predicted labels of a
testing area together with their ranking, combined in an infor-
mative visualization graph termed “the multilabel confidence
map.” A high-level overview of our proposed learning model
is depicted in Fig. 1. In a nutshell, the key contributions of the
proposed system are the following:

* the formulation of an efficient approach for the combina-
tion of high spatial resolution land cover data with low
spatial resolution satellite images;

¢ the development of an architecture capable of using up-to-
date remote sensing data and producing land cover maps
with minimal labor-intensive hand-operated labeling;

» the systematic evaluation of state-of-the-art multilabel
classification approaches on a novel and highly complex
data set;

* the potential use of alternative modalities for extending
the scheme to various sources of data, in addition to
multispectral and land cover examined mainly in this

paper.

To the best of our knowledge, this is the first work which
applies a multilabel classification scheme in remote sensing
data, an approach that can effectively address the issues that
naturally arise due to the multiple scales of the data, without
requiring the explicit and often unrealistic modeling of the
underlying generative processes. A key benefit of our method is
the generation of accurate and up-to-date high-resolution land
cover maps, obtained through a new labeled data set composed
of freely available real data which can leverage the abundance
of satellite imagery. The complete data set will be available
online.

The rest of this paper is structured as follows. Section III
provides an overview of the related state-of-the-art. Section IV
presents the multilabel classification methods considered in
this paper, whereas Section V exposes the data sets that are
employed together with the experimental setup and the evalua-
tion metrics. Section VI reports the experimental results, while
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Fig. 1. Visual illustration of the multilabel classification process with remotely sensed data. A multilabel training set is generated by annotating multispectral
satellite imagery with ground-sampled labels at higher spatial resolutions. Up-to-date land cover predictions are made through the use of multilabel classifiers that
produce “multilabel confidence maps” encoding the presence of specific types of land cover.

the conclusion and extensions of this paper are presented in
Section VII.

III. STATE-OF-THE-ART

A. Remote Sensing Mapping and Classification

Since the 1990s, satellite data have been extensively used
for land cover mapping and classification. Land cover data
sets have gained considerable attention since they provide a
critical input for ecological and socioeconomic models at local,
regional, and global scale. The most established data sets
include the Global Land Cover 2000, the GlobCover, and the
MODIS land cover product which provide a global mapping
[19], whereas the CORINE project [20] encompasses data
for the European continent. Each data set is prepared using
different sources, classification algorithms, methodologies, or
even spatial resolutions, leading in many cases to areas of
uncertainty [21]. All of the aforementioned data sets have
been investigated with a plethora of typical [22] as well as
more sophisticated classification methods [23]. Notable among
them, support vector machines (SVMs) exhibit very good clas-
sification performance of airborne and satellite imagery with
limited training data set, especially by incorporating composite
kernels [24].

Apart from the learning algorithms, considering the sensors
that are employed in the process is also of crucial importance
for the quality of the features and thus the construction of
the land cover maps and classification. There are two main
categories of optical remote sensing systems: multispectral
imaging devices which typically acquire 5 to 20 spectral bands
and hyperspectral ones which can acquire hundreds of spec-
tral bands. Nevertheless, it has to be underlined that, except
for spectral information, the spatial, temporal, and radiomet-
ric resolution properties of the sensor determine dominantly
the success of classification [25]. Note that a higher spatial
resolution generally implies a smaller coverage area of the
system [26].

One of the first sensors that provided multispectral satellite
data at a large scale was the NOAA’s AVHRR instrument,
which triggered many studies on land cover discrimination
[27]. More recent and broadly used medium-resolution remote
sensing systems include PROBA-V on SPOT, TM and ETM+
on Landsat, and MODIS onboard Terra and Aqua satellites
[14]. In order to compensate for the coarse resolution provided
by these multispectral instruments, the use of time evolution
of surface reflectance (time series) has proven to be valuable,
and thus, it is adopted in most relevant studies [28]. On the
opposite side, the most explored hyperspectral remote sensing
scenes which are appropriate for supervised classification (con-
taining ground-truth tables) were gathered by the AVIRIS (e.g.,
Indian Pines, Salinas Valley, and Kennedy Space Center) and
the ROSIS (e.g., Pavia Center and Pavia University) airborne
sensors, which generate 224 and 115 contiguous spectral bands,
respectively [29].

B. Spectral Unmixing

Under normal operating conditions, in remote sensing imag-
ing systems, each pixel (spectral vector) captures and encodes
a multitude of signals. More precisely, on one hand, nonlinear
mixing of signals occurs when the light scattered by multiple
materials in the scene is reflected of additional objects, as well
as when two surrounding materials are homogeneously mixed.
On the other hand, even in the ideal case where the incident
light interacts with a single material, linear mixing occurs due
to the instrumentation and various sources of noise [11].

Given the mixing of signals, there is a compelling need for a
process that can separate the pixel spectra into a collection of
pure materials, called endmembers. Spectral unmixing [6] aims
at calculating the number of the endmembers, distinguishing
their spectral signatures, and estimating their fractional abun-
dances (i.e., the proportion of each endmember’s presence) in
each pixel [11]. Typical spectral unmixing methods introduce
certain assumptions regarding the mixing process, where the
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linear mixing model (LMM), despite its simplicity, has been
very successful in this context. Furthermore, due to the physical
aspects of the data acquisition process, the unknown fractional
abundance vector for a given pixel is assumed to adhere to the
abundance nonnegativity constraint and the abundance sum-to-
one constraint.

In order to decompose a mixed pixel spectrum, there exist
two major classes of endmember extraction algorithms: the
geometrical and the statistical. The geometrical approaches
exploit the fact that mixed pixels lie inside a simplex. They are
further divided into two subcategories: the pure pixel based,
which assumes that there is at least one pure pixel per end-
member in the training data, e.g., N-FINDR [30] and vertex
component analysis (VCA) [31], and the minimum volume
based, which does not introduce such a prerequisite but seek to
minimize the volume of the simplex, e.g., simplex identification
via split augmented Lagrangian (SISAL) [32]. In the statistical
methods, the abundance fractions are modeled as random vari-
ables, and the spectral unmixing is formulated as a statistical
inference problem. These include the independent component
analysis, which has been criticized due to the fact that the
abundance fractions associated to each pixel are not statistically
independent [33], and Bayesian approaches [34], which have a
high computational complexity.

The abundance estimation part comprises the last step of
the unmixing process. It can be solved via classical convex
optimization methods, such as the constrained least squares,
which, in this context, minimizes the total squared error under
the abundance nonnegativity constraint, as well as the fully
constrained least squares, which adds the abundance sum-to-
one constraint to the constrained least squares problem. Mean-
while, sparse regression approaches have become popular, such
as the sparse unmixing by variable splitting and augmented
Lagrangian (SUnSAL) [35], where sparse linear mixtures of
spectra are investigated in a fashion similar to that of com-
pressed sensing [36]. More recently, effort has been given to
study nonlinear mixing models in order to handle specific kinds
of nonlinearities, such as the polynomial postnonlinear mixing
model (PPNMM) and its associated unmixing algorithm based
on the subgradient method proposed in [37].

IV. MULTILABEL CLASSIFICATION

Intense research by the machine learning community has pro-
duced a large number of multilabel classification approaches,
e.g., [9], [10]. Existing approaches can be broadly divided into
three categories: problem transformation, algorithm adapta-
tion, and ensemble methods [38].

The intuition underlying problem transformation methods is
to decompose the original multilabel learning problem into a
set of smaller and easier-to-learn binary classification problems
to obtain a solution through well-established learning archi-
tectures. On the other hand, algorithm adaptation approaches
adjust their internal structure in order to directly tackle mul-
tilabel data by employing a type of problem transformation.
Representative techniques which have been adapted for the
multilabel case include SVM [39], boosting [16], decision trees
(DTs) [40], k-nearest neighbors (kNNs) [41], and artificial
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neural networks [42]. Ensemble methods have appeared more
recently and are deployed on top of problem transformation
or algorithm adaptation methods as wrappers, improving their
generalization ability by gathering knowledge from multiple
components [43]. According to this paradigm, multiple base
learners are combined during the training phase to construct an
ensemble, while a new instance is classified by integrating the
outputs of single-label classifiers.

In our formulation, we assume a multilabel training set D =
{(x;,Y;) | i=1,...,n}, where Y; is the actual label set of
the ith example, and £ = {); | j =1,...,m} is the set of all
labels. For each unseen instance x, we define Z, as its pre-
dicted set of labels and 7 () as the associated ordered listing
(rank) for label A. The objective of multilabel classification is to
estimate a set of decision rules # that maximize the probability
of H(x) = Z, for each example x. Based on this notation, in
the following section, we discuss key representative examples
from each category.

A. Problem Transformation Methods

Binary relevance (BR) [44] is one of the earliest approaches
in multilabel classification [9], where a single-label binary
classifier is trained independently for each label, regardless of
the rest of the labels (one-versus-all strategy). The method pro-
duces the union of the labels predicted by the binary classifiers,
with the capability of ranking based on the classifier output
scores. More specifically, in the BR approach, one trains a set
of m classifiers such that

HBR:{hj|hj($C)—>)\jE{O,l},jzl,...,m}. (1)
BR is a straightforward approach for handling multilabel prob-
lems and is thus typically employed as a baseline method.
The theoretical motivation and intuitive nature of BR are en-
hanced by additional attractive characteristics, such as the mod-
erate computational complexity (polynomial w.r.t. the number
of labels), the ability to optimize several loss functions, and
the potential of parallel execution [45]. An inherent drawback
of the BR approach is the lack of consideration for label
correlations which can lead to under- or overestimation of the
active labels or the identification of multiple labels that never
co-occur [46].

Another fundamental yet less extensively used transforma-
tion method is label powerset (LP) [44], where each existing
combination of labels in the training set is considered as a pos-
sible label for the newly transformed multiclass classification
problem. This way, the number of distinct mutually exclusive
classes is upper bounded by f = min(n,2™); however, in
practice, it is much smaller [47]. For the classification of a
new instance, the single-label classifier of LP outputs the most
probable class, which can be now translated to a set of labels

e @)

In contrast to BR, LP methods can capture interrelationships
among labels, at the cost of significantly higher computational
complexity, which scales exponentially with the number of
labels. Therefore, LP is challenged in domains with large values

HLP:{hj|hj(w)—))\j€{0,1},j=1,...
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of n and m. Furthermore, although this method is good at
exact matches, it is prone to overfitting since it can only model
label sets which have been previously observed in the training
set [48].

One can see that this type of transformations is univer-
sally applicable since any traditional single-label classifier (DT,
SVM, naive Bayes, etc.) can be employed in order to obtain
multilabel predictions. The overall complexity of classification
is heavily dependent on the underlying single-label classifica-
tion algorithm and the number of distinct label collections. Due
to these properties, problem transformation methods are very
attractive in terms of both scalability and flexibility, while they
remain competitive with state-of-the-art methods [46].

B. Algorithm Adaptation Methods

The multilabel KNN (ML-kNN) method [41] constitutes an
adaptation of the kNN algorithm for multilabel data following
a Bayesian approach. It is a lazy learning algorithm which
is based on retrieving the kNNs in the training set and then
counting the number of neighbors belonging to each class (i.e.,
arandom variable W) [49]. Based on prior and posterior proba-
bilities for the frequency of each label within these neighboring
instances, it utilizes the maximum a posteriori principle in
order to determine the label set for the unseen sample . The
posterior probability of label \; € L is thus given by

P(W=w |\ €Zs)P(\; € Zs)

P\ € Zy | W=w)= P= o)

3

Then, for each A\;, ML-kNN builds a probabilistic classifier
h;(-) applying the rule

hj (ZC) =1
0
“

A classifier’s output of 1 indicates that A; is active for x,
while 0 indicates the opposite. Despite the fact that ML-kNN
inherits merits from both lazy learning and Bayesian reasoning
(e.g., adaptive decision boundary due to the varying neighbors
identified for each test instance), it is ignorant of the possible
correlations between labels. Thus, it is essentially a BR method
which learns a single classifier h;(-) for each label, indepen-
dently from the others [10].

The instance-based logistic regression (IBLR) method [50] is
also derived from the family of kNN inspired algorithms. The
core idea is to consider the label information in the neighbor-
hood of a query as “extra features” of that query and then to
treat instance-based learning as a logistic regression problem.
For each label )\;, the algorithm builds a logistic regression
classifier h;(-) according to the model

(9)
Tt
10g < x (J)) (]) E al (5)
Tz

where w;];) denotes the (posterior) probability that \; € L is
relevant for o/, wg(cj/) is a bias term, al(] ) denotes a coefficient
indicating to what extent the relevance of ); is influenced by

P\ € Zys |W=w)>P(\j & Zp | W =w)
otherwise.
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the relevance of \;, and wijl) (z) is a summary of the presence

of label ), in the neighborhood of ', Ny ('), defined by

(J) Z hl (6)

xeN, (x')

Here, h;(x) is 1 if and only if )\; is associated with & and 0
otherwise. The main advantage of IBLR over ML-kNN is that
the former attempts to take into account label interdependence
arising by the estimation of regression coefficients.

C. Ensemble Methods

Ensemble of classifier chains (ECC) [46] has established
itself as a powerful learning technique with modest compu-
tational complexity. It is based on the successful classifier
chains (CC) model [46], which involves the training of m
binary classifiers, similar to BR methods. However, unlike the
naive BR scheme, in CC, binary classifiers are linked along
a “chain” so that each classifier is built upon the preceding
ones. In particular, during the training phase, CC enhances the
feature space of each link in the chain with binary features
from ground-truth labeling. Since true labels are not known
during testing, CC augments the feature vector by all prior BR
predictions. Formally, the classification process begins with A1,
which determines P(A; | @), and propagates along the chain
for every following classifier ho, ..., h; predicting:

P()\] | a),>\1,...,>\j,1) — )\j S {0,1},j: 2,....m. (7)
The binary feature vector (A1, . .., Ay, ) represents the predicted
label set of x, Z,. Despite the incorporation of label infor-
mation, the prediction accuracy is heavily dependent on the
ordering of the labels since only one direction of dependence
between two labels is captured. To overcome this limitation,
ECC extends this approach by constructing multiple CC clas-
sifiers with random permutations over the label space. Hence,
each CC model is likely to be unique and able to give different
multilabel predictions, while a good label order is not manda-
tory. More specifically, to obtain the output of ECC, a generic
voting scheme is applied, where the sum of the predictions is
calculated per label, and then, a threshold ¢, is applied to select
the relevant labels such that A; > ¢,.

Another effective ensemble-based architecture for solv-
ing multilabel classification tasks is the random k-label sets
(RAKEL) [47], which embodies LP classifiers as base members.
The RAKEL system tries to estimate correlations between the
labels by training each LP classifier of the ensemble with
a small randomly selected (without replacement) k-label set
(i.e., a size-k subset of the set of labels). This randomness
is of primary importance in order to guarantee computational
efficiency. For a classification of a new instance, each model
provides binary predictions for each label A; in the correspond-
ing k-label set. Let E; be the mean of these predictions for each
label \; € L. Then, the output is positive for a given label if the
average decision is greater than a 0.5 threshold

Zo ={\j | E; >05,1<j<m}. ®)
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In other words, when the actual number of votes exceeds half
of the maximum number of votes that A; receives from the
ensemble, then it is regarded to be relevant (majority voting
rule). Although RAKEL models label correlations effectively
and overcome the aforementioned disadvantages of the LP
transformation, the random selection of subsets is likely to
negatively affect the ensemble’s performance since the chosen
subsets may not cover all labels or interlabel correlations [43].

V. DATA AND EVALUATION DESCRIPTION

In this section, we present the specific sources of data, both
satellite- and ground-based, which are used in our analysis. One
of the key contributions of this work lies in employing real
imaging data provided by the MODIS sensor and real ground-
truth land cover data from the EEA. Furthermore, we provide
a detailed discussion of the various evaluation metrics that
are adopted for the performance quantification of multilabel
classification algorithms.

A. MODIS Data—Obtaining Features

NASA’s MODIS Earth Observation System is considered
as one of the most valuable sources of remote sensing data,
aimed at monitoring and predicting environmental dynamics.
The MODIS sensor can achieve global coverage with high
temporal resolution, scanning the entire Earth’s surface (aboard
the Terra and Aqua satellites) in one to two days, from an
altitude of 705 km. MODIS acquires data in 36 spectral bands
ranging from 400 to 14 400 nm, where the first two bands have a
spatial resolution (pixel size at nadir) of 250 m?, bands 3 to 7 of
500 m?, and the rest bands at 1 km? approximately. The sensor
provides 12-b radiometric sensitivity and achieves a swath of
2330 km (across track) by 10 km (along track at nadir). MODIS
data are open-access and continuously updated since 2000.

The MODIS land native product files distributed by the
Land Processes Distributed Active Archive Center' come in
the Hierarchical Data Format and in Sinusoidal (SIN) pro-
jection. As a result, MODIS data are grouped in 460 equal
nonoverlapping spatial tiles starting at (0, 0) in the upper left
corner and proceeding to the right (horizontal) and downward
(vertical) until the lower right corner at (35, 17). Each one of
them captures approximately 1200 x 1200 km of real land.
Nevertheless, SIN projection is not widely used, and thus, a
common geographic projection is needed for our study. For
this reason, we utilized the MODIS Reprojection Tool? (MRT),
which provides a basic set of routines for transformation of
MODIS imagery into standard geographic projections. This
way, we resampled the original data and changed the projection
to Universal Transverse Mercator to become compatible with
the global coordinate system (WGS 84 datum), which is also
adopted by the Global Positioning System. The area of our
interest, shown in Fig. 2, comprises of a central portion of
the European continent, namely, h19v04 (without portions of
Ukraine and Moldova) and h18v04 image tiles (Fig. 3).

Uhttps://Ipdaac.usgs.gov/
2https://lpdaac.usgs.gov/tools/modis_reprojection_tool
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Fig. 2. Geographic distribution of MODIS h18v04 and h19v04 tiles. The
h18v04 region captures South-Central Europe, while h19v04 captures a large
part of the Balkans, capturing a diverse set of land cover types.
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Fig. 3. CLC map and legend for the h19v04 tile of 2000 (CLC2000).

In order to benefit from the high-temporal-resolution obser-
vations of MODIS while simultaneously mitigating the low
spatial resolution, we consider annual time series to monitor the
best possible density and intensity of green vegetation growth.
Our model takes into account a well-known monitoring indica-
tor for vegetation health and dynamics, namely, the normalized
difference vegetation index (NDVI) [51] from the Level-3 prod-
uct MOD13A1, collection 5 (500-m? spatial resolution, 16-day
temporal granularity). It is empirically related to the reflectance
measurements in the red and near infrared (NIR) portion of the
spectrum through

PNIR — Pred

NDVI = .
PNIR T+ Pred

€))

Due to the highly discriminating capabilities of NIR versus visi-
ble wavelength, NDVIis more sensitive than a single wavelength
and able to separate very well the living from stressed or
dead plantation. Therefore, NDVI carries valuable information
regarding surface properties and can effectively quantify the
“floral” content of an area, i.e., the chlorophyll concentrations.
Furthermore, as a ratio, it has the advantage of minimizing
different types of noise (variations in irradiance, clouds, view
angles, atmospheric attenuation, and even calibration), but it
also leads to insensitivities with respect to vegetation variations
over certain land cover conditions [52]. NDVI is designed to
standardize the vegetation indices values between —1 and +1,
where higher values indicate more photosynthetically active
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land cover types. We collected approximately two measure-
ments for a ten-month period (March until December), leading
to 19 NDVI values/features. For the final data calibration, we
refer to the quality assurance metadata [53] supplied with the
MOD13A1 product in order to assemble only reliable pixels
(i.e., exclude unprocessed data).

Land surface temperature (LST) has been proved to play
a significant role in detecting several climatic, hydrological,
ecological, and biogeochemical changes [14], which are crucial
parameters for land cover estimation. LST observations are
retrieved from the thermal infrared (TIR) bands and are able
to combine the results of all surface—atmosphere interactions
and corresponding energy fluxes, measuring the additive com-
positions of TIR from background soils and overlying vegeta-
tion canopy. This way, whereas NDVI measurements estimate
efficiently the vegetation cover, LST is more applicable for
targets that are not chlorophyll sensitive [54]. The LST data
are included in the Level-3 product MOD11A2, which stores
the average values during an eight-day period on a 1-km? SIN
grid, leading to 38 values for the period March to December.
In order to obtain the same spatial resolution with MOD13Al1,
we perform an oversampling to 500-m? spatial resolution. As a
result, we enhance the previously selected 19 features by adding
measurements (feature level fusion) related to the LST daytime,
extending the number of features to 57.

B. CLC Data—Obtaining Labels

The CLC inventory was initiated in 1990, and it has been
updated in 2000 and 2006, while the latest version of the 2012
update is still under production. CLC consists of 44 classes,
including artificial surfaces, agricultural and forest areas, wet-
lands, and water bodies overall. In this paper, we utilize data
from 2000% and 2006 at 100-m? resolution (Version 17). The
QGIS* software is employed in order to transform these raster-
based Geographic Information Systems measurements to WGS
84 datum in order to become compatible with MODIS data and
subsequently extract the regions corresponding to the h19v04
and the h18v04 tiles.

In order to construct the multilabel data set, the CLC label
matrix was divided into nonoverlapping blocks usinga 5 x 5 grid
since the MODIS pixel size is approximately 25 times the size
of a CORINE pixel. As a result, a binary vector per sample is
produced, where a value of 1 indicates that a label is present
while a value of zero denotes that a label is absent. We select
20 labels as depicted in Table I and exclude examples composed
of only one label in order to acquire a challenging scenario for
the multilabel learning algorithms.

It is important to highlight that not all multilabel data sets
are equal, even if they have the same number of instances
or labels. Therefore, to obtain a better understanding of the
characteristics of our data set, we estimated certain statistical
metrics [9]. Let S be the multilabel data set consisting of |s|
multilabel examples (x;,Y;), i = 1,...,|s|. Label cardinality

3http://www.eea.europa.eu/data-and- maps/data/corine-land-cover-2000-
raster-3
“http://www.qgis.org/en/site/
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TABLE 1
SELECTED GROUND-TRUTH CLC LABELS FROM CORINE
No. CLC Code Description
1 111 Continuous urban fabric
2 121 Industrial or commercial units
3 122 Road & rail networks & assoc. land
4 124 Airports
5 131 Mineral extraction sites
6 132 Dump sites
7 133 Construction sites
8 141 Green urban areas
9 142 Sport and leisure facilities
10 212 Permanently irrigated land
11 213 Rice fields
12 223 Olive groves
13 241 Annual crops assoc. with perm. crops
14 322 Moors and heathland
15 331 Beaches, dunes, sands
16 332 Bare rocks
17 411 Inland marshes
18 412 Peat bogs
19 421 Salt marshes
20 521 Coastal lagoons

TABLE 11
STATISTICAL CHARACTERISTICS OF THE PROPOSED AND OTHER
PUBLICLY AVAILABLE MULTILABEL DATA SETS

Name (domain) K] m LC LD DL
land cover (rem. sensing) 12291 20 2.037 0.102 248
yeast [39] (biology) 2417 14 4.237 0.303 198
scene [18] (image) 2407 6 1.074 0.179 15
bibtex [55] (text) 7395 159 2402 0.015 2856
emotions [17] (music) 593 6 1.869 0.311 27

(LC) calculates the average number of class labels associated
with each instance in the data set: LC(S) = (1/|s|) Zl.s‘ 1 1Yl

LC is independent of the number of labels m, and it is used to
denote the number of alternative labels that characterize the |s|
examples of a multilabel data set. The larger the value of LC,
the more difficult is to obtain good classification performance.
Besides LC, we also calculated label density (LD), which is the

cardinality normalized by the number of labels m: LD(S) =
(1/]s]) ZL11(|E|/m) LD quantifies how dense (or sparse)
the multilabel data set is. Moreover, we consider the distinct
label sets (DL) metric, which expresses the number of different
label combinations observed in the data set, and it is of key
importance for methods that operate on label subsets: DL(S) =
HY: | 3z, : (x:,Y:) € S}.i=1,...,]|s|. Table Il summarizes
the aforementioned statistics for the h19v04 tile of CLC2000,
including some benchmark multilabel data sets from a variety
of domains along with their corresponding statistics.

C. Experimental and Evaluation Settings

In our analysis, we consider the algorithmic implementations
included in the MULAN? Java library, an open source platform
for the evaluation of multilabel algorithms that works on top
of the WEKA® framework. We make an initial split of the

>http://mulan.sourceforge.net/
Ohttp://www.cs.waikato.ac.nz/ml/weka/
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training to testing examples in the order of 7:3, although we
are particularly interested in classification with very limited
training examples since obtaining real labeled data is a costly
process.

A multilabel classifier produces a set of predicted labels, but
many implementations first predict a score for each label, which
is then compared to a threshold to obtain the set. Ultimately,
there exist two major tasks in supervised learning of multilabel
data: multilabel classification aiming at producing a bipartition
of the labels into relevant (positive) and irrelevant (negative)
sets and label ranking seeking to map instances to a strict order
over a finite set of predefined labels [44]. Consequently, perfor-
mance evaluation is significantly more complicated compared
to the conventional supervised single-class case, and several
metrics are required in order to properly evaluate an algorithm.
We assume two major performance metric categories: example-
based measures which are calculated separately for each test
example and averaged across the test set and label-based mea-
sures which evaluate the system’s performance for each label
separately, returning the micro-/macroaveraged value across all
labels [10].

Formally, let 7 = {(x;,Y;) | i = 1,..., p} be the multilabel
evaluation data set. With respect to the first category of metrics,
we consider the following measures.

* Hamming loss calculates the percentage of misclassified
example-label pairs, considering the prediction error (an
irrelevant label is predicted) and the missing error (a
relevant label is not predicted) given by

1 - [Y;AZ
Hamming Loss = — Z g
pi= M

(10)

where A stands for the symmetric difference between the
two sets. The value is between 0 and 1, with a lower value
representing a better performance. Due to the typical
sparsity in multilabeling, Hamming loss tends to be a
lenient metric.

* Subset accuracy evaluates the fraction of correctly classi-
fied examples

12
Subset Accuracy = — ZI(|YZ| =1Zi|) (11)
p

i=1

where I is the indicator function taking values I (true) =
1 and I(false) = 0. Subset accuracy is a strict accuracy
metric since it classifies a sample as correct if all of the
predicted labels are identical to the true set of labels.

* One-error is a ranking-based metric which computes
how many examples have irrelevant top-ranked labels
according to

One-error = p Z 0 (arg min 74, (/\)) (12)

i—1 AL

where §(\) = 1if A ¢ Y; and 0 otherwise.
* Coverage reports the average distance which needs to be
traversed in order to cover all of the relevant labels of the
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example from the ranked label list

12
Coverage = p ;I}Tle%;( Te, (A) — 1. (13)

* Ranking loss evaluates the average fraction of label pairs
that are ordered incorrectly

12
Ranking Loss = —

(14)

’U

where G; is a set equal to {(N, \") : 7z, (N) > re, (N}
for (N, \") € Y; x Y;. Here, Y; denotes the complemen-
tary set of Y; with respect to £. In other words, ranking
loss measures the ability to capture the relative order
between labels.

* Average precision expresses the percentage of labels
ranked above a particular relevant label

Z

Av. Prec. =

[N € Yiira, (V) <ra, O}
v, AAEZY o, OV
(15)

From information retrieval, we know that the evaluation
metrics for a binary classification problem are based on the
number of true positives (TP), true negatives (TN), false pos-
itives (FP), and false negatives (FN) test samples. Based on
the aforementioned discussion, one can compute Precision as
TP/(TP+FP), Recall as TP/(TP+FN), and the F-Measure as the
harmonic mean between precision and recall. Extending this
concept to multilabel problems, we can derive the correspond-
ing quantities for each label A; calculating the microaveraging
operation [56]

m m m m
Buicro = B| > TPy, Y TNy, » FPy .Y "FPy | (16)
j=1 j=1 j=1 j=1
as well as the macroaveraging operation [56]
1 m
Bumacro = — > B (TP, TNy, FPy ,FNy ) (17)
j=1

where B is one of the previously mentioned classification
metrics and TP, A;» TNy, FPy;, and FN}; are the values of TP,
TN, FP, and FN after the blnary evaluation for A;. Conceptually
speaking, microaveraging gives equal weight to each example
and is an indicator of large classes, whereas macroaveraging
to each label and gives a sense of effectiveness on small
classes [57].

Finally, we consider the area under the curve (AUC) metric
which is calculated from the receiver operating characteristic
(ROC) curve. In case all annotations contain confidence values,
the AUC score describes the overall quality of performance,
independently of individual threshold configurations regarding
specific trade-offs between TP and FP [58]. More precisely,
let the true positive rate (TPR) be defined as TP/(TP+FP) and
the false positive rate (FPR) be defined as FP/(FP+TN). Then,
each point on the ROC curve corresponds to a pair (TPR, FPR)
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for one threshold, and the area under this ROC curve is called

micro-AUC, derived as

(:‘.cl7 x//7 )\/, A//) | Tm’(A/) 2 T‘m’()\”)7 }l
IRH[|IR|

AUCmicro = |{ (18)
for (', ) € Rt and (z”,\") € R™, where R" = {(w;,») |
A €Y, 1< i< p} corresponds to the set of relevant labels and
R~ ={(x:;,A) | A ¢ Yi,1 <i < p} corresponds to the set of
irrelevant labels [10]. Subsequently, the macroaveraged AUC is
the average AUC of the separate ROC curves for each class and
can be defined as follows:

AUCmacro

m |{(:B/,IB”) | Tm/O\j)er”()‘j)’ (w’;w’/)GZj XZj}‘
1251125

1
m <
Jj=1

19)

where Z; = {x; | A\; € Y;,1 <14 <p} is the set of test in-
stances with label \; € Land Z; = {z; | \; ¢ ¥;,1 <i <p}
is its complementary set of test instances without A\; € £. A
value of 1 corresponds to a perfect system.

VI. EXPERIMENTAL RESULTS

In this section, we examine the performance of each ap-
proach under the following challenging scenarios: 1) classi-
fication performance with respect to the number of training
examples; 2) classification performance when the training data
correspond to a specified geographic region and the testing
data come from a neighboring region; and 3) classification
performance when the training data correspond to a specified
time instance and the testing data come from the same location
but another instance. Each experiment has its own distinct
value, whereas the objective is to evaluate the multilabel clas-
sification framework when applied under real-life conditions
where limited training data are available.

A. Classification Performance With Respect to the Training Set

The objective of the first set of experiments is to evaluate the
generalization capabilities of each learning algorithm. To that
end, we evaluate the performance of each method as a function
of the number of training examples using the NDVI and the LST
features. This is a critical parameter since it is directly related
to the cost and manpower required for the classification and
understanding of newly acquired remotely sensed images. We
consider a varying number of training examples ranging from
25 to 5000, averaged over 10 realizations.

We selected the C4.5 [59] DT learning algorithm as the
base-level single-label classifier in all problem transformation
and ensemble techniques, while individual parameters of each
method were instantiated according to recommendations from
the literature. In specific, the ML-kNN and IBLR algorithms
are parameterized by the size of the neighborhood, for which
we adopted the value of k£ = 10, while ML-kNN needs further
a smoothing parameter + controlling the effects of priors on
the estimation, where we select a value of v = 1 leading to a
Laplace smoothing prior [41]. For the ensemble methods, the
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key parameter is the number of component classifiers (models),
whereas RAKEL also requires the definition of the size of the
label sets. The number of models was set to 10 for ECC and to
2 m for RAKEL with a size-3 subset.

In Fig. 4, we present the performance of multilabel classifica-
tion for tiles h19v04 and h18v04 using data from the CLC2000
inventory, where the Hamming loss and the microaveraged
AUC associated with the BR-DT, ML-kNN, and ECC-DT
algorithms are presented (one algorithm from each category).
These two metrics are highly representative since the Hamming
loss belongs to the example-based metrics and can give us
an overall intuition of the misclassified instance-label pairs,
whereas the AUC is a label-based metric evaluating the quality
of predictions for each label independently.

One can observe that, for both metrics, the performance
increases monotonically with the gradual increase of the train-
ing set size, with a fast rate during initial cases and then
with a slower one. These results indicate that the algorithms
indeed learn and exploit information from the training data in
order to ameliorate their predictions. Looking closer at each
metric, we observe that the performance of the three classifiers
according to the AUC is quite stable across tiles examined
on the same labels (especially for a large number of train-
ing examples), whereas slight differences are attributed to the
variation of the intrinsic spatiospectral characteristics of each
tile. Analogous results arise when considering the Hamming
loss metric as well. In this case, we further observe that, when
a large number of training examples are employed, BR-DT
outperforms ML-kNN, indicating that in some cases “letting the
data speak for themselves” can allow naive algorithms to beat
more complex approaches. Overall, ECC-DT outperforms the
other two algorithms in this experimental setup, partly due to its
internal mechanisms that benefit from label dependence. This
behavior has been also observed in other scenarios of multilabel
classification [38].

Considering the h19v04 tile of CLC2000 as our reference
region, an overview of the performance is presented in Table I1I,
where we have included all of the evaluation metrics. For
the evaluation of the experiments, we performed 10 different
tenfold cross validation experiments and reported the average
results over these 100 executions. Considering the problem
transformation methods, we observe that BR-DT is better than
LP-DT in all exampled-based metrics except subset accuracy,
which is notably high among all methods, suggesting that
LP-DT is able to faithfully capture the underlying statistics of
the labels. For the label-based metrics, the results are more bal-
anced since BR-DT achieves superior precision and F-measure,
whereas LP-DT is slightly better with respect to AUC. Re-
garding the algorithm adaptation methods, we observe that
IBLR has a small lead, but overall, ML-KNN and IBLR are
on equal footing since the observed variation in prediction
accuracy manifested in most of the evaluation metrics is of
limited statistical significance. Finally, analyzing the ensemble
methods, RAKEL-DT has a clear advantage when it comes to
metrics such as subset accuracy and recall; however, ECC-DT
achieves superior performance for precision and AUC.

In general, one can argue that the ensemble methods con-
firmed their reputation as one of the most powerful classes of
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Fig. 4. Classification performance w.r.t. the number of training examples for two different tiles, where the complex interactions between training data size and
classification performance are illustrated. In general, the performance gains are more dramatic when increasing smaller sets of training samples, while the benefits
of introducing more training data are moderate. (a) Hamming loss for the h19v04 tile of CLC2000. (b) Micro-AUC for the h19v04 tile of CLC2000. (c¢) Hamming
loss for the h18v04 tile of CLC2000. (d) Micro-AUC for the h18v04 tile of CLC2000.

TABLE III

PERFORMANCE (MEAN £ STD) OF EACH MULTILABEL LEARNING ALGORITHM OVER TEN DIFFERENT TENFOLD CROSS VALIDATION EXPERIMENTS.
FOR EACH METRIC, 1 INDICATES “HIGHER THE BETTER,” WHEREAS | INDICATES “LOWER THE BETTER.” ENSEMBLE METHODS
PERFORM OVERALL BETTER THAN PROBLEM TRANSFORMATION AND ALGORITHM ADAPTATION TECHNIQUES

Multi-Label Learning Algorithm

Measure
BR-DT LP-DT ML-KkNN IBLR RAKEL-DT ECC-DT
Hamming Loss | 0.044 + 0.002 0.047 £+ 0.002 0.067 +0.001  0.067 £0.001 0.030 £+ 0.002 0.033 + 0.001
Subset Accuracy 1 0.496 + 0.013 0.626 + 0.015 0.305+0.010 0.318£0.014 0.638 +0.014 0.597 +0.013
One-error |, 0.189 + 0.013 0.289 + 0.015 0.269 +0.015 0.268 £0.012 0.098 +£0.010 0.108 + 0.009
Coverage | 4.793 + 0.236 5.743 +0.176 2.9874+0.073  3.008 £+ 0.054 2.436 +0.179 1.939 + 0.075
Ranking Loss | 0.120 4+ 0.008 0.177 £ 0.008 0.072 +0.004 0.073 £0.003 0.044 + 0.006 0.030 + 0.002
Average Precision T 0.802 4+ 0.010 0.742 + 0.012 0.762 +0.009 0.763 £0.006 0.900 4+ 0.008 0.896 + 0.005
Macro Precision 1 0.770 +0.013 0.731 +0.015 0.679 +0.033  0.669 £+ 0.019 0.874 + 0.010 0.897 + 0.015
Macro Recall 1 0.724 + 0.016 0.729 + 0.013 0.419 +0.008 0.451+0.016 0.772+0.011 0.692 + 0.011
Macro F-Measure T 0.743 £ 0.013 0.727 £+ 0.012 0.483 +0.012 0.520£0.016 0.814 4+ 0.009 0.766 + 0.011
Macro AUC 1 0.864 + 0.007 0.878 £0.010 0.913 £ 0.005 0.919 £ 0.005 0.953 £ 0.005 0.968 + 0.003
Micro Precision 1 0.795 + 0.009 0.768 +£ 0.013 0.746 +0.014 0.735+£0.010 0.881 + 0.009 0.897 + 0.006
Micro Recall T 0.768 + 0.011 0.766 + 0.012 0.516 +£0.013  0.531 £0.009 0.820 4+ 0.011 0.761 +0.011
Micro F-Measure 1 0.782 + 0.009 0.767 £ 0.012 0.610 +0.009 0.616 £0.009 0.850 + 0.009 0.823 + 0.008
Micro AUC 1 0.882 4+ 0.008 0.891 + 0.008 0.942 +0.003  0.940 + 0.002 0.967 + 0.004 0.980 + 0.002
Training Time (sec)  48.19 £ 1.800 19.46 4+ 0.564  37.40 +2.628  49.03 + 1.855 243.3 +5.418 761.8 +134.8
Testing Time (sec) 0.436 +£0.035 0.378 £0.094 4.220+£0.333 4.730 +0.472 0.507 £+ 0.058 0.935+0.178

multilabel classification algorithms since they achieve a better
and more robust performance compared to other methods. On
the opposite, the higher performance comes at a significant
higher computational cost, as it is shown in the runtimes

reported in Table III on a typical workstation. Between the
remaining two categories, i.e., algorithm adaptation and prob-
lem transformation methods, results are balanced and largely
dependent on the metric which one seeks to optimize.
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Fig. 5. Ground-truth multilabel map for h19v04 of CLC2000 corresponding to
a binary matrix indicating which labels are active for each example, i.e., spatial
location. Each horizontal line corresponds to a specific label as illustrated in
Table I, while each vertical line corresponds to a specific testing example out of
the 3687.
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Fig. 6. Multilabel confidence maps for h19v04 of CLC2000 with 128 training
samples. The red boxes outline areas where there is significant deviation
between the predicted and ground-truth labels. They highlight that some labels
in classification are more sensitive than the others. (a) BR-DT. (b) ML-kNN.
(c) ECC-DT.

To better demonstrate the behavior of each algorithm and
how differences in error metrics are perceived, we introduce the
“multilabel confidence map.” Each row of the map corresponds
to a specific label (CLC code), while columns encode particular
examples, i.e., spatial locations. Fig. 5 presents the ground-
truth multilabel map for h19v04 of CLC2000. This image is
a binary matrix where a value of 1 indicates the presence of
a specific label while 0 denotes the absence of the label. For
instance, considering the first example (column), labels 1 and 8
are active, indicating that CLC labels with codes 111 and 141
exist in this pixel.

In Figs. 6 and 7, we visualize the performance of the BR-
DT, ML-kNN, and ECC-DT classifiers with the help of the
multilabel confidence map, where each pixel in the map takes
a confidence value ranging from 0 to 1 (results averaged over
50 realizations and then scaled to [0,1] interval). Values closer
to 0 indicate that the label is less likely to be enabled, whereas
values closer to 1 indicate that this label has a higher probability
of being active.

Using these maps, we can visually verify the performance
due to the use of more training examples, by examining, for
instance, the label 2 (second row) associated with the CLC
code 121. When the algorithms utilize 128 training examples,
they assume that almost all samples have this label enabled,
something that is not in accordance with the ground-truth data
presented in Fig. 5. On the contrary, when the algorithms
use 1024 training examples, we can see that their revised
predictions become more accurate and reliable. This observa-
tion suggests that, for the specified label, many false positive
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Fig. 7. Multilabel confidence maps for h19v04 of CLC2000 with 1024 training
samples. Similar to before, the red boxes outline areas where there is a
significant deviation between the predicted and ground-truth labels. Comparing
to the case of 128 training examples shown previously, we observe less
errors according to the ground-truth map in Fig. 5. (a) BR-DT. (b) ML-kNN.
(c) ECC-DT.

examples arise. False positives are taken into account by the
precision metric, where BR-DT and ECC-DT outperform ML-
kNN for this number of training examples. Another illustrative
paradigm occurs when we take into account the label 20 with
CLC code 521 (last row). In this case, we observe that the
classification algorithms cannot detect that the specified label
is active in some pixels when presented with 128 training
examples; however, the prediction improves dramatically with
1024 training examples. In other words, we have the case of
recall and false negatives, where we show that the BR-DT and
ECC algorithms achieve almost similar performance whereas
ML-KNN exhibits a significant performance lag.

B. Classification on Different Spatial Regions and
Temporal Instances

In this section, we examine the performance of the algo-
rithms when the training examples are acquired from a spec-
ified region at a given year, while testing takes place either
on a neighboring region or on a different time instance. We
initially examine the classification efficiency in a neighboring
geographic region since accurate prediction of the labels of
another region suggests that we can leverage training examples
of a particular label to evaluate its presence in unexplored
locations, avoiding the high cost of hand-collecting new an-
notated training examples. We consider an experimental setup
where three different types of training sets are used, namely,
a training set from the same tile (h18v04), a training set from
another tile (h19v04), and a mixed training set containing all
training examples from the reference tile (h19v04) and only a
few (i.e., 1024) training examples from the target tile (h18v04).
The ECC-DT ensemble classifier was selected for this set of
experiments.

Analyzing Fig. 8, we observe that, when the training and the
testing sets are associated with the same tile, a high classifica-
tion performance is achieved. Naturally, there is a significant
degradation in performance when the training set is associated
to another tile. We observe that, although the performance
improves initially, it soon reaches a performance plateau which
is significantly worse than when the data from the same tile
are used in both training and testing. This is where the third
described training set comes into play. As we can see, the
performance in mixed training conditions is quite close to the
performance achieved in the benchmark case. This behavior
suggests that one can exploit already acquired annotated data,
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Fig. 8. Classification performance with respect to the amount of training data
for a tile originating from a different spatial location using ECC-DT. The results
indicate that training using data from different spatial locations can have a
dramatic effect on performance, while exploiting a mixed training set composed
of data from both the corresponding location as well as from a different location
can achieve very high performance.

limiting the effort required for collecting new labeled data, and
still achieve a high classification performance.

Fig. 9 examines the predicting performance for data from
the h19v04 tile in CLC2006 under three different training sets,
namely, using a training set from the same tile (h19v04) in
the same year (2006), using a training set from the same tile
(h19v04) in another year (2000), and a training set composed
of all data from the reference tile enhanced by 1024 training
examples from the target tile. In this case, the objective is
to forecast the presence/absence of specific labels in order to
understand the temporal evolution of land cover for this region.
This is an immensely important scenario since obtaining up-to-
date field-based annotation is extremely challenging, causing
very low update rates that characterize the CLC. The problem
holds for land cover maps in general, leading to data that are
outdated at release time. Similar to the previous case, we ob-
serve that the prediction performance when utilizing examples
from the reference tile reaches a plateau for the two metrics, but
the performance gradient is smoother when using our proposed
mixed training approach.

C. Comparison With Spectral Unmixing

Spectral unmixing and multilabel classification in remote
sensing can both operate under the scenario that an observed
spectral vector can be actually composed of one or more ma-
terials (in contrast to single-label classification). Nevertheless,
a direct comparison between the two methods is very difficult
for various reasons. First, spectral unmixing is an unsupervised
method, whereas multilabel classification adheres to the su-
pervised learning paradigm and strongly utilizes the provided
labels. Furthermore, the objective of spectral unmixing is the
estimation of the abundance of each endmember in an ob-
served spectral vector, while multilabel classification aims at
estimating a bipartition and a ranking of all labels. With the
aforementioned discussion in mind, we proceed to the compar-
ison between spectral unmixing and multilabel classification
for real remotely sensed multispectral data. The algorithms
were supplied with a priori knowledge regarding the number
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Fig. 9. Classification performance with respect to the amount of training
data from a single tile at different time instances using ECC-DT. Similar to
Fig. 8, the performance significantly improves by considering mixed training
conditions.

of endmembers, which is assumed to be equal to the number of
the labels m, in order to be able to compare with the ground-
truth. Moreover, in order to satisfy the sum-to-one constraint,
we convert the 1s indicating the label existence to probabilities
that sum up to one (i.e., if two labels are present in a pixel,
we assign to the corresponding positions the value of 0.5). The
authors’ implementation with suggested settings was used for
all algorithms.

In order to unmix the reference tile h19v04 of CLC2000,
we initially have to decompose the measurements into a library
A eR¥*™ where d is the number of bands/features and m is the
number of endmembers/labels. In this step, three state-of-the-art
algorithms are considered, namely, the N-FINDR, the VCA, and
the SISAL. For the fractional abundance estimation, we evalu-
ate two state-of-the-art methods, namely, the SUnSAL, which
uses sparse regression under the LMM, and a gradient-based
algorithm developed in [37] which assumes the PPNMM. The
quality of the unmixing procedure is measured by comparing
the estimated a and the “actual” abundance vector a, in terms
of the error defined by the Root Mean Square Error (RMSE) =
V(@/mp)YF_ |la; — a;[|2, where a(i) and a(i) are the ac-
tual and estimated abundance vectors of the ¢th testing pixel.

The performance of unmixing using the different algorithms
is shown in Fig. 10. We observe that the error for all of
the unmixing chains reduces with respect to the number of
training examples, suggesting that the proposed ground-truth-
based labeled data set can be used for unmixing tasks. More
specifically, the SISAL method, which does not rely on the
pure pixel assumption achieves a lower rmse, which is also
characterized with a lower variance. In addition, the gradient-
based algorithm assuming the PPNMM captures better the
existing nonlinearities and leads to a better approximation of
a than SUnSAL, especially for a small number of training
examples. A possible explanation of this behavior, following
the reasoning in [60], is that the LMM assumption may be
inappropriate for images containing sand, mineral mixtures,
trees, and vegetation areas, elements that are all contained in
the selected labels (CLC codes 331, 131, 141, 223, and 241).

Given the best performing unmixing strategy, i.e., SISAL
for endmember extraction and the gradient-based algorithm
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Fig. 10. RMSE with respect to the number of examples for h19v04 of
CLC2000 over 30 realizations. The approximation for all of the examined
unmixing chains improves, suggesting that the considered data set can be
used for unmixing purposes. (a) SUnSAL assumes LMM. (b) Gradient-based
algorithm assumes PPNMM.

for abundance estimation, we proceed to a comparison be-
tween spectral unmixing and multilabel classification versus
the ensemble methods, utilizing multilabel classification met-
rics. In order to produce a binary prediction matrix strictly
encoding the presence or absence of a label, one must convert
the positive-valued abundances to binary values. To achieve
this, we performed a sorting of the estimated abundances in a
descending order and selected only the endmembers that exceed
a threshold 7'. All of the corresponding estimated abundances
above this threshold are set to 1, while the rest are set to 0.
Table IV presents the experimental results with respect to the
threshold (50% and 95%) and the number of training examples.

Overall, Table IV demonstrates that the multilabel methods
are considerably better than the spectral unmixing ones in
terms of the classification measures. Regarding the perfor-
mance of unmixing with respect to the selected threshold,
Table IV demonstrates that increasing the threshold leads to
higher Hamming error and that it dramatically increases the
recall due to the fact that larger values of the threshold produce
a larger number of false positives and a lower number of false
negatives. With respect to the number of training examples, we
observe that only the recall metric is increased, suggesting that
the architecture is able to capitalize on the training examples by
identifying a larger portion of true labels.

A higher level snapshot of each method’s behavior can
be obtained by comparing the Hamming loss metric, which
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TABLE IV
PERFORMANCE (MEAN £ STD) OF THE ENSEMBLE VERSUS
UNMIXING METHODS OVER 30 REALIZATIONS

Spectral Unmixing Multi-Label Classification

Measure  # Tr.
T =50% T =95% RAKEL-DT ECC-DT

Hamming 128 0.2440.01 0.594+0.02 0.11+£0.00 0.1040.00
Loss | 1024 0.26 £0.02 0.71+£0.03 0.08+0.00 0.07=+0.00
Micro 128 0.09+£0.02 0.10£0.01 0.47+0.02 0.55+0.02
Precision 1 1024 0.104+0.02 0.104+0.01 0.67+0.01 0.7240.01
Micro 128 0.16 £0.03 0.61+£0.05 0.334+0.02 0.28 +0.02
Recall 1024 0.194+0.04 0.74+0.06 0.50+0.01 0.43 +0.01

shows that the percentage of misclassified example-label pairs
is much higher for unmixing compared to the ensemble mul-
tilabel learning algorithms. In general, the results presented in
Table IV demonstrate that multilabel classifiers, even if they are
not able to produce fractional abundance estimations, achieve
much higher and more robust binary predictions, even under
noisy environments.

D. Applying the Scheme With Hyperspectral Data

Hyperspectral imaging platforms can provide finer spatial
resolution imagery than multispectral systems, typically at the
cost of a smaller field of view. As a result, they are limited
in their capacity to provide global land cover estimation. For
instance, the Hyperion sensor aboard EO-1 has a spatial resolu-
tion of 30 m?, acquiring images at 242 spectral bands; however,
it does not provide global coverage. As a consequence, we can-
not directly introduce the concept of multilabel classification of
Hyperion imagery by utilizing CLC data which have a spatial
resolution of 100 m2.

Nowadays, however, novel data sets have been compiled,
which provide ground-truth data at a much higher spatial
resolution than 30 m”. Such data do not consider widespread
coverage (e.g., whole continents like Europe) as the process of
labeling is extremely costly and time-consuming. Nevertheless,
they do provide detailed maps of more specific geographic
areas (e.g., cities, forests, etc.). For instance, a high-resolution
land cover data set for New York City (NYC) of 2010 with a
spatial resolution of 1 m (3 ft) has been recently released.” We
investigate the application of our scheme with the NYC data
set combined with the Hyperion data, where we consider the
study area encoded as EO1H0130322010245110KF_SGS_01
by Hyperion from September 2, 2010, provided in GeoTIFF
format. In Fig. 11, we consider the performance of four mul-
tilabel algorithms by utilizing the 198 calibrated bands from
Hyperion.

The results suggest that multilabel classification is also a
viable choice for the exploitation of hyperspectral data for land
cover estimation. Observing the achieved performance with the
performance in the case of multispectral data, we note that,
for the NYC data set with hyperspectral data, performance is
worse compared to CLC prediction with multispectral data.
However, we should note that the results are not directly com-
parable due to many differences in data sets: different types and

7https:/nycopendata.socrata.com/Environment/Landcover-Raster- Data-
2010-/9auy-76zt
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Fig. 11. Performance with respect to the training examples using hyperspectral
data of the Hyperion sensor.

number of labels, distinct intrinsic characteristics of the regions
(topologies), different years, and different types of features
that are extracted from hyperspectral compared to multispectral
imagery.

Apart from these significant reasons, additional effects come
into play in the case of multilabel classification of hyperspectral
data. First of all, we could only manage to find one scene from
the whole 2010 to characterize just the same small portion of the
NYC. On the other side, MODIS has a high temporal resolution
with a sun-synchronous orbit, and thus, we are able to generate
the time series which is more appropriate for capturing the
variation of land cover characteristics through a whole year.
As a conclusion, it is not only the spectral resolution which
is critical for the classification quality but also the temporal
resolution, especially for land cover estimation.

A second important parameter is the ratio of scale incom-
patibility. Whereas each pixel of MODIS is approximately
25 times the size of the CORINE, in the NYC land cover case,
the Hyperion pixel is approximately 900 times the land cover
pixel since the NYC data set has a spatial resolution of 1 m?
and the Hyperion sensor of 30 m?. The dramatic change in scale
is definitely a key factor that highly affects the performance of
classification.

Comparing the performance of the different classification
schemes, we observe that algorithm adaptation methods, i.e.,
ML-kKNN and IBLR, achieve better performance compared to
the RAKEL-DT and ECC-DT ensemble methods. A reason for
this behavior is that the performance of the classifiers is directly
related to a well-known problem in estimation theory and ma-
chine learning, the curse of dimensionality, whereby increasing
the dimensionality of the data space makes the processes of
data modeling more challenging due to the sparse coverage of
high-dimensional spaces with limited examples. The problem
in multilabel learning is even bigger since features represent all
of the classes of the whole data set, whereas many of them are
not relevant to a specified class.

E. Parameter Sensitivity Analysis

In order to provide a comprehensive analysis, in this sec-
tion, we investigate the effects and influence in performance
attributed to the parameter selection process of each considered
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Fig. 13. Classification performance with respect to the number of models
for h19v04 of CLC2000 with 1024 training examples. Varying the number
of models has a major effect on the classification performance of ensemble
methods, where ECC achieves superior performance compared to RAKEL.

algorithm. To minimize the effects introduced by other sources
of variation, we fix the number of training examples to 1024 and
report results averaged over 50 realizations in order to obtain an
informed view of the sensitivity of each method.

Regarding the kNN-based methods, the key parameter that
must be defined concerns the number of neighbors that are
employed. We observe in Fig. 12 that the worst choice for
Hamming loss corresponds to using 30 neighbors, while the
point of optimal performance is attained with five neighbors
for both methods. The results suggest that further increasing
the number of the neighbors leads to performance deterioration
since valuable information is replaced with noise obtained,
in addition to the computational overhead. Between the two
classifiers, we note that IBLR has a more robust behavior
compared to ML-kNN.

Considering the powerful class of ensemble techniques, we
investigate how the number of component base classifiers
involved in the chain affects the performance. As illustrated
in Fig. 13, ECC-DT and RAKEL-DT differ significantly with
respect to the internal design since the former achieves a per-
formance close to optimal with a small number of CC models,
whereas RAKEL-DT is learning progressively with an increased
number of models. With an adoption of a large number of
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models (more than 60), we can observe that the RAKEL-DT
approximates the performance achieved by ECC-DT. However,
the superiority of ECC-DT for multilabel classification with
land cover data is particularly evident when a small number of
training examples is considered.

VII. CONCLUSION

In this paper, we have presented a radically different ap-
proach in satellite-based land cover identification, where we
cast the problem as an instance of multilabel learning. Multi-
label classification in this specific domain provides supplemen-
tary solutions to the important problem of spectral unmixing;
however, unlike state-of-the-art schemes, the proposed formu-
lation utilizes publicly available labels in conjunction with
contemporary satellite data and provides a real-world answer
to maintaining up-to-date land cover maps.

We have considered an extensive set of experiments, employ-
ing state-of-the-art multilabel learning algorithms under diverse
and challenging scenarios. The experimental results suggest
that a small number of training examples are sufficient for
achieving satisfying performance in the situation where training
and testing data from a specified region on a given time instance
are considered. However, the performance deteriorates when
testing takes place on a different spatial region or from another
instance in time. We have demonstrated that, by encompassing
a limited number of examples of the target-tile at the target-
time, the performance improves remarkably, offering a solid
answer to the issues related to the cost and time required
for gathering annotated ground-truth data. It should be noted
that the proposed formulation can fully exploit the existence
of ground-truth data, which means that this approach cannot
be applied in cases where labeled data are unavailable, e.g.,
unmixing of the Mars surface data.

In addition to the value of this work in the remote sensing
community, we have also effectively introduced a new class of
data sets composed of satellite and geographic data, offering the
research community the possibility to evaluate different multi-
label classification schemes on alternative remote sensing data
sets, which provide a more appropriate formulation compared
to the single-label cases that have been explored in the literature
so far.
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