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ABSTRACT

In this paper, we introduce an architecture for addressing
the problem of video classification based on a set of com-
pressed features, without the need of accessing the original
full-resolution video data. In particular, the video frames
are acquired directly in a compressed domain by means of
random projections associated with a set of compressive
measurements. This initial dimensionality reduction step is
followed by distance metric learning for the construction of
an informative distance matrix, which is then embedded in
a manifold learning approach to increase the discriminative
power of the random measurements in a lower-dimensional
space. Classification results using a set of activity videos
suggest that the proposed approach can be used effectively in
cases when the acquisition and processing of full-resolution
video data is characterized by increased consumption of the
available power, memory and bandwidth, which may impede
the operation of systems with limited resources.

Index Terms— Compressive video classification, dis-
tance metric learning, manifold learning

1. INTRODUCTION

Recent technological advances in the design of low-cost high-
definition imaging devices and the availability of large digi-
tal databases with high-resolution video content, necessitates
the efficient representation of an ever increasing volume of
data in a precise and compact way to be exploited in carry-
ing out tasks, such as detection and classification. In particu-
lar, automatic classification of video information is crucial for
monitoring, indexing and retrieval purposes, while the advent
of efficient computational models could be highly beneficial
in cases when added constraints, such as power, storage and
bandwidth, are imposed on the acquisition device. This is, for
instance, the case in a remote sensing scenario, such as the
use of unmanned aerial vehicles (UAVs) and terrestrial sen-
sor networks in surveillance and reconnaissance applications,
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with potentially limited resources of the acquisition hardware.
Besides, the increasing use of web-based video content

during the last years motivated a growing interest on design-
ing algorithms for video classification. For instance, in [1],
motion and color features with Hidden Markov Models were
used to classify sports videos, while in [2] audio features were
extracted and used along with a multi-layer perceptron for
real-time video classification. In both cases, the feature ex-
traction step employs the original video content, which can be
of very high dimension when the system operates at high res-
olution. Thus, dimensionality reduction arises naturally prior
to further processing and decision making.

Techniques like principal component analysis (PCA), in-
dependent component analysis (ICA) and linear discriminant
analysis (LDA) [3] have been employed widely in the frame-
work of signal classification. The purpose of all these meth-
ods is the representation of the salient information in a low-
dimensional space resulting in an improved classification per-
formance. However, they suffer from certain limitations, such
as data dependence and linearity restrictions. On the other
hand, recently, there have been advances in the machine learn-
ing and pattern recognition communities for developing ma-
nifold learning algorithms to identify non-linear structures in
low-dimensional manifolds from sample data points embed-
ded in high-dimensional spaces, while preserving geometric
distances and local neighborhood structures [4].

Operating at Shannon/Nyquist sampling rates may be
excessive, or highly inefficient in case of limited-resource
sensing systems, especially when signal processing tasks
other than reconstruction, such as classification and detection
are of interest. Recent works in the framework of compres-
sive sensing (CS) [5] revealed that the task of classification
can be performed efficiently using a highly reduced amount
of data-independent linear incoherent random projections.
These compressed measurements have been shown to pre-
serve the meaningful information of the acquired signal [6],
as well as the manifold structure of the acquired data [7].

Motivated by the success of random projections for face
recognition [8], in a recent work [9] we addressed the video
classification problem by working directly in the compressed



domain. More specifically, a signature was generated for each
video by projecting each frame on a random measurement
matrix, and then the classification was performed by employ-
ing typical methods, such as, SVM and kNN, on these com-
pressed signatures. Despite the satisfactory performance of
the proposed computationally efficient approach, there were
cases where the discriminative power of random measure-
ments was not sufficient enough.

In this study, the video classification problem is also ad-
dressed by considering the futuristic scenario of a sensing sys-
tem equipped with a single-pixel camera [10] for the acquisi-
tion of CS measurements. The discriminative capability of the
compressed measurements is now enhanced by employing a
distance metric learning step on the random measurements to
estimate a distance metric, which will enhance the inter-class
separability, thus improving the classification accuracy under
a nearest-neighbor (NN) decision rule. Finally, the learned
distance is embedded in a manifold learning procedure for
the generation of an appropriate projection matrix. The clas-
sifier employes a simple kNN rule in the manifold space by
utilizing the learned distance. The experimental evaluation
reveals a clear improvement of the proposed approach when
compared with our previous one. Moreover, we emphasize
that the computational cost at the encoder is exactly the same,
while it increases at the decoder due to the distance and mani-
fold learning processes prior to classification. However, this
does not affect the overall system’s performance, since in-
creased processing resources are available at the decoder.

The paper is organized as follows: in Section 2, the rep-
resentation of a given video sequence in a CS measurements
domain is introduced. Section 3 describes in detail the pro-
posed compressive video classification system, followed by
an experimental evaluation of the classification accuracy in
Section 4. Finally, conclusions and directions for further ex-
tensions are outlined in Section 5.

2. COMPRESSED VIDEO ACQUISITION

In the following, let V = {x1, . . . , xF } denote a video se-
quence consisting of F frames. We consider the case of ac-
quiring grayscale video frames of size Nr × Nc, where each
frame is represented by the luminance component. Then, a
set of compressed measurements is obtained by means of a
single-pixel camera with a digital micromirror device (DMD)
array generating the random basis patterns.

Let xj ∈ RNr×Nc , j = 1, . . . , F , denote the luminance
component for the j-th frame. Then, a vector of compressed
measurements is generated as follows:

gj = Φjxj , (1)

where the measurement matrix Φj ∈ RM×N with M < N .
We note that in the above equation the frame is viewed as a
column vector with N = Nr × Nc elements, while also in
general a different measurement matrix can be used for each
frame. However, for simplicity, we consider that the same

measurement matrix Φj ≡ Φ is used to capture all the frames
of a given video sequence.

Common choices for Φ are random matrices with inde-
pendent, identically distributed (i.i.d.) Gaussian or Bernoulli
entries. However, their use in case of high-dimensional data
can be memory and computationally intensive, thus increas-
ing the burden of a system with limited resources. A family of
matrices admitting a “hardware-friendly” implementation are
the so-called structurally random matrices [11]. The block
Walsh-Hadamard (BWHT) operator, which is a typical mem-
ber of this family, is employed in the proposed architecture.

It is emphasized once again that the use of a single-pixel
camera yields directly a set of measurements in the com-
pressed domain without the need for accessing the original
frames at full resolution, thus reducing significantly the pro-
cessing and storage expenses of the sensing device.

In compressive video classification (CVC), we consider
that the given video belongs to class c ∈ {1, . . . , C}. Working
in a supervised learning framework, a set of training samples
is obtained for each class, Tc = {Vc

1, . . . , V
c
Q}. For sim-

plicity, an equal number of training samples Q is considered
for all the classes. Let also T = {T1, . . . , TC} be the overall
set of training samples. Then, the CVC problem is stated as
follows: Given a low-dimensional signature of the acquired
video, a training dictionary P, and a measurement matrix Φ,
estimate the correct class c ∈ {1, . . . , C}.

3. PROPOSED CVC ARCHITECTURE

The generation of random measurements serves as a first di-
mensionality reduction step, which maps directly the origi-
nal full-resolution video data into a lower-dimensional com-
pressed domain. The advantage of this process, as opposed to
other commonly used dimensionality reduction approaches,
such as PCA, is that its linear character offers fast and efficient
computations, while also, and most importantly, it is data in-
dependent. This allows for a better generalization, which is
important, especially when we deal with very large databases.

Moreover, if the measurement matrix employed in (1) sat-
isfies a restricted isometry property (RIP) [5], then, it is guar-
anteed with high probability that the relative distances be-
tween the samples (frames) in the original space are preserved
in the lower-dimensional compressed space. This, in turn, af-
fects the complexity of algorithms that depend on the dimen-
sionality of the input data. Moreover, these key properties
of the random projections were generalized for signal man-
ifolds [7]. More specifically, it has been shown that random
projections preserve the metric structure of a manifold, that is,
the set of pairwise geodesic distances, as well as its curvature.

However, the generation of compressed measurements for
each frame of a given high-resolution video sequence may
still result in a large amount of data even for relatively small
sampling ratios, while also the selection of an appropriate dis-
tance metric, which is fundamental to any learning algorithm,
is highly problem-dependent and determines the success or
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Fig. 1. Proposed CVC architecture.

failure of the classification process.
We overcome the above drawbacks by employing a dis-

tance metric learning (DML) combined with a manifold
learning (ML) approach. In particular, DML is used in the
domain of compressed measurements to estimate a distance
(or equivalently a linear transformation) that satisfies the
class constraints, while ML acts as a second dimensionality
reduction step, where the final classification of a new video is
performed by measuring the distance between the manifold
embedded training samples and the new data. The overall
architecture of the proposed CVC system is shown in Fig. 1.

A typical classification system consists of two main
phases, namely, a training phase, where a more compact
representation of the original information is generated in a
low-dimensional space, with the goal of preserving a high
discriminative power, and a classification phase, where the
extracted feature vector of a new sample is compared with the
corresponding features of the training samples by means of a
suitable similarity criterion resulting in the estimated class.

3.1. Training phase

As Fig. 1 shows, the training phase consists of three distinct
steps: i) initial dimensionality reduction through random CS
measurements, ii) learning of a suitable distance metric, and
iii) second dimensionality reduction via manifold learning.

3.1.1. Random CS measurements

During this step, a set of CS measurements is generated for
the frames of each training video. More specifically, let xc

j,q

denote the j-th frame of the q-th video belonging in class c,
with j = 1, . . . , F , q = 1, . . . , Q and c = 1, . . . , C. Then, a
low-dimensional (feature) measurement vector gc

j,q ∈ RM×1

is assigned to xc
j,q as given by (1). The overall signature for

the q-th video of class c is given by

Vc
q 7−→ Sc

q = {gc
1,q, . . . , g

c
F,q} , (2)

and by augmenting all the training signatures we get the over-
all signature for the training dataset, S = {Sc

q}
c=1,...,C
q=1,...,Q.

3.1.2. Distance metric learning

Depending on the problem setup, selecting an appropriate dis-
tance metric is crucial for the performance of many learning

algorithms, such as the kNN and the k-means. Typically, Eu-
clidean distance may work empirically. On the other hand,
the family of Mahalanobis distances have been shown to gen-
eralize well the standard Euclidean distance by admitting ar-
bitrary linear scalings and rotations of the feature space, re-
sulting in a more meaningful connection between the data.
Furthermore, additional information, such as class labels, can
be incorporated in the learned metric. For two data points
xi, xj ∈ RN the squared Mahalanobis distance is parameter-
ized by a positive definite matrix A ∈ RN×N as follows,

dA(xi, xj) = (xi − xj)T A(xi − xj) . (3)

The objective in DML in the supervised case is to learn a new
distance that will satisfy the pairwise constraints imposed by
class label information. Formally, for two vectors x and y, the
learned distance should satisfy dA(x, y) ≤ l if label(x) =
label(y) and dA(x, y) ≥ u if label(x) 6= label(y).

In the proposed CVC architecture, DML is carried out by
means of a recently introduced information-theoretic metric
learning (ITML) algorithm [12], which reduces the problem
of estimating the distance matrix A into a problem of min-
imizing the differential relative entropy between two multi-
variate Gaussians under similarity or dissimilarity constraints
and pairwise relations of distances. Unlike most of the exist-
ing methods, no eigenvalue decompositions or semi-definite
programming is required, which makes ITML fast and scal-
able, while it also generalizes well to unseen test data. ITML
takes as inputs the signature S with the training CS measure-
ments, along with their corresponding class labels, and gives
an estimate of the distance matrix A as an output.

3.1.3. Manifold learning

Manifold learning (or non-linear dimensionality reduction),
which is the counterpart to PCA, consists of finding a low-
dimensional representation of the input data, while attempting
to preserve the local metric structure. Graph-based learning
methods, such as Isomap [13] and local linear embedding
(LLE) [14], employ Euclidean distances to describe local
neighborhoods of the data. However, both methods fail in
cases of data sets with high curvature, self-intersections, or
non-convex sampling within the manifold space. Furthre-
more, manifold learning methods such as Isomap and LLE
lack a straightforward extension of the learned mapping to
new data, a problem called out-of-sample extension, which
limits the generalization applicability of these methods.
Moreover, the unsupervised nature of both methods leads
in a limited generalization to new data, due to the direct map-
ping of input data to the manifold space, instead of a mapping
from the input space to the manifold space.

Locality preserving projections (LPP) [15] was among the
methods introduced to overcome the above drawbacks by per-
forming linear approximations of a non-linear manifold in
small neighborhoods. Although LPP was designed originally



for unsupervised dimensionality reduction, it was extended to
the supervised case where the class label information is used
to construct the weight matrix for the embedding.

Regarding classification, this task is independent of the
preservation of manifold structure, which is the purpose of
manifold learning, since data points belonging to distinct
classes may still be close in the embedding manifold. This
observation necessitates the use of a supervised approach,
along with an appropriately selected distance metric for the
extraction of the local neighborhood structure. In the pro-
posed CVC setup, this information is exploited by employing
the distance matrix A learned from the training CS measure-
ments, as described in the previous section. The final output
of LPP is a projection matrix P with the eigenvectors of the
adjacency graph Laplacian.

3.2. Classification phase

When a new video is given as input to the proposed CVC
system, it is represented directly by its corresponding set of
CS measurements, due to the assumption that our acquisition
system is equipped with a single-pixel camera. Let Su =
{g1,u, . . . , gF,u} be the matrix of CS measurements for the
F frames of the unknown video Vu. As a second step, the
compressed measurements are projected on the learned ma-
nifold by multiplying with the learned projection matrix, that
is, Su 7→ PTSu. Then, a kNN classifier is applied for each
projected vector gj,u of the signature of Vu in the trained ma-
nifold. Finally, the estimated class is the one with the high-
est frequency of appearance among the individually classified
projected vectors.

4. EXPERIMENTAL EVALUATION

The classification performance of the proposed CVC system
is evaluated on a subset of the UCF-50 dataset1 consisting of
videos categorized in 8 classes according to different activi-
ties, namely, “Basketball”, “Clean & jerk”, “Guitar”, “Piano”,
“Rock climbing indoor”, “Rowing”, “Skiing” and “Tennis”.
This dataset is considered to be particularly challenging due
to large variations in camera motion and illumination condi-
tions, object appearance and pose. In the present experimental
setup, each class contains 30 videos of 50 frames per video,
rescaled at 128× 128 pixels for computational simplicity.

A distinct BWHT measurement matrix Φ is used for
the acquisition of compressed measurements in each one
of 50 Monte-Carlo runs. The sampling ratio r varies in
[0.005, 0.019] (or equivalently the number of CS measure-
ments per frame, M = round(rN), varies in [82, 311]).
Regarding the manifold learning step, the dimension of the
manifold varies as a percentage p of the number of CS mea-
surements with p ∈ [0.01, 0.15], which is equivalent to
keeping the L most significant eigenvectors of the projection

1http://www.computervisiononline.com/dataset/ucf50-action-
recognition-realistic-videos
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Fig. 2. Average classification rates as a function of the mani-
fold dimension, for a varying number of testing samples B.

matrix P with L = round(pM). The combination of all pos-
sible values of r, M , and p results in a manifold dimension
which varies in [1, 47]. The ITML algorithm is applied first
over the whole training set to estimate the distance matrix A.

For the classification, a kNN classifier with k = 1 is
used, while the classification accuracy is computed for a vary-
ing training and testing partition. More specifically, in each
Monte-Carlo run the overall dataset is divided randomly in
two subsets, a training and a testing one, consisting of (30 −
B) and B videos, respectively, with B ∈ {5, 10, 15}. In the
following, the classification accuracy is expressed in terms of
the average success rate, which is defined as the ratio of the
number of correctly classified frames over the total number of
query frames, where the average is taken over the 50 Monte-
Carlo runs and all testing frames.

Fig. 2 shows the average success classification rates for
the three partitions of the video database, as a function of
manifold dimension. As we expected, the successful clas-
sification rate increases as the number of training samples in-
creases (smaller B), while the system is able to achieve its op-
timum performance enough at a small number of dimensions.
These results are also consistent with the theoretical perspec-
tive, which states that random projections using a measure-
ment matrix satisfying a RIP condition, along with an ap-
propriate embedding in a low-dimensional manifold, preserve
the local metric structure, which is expressed by the ability
of a nearest-neighbor classifier to discriminate the embedded
features between distinct classes. Moreover, we can see that
in the very low-dimensional regime the low classification ac-
curacy is not improved by increasing the number of training
samples, since the corresponding learned manifold is unable
to represent the original information content of the higher-
dimensional samples.

Furthermore, Table 1 shows the average confusion matrix
between the 8 classes for a sampling rate r = 0.01 and B = 5



testing samples per class, for the proposed method, along with
our previous one introduced in [9] (average success rates are
shown in parentheses). In contrast to our previous CVC sys-
tem based solely on the CS measurements, the classification
accuracy of the one proposed here is significantly higher for
all classes, while the larger misclassification errors observed
in some cases, such as the (Skiing, Basketball) and (Skiing,
Rowing) pairs, are again mainly due to the use of the lumi-
nance component only. For instance, in the first case there
is a similarity between the relatively smooth surfaces of the
snowy terrain and the courts, which is hardly distinguishable
when we exclude the color information. This also highlights
the importance of extracting features, which are as represen-
tative as possible, as we also suggest in the last section.
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Basketball 87.15 0.03 0.66 0.25 0.90 1.48 0.68 2.38
(64.69) (3.61) (2.44) (4.21) (2.18) (6.23) (5.95) (8.92)

Clean & jerk 1.23 95.98 0.14 0 0.02 0.47 0.24 0
(4.79) (69.09) (5.37) (2.76) (3.37) (5.41) (4.78) (1.31)

Guitar 0.70 0 98.67 0 0 0.02 0 0
(1.30) (0.84) (70.55) (2.82) (1.97) (3.89) (2.37) (1.92)

Piano 0.77 0.09 0 97.90 1 0.01 0 0.12
(2.54) (1.08) (1.60) (70.97) (3.73) (2.62) (1.82) (3.55)

Rock climbing 3.15 0.70 0.11 0.09 94.98 0.09 2.25 0
(5.32) (6.51) (4.03) (3.32) (68.53) (3.15) (6.99) (2.59)

Rowing 2.57 2.1 0.20 0.33 0.30 93.96 3.55 0.59
(6.34) (8.64) (6.02) (5.75) (3.87) (66.50) (8.60) (5.13)

Skiing 3.75 0.90 0.22 1.43 2.63 3.95 92.73 2.08
(13.52) (9.87) (8.41) (6.55) (14.05) (8.42) (64.74) (6.78)

Tennis 0.68 0.20 0 0 0.17 0.02 0.55 94.83

(1.50) (0.36) (1.58) (3.62) (2.30) (3.78) (4.75) (69.80)

Table 1. Average confusion matrix for r = 0.01, B = 5 for
the proposed CVC system, and our previous one based solely
on CS measurements (success rates shown in parentheses).

5. CONCLUSIONS

In this study, a compressive video classification method was
introduced. The design of the proposed CVC system was
based on the assumption of an imaging system with limited
resources, without having access to the full-resolution frames,
where the video data are captured directly in the CS domain
using a single-pixel camera. A distance metric learning ap-
proach followed the initial dimensionality reduction in the
compressed domain, to learn the relative distances between
the training samples in a supervised way by exploiting the
prior class label information. As a further dimensionality re-
duction step, while preserving the local metric structure, a
manifold learning method was used by exploiting the dis-
tance matrix learned in the previous step. Finally, the esti-
mated class for a query video was obtained using a simple

nearest-neighbor classifier in the low-dimensional manifold.
The experimental results revealed a high classification accu-
racy, even at very low sampling rates and manifold dimension,
which are significantly smaller than the rates and dimensions
required for solving the problem of sparse reconstruction.

In the proposed CVC framework we do not exploit the
sparsity of the original video data in an appropriate transform
domain (e.g., DCT, DWT), which is at the core of CS theory.
As a direct extension, we expect that the sparsification of the
original data before their embedding in the low-dimensional
manifold, by learning a sparsifying dictionary, could enhance
the discriminative power of the generated features, and conse-
quently the classification success rate. In addition, the above
could be combined with the generation of CS features by con-
sidering the color information, which can also increase the
classification margin among the several classes.
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