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Abstract—In this paper, we propose a method for recovering
and classifying WSN data while minimizing the number of
samples that need to be acquired, processed, and transmitted.
The problem is formulated according to the recently proposed
framework of Matrix Completion (MC), which asserts that a
low rank matrix can be recovered from a small number of
randomly sampled entries. The application of MC in WSN data
is motivated by the assumption that sensory data exhibit intra-
sensor correlations and that these data can be represented using
known examples. We formulate the problem as that of recovering
the low rank measurement matrix by encoding the contributions
of known examples, the dictionary elements, for reconstructing
and classifying the data. Experimental results using artificial
data suggest that the proposed scheme is able to accurately
reconstruct and classify the sensory data from a small number
of measurements.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) serve as a novel frame-
work for data acquisition, where a large number of small and
inexpensive sensors record a set of environmental variables
and communicate them to a base station for processing. WSNs
have been used in numerous applications with very promising
results owing to their low cost, their ability to cover large
areas and flexible deployment. Despite their many applica-
tions, WSNs are characterized by three major limitations,
namely low processing capabilities, communication bandwidth
constraints, and limited power. Given these limitations, the
objective of algorithms developed for such systems is to
necessitate moderate processing capabilities and to operate at
low transmission rates.

To address these issues, the recently proposed framework
of Compressed Sensing (CS) [1], [2] has been investigated
and different applications have been proposed. According to
the CS framework, perfect reconstruction of a signal can
be obtained by recording a compressed version of the data,
provided the data can be sparsely represented in a dictionary
of atoms. More importantly this compression can be achieved
by applying a linear transform via a matrix consisting of
random values, drawn from an appropriate distribution, a
property termed universal dimensionality reduction. Decoding
and reconstruction of the original signal is achieved by solving
an l1 minimization problem or by greedy approaches.

Even though the theory of CS has only been recently
proposed, it has be utilized in various applications in the field
of WSN. This can be attributed to the key characteristics of

CS, such as asymmetric complexity, universal encoding, and
robustness to noise, among others. The majority of papers
employing CS in WSN has focused on reconstructing the
randomly projected data at the base station.

Although reconstructing the measurements in the base
station is important, many applications are focused on the
identification of specific patterns. For example, consider a
WSN monitoring an environmental variable such as humidity
over a large area. For applications such as farming and water
quality monitoring, identifying patterns, recognizing events,
and classifying measurements are equally important to signal
reconstruction. In these scenarios, classification schemes could
be used to generate complex trigger events that request the sen-
sors to sample at higher rates or actuators to take appropriate
actions.

In this work, we propose a new scheme based on the
recently developed framework of Matrix Completion (MC) for
reconstruction and classification of WSN data. To achieve this
goal, we propose the exploitation of the inherent correlations
between the sensed data and a dictionary of known examples,
in order to reconstruct the original measurements or perform
classification of the sensed data from a much smaller number
of random measurements.

The rest of the paper is organized as follows: Section II
discusses the motivation of the proposed scheme while Section
III presents a short overview of previous work. Sections IV and
V present the formulation of MC and the proposed scheme for
the application in WSN data processing. Experimental results
are provided in Section VI and the paper concludes in Section
VII.

II. MOTIVATION

To motivate this work, we consider the scenario where a
number of sensors monitor the environment and report their
measurements to a base station where the reconstruction and
the classification of the data takes place. To address the limited
processing power, the communication constraints, and the
energy limitations, we propose to perform random sampling
of the environment where each sensor collects measurements
at random intervals or where only a random subset of sensors
take measurements of environment at every instant.

While random sensing has numerous benefits such as re-
duction in communication cost, which plays a central role in
the life-time of the network [10], recovering such data under



the MC framework is only possible if correlation between
the sensed data exists. To illustrate the low rank nature of
a WSN measurement matrix, Figure 1 shows an example of
data gathered from a simulated WSN of 20 sensors, each one
collecting 50 measurements. In this example, the measure-
ments of each sensor where modeled as the summation of a
baseline autoregressive signal with Gaussian noise resulting in
an average SNR=14dB.

Figure 1. Recorded signals from the sensor network.

Although the underlying trend in the data is evident, the
added noise masks this trend. This effect can be seen in Figure
2 where the corresponding singular values of the measurement
matrix are shown. We observe that the gathered measurements
matrix can still be characterized by a low rank while the added
noise is responsible for additional singular values that exhibit
much lower energy.

Figure 2. Singular values of measurement matrix.

III. PREVIOUS WORK

Communicating sensor data over a wireless network is
challenging. On the one hand, data rates should be kept to
a minimum to reduce the energy consumption of the commu-
nication, while on the other hand, the limited processing power
of the nodes and the distributed nature of the system, prevent
the application of sophisticated compression schemes. Recent
techniques try to achieve a balance between these constraints
by performing simultaneous sensing and compression via the
Compressed Sensing framework.

Methods such as [3], [4], [5] and [6] exploit the correlation
between the sensor data in an effort to achieve reconstruc-
tion with reduced transmission overhead. Although CS based
methods offer high quality reconstruction, they require the ap-
plication of Random Projections (RP) as an encoding scheme.
According to the RPs sampling scheme, each sensor needs to
collect the measurements, usually in a vector form, and then

multiply them by a random matrix that performs universal
dimensionality reduction.

More recently, the CS framework was also utilized for
classifying WSN data. In [7], an action recognition system
that operated on randomly projected data from body sensors
was developed. In order to recognize the activity, the authors
proposed the Distributed Sparsity-based Classification (DSC)
framework, where the sensor measurements were first pro-
jected into a low dimensional space via the application of
Random Projections and then classified locally by an `1 min-
imization classification scheme on a dictionary of examples.

The above scheme differs significantly from the proposed
one where Random Sampling (RS) of raw data measurements
takes place. The benefits of RS over RP in the case of WSN
is that in addition to reducing communication requirements,
RS also reduces sampling requirements. The frequency of
sampling may play a critical part in the lifetime of the WSN
system, since specific sensor types, such as biosensors, exhibit
sensing quality degradation. We discuss the theory of Matrix
Completion and RS next.

IV. LOW RANK MATRIX RECOVERY

Let X = [X1, X2, ..., Xs] ∈ Rn×s be a measurement
matrix consisting of s measurements from n different sources.
In general, one cannot recover the ns entries of the matrix
X from a smaller number of k entries, where k << ns.
However, it has been recently shown that such a recovery is
possible when the rank of the matrix is small compared to the
dimensions of the matrix. More interestingly, one can recover
the matrix X from k ≥ Cn6/5rlog(n) random measurements,
where n > s and rank(X) = r [13]. To recover the
unknown matrix X from the measurements M , the following
minimization problem needs to be solved

min{ rank(M) : A(X) = A(M)} (1)

where A is a linear map from Rns → Rk. In the case of MC,
A is defined as a random sampling operator that records a
small number of entries from the matrix. In general, to solve
the MC problem, the linear map A must satisfy a modified
Restricted Isometry Property, which is the case for uniform
Random Sampling in both rows and columns [8].

Although solving the above problem will generate a low
rank matrix consistent with the observations, rank minimiza-
tion is an NP-hard problem and therefore cannot be used in
practice. Recently, a relaxation of the above problem [13] was
shown to produce arbitrary accurate results, by replacing the
rank constraint by the tractable nuclear norm minimization

min{ ‖M‖∗ : A(X) = A(M)} (2)

where the nuclear norm is defined as ‖L‖∗ =
∑
‖λi‖1 i.e.

the `1 norm of the singular values. For the noisy case, an
approximate version can be solved [12]

min{ ‖M‖∗ : ‖A(X)−A(M)‖2F ≤ ε} (3)

where ‖X‖2F =
∑
λ2i denotes the Frobenius norm and ε is

the acceptable approximation error.



V. PROPOSED METHOD

The MC formulation is able to recover the matrix by making
no assumption about the process that generates the matrix,
except that it is of low rank. In this work, we consider the sce-
nario where the sensors measure variations of a small number
of baseline signals and our goal is to identify these baseline
signals from a small number of measurements. According to
our model, the measurement matrix X can be described as a
linear combination of known examples i.e. X = DL, where
D is a dictionary of examples and L is a low rank matrix
that contains the representation coefficients. Recovery of the
representation coefficients is possible by solving

min{ ‖L‖∗ : ‖X−DL‖2F < ε} (4)

The above formulation, termed Low Rank Representation
(LLR) [16], has been recently applied in subspace segmen-
tation by setting the dictionary as the data matrix i.e. D = X
and seeking the low rank matrix that encodes the contributions.

However, other models for the dictionary can also be used.
In our model, we consider a combination of LLR and MC
by seeking the low rank presentation coefficients matrix L
from a small number of measurements A(X). The updated
minimization is given by

min{ ‖L‖∗ : Z = DL, ‖A(X)−A(Z)‖2F < ε} (5)

The problem in (5) can be transformed to a semidefinite
programming problem and solved using interior point meth-
ods [11]. In our experimental section we utilized the CVX
[14],[15] packet for solving (5). The proposed formulation
bares many analogies to dictionary based CS reconstruction
methods where vectors are replaced by matrices and the as-
sumption of sparse representation on a dictionary of examples
is reframed as a low rank representation on the dictionary.
This model is also related to high dimensional statistics where
the problem is similar to a multivariate regression with rank
constraints [17].

To classify the data, we follow an approach similar to CS
classification where data are classified by selecting the class
whose examples introduce the minimum error defined as

class(X) = min
j
||A(X)−A(Zj)||2F (6)

where Zj ≡ DjLj selects only the examples corresponding to
class j.

VI. EXPERIMENTAL RESULTS

In this section, we provide two sets of experimental re-
sults that illustrate the characteristics of the proposed scheme
for reconstruction and classification, respectively. We present
simulation results on a network of 10 and 20 sensors, where
each sensor must communicate 50 measurements. To generate
the sensor data, we modeled a baseline measurement signal
according to an autoregressive model, initialized with a ran-
dom seed, i.e. Yi+1 = aYi + n, where a and n are i.i.d from
N (0, σ) The simulated measurements were modelled as noisy
versions of the baseline signal with various amounts of white

Gaussian noise, simulating different levels of inter-sensor
correlations. This approach was employed for generating a
dictionary of 70 atoms. In this dictionary, one atom was a
noisy version of the baseline signal while the other atoms
where drawn according to different models. Each data point
in the results is averaged over 20 independent trials.

First, we present the results on measurement matrix recon-
struction where we compare the performance of traditional
MC with the dictionary driven MC scheme. Figures 3, 4 and
5 present the reconstruction error as a function of sampling
rate for SNRs 65dB, 40dB and 14dB, respectively. We observe
in the graphs that the dictionary guided MC is able to achieve
lower reconstruction error compared to the traditional MC,
especially in low sampling rates. Furthermore, the reduced
error rates are more pronounced in low SNRs. This observation
implies that the dictionary based approach is more robust to
noise compared to the traditional MC, due to the additional
information that is encoded in the dictionary.

Figure 3. Reconstruction error for SNR=65dB.

Figure 4. Reconstruction error for SNR=45dB.

In the second set of experiments, we investigated the ap-
plication of the proposed scheme for the classification of the
WSN data. Tables I and II present the classification accuracy
for different amounts of noise on networks of 10 and 20
nodes respectively. By classification accuracy we measured the
probability of correcting classifying the testing signals. The
objective of this experiment was to evaluate the performance
of our scheme as a function of both network size and data
correlation levels. From these results we can make two basic



Figure 5. Reconstruction error for SNR=14dB.

observations. By considering the effects of correlation, we
observe the the proposed scheme is able to achieve increased
accuracy in scenarios where the signals are affected by a
small amount of noise and therefore are more correlated,
since the noise component is independent of the signals.
Regarding network size, we observe that larger networks are
more robust to noise which implies that these networks are
able to capture data correlation more efficiently. For example
very high classification performance can be achieved half the
measurements, a reduction in sampling rate that can have
significant advantages for resource constrained WSN.

Table I
CLASSIFICATION ACCURACY FOR A NETWORK OF 10 SENSORS

Classification Accuracy
sampling rate 65dB 40dB 14dB

0.1 0.50 0.05 0.00
0.2 0.60 0.20 0.15
0.3 0.80 0.35 0.25
0.4 0.95 0.80 0.45
0.5 1.00 0.95 0.40
0.6 1.00 1.00 0.55
0.7 1.00 1.00 0.60
0.8 1.00 1.00 0.60
0.9 1.00 1.00 0.70
1 1.00 1.00 0.70

Table II
CLASSIFICATION ACCURACY FOR A NETWORK OF 20 SENSORS

Classification Accuracy
sampling rate 65dB 40dB 14dB

0.1 0.65 0.05 0.00
0.2 0.90 0.35 0.35
0.3 0.95 0.95 0.65
0.4 0.95 0.95 0.75
0.5 1.00 0.95 0.70
0.6 1.00 0.95 0.80
0.7 1.00 1.00 0.70
0.8 1.00 1.00 0.75
0.9 1.00 1.00 0.70
1 1.00 1.00 0.70

VII. CONCLUSIONS

We presented a sampling scheme for WSN that can sig-
nificantly reduce both acquisition and communication require-

ments by exploiting the correlation between the sensory data.
The proposed scheme is based on a variation of the recently
proposed framework of Matrix Completion where a set of
known examples are used for generating a dictionary and
utilizing it for data recovery. Experimental results in simulated
data suggest that the proposed scheme can achieve superior
performance for the case of reconstruction compared to the
traditional MC. Furthermore, results suggest that significant
reduction in sampling rate can be obtained with limited effects
on classification performance. In future work, validation of the
proposed scheme will be applied to real WSN data.
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