
Feature learning for multi-label land cover classification

Konstantinos Karalasa,b, Grigorios Tsagkatakisb, Michalis Zervakisa, and
Panagiotis Tsakalidesa,c

aSchool of Electronic & Computer Engineering, Technical University of Crete, Chania, Greece;
bInstitute of Computer Science, Foundation for Research and Technology, Heraklion, Greece;

cDepartment of Computer Science, University of Crete, Heraklion, Greece

ABSTRACT

While single-class classification has been a highly active topic in optical remote sensing, much less effort has
been given to the multi-label classification framework, where pixels are associated with more than one labels, an
approach closer to the reality than single-label classification. Given the complexity of this problem, identifying
representative features extracted from raw images is of paramount importance. In this work, we investigate
feature learning as a feature extraction process in order to identify the underlying explanatory patterns hidden
in low-level satellite data for the purpose of multi-label classification. Sparse autoencoders composed of a single
hidden layer, as well as stacked in a greedy layer-wise fashion formulate the core concept of our approach. The
results suggest that learning such sparse and abstract representations of the features can aid in both remote
sensing and multi-label problems. The results presented in the paper correspond to a novel real dataset of
annotated spectral imagery naturally leading to the multi-label formulation.

Keywords: Remote sensing, feature learning, representation learning, autoencoders, sparse autoencoders, deep
learning, multi-label classification, modis, corine.

1. INTRODUCTION

The performance of machine learning algorithms is heavily dependent on the choice of data representation
(features) on which they are applied1 , an observation that is particularly evident in computer vision tasks,
where carefully designed hand-crafted features, such as Scale Invariant Feature Transform (SIFT) or Histogram
of Oriented Gradients (HOG), have shown great effectiveness in a variety of tasks. The main drawback of
these descriptors is that significant human intervention is required during their design. Furthermore, such
features are highly domain-specific and have limited generalization ability. This motivates the need for efficient
feature representations extracted automatically from data through representation learning1 , a set of techniques
which aim to learn useful (i.e., discriminative, robust, smooth) representations of the raw data for the purpose
of higher level tasks (e.g., classification, recognition) and minimize the dependency of learning algorithms on
feature engineering.

Learning such features is especially difficult in problems where the underlying data are subject to many factors
of variation.2 For example, in a speech recognition task, the factors might be the gender of the speaker and
the background noise. In remote sensing, there are also analogous factors including the ground environmental
conditions as well as cloud contamination. In this work, we aim to find “good representations” for satellite data
under a real-world scenario. More specifically, we are interested in land cover classification, a highly significant
topic for the understanding of climate and biodiversity dynamics, through a multi-label learning approach.
While land cover classification is typically treated as a single-label problem, where a remote sensing pixel is
associated with a particular label or class, pixels of the acquired images usually encode a mix of materials, due
both to instrumentation and physical interactions of light. The situation where a specific example is associated
with multiple labels is a well-known machine learning paradigm, the multi-label classification problem3,4 , with
numerous applications in text, image, audio and bioinformatics classification.

Further author information: (Send correspondence to K.K.)
E-mails: K.K.: kkaralas@isc.tuc.gr, G.T.: greg@ics.forth.gr, M.Z.: michalis@display.tuc.gr, P.T.: tsakalid@ics.forth.gr

The key novelty of this work is that we combine the real-life problem of multispectral image annotation
through multi-label learning with innovated ideas from the representation learning theory. More specifically, in
this work we focus on a particularly successful unsupervised representation learning approach by considering
the framework of sparse autoencoders5,6 , a type of artificial neural network which employs nonlinear codes and
imposes sparsity constraints for representing the original data. The proposed scheme utilizes a series of stacked
sparse autoencoders in order to train a deep model, using different types of inputs, in the context of multi-label
classification. In this context image annotation is associated with land cover, obtained through real ground-truth
data collected by the European Environment Agency. The end-to-end design of the proposed scheme is composed
of a three-stage pipeline consisting of:

• preprocessing and normalization of the features.

• feature-mapping using sparse autoencoders.

• multi-label classification through the learned feature-mapping.

For each module, we have experimented with several options. Through our analysis we try to evaluate the impact
of several options to the final performance estimation.

The rest of the paper is organized as follows. Section 2 gives a brief review of related approaches from
the literature. In Section 3 we present the basic theory of autoencoders followed by the sparse variant used in
single- and multi-layer stacked way. In Section 4 we describe the multi-label classification algorithms that are
incorporated at the top layer of our system. Section 5 provides an overview of the dataset used, the performance
evaluation measures and the experimental setup of our system. Section 6 demonstrates the experimental results,
while in Section 7 we conclude the paper.

2. RELATED WORK

In general, representation learning encompasses a variety methods, most of them based on neural networks that
combine linear and nonlinear transformations of the data. This way, autoencoders (or autoassociators) were
adopted with impressive success as feature learning architectures, although they were initially studied in the late
80’s as a technique for dimensionality reduction by considering a limited hidden layer (forming a bottleneck)
with fewer units compared to the input. More recently, extending their initial use, overcomplete basis vectors
have been employed to obtain more expressive representations, where the number of features exceeds the number
of raw inputs. In this setting, a form of regularization during autoencoder learning is needed in order to avoid
trivial solutions where the autoencoder could reconstruct the input perfectly, without needing to extract any
meaningful features. Recently, several autoencoder variants have been developed that introduce regularization
in the latent space, including the denoising7 , the contractive8 , the saturating9 , and the sparse5,6 autoencoder.

Apart from modifying the regularization term, effort has also being given on the investigation of the impact
of other choices on system performance, especially in terms of the network architecture. For instance, recursive
networks10 which apply the same set of weights recursively over a structure (directed acyclic graphs), recur-
rent networks11 where connections between units form a directed cycle, convolutional networks with whitening
transformation and pooling operations for visual tasks12 , and neural networks with rectified hidden units13 .

While it has been shown that one hidden layer can approximate a function to a very high level of precision,
this approach becomes impractical due to the increase in the number of the required computational units14 .
Inspired by the human cognitive system, researchers have tried to incorporate depth into learning algorithms,
which would allow to achieve function representation more compactly15 , and obtain increasingly more abstract
representations. Although theoretical results have been encouraging, in practice, it has been impossible to train
sufficiently deep architectures, since gradient-based optimization methods starting from random initial weights
tended to get fixated near poor local optima16 .

Deep learning was revolutionized in the past decade, when the strategy of greedy layer-wise unsupervised
“pretraining” followed by supervised fine-tuning was introduced5,17 . This technique was first applied using
Restricted Boltzmann Machines (RBMs) for a digit recognition task, but has proved to be an efficient approach by

incorporating autoencoders in various contexts too. Nevertheless, one should keep in mind that deep architectures
do not guarantee a superiority over shallow architectures for every type of problem18 , although the behavior in
specific settings is under extensive investigation.

We should note that the ideas underlying deep learning has been motivated by the way the human brain
seems not only to be organized in a deep architecture, but also to process received stimuli through a chain of
multiple transformation stages14 . For example, it has been experimentally shown that for the object recognition
tasks, representations produced by deep architectures can resemble those features observed in the first two stages
of the visual system, i.e. edges and shapes detected by the V1 and V2 areas of visual cortex.

3. FEATURE LEARNING FRAMEWORK

In this section, we present the formulation of the autoencoders scheme, one of the fundamental paradigms for
unsupervised feature learning. More specifically, we investigate sparse autoencoders and how they can be applied
in the concept of deep learning.

(a) Architecture of an autoencoder with an overcomplete
hidden layer. The encoder takes the input X and computes
a prediction of the best value of the latent code h. The
decoder is symmetric to the encoder and computes a recon-
struction of X from h.

(b) A 5 layer autoencoder network [3-4-4-4-2], where the
circles denote the feature units. The black color is used to
denote the hidden, whereas the white the visible layers. The
three middle layers constitute an encoder.

Figure 1: The autoencoder concept. The bias units are not considered for simplicity.

3.1 Single-Layer Sparse Autoencoders

A classical autoencoder is a deterministic feed-forward artificial neural network comprised of an input and an
output layer of the same size with a hidden layer in between, as illustrated in Figure 1a . Typically, the model
is trained with backpropagation19 in a fully unsupervised manner, aiming to learn an approximation x̂ of the
input which would be ideally more useful compared to the raw input.

The feature mapping that transforms an input pattern x ∈ Rn into a hidden representation h (called code)
of k neurons (units), is defined by the encoder function:

f(x) = h = αf (W1x + b1), (1)

where αf : R 7→ R is the activation function applied component-wise to the input vector. The activation
function is usually chosen to be nonlinear; examples include the logistic sigmoid and the hyperbolic tangent.
Recently, there is a growing interest in Rectified Linear Units (ReLU), which seem to work better in supervised
recognition tasks. The activation function is parametrized by a weight matrix W1 ∈ Rk×n with weights learned
on the connections from the input to the hidden layer and a bias vector b1 ∈ Rk×1. The network output is then
computed by mapping the resulting hidden representation h back into a reconstructed vector x̂ ∈ Rn×1 using a
separate decoder function of the form:

g(f(x)) = x̂ = αg(W2h + b2), (2)

where αg is the activation function, W2 ∈ Rn×k is the decoding matrix and b2 ∈ Rn a vector of bias parameters
which are learned from the hidden to the output layer.

The estimation of the parameters set θ = {W1, b1,W2, b2} of an autoencoder, is achieved through the
minimization of the reconstruction error between the input and the output according to a specific loss function.
Given the training set X, a typical loss function seeks to minimize the normalized least squares error, defining
the following optimization objective:

JAE(θ) =
1

m

m∑
i=1

(
1

2

∥∥∥x(i) − x̂(i)∥∥∥2), (3)

where x̂ is implicitly dependent on the parameter set θ and ‖·‖ is the Euclidean distance. More advanced loss
functions can also be involved7 . A weight decay term is commonly introduced to the cost function in order to
prevent overfitting, which we found to have a marginal effort for our data.

Sparse autoencoders are a special case of the typical autoencoders, where the code is constrained to be
sparse, i.e. only a small fraction of units are active during training. Signal and model sparsity have had a
profound impact on signal processing and machine learning due to their numerous advantages, such as robustness,
model complexity, generative and discriminative capabilities among others20,21 . Furthermore, evidence from
neuroscience suggest that sparse networks are closer to biological neurons’ responses, since the percentage of
neurons being active at the same time is estimated between 1 and 4% of the total22,23 .

In order to induce the sparsity constraint, we define a sparsity constant ρ and enforce the average latent
unit activation to be close to the value of ρ. This is achieved by penalizing it with the Kullback-Leibler (KL)
divergence, a function employed to measure the difference between Bernoulli distributions, namely the expected
activation over the training set of hidden unit u (ρ̂u) and its target value (ρ) in our case:

KL(ρ||ρ̂u) = ρ log
ρ

ρ̂u
+ (1− ρ) log

1− ρ
1− ρ̂u

, ρ̂u =
1

m

m∑
i=1

[
αu

(
x(i)
)]
, u = 1, . . . , k . (4)

The KL distance reaches its minimum of 0 when ρ̂u = ρ, and extends to infinity up as ρ̂u increases, enforcing
the ρ̂u not to significantly deviate from the desired sparsity value ρ. All in all, the smaller the value of ρ,
the sparser the representation would be. The regularized cost function of a sparse autoencoder constitutes of
the reconstruction loss of a classical autoencoder with an additional regularization though a sparsity promoting
term24 given by:

JspAE(θ) = JAE(θ) + β

k∑
j=1

KL(ρ||ρ̂u) . (5)

The hyper-parameter β determines the importance of the sparsity regularizer. Note that there have been also
developed and other techniques to encourage sparsity in the representation25 .

A particular set of weights is updated by calculating the partial derivatives of JspAE and applying the
backpropagation algorithm19 . This way, the training typically converges to a minimum, hopefully a global one,
after a small number of iterations. The minimization of the model parameters θ can be achieved by conventional
optimization algorithms (e.g., gradient descent), as well as with more sophisticated procedures, such as conjugate
gradient and Broyden-Fletcher-Goldfarb-Shanno (BFGS) methods to speed up convergence.

3.2 Deep Learning with Stacked Sparse Autoencoders

Deep learning is a special case of representation learning which admits the property that multiple levels of
representations are learned hierarchically, leading to more generic and beneficial features. Ultimately, the activity
of the first layer neurons corresponds to the low-level (primitive) features of the input, while higher-level abstract
concepts are encoded in the subsequent hidden layers. More specifically, we provide the deep architecture
with surface reflectance input data, which is the raw data collected from a remote sensing observation system,
and try through a hierarchical approach to learn an “advanced” version of them, which would ideally match
the capabilities of high quality hand-crafted features, such as Normalized Difference Vegetation or Enhanced

Vegetation Indices (NDVI/EVI). In this way, we aim at bypassing the requirements of manual design of these
features and automatically learn representations which can substitute and enhance them. In parallel, due to the
unsupervised nature of the processing, the proposed approach is more universal and could also work with other
types of targets which are not chlorophyll sensitive, such as structures in urban areas, where analogous ratios
have not been defined.

Architectures with two or more hidden layers can be created by stacking single layer autoencoders on top
of each other as depicted in Figure 1b. Formally, one starts by training a sparse autoencoder with the raw
data as input. Then the decoder layer is discarded so that the activations of the hidden units (layer-1 features)
become the visible input for training the second autoencoder layer (feed-forward), which in turn produces another
representation (layer-2 features). This greedy layer-by-layer process keeps the previous layers fixed and ignores
interactions with subsequent layers, thus dramatically reducing the search over the parameter space. While this
process can be repeated multiple times, rarely more than three hidden layers are involved. We can formalize a
stacked autoencoder according to:

h(L) = f (L)
(
· · · f (2)

(
f (1) (x)

))
, (6)

where h(L) denotes the representation learned by the top layer L. The output of the entire architecture can be
used to fed a stand-alone classifier, offering a “better” representation of the data compared to the raw input.

The challenge in deep learning is that the gradient information is difficult to pass efficiently through a series
of randomly initialized layers, since a good starting point is hard to identify. Unsupervised pretraining17 is a
recently developed yet very influential protocol that helps to alleviate this optimization problem by introducing
prior knowledge for initializing the weights of each layer, allowing gradients to “flow well”. Autoencoders, being
a fundamental example of unsupervised learning, have attracted a lot of attention as a method for pretraining
deep neural networks. Formally, we use the sparse autoencoder as the building block to train one layer at a time,
in a bottom up fashion, for a fixed number of updates (epochs). Up until this point, the procedure is completely
unsupervised. Supervised refinements are subsequently introduced in the top layer of the deep architecture in
order to fine-tune the gradient-based optimization algorithm with respect to a supervised criterion, a process
termed fine-tuning phase15 . As a last optional training stage, it is possible to further optimize the parameters
with a global fine-tuning, which uses backpropagation through the whole network architecture at once, however
starting from a very good initial model.

3.3 Data Preprocessing

A critical aspect of sparse autoencoder models is the need for data normalization. To that end, several normal-
ization steps are usually performed in order to adapt the raw data into appropriate inputs for neural networks.
Experimental results have shown that when the input variables are close to zero, neural network training is
usually typically more efficient since convergence is faster and the likelihood of getting stuck in local optima is
reduced. Formally, let the training set of instance-label pairs X = {

(
x(i), t(i)

)
|i = 1, . . . ,m} be the set of m

training examples where the j-th feature of x(i) is x
(i)
j , j = 1, . . . , n. We consider normalization of each feature

vector j to [0, 1] by subtracting the minimum value of each element and dividing it by its range (the difference
between the maximum and the minimum value):

x
(i)
j =

x
(i)
j −minj

maxj −minj
, (7)

where the minimum values and ranges are stored for later use.

4. MULTI-LABEL CLASSIFICATION

The purpose of the representation learning system is to by incorporated into a data classification framework.
Typical classification approaches are focused on the single class classification problem where each training and
testing example is associated with a single label or belongs to a single class. In many real-life scenarios however,
this is not the case. The illustrative example we consider in this case, is labeling multispectral satellite data
with ground-gathered measurements in an effort to provide up-to-date land cover usage. Due to the difference in

scale, each multispectral pixel may be associated with multiple labels, naturally leading to the case of multi-label
annotation. In this work, we consider state-of-the-art multi-label classifiers that operate not on the original
raw data, but in features extracted though the stacked autoencoder network hoping to reach and overcome the
classification performance achieved by hand-crafted features.

A typical strategy to deal with a multi-label classification problem, is to decompose the original multi-
label problem into a set of binary classification problems and acquire predictions through conventional single-
label classification algorithms, a method known as problem transformation3 . The most representative examples
of problem transformation methods is the Binary Relevance (BR) and the Label Powerset (LP) techniques.
According to the former method, a single-label classifier is trained independently for each label leading to a set
of n classifiers, whose union forms the final prediction, whereas with the latter, each distinct subset of labels
that exists in the training set, is regarded as a different class of a new single class problem.

Recently, problem transformation techniques have involved in ensemble methods, such as RAndom k-labELsets
(RAkEL)26 and Ensemble of Classifier Chains (ECC),27 in order to achieve even higher classification performance.
RAkEL randomly breaks the initial set of labels into a number of small subsets and then for each labelset trains
a multi-label classifier using the LP technique. From the other side, ECC extends the Classifier Chains (CC)
model27 that transforms a multi-label learning problem into a chain of n BR classifiers. Although CC schema
manages take into account label dependencies, it runs the risk of low classification accuracy, since it is strongly
dependent on the label order. ECC reduces this risk and achieves predictive completeness by building an ensemble
of chains, each with a random label order.

Both of these techniques can be used with any off-the-shelf binary classifier. In this work, we incorporate
Support Vector Machines (SVM)28 as the base classifier, which is considered as one of the most efficient classifiers
for remote sensing data. Given the training set X with binary labels t(i) ∈ {0, 1}, the SVM classifier tries to find
a linear separating hyperplane with the maximal margin in this higher dimensional space. Formally, when the
kernel function is linear, the SVM seeks a solution to the following constraint optimization problem:

minimize
w,ξ(i)

1

2
wᵀw + C

m∑
i=1

ξ(i)

subject to wᵀ x(i) t(i) ≥ 1− ξ(i), ξ(i) ≥ 0, i = 1, . . . ,m,

(8)

where the parameter C > 0 controls the trade-off between the slack variable penalty and the margin.

5. EXPERIMENTAL SETUP

5.1 Dataset and Motivation

In this work, we consider the introduction of a multi-label learning scheme, adapted to a remote sensing ap-
plication with real complex data. Formally, we combine real satellite data from Moderate Resolution Imaging
Spectroradiometer (MODIS) instrument and high spatial resolution ground data from the CORINE Land Cover
(CLC) project developed by the European Environment Agency (EEA). More specifically, the features are ob-
tained from the MODIS sensor aboard Terra satellite∗, where we consider the 7 surface reflectance bands from
the MOD09A1 product, acquired at 500m2 spatial resolution and having an 8-day revisit frequency. We seek for
land cover classification, thus we collect all available data from the growing season (May to October) leading in
161 spectral bands in total. We underline that we are particularly interested in this feature set, since these are
the data which are provided directly from a satellite imaging system and thus can be obtained and be accessible
in short time, without the need of extra processing. Moreover, in this paper we focus in deep learning, thus
we have to provide our system with primitive data in order to be able to discover the more explanatory factors
hidden in that data, since by incorporating hand-crafted features the hierarchical structure of the data needed for
deep learning is lost due to their inherent complex makeup, and no extra valuable information can be revealed.

Regarding the associated ground-truth map for these inputs, we take advantage of the CORINE map† by the
EEA, where we select data from the year 2000 annotated with 20 labels, whereas the region of interest corresponds

∗https://lpdaac.usgs.gov/data access/data pool
†http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2000-raster-3

to the h19v04 tile of MODIS. Note that CORINE has a higher resolution of 100m2 than MOD09A1 product,
which naturally leads to the multi-label case since each spectral pixel is associated with multiple CLC codes. In
accordance with multispectral and hyperspectral image single-label classification, we aim in classification with
limited training examples.

5.2 Performance Evaluation

The performance evaluation of multi-label classifiers is more complicated than conventional single-label learning,
since an example may be partially correct. As a consequence, several metrics have been proposed for classification
and ranking4 . In this work, we quantify the performance in terms of the following six state-of-the-art metrics.

Let K be the number of testing examples in the multi-label dataset with L labels and Yi/Zi is the actual and
the predicted set of labels. Then the example-based hamming loss are calculated by:

Hamming Loss =
1

K

K∑
i=1

|Yi∆Zi|
L

, (9)

where ∆ stands for the symmetric difference (corresponds to the XOR operator in Boolean logic) between the
two sets. Conceptually speaking, hamming loss measures how many times a relevant label to an example is not
predicted or an irrelevant is incorrectly predicted, reaching its best performance at score 0 and worst score at 1.

Average precision is an example-based ranking metric, which evaluates the average fraction of relevant labels
ranked higher than a particular label. It is thus given by:

Average Precision =
1

K

K∑
i=1

1

|Yi|
∑
λ∈Yi

|{λ′ ∈ Yi : ri(λ) ≤ ri(λ′)}|
ri(λ)

, (10)

where r(λ) is the ordered list of labels for label λ. This score corresponds to the area under precision-recall
curve.

In extending a binary metric to multi-label problems, there exist a number of ways to average binary metric
calculations across the set of labels. Given the True Positives (TP), True Negatives (TN), False Positives (FP),
and False Negatives (FN) test samples, we calculate metrics by assuming macro- and micro-averaging across all
class labels, which give equal weight for labels and instances respectively, defined as follows:

Bmicro = B

 m∑
j=1

TPλj
,

m∑
j=1

TNλj
,

m∑
j=1

FPλj
,

m∑
j=1

FPλj

 , Bmacro =
1

m

m∑
j=1

B(TPλj
,TNλj

,FPλj
,FNλj

). (11)

B could be any of the binary classification metrics, here the F1 score or the Area Under the ROC Curve (AUC).
In a nutshell, F-Measure conveys the balance between the precision and the recall, whereas AUC considers TP
and FP rates. The bigger value obtained, the better the performance of the classifier for these metrics.

5.3 Network Architecture

In order to train a deep neural network there are several hyper-parameters which need to be set, including those
which specify the structure of the network itself and those which determine how the network is trained. The
type of the nonlinearity in the activation function is one of the first such hyper-parameters that needs to be
considered. We adopt the logistic sigmoid activation αf (φ) = αg(φ) = σ(φ) = 1/(1 + e−φ) in the hidden layers
which has an output range in the interval [0,1] (and is in accordance to the the initial scaling from Eq. 7). The
bias units are initialized to zero, whereas the initial weights are randomly drawn from a uniform distribution
U(-r,r) with r = 4

√
6/(fan-in + fan-out), where fan-in is the size of the previous layer and fan-out the number

of hidden units in current layer29 . Tied weights (W2 = W ᵀ
1) are commonly used to reduce the complexity, yet

untied (W2 6= W ᵀ
1) weights seem to generalize better in our case. Therefore, in the following results untied

weights are employed in all layers.

Neural network models demand significant effort and time during training, making an exhaustive grid search
in the space of hyper-parameters intractable. In addition, since the particular dataset we consider has not been
explored before, not prior information on where these hyperparameters approximately lie is available. As such,
for the specification of the hyper-parameters ρ and β which control the sparseness of the autoencoder, we first
performed a coarse grid search in reasonable values and in all cases, model selection was performed according
the lowest mean square error of the validation set, which is composed of 20% of the training data (randomly
sampled). More specifically, the grid is constructed by considering the set produced by the Cartesian product
of ρ ∈ {0.001, 0.01, 0.1, 0.3, 0.5, 0.7, 0.9} and β ∈ {1, 5, 10, 15, 20} values. The models were trained for 5000
unsupervised learning epochs, while at the supervised learning stage, we use 3000 epochs with early stopping29 ,
a typical approach to prevent overfitting, where we monitor the validation error every 100 iterations and if it has
not decreased for 500 consecutive epochs, early stopping is enabled. Reported results are averaged over 10 Monte-
Carlo trials, in order to minimize the effects of the initial random seed. For the implementation of the sparse
autoencoder we considered the framework described in24 . The optimization algorithm used for minimizing the
cost function of the sparse autoencoder was the BFGS gradient descent method with limited-memory variation
(L-BFGS)‡ and a stopping criterion of 10−8, a quasi-Newton method for unconstrained optimization that has
proved to work well for the particular type of optimization.

For the implementation of RAkEL and ECC we consider the open-source MULAN§ Java library for multi-
label learning that works on the top of WEKA¶ data mining software. As suggested by the authors, we set the
size of each labelset in RAkEL to 3 and the number of models to 2n = 40, while for ECC we use 10 models. SVM
problem is solved with linear kernel by the Sequential minimal optimization (SMO) algorithm that is available
within WEKA.

6. EXPERIMENTAL RESULTS

In this section, we initially investigate typically used features and their effect on the particular multi-label
classification problem, serving as baseline. Subsequently, we provide a detailed performance analysis of the
proposed feature learning and classification scheme by considering three key system parameters, namely the
impact of the number of neurons for a single layer, as well as additional normalization tasks, the sensitivity of
the feature learning models and the impact of depth on the performance of multi-label classification algorithms,
on real data. We notice that there are also a number of other critical hyperparameters of the neural network
which one can experiment on, such as the regularization parameter, the type of the nonlinearity, or even the
number of units of the second hidden layer; careful selection of such parameters can potentially further improve
system’s performance.

6.1 Performance of Raw and Hand-crafted Features

In order to obtain a clear understanding regarding the effects of the features, Table 1 presents the performance
for different types of input features for both multi-label classifiers considered in this paper. In the table, the first
row for each classifier case corresponds to the optimized hand-crafted features, the second to spectral reflectance
values, and the third row to normalized spectral reflectance. The hand-crafted features we consider are the
NDVI and the Land Surface Temperature (LST) features on the same tile for the same months retrieved from
MODIS Terra. The combination of NDVI and LST time-series features is well established in the literature as
being a very good indicator which can quantify changes in the representation of vegetation growth and physical
characteristics of land cover in general30 .

The results show that the combination of NDVI and LST features are indeed better than raw surface re-
flectance. This higher performance achieved by the carefully designed features is the main motivation behind
our approach, which aims at formalizing an automated process able to extract more meaningful spectral char-
acteristics from raw satellite data. Moreover, we can see that there is a significant effect of normalization on
surface reflectance features, which varies from metric to metric. We emphasize than even if RAkEL and ECC are

‡http://www.cs.ubc.ca/ schmidtm/Software/minFunc.html
§http://mulan.sourceforge.net/
¶http://www.cs.waikato.ac.nz/ml/weka/

Table 1: Impact of the quality of features for the classifiers.

Algorithm Features Hamming Loss ↓ Avg Precision ↑ Mac-F1 ↑ Mac-AUC ↑ Mic-F1 ↑ Mic-AUC ↑

RAkEL-SVM
NDVI–LST 0.084 ± 0.000 0.517 ± 0.000 0.252 ± 0.000 0.641 ± 0.000 0.435 ± 0.000 0.695 ± 0.000
Surf. Refl. 0.087 ± 0.000 0.435 ± 0.000 0.157 ± 0.000 0.572 ± 0.000 0.367 ± 0.000 0.647 ± 0.000

Norm. Surf. Refl. 0.084 ± 0.000 0.472 ± 0.000 0.175 ± 0.000 0.586 ± 0.000 0.423 ± 0.000 0.667 ± 0.000

ECC-SVM
NDVI–LST 0.087 ± 0.000 0.601 ± 0.003 0.297 ± 0.007 0.729 ± 0.005 0.483 ± 0.003 0.821 ± 0.002
Surf. Refl. 0.087 ± 0.000 0.551 ± 0.004 0.191 ± 0.007 0.679 ± 0.008 0.449 ± 0.007 0.794 ± 0.005

Norm. Surf. Refl. 0.085 ± 0.000 0.593 ± 0.004 0.255 ± 0.006 0.707 ± 0.005 0.486 ± 0.004 0.816 ± 0.003

two of the most powerful schemas for multi-label classification, they perform poorly for some of the measures,
demonstrating the dramatic challenges associated with the real-world problem we consider in this work.

6.2 Impact of Layer Size and Normalization

Choosing the number of neurons in the hidden layers is a crucial design parameter affecting the overall neural
network architecture. No formal rule guaranteeing the optimal selection exists and thus it usually comes down
to trial and error. We investigated features learning with both undercomplete (k < d) and overcomplete (k > d)
representation models, where d = 161 is the dimensionality of the raw feature space in our case, considering a
single layer architecture as a baseline. More precisely, in the case of undercomplete representations, we perform
experiments with half of the initial features, k = 80, and then with an extreme scenario of only k = 20 hidden
units. Correspondingly, in the case of overcomplete representations, we double the capacity of the model in
breadth, k = 320, and then we experiment on a highly overcomplete model where the latent code has k = 500
units.

20 80 320 500
0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

Number of Hidden Units

M
ic

ro
−

av
er

ag
ed

 A
U

C
 (

%
)

initial features
learned features
norm. initial features
norm. learned features

(a) Micro-AUC with RAkEL-SVM.

20 80 320 500
0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

Number of Hidden Units

M
ic

ro
−

av
er

ag
ed

 A
U

C
 (

%
)

initial features
learned features
norm. initial features
norm. learned features

(b) Micro-AUC with ECC-SVM.

Figure 2: Performance of multi-label classifiers using the codes learned by increasing the size k of one hidden
layer. The solid horizontal lines correspond to the performance of the classifiers with the initial raw features,
whereas the dashed lines correspond to the accuracy achieved with the normalized version of the raw features.
Optimal complexity-performance ration is achieved using twice as many of the initial raw features.

Figure 2 presents the micro-AUC score with respect to the number of hidden units used in shallow architec-
tures, where more specifically, Figure 2a demonstrates the classification performance of the RAkEL with SVM
as base classifier (RAkEL-SVM), whereas Figure 2b introduces SVM as part of an Ensemble Classifier Chain
(ECC-SVM). Regarding the baselines, the solid horizontal lines correspond to the performance of the classifiers
using the initial raw features, whereas the dotted lines correspond to the normalized version of the initial raw
features. An observation evident in both figures is the large gap between the solid and the dotted lines suggesting
that the initial normalization step of the surface reflectance data before their introduction to the classifiers can

have a dramatic impact on the performance. This is in line with the observation that algorithms that work
with distances and make parametric assumptions regarding the distribution of the data, such as SVM or logistic
regression, are usually affected positively by normalization. We should notice also that the computational time
is much smaller with the use of normalization.

Overall, for both classifiers 20 units are too few to adequately encode the signals in the hidden layer resulting
in significant degradation performance. By increasing the number of hidden units to 80, the performance in
both schemes surpasses the score achieved using raw un-normalized features as inputs. However, the gain offered
by the feature learning, is outweighed to some extent by the effort of normalization of the raw input data, as
indicated by the dotted line. Furthermore, by considering 320 units, the performance of the feature learning
scheme is almost the same by utilizing 80 hidden units, whereas there is an improvement for the 500 units but
at a higher computational cost. A key observation point is that the normalization after the feature-mapping
can also play a significant role and boost the performance of classifiers. In detail, we observe that in the case
of the undercomplete feature learning architectures, the accuracy does not significantly change with or without
this normalization step. Nonetheless, it is evident that in the case of overcomplete systems, the performance is
higher and can clearly surpass the enhanced baseline versions with the normalized feature vectors.

With respect to the different classifiers, one can easily notice the dominance of the ECC scheme compared
to the RAkEL approach. Moreover, ECC is less affected by the normalization steps, but has a greater variance
on the results. Last, we have to mention that we need the contribution of such powerful ensemble multi-label
learning schemes in order to achieve reasonable performance, due to both the limited training examples and the
many factors of variation that inhere in our real dataset, allowing us to test the limits of current state-of-the-art
classifiers.

6.3 Model Sensitivity

In this set of experiments, we investigate the sensitivity of the feature learning scheme with respect to the
sparsity parameter ρ. More specifically, Figure 3a demonstrates the micro-averaged AUC score for the ECC-
SVM classifier versus some representative values of the ρ, for a fixed sparsity weight (β = 1). We observe that the
undercomplete models are more sensitive to the hyperparameter settings, since a change for ρ entails a dramatic
change for the performance. From the other side, the overcomplete models seem more robust for different values
of the sparsity parameter.

0.001 0.01 0.1 0.5 0.9
0.72

0.74

0.76

0.78

0.8

0.82

0.84

Sparsity parameter

M
ic

ro
−

av
er

ag
ed

 A
U

C
 (

%
)

k = 80
k = 320

(a) Micro-averaged AUC with ECC-SVM.

20 80 320 500

0.01

0.03

0.05

0.07

0.09

0.11

0.13

Number of Hidden Units

J sp
A

E

(b) Cost function.

Figure 3: Sensitivity of the sparse autoencoder model for the single-layer case. Sparsity parameter ρ plays an
important role to the final performance for a fixed sparsity weight (left), whereas the value of the cost function
reduces primarily due to the size of the hidden layer (right).

Figure 3b investigates the impact of the number of hidden units with respect to the generalization performance
of sparse autoencoders as it is encoded in the cost function. Overall, we observe that the system seems to be
primarily affected by the number of hidden units compared to the sparsity of the connections. By increasing
the number of hidden units, the autoencoder ends-up learning a very good approximation of the identity, since
the specific regularization technique does not provide much additional interpretation of the data in order to
boost the performance of the subsequent classification algorithm. Overall, the parameter ρ can highly affect the
final performance, whereas the impact of regularization is relatively small. Intuitively, this means that for very
sparse models (large value of β and small value of ρ), the algorithm tends to learn very specific features that
classifiers are not capable of generalizing, thus achieving better classification rates. From this point of view,
sparse autoencoders are sensitive models, since the results of different hyper-parameters combinations can lie on
a wide range, indicating that the hyper-parameters settings have to be chosen very carefully.

6.4 Impact of Depth

In this set of experiments, we focus on the impact of depth, i.e. the number of hidden layers, with respect to
the classification performance. In our setup, we employ the same number of hidden units for all layers, which
has been suggested that generally leads to better performance compared to decreasing (pyramid) or increasing
(inverted pyramid) network architectures16,29 . Table 2, provides a comprehensive numerical evaluation of the
two classification schemes, namely RAkEL-SVM and ECC-SVM under different evaluation metrics.

Table 2 concerns the features extracted from our feature learning system; either from a single-layer autoen-
coder (rows indicated with Depth 1), or a level-2 stacked autoencoder which obeys the properties of deep learning
(rows indicated with Depth 2). The results demonstrate that both RAkEL-SVM and ECC-SVM can benefit from
the second hidden layer to gain extra valuable discriminative information. Regarding the depth of the network,
the gain is significant for all metrics except hamming loss, which improves only for the first hidden layer. We
noticed also that the mean value of the cost function is also smaller from the first (JspAE = 0.0072) to the second
(JspAE = 0.0037) hidden layer, which can serve as a proxy of the final system’s performance. In addition, we
have also considered the “concatenated” representation for autoencoders (rows indicated with Depth 1_2 in
Table 2), where we utilize the concatenation of both layers of the network. This way, the final features intro-
duced to the classifier correspond to the concatenation of the first and the second hidden layer, instead of the
traditional “replacement-based” representation, where only the top-layer features are utilized. We observe that
the model can take further advantage from this kind of representation and the more features, but in a much
higher computational cost.

Table 2: Impact of depth for a fixed architecture consisting of 320 hidden units per layer.

Algorithm Depth Hamming Loss ↓ Avg Precision ↑ Mac-F1 ↑ Mac-AUC ↑ Mic-F1 ↑ Mic-AUC ↑

RAkEL-SVM
1 0.081 ± 0.000 0.519 ± 0.003 0.263 ± 0.003 0.620 ± 0.002 0.473 ± 0.004 0.699 ± 0.002
2 0.082 ± 0.000 0.551 ± 0.003 0.322 ± 0.006 0.658 ± 0.003 0.503 ± 0.004 0.729 ± 0.003

1_2 0.082 ± 0.000 0.563 ± 0.003 0.349 ± 0.006 0.672 ± 0.003 0.512 ± 0.004 0.739 ± 0.003

ECC-SVM
1 0.084 ± 0.000 0.623 ± 0.003 0.328 ± 0.007 0.731 ± 0.003 0.520 ± 0.004 0.829 ± 0.003
2 0.086 ± 0.000 0.629 ± 0.003 0.372 ± 0.006 0.748 ± 0.003 0.531 ± 0.004 0.832 ± 0.002

1_2 0.087 ± 0.000 0.635 ± 0.003 0.389 ± 0.006 0.755 ± 0.003 0.535 ± 0.004 0.835 ± 0.002

We have to highlight that a sparser representation has to be enforced for the second than the first hidden
layer, which suggests that in this case the sparseness property in the representation can indeed help, since without
the use of this type of regularization, the deep models cannot achieve performance beyond the one achieved by
a single layer architecture. Furthermore, the performance achieved with deep learning of 320 units is better
compared to the single layer case where we have 500 hidden units, further promoting the motivation for deep
architectures. Finally, when the feature learning procedure is involved, the performance is substantially higher for
all measures compared to the surface reflectance baselines and the higher quality features (NDVI–LST) shown in
Table 1. In a nutshell, these results suggest that to really benefit from sparse overcomplete models and produce
useful representations, one must consider departing from shallow to deep learning architectures.

Figure 4 shows the evolution of performance as we increase the number of hidden layers from the first to the
second with and without the use of pretraining via sparse autoencoders. We use the same set of hyper-parameters

L = 1 L = 2

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

Number of Hidden Layers

M
ac

ro
−

av
er

ag
ed

 A
U

C
 (

%
)

With pretraining
Without pretraining

(a) RAkEL-SVM.

L = 1 L = 2

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

Number of Hidden Layers

M
ac

ro
−

av
er

ag
ed

 A
U

C
 (

%
)

With pretraining
Without pretraining

(b) ECC-SVM.

Figure 4: Effect of depth on accuracy for models trained with and without unsupervised pretraining using BR-
SVM (left) and ECC-SVM (right) classifiers, for 1 to 2 hidden layers in which the hidden layer size has been fixed
to 320. Box plots show the distribution of errors associated with 50 different initialization seeds. A box represents
50% of the data, the red central line indicates the median value, whereas the lower and upper boundary lines
are the 25th and 75th percentiles. Whiskers extend to the remaining data that are not regarded as abnormal
outliers, which are shown individually as red “+”s.

for both models. The performance of the models with unsupervised pretraining is higher, where the advantage
seems to affect more deep architectures. In parallel, the pretraining procedure clearly reduces the variance of
the performance, leading to more robust results. All in all, RAkEL model seems to be more affected from the
pretraining procedure, as well as to have a bigger improve from the second hidden layer in comparison to the
ECC.

7. CONCLUSIONS

The work focused on the effects that the characteristics of satellite data representation can have on a learning
algorithm, an issue of extreme importance. Carefully engineered hand-crafted features can significant aid in
the more discriminative representation of the remote sensing data such as multispectral images employed in our
case. However, the specificity of these features may limit their generalization capacity to different data sources
and learning objectives. To address this issue, we propose the introduction of feature learning directly from
data. Results presented in this work suggest that feature learning, in this case sparse autoencoder networks,
can significantly boost the performance, even in the case of a single hidden layer. Furthermore, experiments
indicate that deep architectures can further improve the performance leading to state-of-the-art performance in
solving a truly hard learning problem including real data that exhibits many facets of variation. Future directions
include experimenting with other types of regularization, as well as extending this work to consider the nature
of time-series, in order to better exploit the temporal characteristics of the features.

ACKNOWLEDGMENTS

This work was partially funded by the PHySIS project (http://www.physis-project.eu/), contract no. 640174,
within the H2020 Framework Program of the European Commission.

REFERENCES

[1] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new perspectives,” IEEE
Transactions on Pattern Analysis and Machine Intelligence 35, pp. 1798–1828, Aug 2013.

[2] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio, “An empirical evaluation of deep ar-
chitectures on problems with many factors of variation,” in Int. Conf. on Machine Learning, ICML ’07,
pp. 473–480, ACM, (New York, NY, USA), 2007.

[3] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,” International Journal of Data
Warehousing and Mining 3(3), pp. 1–13, 2007.

[4] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning algorithms,” IEEE Transactions on Knowl-
edge and Data Engineering 26, pp. 1819–1837, Aug 2014.

[5] C. Poultney, S. Chopra, and Y. Lecun, “Efficient learning of sparse representations with an energy-based
model,” in Advances in Neural Information Processing Systems (NIPS), MIT Press, 2006.

[6] I. Goodfellow, H. Lee, Q. V. Le, A. Saxe, and A. Y. Ng, “Measuring invariances in deep networks,” in
Advances in Neural Information Processing Systems, Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams,
and A. Culotta, eds., pp. 646–654, Curran Associates, Inc., 2009.

[7] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked denoising autoencoders:
Learning useful representations in a deep network with a local denoising criterion,” J. Mach. Learn. Res. 11,
pp. 3371–3408, Dec. 2010.

[8] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contracting auto-encoders: Explicit invariance
during feature extraction,” in Int. Conf. on Machine Learning, 2011.

[9] R. Goroshin and Y. LeCun, “Saturating auto-encoder,” CoRR abs/1301.3577, 2013.

[10] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning, “Semi-supervised recursive au-
toencoders for predicting sentiment distributions,” in Conf. on Empirical Methods in Natural Language
Processing, EMNLP ’11, pp. 151–161, Association for Computational Linguistics, (Stroudsburg, PA, USA),
2011.

[11] A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural networks,” in
Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), pp. 6645–6649, May 2013.

[12] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best multi-stage architecture for
object recognition?,” in Int. Conf. on Computer Vision, pp. 2146–2153, Sept 2009.

[13] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in Int. Conf. on Artificial
Intelligence and Statistics (AISTATS-11), G. J. Gordon and D. B. Dunson, eds., 15, pp. 315–323, Journal
of Machine Learning Research - Workshop and Conference Proceedings, 2011.

[14] Y. Bengio, “Learning deep architectures for ai,” Found. Trends Mach. Learn. 2, pp. 1–127, Jan. 2009.

[15] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, U. D. Montral, and M. Qubec, “Greedy layer-wise
training of deep networks,” in Advances in Neural Information Processing Systems (NIPS), MIT Press,
2007.

[16] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, “Exploring strategies for training deep neural
networks,” J. Mach. Learn. Res. 10, pp. 1–40, June 2009.

[17] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Sci-
ence 313(5786), pp. 504–507, 2006.

[18] R. Salakhutdinov and I. Murray, “On the quantitative analysis of deep belief networks,” in Int. Conf. on
Machine Learning, ICML ’08, pp. 872–879, ACM, (New York, NY, USA), 2008.

[19] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,” in Neural Networks: Tricks of
the Trade, G. Montavon, G. Orr, and K.-R. Müller, eds., Lecture Notes in Computer Science 7700, pp. 9–48,
Springer Berlin Heidelberg, 2012.

[20] K. Fotiadou, G. Tsagkatakis, and P. Tsakalides, “Low light image enhancement via sparse representations,”
in Image Analysis and Recognition, pp. 84–93, Springer International Publishing, 2014.

[21] G. Tsagkatakis and A. Savakis, “Sparse representations and distance learning for attribute based category
recognition,” in Trends and Topics in Computer Vision, pp. 29–42, Springer Berlin Heidelberg, 2012.

[22] P. Lennie, “The cost of cortical computation,” Current Biology 13(6), pp. 493 – 497, 2003.

[23] P. Petrantonakis and P. Poirazi, “A compressed sensing perspective of hippocampal function,” Frontiers in
systems neuroscience 8, 2014.

[24] A. Ng, “Sparse autoencoder,” CS294A Lecture notes 72, 2011.

[25] K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun, “Learning invariant features through topographic
filter maps,” in IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1605–1612, June 2009.

[26] G. Tsoumakas, I. Katakis, and L. Vlahavas, “Random k-labelsets for multilabel classification,” IEEE Trans-
actions on Knowledge and Data Engineering 23, pp. 1079–1089, July 2011.

[27] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains for multi-label classification,” Machine
Learning 85(3), pp. 333–359, 2011.

[28] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning 20(3), pp. 273–297, 1995.

[29] Y. Bengio, “Practical recommendations for gradient-based training of deep architectures,” in Neural Net-
works: Tricks of the Trade, G. Montavon, G. Orr, and K.-R. Mller, eds., Lecture Notes in Computer Science
7700, pp. 437–478, Springer Berlin Heidelberg, 2012.

[30] Z. W. C. author, P. Wang, and X. Li, “Using modis land surface temperature and normalized difference
vegetation index products for monitoring drought in the southern great plains, usa,” International Journal
of Remote Sensing 25(1), pp. 61–72, 2004.

