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Abstract
Multi- and Hyperspectral Imaging (HSI) are characterized

by the discrepancy between the dimensionality of hyperspectral
image and video data and the dimensionality of the spectral de-
tectors. This issue has been addressed by various architectures,
including the Snapshot Mosaic Multispectral Imaging architec-
ture, where each pixel (or group of pixels) is associated with a
single spectral band. An unavoidable side effect of this design
is the hard trade-off between the spatial and the spectral resolu-
tion. In this work, we propose a formal approach for overcoming
this trade-off by formulating the problem of full resolution recov-
ery as a low rank Matrix Completion problem. Furthermore, we
extend the traditional formulation of Matrix Completion by in-
troducing non-negativity constraints during the recovery process,
thus significantly enhancing the reconstruction quality. Experi-
mental results suggest that the Non-Negative Matrix Completion
(NN-MC) framework is capable of estimating a high spatial and
spectral resolution hypercube from a single exposure, surpassing
state-of-the-art schemes like nearest-neighbors as well as the un-
constrained Matrix Completion technique.

Introduction
A fundamental issue that hyperspectral imaging sensors have

to address is how to collect the four dimensional HSI data, two
spatial, one spectral, and one temporal, using a single detector,
an 1D array, or 2D plane detectors. The discrepancy between
the requested and the available dimensionality of detectors has
sparked different philosophies in hyperspectral image acquisition
designs, leading to spatial, spectral, and frame scanning architec-
tures [1]. A shortcoming shared by these approaches is the scan-
ning requirements for constructing the complete 3D hyperspectral
datacube, where in the case of spatial/spectral scanning, multiple
lines/pixels have to be scanned, while for 2D frame scanning sys-
tems, multiple frames have to be acquired in order to obtain the
complete spectral profile of the scene [2].

These limitations are responsible for a number of issues that
hinder the HSI performance, including slow acquisition time and
motion artifacts. Furthermore, the need for miniaturization of the
imaging systems implies that novel designs should strive to be
free of mechanical parts, such as moving mirrors, since they limit
the temporal resolution and increase the complexity of the de-
signs. Recent approaches address these limitations by employing
novel hardware and sophisticated signal processing techniques
to achieve similar performance and imaging capabilities. Snap-
shot (or Simultaneous) Spectral Imaging (SSI) systems acquire
the complete spatio-spectral cube from a single or a few captured

frames, i.e., during a single or a few integration periods, with-
out the need for successive frame acquisition [3]. While earlier
approaches relied on additional hardware, such as coherent fiber
bundles and mirror slicers to satisfy the requirements for SSI,
more recent paradigms employ novel light manipulation compo-
nents and state-of-the-art signal processing to achieve this task.

One such prominent case is the Snapshot Mosaic Multispec-
tral Imaging architectures, also known as hyper/multi-spectral
Color Filter Arrays. This paradigm relies on the use of Spectrally
Resolved Detector Arrays (SRDA) where each pixel is associated
with a specific spectral region, thus allowing the acquisition of a
full hyperspectral cubes from a single exposure [4, 5]. Unfortu-
nately, to achieve high temporal resolution imaging, SRDA archi-
tectures must sacrifice spatial resolution since only a small subset
of pixels acquire images from a specific spectral band. In practice,
pixel binning is performed where groups of spectral-specific pix-
els are grouped together in full spectral resolution super-pixels.
The process is depicted in Figure 1.

Figure 1: SRDA architecture (left), a snapshot mosaic raw frame
(center), a full spectral resolution ”super-pixel” as part of the re-
construction hypercube(right). Notice that the process of produc-
ing the ”super-pixels” leads to dramatically smaller spatial reso-
lution.

Objectives and state-of-the-art
The objective of this work is to provide a formal method for

addressing the challenging spatio-spectral trade-off that charac-
terizes Snapshot Mosaic Multispectral Imaging architecture re-
lying on SRDA detectors. More specifically, SRDA detectors
perform spatial subsampling of each spectral band by produc-
ing a two-dimensional array of “super-pixels” where each such
“super-pixel” corresponds to a binned group of physical pixels,
containing measurements from multiple spectral bands. As a con-
sequence, the effective spatial resolution for each spectral band
is given by the total number of pixels divided by the number of
binned pixels in each super-pixel, as seen in Figure 1.

According to our approach, to address this issue we exploit
the inherent redundancies that exist in high dimensional hyper-
spectral data in order to accurately estimate the missing spectral



bands from binned groups of pixels. Formally, the end goal is to
generate a full spatial resolution hypercube M ∈ Rm×n×b

+ from
a single exposure image M ∈ Rm×n

+ , thus allowing imaging of
highly dynamic scenes or when imaging takes place in moving
platforms such as UAV and satellites. The objective is visually de-
picted in Figure 2 where a raw snapshot, the corresponding lifted
hypercube and the completed hypercube are illustrated.

Figure 2: Illustration of recovery process. A raw snapshot (left)
corresponds to a undersampled lifted hypercube (center) which
must be completed to obtain the complete spectral profile of the
scene (right).

During the last decade, the concept of signal compressibil-
ity and sparsity has raised a lot of attention in the mathematics
and signal processing communities which have treated novel con-
cepts, including Compressed Sensing (CS) and Matrix Comple-
tion (MC), as part of a disruptive new framework which has rev-
olutionized the way we efficiently sense, compress, and process
visual information, e.g., [6, 7, 8, 9]. In a nutshell, according to the
CS framework, a signal can be perfectly recovered from a severely
under-sampled set of measurements provided the signal is sparse
in some basis, and the basis on which the signal is sampled is
incoherent with the basis on which the signal is sparse [10]. A
prominent example of a CS based imaging architecture is the Sin-
gle Pixel Camera (SPC), employing a Digital Micromirror Device
to acquire scene information using a single detector element [11].

A Hyperspectral Single Pixel Camera corresponds to an ex-
tension of the typical SPC where the single detector element is re-
placed by a spectrometer [12]. The Compressive HS Imaging by
Separable Spatial and Spectral operators (CHISSS) is an alterna-
tive spatial scanning architecture which employs a DMD placed
before a grating which itself is modulated by a Coded Aperture
before acquiring a two-dimensional measurement [13]. Simi-
larly, the Coded Aperture Snapshot Spectral Imaging (CASSI) is
a snapshot spectral imaging architecture which employs a DMD
for spatially modulating the incoming light before it is dispersed
by a grating and imaged by a 2D detector array [14].

More recently, a novel SSI architecture termed Spatial-
Spectral Encoded Compressive HS Imager (SSCSI) was proposed
combining a spectral dispenser with a random shearing mask, ex-
tending the single wavelength computational light field acquisi-
tion architecture [15]. The CS framework has also been consid-
ered for the compression of multi and hyperspectral imaging with-
out resorting to any modification in hardware, thus maintaining
the limitations of current hyperspectral imagers [16]. Recently,
the authors in [17] formulated a recovery method for SRDA HSI
architectures based on a generalized inpainting approach, while a
spatio-spectral Compressed Sensing based acquisition and recov-
ery approach was proposed for HSI data acquisition [18].

Low Rank Matrix Completion
Our approach is based on the recently proposed framework

of Matrix Completion (MC) [19, 20] which has emerged as a dis-
ciplined way of addressing the recovery of high-dimensional data

from what appears to be incomplete, and perhaps even corrupted
information. Low rank MC has been utilized in a variety of image
acquisition and processing tasks including the acquisition of High
Dynamic Range Imaging [21] and video denoising [22] among
others. More specifically, given a m× n measurement matrix M,
recovering the (mn) entries of the matrix from a smaller number
of k << mn entries is not possible, in general. However, it was
recently shown that the recovery of the complete set of entries
in a matrix is possible, provided that both the number of missing
entries and the rank of the matrix are appropriately bounded.

Formally, let A be a linear map from Rm×n → Rk, that se-
lects a subset of the entries in the matrix M. The linear map A , is
defined as a random sampling operator that records a small num-
ber of entries from the matrix M, that is A (mi j) = {1 if (i j) ∈ S |
0 otherwise}, where S is the sampling set. According to the low
rank MC paradigm, we can estimate X from the undersampled
matrix M, by solving:

minimize
X

rank(X)

subject to A (X) = A (M) . (1)

Unfortunately, rank minimization is an NP-hard problem and
therefore cannot be applied in practice. Recently, a relaxation of
the above problem was shown to produce accurate approxima-
tions, by replacing the rank constraint with the more computa-
tionally tractable nuclear norm, which represents the convex en-
velope of the rank. The relationship is manifested by the Singular
Value Decomposition (SVD) of the m× n measurements matrix,
into a product of an orthonormal matrix U, a diagonal matrix S
and another orthonormal matrix V, such that:

M = USVT . (2)

According to the spectral theorem associated with the SVD,
the number of singular values, i.e. the diagonal entries of S, re-
veals the rank of the matrix. Low rank matrices, such as the ones
produced by spatio-temporally correlated processes, are therefore
characterized by a small number of singular values. Furthermore,
the rank of a measurement matrix might be artificially increased,
due to noise that typically follows an independent distribution,
hence considering a lower-rank approximation of the matrix re-
sults in an implicit denoising of the sampled data. One can exploit
such prior knowledge to restrict the number of singular values to
a small set that accounts for most of the signal’s energy by in-
troducing a thresholding operator T which when applied to the
SVD produces the best rank-k estimation: Mk = UT (S)VT .

Based on the SVD analysis of a matrix, the minimization in
Eq. (1) can be reformulated as:

minimize
X

‖X‖∗

subject to A (X) = A (M), (3)

where the nuclear norm is defined as ‖M‖∗ = ∑ |σi|, i.e. the sum
of absolute values of the singular values. Recovery of the matrix
is possible, provided that the matrix M satisfies an incoherence
property. The solution of (3) will converge to the solution of (1)
with high probability once k ≥ Cq6/5rlog(q) random matrix en-
tries are obtained, where q = max(m,n).



For the noisy case, an approximate version can be solved
[23], by replacing the equality constraint with an inequality con-
straint given by ‖A (X)−A (M)‖2

F ≤ ε , where ‖X‖2
F = ∑λ 2

i de-
notes the Frobenius norm and ε is the approximation error. The
optimization is therefore formulated as:

minimize
X

‖X‖∗

subject to ‖A (X)−A (M)‖ ≤ ε. (4)

To solve the nuclear norm minimization problem of Eq. (4), vari-
ous approaches have been proposed. In this work, we employ the
Augmented Lagrange Multipliers (ALM) [24, 25] approach, due
to its performance with respect to both computationally complex-
ity and recovery capabilities.

In this work, we also extent the ALM approach to MC
by considering the situation where the measurements are non-
negative, a case that is very common among signal recovery sce-
narios including the recovery of hyperspectral cubes from SRDA
data. To achieve this, the formulation in Eq. (4) is enhanced with
an additional non-negativity constraint, leading to:

minimize
X

‖X‖∗

subject to ‖A (X)−A (M)‖ ≤ ε

X≥ 0. (5)

To solve this minimization problem, we begin by introducing the
augmented Lagrangian form:

L (X,Y1,µ) = ‖X‖∗+ tr(YT
1 (A (X)−A (M)))

+
µ

2
(‖A (X−M)‖2

F) (6)

The Lagrangian form encodes all the constraints into a single un-
constrained equation which we can solve iteratively by minimiz-
ing L with respect to one variable at each step. The specific
algorithmic steps are described in Algorithm 1.

Ensemble Recovery of SRDA data
In order to apply the NN-MC recovery, pixel responses must

be reformulated into appropriate matrices. We consider the patch
selection operator S (x,y,s) which collects measurements corre-
sponding to a window of size s centered at location (x,y) from the
acquired frame. Concatenating these measurements into a vector
mx,y, we repeat this process for a range of p spatial locations x,y
generating the undersampled spectral matrix M ∈Rs×b

+ , where b
is the total number of spectral bands which is completed accord-
ing to Eq. (5).

In addition to the non-negativity constraint introduced in this
work, we also investigate the benefits of an ensemble recovery
paradigm. We assume that a particular spatial pixel at location
(x,y) may belong in up to r different matrices M∗i , i ∈ [1,r]. To
obtain the final spectral estimation of each pixel, we consider av-
eraging the different estimations such that M̂(x,y)= 1

r ∑M∗i (x,y).
The process is shown in Figure 3 where one can observe that mul-
tiple completed spatial locations are considered during the final-
ization of the estimation.

Algorithm 1: Non-negative Augmented Lagrange Meth-
ods for recovery of Low Rank matrices

Input: The subsampled matrix X0 = A (M), the penalty
update parameter α , the error tolerance threshold and/or
maximum number of iterations limit.
Output: The estimated matrix X̂.

1: initialization e0 = 0 , k = 0,
2: while error ≥ threshold or k ≤ limit do
3: Minimize with respect to L

(U,S,V) = SVD(X0 +Y1/µ)

L(k+1) = max(0,(UT (S)VT))

4: Minimize with respect to X

X(k+1) = M+ ˜A (Lk+1− I−Y1/µ)

5: Update Lagrangian multipliers

Y(k+1)
1 = Y(k)

1 +µ
(k)(M(k+1)−L(k+1))

6: Update penalty term

µ
(k+1)←− αµ

(k)

7: Estimate error

e(k+1) = ‖A (M0−Mk+1)‖2

set k←− k+1
8: end while

Figure 3: Ensemble SRDA recovery process. Patches are ex-
tracted from different locations of the row mosaic frame before
they are concatenated into undersampled matrices. The proposed
method produces fully populated matrices where the spectral con-
tent of each pixel in encoded into multiple locations. The different
spectral estimations are averaged in order to estimate the full hy-
percube.

Experimental Results
To validate the merits of the proposed approach, we ex-

plored the enhancement of images acquired using a Ximea cam-



era, equipped with the IMEC Snapshot Mosaic sensor capturing
images in the 600− 875 nm range, according to a 5× 5 spectral
pattern structure. We consider three recovery algorithms, namely
the k-nearest neighbor imputation (KNN) methods, the typical
ALM based MC approach and the proposed Non-Negative Ma-
trix Completion (NN-MC), while the error is measured per band
by the Peak Signal to Noise Ration (PSNR) metric, in dB. Figure
4 presents the raw input mosaic and the resulting spectral bands
where a subset of pixels in the raw input associated with a specific
band is selected.

Figure 4: Raw input image (top), the 1st (608 nm), 8th (790 nm)
and 16th (644 nm) spectral bands (bottom). The images are pre-
sented in scale which demonstrates the differences in spatial res-
olution.

Based on our problem formulation, the two key parameters
that control the recovery performance are the window size s, and
the number of spatial locations p that are considered during the
generation of the undersampled matrix M. The window size pa-
rameter directly controls the ”super-pixel” grouping and ranges
from 0 where a single pixel is considered to the extreme case of 5
where a 5×5 region is considered providing the full spectral con-
tent. The parameter of the number of spatial locations is directly
related to the size of the undersampled matrix that is processed
and can lead to different recovery performance as will be seen
later.

Effect of super-pixel grouping
A natural way of solving the problem of SRDA spatial res-

olution enhancement via MC is to consider the unfolding of the
hypercube into groups of spatial “super-pixels” encoded in ma-
trix forms. The question we seek to answer is whether a sequen-
tial selection of the super-pixels is preferred over a random se-
lection. On the one hand, a sequential selection suggests that the
rows of the matrices that will be completed will be composed of
spatially neighboring location thus offering the potential of ex-
ploiting inherent spatial correlations. On the other hand, such a
sampling scheme violates the requirements for incoherent sam-
pling imposed by the theoretically justified recovery capabilities
of MC.

We first consider the effects of the window size, and thus the
“super-pixel” construction, on the recovery performance. Figure
5 presents the case of no grouping (s = 0), Figure 6 presents the
s = 3 case where 9 spectral measurements are available for each
“super-pixel”. In this subsection, we assume that 25 spatial lo-

cations are considered leading to 25× 25 undersampled spectral
matrices, where the undersampling rate is controlled by s.
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Figure 5: Recovery using sequential mapping and 1× 1 “super-
pixels”.
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Figure 6: Recovery using sequential mapping and 3× 3 “super-
pixels”.

Considering the results, two key observations can be made.
First, increasing the “super-pixel” size has a positive impact on
recovery performance of all methods. This behaviour is expected
since in the second case, more measurements are assumed to be
available, which make the recovery processes easier. The second
observation is that this problem has considerable more positive
impact on the MC based architectures, namely typical MC and the
proposed NN-MC. Based on these results, we selected the 3× 3
window in the following experiments.

In addition to the effects of the “super-pixel” size, we also
investigated if selecting sequential versus random regions during
the construction of the spectral matrix also affects the recovery
performance. Figure 7 presents the recovery performance for each
band that is achieved through a random selection of patches for
the generation of the spectral matrix. These results suggest that
this zero computational cost step of randomization can have a dra-
matic impact of the behavior of the recovery process.

Spectral matrix generation
In this subsection, we explore the effects of super-pixel

grouping which is introduced in order to transform the hypercube
data into matrices. One dimension of these matrices is fixed and
is equal to the requested number of spectral bands b, 25 in our
case. The other dimension however is controlled by the number
of spatial “super-pixels” that will be considered during the gen-
eration of the spectral matrices. In general, the grouping number
is lower bounded by 25 which leads to 25× 25 spectral matrices
while we consider up to 400×25 spectral matrices.
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Figure 7: Recovery using random mapping and 3× 3 “super-
pixels”.

Figure 8 presents the mean recovery performance with re-
spect to the group size, while Figure 9 provides information re-
garding the processing time required for different group sizes.
The results suggest that increasing the group size does not have
any noticeable effect as far as the KNN approach is concerted. On
the other hand, MC based methods seem particularly affected by
this value. More specifically, the results suggest that increasing
the grouping size to 50, i.e. a spatial to spectral ratio of 2 : 1 intro-
duces more correlated data, leading to lower reconstruction error.
The performance of the Non-Negative MC remains relatively sta-
ble above 50, however, the typical MC approach experiences a re-
duction in performance at higher grouping sizes. Considering the
processing requirements encoded in the processing time shown in
Figure 9, one can observe that increasing the grouping size leads
to lower processing times, since for a particular sensor spatial res-
olution, a smaller number of undersampled spectral matrices have
to be processed.
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Figure 8: Average recovery performance as a function of grouping
size, i.e. dimensions of spectral matrices.

Effect of ensemble recovery
In the previous subsection of experimental results, we ob-

served that generating 50× 25 spectral matrices with 9 spectral
measurements per location, due to the 3×3 “super-pixel” group-
ings leads to the best performance especially when the locations
that are considered during the generation of the spectral matri-
ces are selected randomly instead of sequentially. This subsection
goes a step further by exploring the experimental evidence asso-
ciated to the benefits of randomized ensemble recovery.

We explore various degrees of randomized re-sampling rates,
starting from 0 which encodes the case where no-resampling and
a sequential ordering is consider during the spectral matrix gen-

Grouping size
0 50 100 150 200 250 300 350 400

P
ro

ce
ss

in
g

 t
im

e 
(s

ec
)

9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

Figure 9: Processing time for full hypercube recovery as a func-
tion of grouping size.

eration, to 20 where the same pixel is evaluated over 20 different
spectral matrices and the final value corresponds to the average.
Figure 10 presents the performance for 25-dimensional spectral
matrices, while Figure 11 presents the 50-dimensional spectral
matrix recovery case.

Observing these results, one can easily notice that there is no
gain in terms of performance for the KNN-impute method, as ex-
pected. One the contrary, there is a significant performance gain
when the typical MC and the proposed NN-MC are considered.
More specifically, we observe that increasing the randomization
rate offers a dramatic gain in improvements, especially when go-
ing from 0, i.e. no randomization, to moderate randomization
rates. Furthermore, the results also indicate that the introduction
of the non-negativity constrain can play a dramatic role in the re-
covery, especially when large resampling rates are considered.
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Figure 10: Average recovery performance as a function of resam-
pling rate for 25-dimensional spectral matrices.
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Figure 12 provides a visual illustration of the reconstruc-
tion using the KNN-imputation method and the proposed Non-
Negative MC. The results clearly demostrate the superiority of
the proposed approach in high quality recovery.
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Figure 12: Reconstruction of 8th (790 nm) band using the KNN-
inpute (top) and the proposed Non-Negative MC (bottom).

Conclusions
The novelty of this work is twofold. On the one hand, we

provide a mathematically sound approach for the estimation of
missing spectral measurements, thus enhancing the high tempo-
ral resolution imaging capabilities that characterize SRDA based
Snapshot Mosaic Multispectral Imaging architectures. As a con-
sequence, high quality imaging of dynamic phenomena can be
achieved from extremely low volume and weight hyperspectral
imagers. On the other hand, this work proposes a novel approach
in low rank matrix estimation through the development of the
Non-Negative Matrix Completion framework and the ensemble
recovery approach. Experimental results suggest that NN-MC can
indeed be utilized for the estimation of full hypercubes, while en-
semble recovery can have a dramatic impact in performance.
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