APPENDIX

A

Complex Variables

This Appendix presents a brief review of the functional theory of complex variables. In the
context of the material considered in this book, a complex variable of interest is the vari-
able 7 associated with the z-transform. We begin the review by defining analytic functions
of a complex variable, and then derive the important theorems that make up the important
subject of complex variables'. .

A.1 CAUCHY-REIMANN EQUATIONS

Consider a complex variable z defined by
z=x+jy

where x = Re[z], and y = Im[z]. We speak of the plane in which the complex variable z is
represented as the z-plane. Let f{z) denote a function of the complex variable z, written as

w=fz)=u+jv

The function w = f{(z) is single-valued if there is only one value of w for each z in a given
region of the z-plane. If, on the other hand, more than one value of w corresponds to z, the
function w = f{z) is said to be multiple-valued.

"For a detailed treatment of the functional theory of complex variabies, see Guillemin (1949), Levinson
and Redheffer (1970), and Wylie and Barrett (1982).
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We say that a point z = x + jy in the z-plane approaches a fixed point zo = xo + jyg
if x — xp and y — y,. Let f(z) denote a single-valued function of z that is defined in some
neighborhood of the point z = z5. The neighborhood of z, refers to the set of all points in
a sufficiently small circular region centered at zy. Let -

lim f(z) = wp
=7,

In particular, if fzg) = wg, then the function f(z) is said to be continuous at z = 2.
Let f(z) be written in terms of its real and imaginary parts as

(@) = ulx, y) + jvix, ¥)

Then, if f(z) is continuous at zy = xy + J o, its real and imaginary parts u(x, y) and v(x, y)
are continuous functions at (xo, yo), and vice versa.

Let w = f(z) be continuous at each point of some region of interest in the z-plane.
The complex quantities w and z may then be represented on separate planes of their own,
referred to as the w- and z-planes, respectively. In particular, a point (x, y) in the z-plane
corresponds to a point (4, v) in the w-plane by virtue of the relationship w = f(z).

Consider an incremental change Az such that the point zp + Az may lie anywhere in
the neighborhood of zg, and throughout which the function f(z) is defined. We may then
define the derivative of f(z) with respectto z at 7 = zo as

flzo + 82) — flzg)
A (A.1)

Clearly, for the derivative f '(z) to have a unique value, the limitin Eq. (A.1) must be inde-
pendent of the way in which Az approaches zero.

For a function f(z) to have a unique derivative at some point z = x + jy, it is neces-
sary that its real and imaginary parts satisfy certain conditions, as shown next. Let

f'(z) = Jim

w = f(2) = u(x,y) + jux,y)
With Aw = Au + jAv and Az = Ax + jAy, we may write

) = lim 2%
f () = a}:-"-lo Az
. (A2)
- jim,
A + jay

Suppose that we let Az — 0 by first letting Ay — 0 and then Ax — 0, in which case Azis

purely real. We then deduce from Eq. (A.2) that *
vs . Aw AV
fia = lim ==+

3 (A3)
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Suppose next that we let Az — 0 by first letting Ax — 0 and then Ay — 0, in which case
Az is purely imaginary. This time we deduce from Eq. (A.2) that

Ny = T AV Au
f(Z)-g;r_)noAy JAy
v (A4)
ay ay

If the derivative f"(z) is to exist, it is necessary that the two e.xpressions‘in Egs. (A.3) and
(A.4) be one and the same. Hence, we require

Accordingly, equating real and imaginary parts, we get the following pair of relations,

respectively:
du _ v
ax - ay (A5)
W, o
ox dy (A6)

Equations (A.5) and (A.6), known as the Cauchy-Riemann equations, were derived from
a consideration of merely two of the infinitely many ways in which Az can zfpproach Zero.
For Aw/Az evaluated along these other paths to also approach f'(z), we need only make
the additional requirement that the partial derivatives in Eqs. (A.5) and (A.6) are continu-
ous at the point (x, y). In other words, provided that the real part u(x, y) and the imaginary
part v(x, y) together with their first partial derivatives are continuous at the point (x, y), the
Cauchy-Riemann equations are not only necessary but also sufficient for the existence of
a derivative of the complex function w = u(x, y) + jv(x, y) at the point (x, y).

A function f(z) is said to be analytic, or homomorphic, at some point z = Zo in the
z-plane if it has a derivative at 7 = z5 and at every point in the neighborhood of zo; the point
2o is called a regular point of the function f(z). If the function f(2) is not analytic at a point
2o, but if every neighborhood of zo contains points at which f(2) is analytic, the point zq is
referred to as a singular point of f(z).

A2 CAUCHY’S INTEGRAL FORMULA

Let f(z) be any continuous function of the complex variable z, analytic or otherwise. Let
@ be a sectionally smooth path joining the points A = zy and B = z, in the z plane. Sup-
pose that the path 6 is divided into n segments As; by the points 7, k= 1,2,..,n — L,
as illustrated in Fig. A.1. This figure also shows an arbitrary point {; on segment Asy,
depicted as an elementary arc of length Az, Consider then the summation =1 f (&) &z
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A=Zo

Figure A.1 Sectionally smooth path.

The line integral of f(z) along the path € is defined by the limiting value of this summa-
tion as the number n of segments is allowed to increase indefinitely in such a way that Az,
approaches zero. That is

n
jﬁe S de = lim > &) Az (A7)
In the special case when the points A and B coincide and € is a closed curve, the integral
in Eq. (A.7) is referred to as a contour integral that is written as $¢ f(z)dz. Note that,
according to the notation described herein, the contour 6 is transversed in a counterclock-
wise direction.

Let f{z) be an analytic function in a given region R, and let the derivative f'(z) be
continuous there. The line integral $ f(z)dz is then independent of the path € that joins
any pair of points in the region R. If the path % is a closed curve, the value of this integral
is zero. We thus have Cauchy's integral theorem, stated as follows:

If a function f(z) is analytic throughout a région R, then the contour integral of f(z) along
any closed path ‘€ lying inside the region R is zero, as shown by

if(z) dz =0 » (A.8)

This theorem is of cardinal importance in the study of analytic functions.

An important consequence of Cauchy’s theorem is known as Cauchy’s integral for-
mula. Let f(z) be analytic within and on the boundary € of a simple connected region. Let
Zo be-any point in the interior of €. Then Cauchy’s integral formula states that
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fia) = 59 L2 a (A.9)
i Je 7— 2z ‘

where the contour integration around % is taken in the counterclockwise direction.
Cauchy’s integral formula expresses the value of the analytic function f(z) at an inte-

rior point z; of € in-terms of its values on the boundary of €. Using this formula, it is a

straightforward matter to express the derivative of f(z) of all orders as follows:

() — n! ‘ f(@
[ z0) 2 j& P dz (A.10)

where f"(zo) is the nth derivative of f(z) evaluated at z = z,. Equation (A.10) is obtained
by repeated differentiation of Eq. (A.9) with respect to z,.

Cauchy’s inequality

Let the contour % consist of a circle of radius r and center zo. Then, using Eq. (A.10) to
evaluate the magnitude of f™(z;), we may write

o) = 2§ LD
e A

IZ ___ZOIn-H
n!
M § e

i

=2" ‘“%’TZW
M

= pl —

' (A.11)

where M is the maximum value of f(z) on 6. The inequality of (A.11) is known as
Cauchy’s inequality. ‘

A.3 LAURENT'S SERIES

Let the function f(z) be analytic in the annular region of Fig. A.2, including the boundary
of the region. The annular region consists of two concentric circles €, and %€,, whose com-
mon center is zo. Let the point z = z, + A be located inside the annular region as depicted
in Fig. A.2. According to Lauren’s series, we have

[

fao+hy =D aht (A12)

k=—mo0
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e, Figure A.2 Annular region.

where the coefficients a, for varying k are given by

1 f2) dz
, k=0,1,2,...
2mj e, (z — z0)**! 0.1.2
a = (A.13)
1 § f(2) dz
, k=—-1,-2,...
2mj Jg, (z — 7o) !

Note that we may also express the Laurent expansion of f{z) around the point z as

o0

£ =D adz - 2 (A.14)

k=—o0

When all the coefficients of negative index have the value zero, then Eq. (A.14)
reduces to Taylor's series:

o0

£ =D afz - )t (A.15)

k=0
In light of Eq. (A.10) and the first line of Eq. (A.13), we may define the coefficient a, as

(k)
a = ,ff") k=012, ... (A.16)

Taylor’s series provides the basis of Liouville's theorem, considered next.
Liouville’s Theorem

Let a function f(z) of the complex variable z be bounded and analytic for all values of z.
Then, according to Liouville's theorem, f(z) is simply a constant.

To prove this theorem, we first note that since f{z) is analytic everywhere inside the
z-plane, we may use Taylor’s series to expand f{z) about the origin:

=
f@=y 04 (A7)
k=0 *
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Thc power series of Eq. (A.17) is convergent, and therefore provides a valid representa-
tion of f(z). Let contour ‘€ consist of a circle of radius r and origin as center. Then, invok-
ing Cauchy’s inequality of (A.11), we may write

k' M, X
IF90)| = s (A.18)

where M. is the maximum value of z) on 4. Correspondingly, the value of the kth coef-
ficient in the power series expansion of Eq. (A.17) is bounded as

T M
t k

M,
= < £
!akl k. - rk r

iA

(A.19)

where M is the bound on |f(z){ for all values of z. Since, by hypothesis, M does exist, it fol-
lows from (A.19) that for an arbitrarily large r:

SO, k=0
“*={0, k=1,2... (A.20)

Accordingly, Eq. (A.17) reduces to
fz) = fO) = constant

which proves Liouville’s theorem.

A function f{z) that is analytic for all values of z is said to be an entire function. Thus,
Liouville's theorem may be restated as follows: An entire function that is bounded for all
values of z is a constant (Wylie and Barrett, 1982).

A.4 SINGULARITIES AND RESIDUES

Let z = 2, be a singular point of an analytic function f(z). If the neighborhood of z = 29
contains no other singular points of f(z), the singularity at z = z, is said to be isolated.
In the neighborhood of such a singularity, the function f(z) may be represented by the
Laurent series

oo

D=2 az—

= -0

= -1

= Z alz ~ ) + Z alz — ) (A21)
k=0 k=—o

= a (z —_ Zo)k + _..2:!‘-._—-
,;, ¥ Z’l (z - o

The particular coefficient a—, in the Laurent expansion of f(z) in the neighborhood of the
isolated singularity at the point z = 2o is called the residue of fz) at z = a. The residue
plays an important role in the evaluation of integrals of analytic functions. In particuiar.
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putting k = —1 in Eq. (A.13) we-get the following connection between the residue a_,
and the integral of the function f(z):

- L §
a_ = pyer (‘ﬂz)dz (A22)

There are two nontrivial cases to be considered:

1. The Laurent expansion of f{z) contains infinitely many terms with negative pow-
ers of z — zp, as in Eq. (A.21). The point z — z; is then called an essential singu-
lar point of fz).

2. The Laurent expansion of f{z) contains at most a finite number of terms, m, with
negative powers of 7 — zo, as shown by

-]
a_z a_pm

+- 4
(Z_'-Zo)"'

A = Z alz ~ 2o + =X

& 1-z0 (z— 2 (A23)

According to this latter representation, fiz) is said to have a pole of order m at z = z;5. The
JSinite sum of all the terms containing negative powers on the right-hand side of Eq. (A.22)
is called the principal part of f(2) at z = 2.

Note that when the singularity at z = z, is a pole of order m, the residue of the pole
may be determined by using the formula :

1 dm_l .
= D g LT W A2l (A.24)

In effect, by using this formula we avoid the need for the deduction of the Laurent series.
For the special case when the order m = 1, the pole is said to be simple. Correspondingly,
the formula of Eq. (A.24) for the residue a._; of a simple pole reduces to

a_,; = }an;o (z.—* 20)(2) (A.25)

a_ =

A5 CAUCHY'S RESIDUE THEOREM

Consider a closed contour € in the z-plane containing within it a number of isolated sin-
gularities of some function f(z). Let z;, 25, . . ., 2, define the locations of these isolated sin-
gularities. Around each singular point of the function f(z), we draw a circle small enough

" to ensure that it does not enclose the other singular points of f(z), as depicted in Fig. A.3.
The original contour € together with these small circles constitute the boundary of a mul-
tiply connected region in which f(z) is anatytic everywhere and to which Cauchy’s integral
theorem may therefore be applied. Specifically, for the situation described in Fig. A.3 we
may write

! ! €1 i}
'i;j Sgcgf(z) dz + - ilf(z) dz 4+ -+ Py ﬁ,n RDdz=0 (A.26)
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Figure A.3 Muliiply connected region.

Note that in Fig. A.3 the contour € is traversed in the positive sense (i.e., counterclock-
wise direction), whereas the small circles are traversed in the negative sense (i.e., clock-
wise direction).

Suppose now we reverse the direction along which the integral around each small
circle in Fig. A.3 is taken. This operation has the equivalent effect of applying a minus sign
to each of the integrals in Eq. (A.26) that involve the small circles €, . . . , %,,. Accord-
ingly, for the case when all the integrals around the original contour ‘6 and the small cir-

cles€,, . . .., €, are taken in the counterclockwise direction, we may rewrite Eq. (A.26) as
1 J; 1 § 1 #;

- dz=— dz+ - +— d. A27

Py %f(z) z 277 Je, fl2) dz P %nﬂz) z (A.27)

By definition, the integrals on the right-hand side of Eq. (A.27) are the residues of the
function f(z) evaluated at the various isolated singularities of f(z) within the contour ‘6. We
may thus express the integral of Az) around the contour € simply as

ﬁ f@dz= 2% > Res(f(2). z) (A.28)
k=1 .

where Res(f(z), z,) stands for the residue of the function f(z) evaluated at the isolated sin-
gular point z = z;. Equation (A.28) is called Cauchy's residue theorem. This theorem is
extremely important in the theory of functions in general and in evaluating definite inte-
grals in particular.
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A.6 PRINCIPLE OF THE ARGUMENT
Consider a complex function f(z), characterized as follows:

1. The function f(2) is analytic in the interior of a closed contour € in the z-plane,
except at a finite number of poles.

2. The function f(z) has neither poles nor zeros on the contour €. By a “zero” we
mean a point in the z-plane at which f(z) = 0. In contrast, at a “pole” as defined
previously, we have f(z) = . Let N be the number of zeros and P be the number
of poles of the function f(z) in the interior of contour ‘6, where each zero or pole
is counted according to its multiplicity.

We may then state the following theorem (Levinson and Redheffer, 1970; Wylie and Bar-

rett, 1982):
P 9] '
— dz=N-P A.29
27j Je f2) ¢ ¢ )

where f '(z) is the derivative of f(z). We note that

d _[@
2 M@=

where In denotes the natural Jogarithm. Hence,
$ LD 4 = frole
¢ flz)

= In | f())le +Jarg f(Dl (A30)

where | f(z)| denotes the magnitude of £(z), and arg f(z) denotes its argument. The first term
on the right-hand side of Eq. (A.30) is zero, since the logarithmic function In f(2) is
single-valued and the contour € is closed. Hence,

£@ 4 - A3l
£ I dz = j arg f(2)l¢ (A31)
Thus, substituting Eq. {(A.31) in (A.29), we get

1
N-P=—— arg f(z)l (A32)

This result, which is a reformulation of the theorem described in Eq. {A.29), is called the
principle of the argument.

For a geometrical interpretation of this principle, let ‘6 be a closed contour in the
z-plane as in Fig. A.4(a). As z traverses the contour %€ in a counterclockwise direction, we
find that w = f(z) traces out a contour ¢’ of its own in the w-plane; for the purpose of illus-
tration, ¢’ is shown in Fig. A.4(b). Suppose now a line is drawn in the w-plane from the
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{a) ib)

Figure A4 (a) Contour € in the z-plane; (b) Contour ‘€’ in the w-plane, where w = f(z).

origin to the point w = f(z), as depicted in Fig. A.4(b). Then the angle 8 which this line
makes with a fixed direction (shown as the horizontal direction in Fig. A.4(b)) is arg f(z).
The principle of the argument thus provides a description of the number of times the point
w = f(z) winds around the origin of the w-plane (i.e., the point w = Q) as the complex vari-
able z traverses the contour 6 in a connterclockwise direction.

Rouché’s Theorem
Let the function f(z) be analytic on a closed contour 6 and in the interior of 6. Let g(2) be

a second function which, in addition to satisfying the same condition for analyticity as f(z),
also fulfills the following condition on the contour €:

lf) > |g(2)]
In other words, on the contour € we have
331] <1 A33
) (A.33)
Define the function
_1 . 8@
Floy=1+ A34
(2) I ( )

which has no poles or zeros on €. By the principle of the argument applied to F(z), we
have

N - P=—— apF2)le : (A.35)
2

However, the implication of the condition (A.33) is that when z is on the contour %, then

|Fz) — 1] < 1 (A.36)
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Figure A.5 Point w = F(z} on a closed
contour inside the unit circle.

In other words, the point w = F(z) lies inside a circle with center at w = 1 and unit radius,
as ilustrated in Fig. A.5. It follows therefore that

|arg F(2)} < —125 for z on € (A.37)

Equivalently, we may write

arg F@)l¢ = 0 (A38)

Hence, from Eq. (A.38) we deduce that N = P, where both N and P refer to f(z). From the
definition of the function F(z) given in Eq. (A.34) we note that the poles of F(z) are the
zeros of f(z), and the zeros of F(z) are the zeros of the sum f(z) + g{z). Accordingly, the
fact that N = P means that f(z) + g(z) and f(z) have the same numbers of zeros. The result
that we have just established is known as Rouché'’s theorem, which may be formally stated
as follows:

Let f(z) and g(z) be analytic on a closed contour € and in the interior of ‘6. Let
Lf(z)] > |g(z)| on 8. Then f(z) and f(2) + g(z) have the same number of zeros inside con-
tour €.

Example

Consider the contour depicted in Fig. A.6(a) that constitutes the boundary of a multiply con-
nected region in the z-plane. Let F(z} and G(z) be two polynomials.in 7™~ 1, both of which are
analytic on this contour and in the interior of it. Moreover, Let [F(z)| > {G()f: Then, accord-
ing to Rouché’s theorem, both F(z) and F(z) + G(z) have the same number of zeros inside the
contour déscribed in Fig. A.6(a).

Suppose now that we let the radius R of the outside circle € in Fig. A.6(a) approach
infinity. Also, let the separation ! between the two straight-line portions of the contour
approach zero. Then, in the limit, the region enclosed by the contour described in Fig. A.6(a)
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will be made up of the entirc area that lies outside the inner circle ‘6; as depicted in Fig.
A.6(b). In other words, the polynomials F(z) and F(z) + G(z) have the same number of zeros
outside the circle ‘€, under the conditions described above. Note that the circle €, is traversed
int the clockwise direction (i.e., negative sense).

A.7 INVERSION INTEGRAL FOR THE z-TRANSFORM

The material presented in Sections A.1 through A.6 is applicable to functions of a complex
variable in general. In this section and the next one, we consider the special case of a com-
plex function defined as the z-transform of a sequence of samples taken in time.

Let X(z) denote the z-transform of a sequence x(n), which converges to an analytic
function in the annular domain R, < {z| < R,. By definition, X(z) is written as the Laurent
series

X@) =y ®mz™,  Ri<ld<R (A39)
where, for the convenience of presentation, we have used m in place of n as the index of
time. Let 6 be a closed contour that lies inside the region of convergence Ry, < |z| < R,.
Then, multiplying both sides of Eq. (A.39) by 2"/, integrating around the contour € in a
counterclockwise direction, and interchanging the order of integration and summation,
we get

1 a2 _ i dz
2 § X" & Z x(n )::nj (A.40)

m=—o

The interchange of integration and summation is justified here because the Laurent series
that defines X{(z) converges uniformly on €. Let

z=re’, R <r<R, (A.41)
Hence,
zn-—m = rn—mej(n—m}ﬂ
and
2 o
F4
Cormrespondingly, we may express the contour integral on the right-hand side of Eq. (A .40)
as
1 a1 [ .
= R | prmednme g (A42)
2mj Je z 2w Jy

_ 1, m=n
10, m#n
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Inserting Eq. (A.42) in {A.40), we get

. § n 4z
x(n) = 2 Yo X(2)z i (A.43)

Equation (A.43) is called the inversion integral formula for the z-transform.

A.8 PARSEVAL'S THEOREM

Let X(z) denote the z-transform of the sequence x(n) with the region of convergence
R, < |z] < Ry,. Let ¥(z) denote the z-transform of a second sequence y(n) with the region
of convergence R, < |z| < Ry, Then Parseval’s theorem states that

S ey = m—fﬁ xor(5) s (A44)

n=-—ow

where € is a closed contour defined in the overlap of the regions of convergence of X(z)
and ¥(z), both of which are analytic. The function Y*(1/z*) is obtained from the z-trans-
form Y(z) by using 1/z* in place of z, and then complex-conjugating the resulting function.
Note that the function Y*(1/z*) obtained in this way is analytic too.

To prove Parseval’s theorem, we use the inversion integral of Eq. (A.43) to write

Z *(my*(n) = = Z y*(n)§ X" % (A45)

n=—uw n-—-—-—-u:

- %Tj X0 S ymen L

Hn=-—

From the definition of the z-transform of y(n), namely,

Yo =) ymz "

we note that

Y*(Zl*) =,._Z_m y*(n)?" (A.46)

Hence, using Eq. (A 46) in (A.45), we get the result given in Eq (A.44), and the proof of
Parseval’s theorem is completed.
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B

Differentiation with

Respect to a Vector

An issue commonly encountered in the study of optimization theory is that of differentiat-
ing a cost function with respect to a parameter vector of interest. In the text we used an
ordinary gradient operation. The purpose of Appendix B is to address the more difficult
issue of differentiating a cost function with respect to a complex-valued parameter vector.
‘We begin by introducing some basic definitions.

B.1 BASIC DEFINITIONS

Consider a complex function f(w) that is dependent on a parameter vector w. When w is
complex valued, there are two different mathematical concepts that require individual
attention: (1) the vector nature of w, and (2) the fact that each element of w is a complex
number.

Dealing with the issue of complex numbers first, let x; and y, denote the real and
imaginary parts of the kth element w; of the vector w; that is,

Wi = X+ Y (B.1)

We thus have a function of the real quantities x, and y,. Hence, we may use Eq. (B.1) to
express the real part x; in terms of the pair of complex conjugate coordinates wy and wf as

X = we + wi) (B.2)
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and express the imaginary part y; as
1
Y= ?j(Wk - wf) (B.3)

where the asterisk denotes complex conjugation. The real quantities x; and y; are functions
of both w, and wi*. It is only when we deal with analytic functions f that we are permitted
to abandon the complex-conjugated term wj¥ by virtue of the Cauchy-Riemann equations.
However, most functions encountered in physical sciences and engineering are nor ana-
Iytic. :

The notion of a derivative must tie in with the concept of a differential. In particu-
lar, the chain rule of changes of variables must be obeyed. With these important points in
mind, we may define certain complex derivatives in terms of real derivatives, as shown by

(Schwartz, 1967)
d 1/ o d
e il e B4
dw, E(é)xk / Byk) (B4)

d 1/ o .a)

and

(B.5)

+ j—
aw,? 2 ka J By,,

The derivatives defined here satisfy the following two basic requirements:

w |
wy,
owe _ oWt _
owg  dw

(An analytic function f satisfies 3f/3z* = 0 everywhere.)
The next issue to be considered is that of differentiation with respect to a vector.

Let wo, Wy, . . ., War—1 denote the elements of an M-by-1 complex vector w. We may
extend the use of Egs. (B.4) and (B.5) to deal with this new situation by writing (Miller,
1974)
o8 8]
dxg ! dyo
9 ;9
J 1 axl ! ayl .
L = . (B.6)
ow 2 .
9 _._ 4
| axpr—1 g Va1 i
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and
[ a8 .8 ]
L
axp " 9o
0 . d
d 1 ax; oy,
aw* 2 : B.7
d +j 3
L dXp—1 Yur—1 |
where we have wy = x + jy, fork =0, 1, ..., M — 1. We refer to &/dw as a derivative

with respect to the vector w, and to d/dw* as a conjugate derivative also with respect to
the vector w. These two derivatives must be considered together. They obey the following
relations:

ow

— =]
ow

ow ow*

Wt aw
where 1 is the identity matrix and O is the null matrix.
For subsequent use, we will adopt the definition of (B.7) as the derivative with
respect to a complex-valued vector.

=0

B.2 EXAMPLES

In this section, we illustrate some applications of the derivative defined in Eq. (B.7). The
examples are taken from Chapter 5 dealing with optimum linear ﬁltenng, and Chapter 11
dealing with the method of least squares.

Example 1

Let p and w denote two complex-valued M-by-1 vectors. There are two inner products, piw
and w¥p, to be considered
Let ¢, = p™w. The conjugate derivative of ¢, with respect to the vector w is

dc
3";1; —(P w) = (B.8)

where 0 is the null vector. Here we note that p”w is an analytic function; see Problem 1 of
Chapter 5. We therefore find that the derivative of p”w with respect to w is zero, in agreement
with Eq. (B.8).
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Consider next c; = w''p. The conjugate derivative of ¢, with respect to w is

dc d é
e awr P T @) = (B.9)

Here we note that w'p is not an analytic function; see Problem 1 of Chapter 5. Hence, the
derivative of w‘"p with respect to w* is nonzero, as in Eq. (B.9).

Example 2
Consider next the quadratic form
¢ = w'Rw
where R is a Hermitian matrix. The conjugate derivative of ¢ (which is real) with respect to
w is
dc d
awx  ow* (W'Rw)
= Rw (B.10)
Example 3

Consider the real-valued cost function (see Chapter 5)
Jw) = o2 — w'p — pw + w'Rw

Using the results of Examples 1 and 2, we find that the conjugate derivative of J with respect
to the tap-weight vector w is

aJ

= —p + Rw (B.11)
Let w,, be the optimum value of the tap-weight vector w for which the cost function J is min-
imum or, equivalently, the derivative (3J/aw*) = 0. Hence, from Eq. (B.11) we deduce that

Rw, = p (B.12)

This is the matrix form of the Wiener—Hopf equations for a transversal filter operating in a
stationary environment.

Example 4
Consider the real log-likelihood function (see Chapter 11)

W) =F — %e"e (B.13)

where F is a constant and

€e=b— AW (B.14)
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Substituting Eq. (B.i14) in (B.13), we get
1) = F — Lb%b + —bHAW + L o7A% — L& ATAW  (B.IS)
o o o o
Evaluating the conjugate derivative of [ with respect to W, and adapting the resuits of
Examples 1 and 2 to fit our present situation, we get

O _ 1 ey 1 aHag

e U2A b 02A AW

Setting (8//dW*) = 0, and then simplifying, we thus get
Ab — A¥Aw, =0

where w, is the special value of W for which the log-likelihood function is maximum.
Hence,

AfAw, = A" (B.16)

This is the matrix form of the normal equations for the method of least squares.

B.3 RELATION BETWEEN THE DERIVATIVE WITH RESPECT TO A VECTOR

AND THE GRADIENT VECTOR

Consider the real cost function J(w) that defines the error-performance surface of a linear
transversal filter whose tap-weight vector is w. In Chapter 5, we defined the gradient vec-
tor of the error-performance surface as

DAY}
%o o
o8
0x; oy, .

. (B.17)

vJ

aJ +j aJ
_3XM“1 5}’M—1_

where x; + jy is the kth element of the tap-weight vectorw,and k = 0,1,..., M — 1.
The gradient vector is normal to the error-performance surface. Comparing Egs. (B.7)
and (B.17), we see that the conjugate derivative 3J/gw* and the gradient vector V.J are
related by

aJ
Gw*

Thus, except for a scaling factor, the definition of the gradient vector introduced in Chap-
ter S is the same as the conjugate derivative defined in Eq. (B.7).

Vi=2

(B.18)
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Method of
Lagrange Multipliers

Optimization consists of determining the values of some specified variables that minimize
or maximize an index of performance or cost function, which combines important proper-
ties of a system into a single real-valued number. The optimization may be constrained or
unconstrained, depending on whether the variables are also required to satisfy side equa-
tions or not. Needless to say, the additional requirement to satisfy one or more side equa-
tions complicates the issue of constrained optimization. In this appendix, we derive the
classical method of Lagrange multipliers for solving the complex version of a constrained
optimization problem. The notation used in the derivation is influenced by the nature of
applications that are of interest to us. We consider first the case when the problem involves
a single side equation, followed by the more general case of multiple side equations.

C.1 OPTIMIZATION INVOLVING A SINGLE EQUALITY CONSTRAINT

Consider the minimization of a real-valued function {w) that is a quadratic function of a
vector w, subject to the constraint

wis=g C1)

where s is a prescribed vector and g is a complex constant. We may redefine the constraint
by introducing a new function c(w) that is linear in w, as shown by
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e(w) = w'ls — g
(C.2)
=0+j0

In general, the vectors w and s and the function c(w) are all complex. For example, in a
beamforming application the vector w represents a set of complex weights applied to the
individual sensor outputs, and s represents a steering vector whose elements are defined
by a prescribed “look™ direction; the function f(w) to be minimized represents the mean-
square value of the overall beamformer output. In a harmonic retrieval application, w rep-
resents the tap-weight vector of a transversal filter, and s represents a sinusoidal vector
whose elements are determined by the angular frequency of a complex sinusoid contained
in the filter input; the function f(w) represents the mean-square value of the filter output.
In any event, assuming that the issue is one of minimization, we may state the constrained
optimization problem as follows:

* Minimize a real-valued function f(w), (C.3)
subject to the constraint c(w) = 0 + jO

The method of Lagrange multipliers converts the problem of constrained minimiza-
tion described above into one of unconstrained minimization by the introduction of
Lagrange multipliers. First we use the real function f(w) and the complex constraint func-
tion c(w) to define a new real-valued function

h(w) = f(w} + A Re[c(w)] + A, Im{c(w)] (C4)
where A, and X, are real Lagrange multipliers, and
c(w) = Re[c(w)] + j Im[c(w)] (C.5)
Define a complex Lagrange multiplier:
A= N+ N, (C.6)
We may then rewrite Eq. (C.4) in the form
h(w) = f(w) + Re[A*c(w)] €7

where the asterisk denotes complex conjugation.
Next, we minimize the function h(w) with respect to the vector w. To do this, we set
the conjugate derivative dh/dw* equal to the null vector, as shown by

(C.8)

The system of simultaneous equauans, consisting of Eq. (C.8) and the original constraint
given in Eq. (C.2), define the optimum solutions for the vector w and the Lagrange multi-
plier \. We call Eq. (C.8) the adjoint equation and Eq. (C.2) the primal equation (Dorny,
1975).
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C.2 OPTIMIZATION INVOLVING MULTIPLE EQUALITY CONSTRAINTS

Consider next the minimization of a real function f(w) that is a quadratic function of the
vector w, subject to a set of multiple linear constraints

wis, = g1, k=1,2,...K (C.9)

where the number of constraints, K, is less than the dimension of the vector w, and the g,
are complex constants. We may state the multiple-constrained optimization problem as
follows:

Minimize a real function f{iw), subject to the
constraints ci{w) =0 + j0fork=1,2,..., K (C.10)

The solution to this optimization problem is readily obtained by generalizing the pre-

vious results of Section C.1. Specifically, we formulate a system of simultaneous equa-
tions, consisting of the adjoint equation ‘

K
3
L ; 2 Reliex(w) = 0 €.11)
and the primal equation
cw) = 0* + j0, k=12,...,K (C.12)

This system of equations defines the optimum solutions for the vector w and the set of
complex Lagrange multipliers Ay, Ay, . . ., Ak

C.3 Example
By way of an example, consider the problem of finding the vector w that minimizes the func-
tion
flw) = w'w (C.13)
and which satisfies the constraint
dAw)=wis—g=0+j0 (C.14)
The adjoint equation for this problem is
3 3 B
pn (ww) + ;;(Re[x*(w"’s -2 =9 (C.15)

Using the rules for differentiation developed in Appendix B, we have
3
—(wiw)=w
ow* )
and

O (Rehr(ws — gil) = A%s
ow*
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Substituting these results in Eq. (C.15), we get
w+Ars=0 (C.16)
or, equivalently,
w? + A = 07 (C.17)

Next, pestmultiplying both sides of Eq. (C.17) by s and then solving for the unknown A, we
obtain

A= -t

s'’s
¢ (C18)

sts
Finally, substituting Eq. (C.18) in (C.16) and solving for the optimum value w, of the weight
vector w, we get

=

g*
W, = ('s_lg)s (C.19)

This solution is optimum in the sense that w, satisfies the constraint of Eq. (C.14) and has
minimum length.
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Estimation Theory

Estimation theory is a branch of probability and statistics that deals with the problem of
deriving information about properties of random variables and stochastic processes, given
a set of observed samples. This problem arises frequently in the study of communications
and control systems. Maximum likelihood is by far the most general and powerful method
of estimation. It was first used by the famous statistician R. A. Fisher in 1906. In princi-
ple, the method of maximum likelihood may be applied to any estimation problem with
the proviso that we formulate the joint probability density function of the available set of
observed data. As such, the method yields almost all the well-known estimates as special
cases.

D.1 LIKELIHOOD FUNCTION

The method of maximum likelihood is based on a relatively simple idea: Different popu-
lations generate different data samples and any given data sample is more likely to have
come from some population than from others (Kmenta, 1971).

Let fi(u|) denote the conditional joint probability density function of the random
vector U represented by the observed sample vector u, where the sample vector u has u,,
Uy, . . ., Uy fOI its elements, and @ is a parameter vector with 8y, 85, . . ., Ox as elements.



App.D Estimation Theory

The method of maxirum likelihood is based on the principle that we should estimate the
parameter vector @by its most plausible values, given the observed sample vector u. In
other words, the maximum-likelihood estimators of 94, 82, . . ., 0 are those values of the
parameter vector for which the conditional joint probability density function fu(u|@) is at
maximum.

The name likelihood function, denoted by ), is given to the conditional joint prob-
ability density function f;(u|0), viewed as a function of the parameter vector §.We thus
write

1(8) = fy(ul®) (D.1)

Although the conditional joint probability density function and the likelihood function
have exactly the same formula, nevertheless, it is vital that we appreciate the physical dis-
tinction between them. In the case of the conditional joint probability density function, the
parameter vector 8 is fixed and the observation vector u is variable. On the other hand, in
the case of the likelihood function, the parameter vector 9 is variable and the observation
vector u is fixed.

In many cases, it tumns out to be more convenient to work with the natural logarithm
of the likelihood function rather than with the likelihood itself. Thus, using L(8) to denote
the log-likelihood function, we write

L(6) = In[1(®)]
= In{fy(u}6)]

The logarithm of {®) is a monotonic transformation of I(0). This means that whenever /(0)
decreases, its logarithm £(8) also decreases. Since /(@), being a formula for conditional
joint probability density function, can never become negative, it follows that there is no
probiem in evaluating its logarithm L(8). We conclude therefore that the parameter vector
for which the likelihood function £@) is at maximum is exactly the same as the parameter
vector for which the log-likelihood function 1{0) is at its maximum.

To obtain the ith element of the maximum-likelihood estimate of the parameter vec-
tor §, we differentiate the log-likelihood function with respect to 8; and se! the result equal
to zero. We thus get a set of first-order conditions:

(D.2)

ol '

— =0, i=12,...,K D.3
, i (D.3)
The first derivative of the log-likelihood function with respect to parameter 8; is called the
score for that parameter. The vector of such parameters is known as the scores vector (i.e.,
the gradient vector). The scores vector is identically zero at the maximum-likelihood esti-
mates of the parameters, that is, at the values of 0 that result from the solutions of Eq.
(D.3). .
To find how effective the method of maximum likelihood is, we can compute the
bias and variance for the estimate of each parameter. However, this is frequently difficult
to do. Rather than approach the computation directly, we may derive a lower bound on the
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variance of any unbiased estimate. We say an estimate is unbiased if the average value of
the estimate equals the parameter we are trying to estimate. Later we show how the vari-
ance of the maximum-likelihood estimate compares with this lower bound.

D.2 CRAMER-RAO INEQUALITY

Let U be a random vector with conditional joint probability density function fiy(u|8),
where u is the observed sample vector with elements #,, ua, . . ., Uy and 0 is the parame-
ter vector with elements 8;, 8,, . . . , 8. Using the definition of Eq. (D.2) for the log-like-
lihood fupction L(1) in terms of the conditional joint probability density function Sfo(u|0),

we form the X-by-K matrix:

[ [ 8°L &L &L
A > cer E ]
[ae% ] [ae.aaz] [aelaex]
2 2 2
gl &L e[ 3L gL
36,36, 303 30,30
J=- . . . (D.4)
2 2 ’
g L L 1... 32_1;
|1 90496, 30,96, 30k

The matrix J is called Fisher's information matrix.

Let I denote the inverse of Fisher’s information matrix J. Let J; denote the ith diag-
onal element (i.¢., the element in the ith row and ith column) of the inverse matrix I. Let
8, be any unbiased estimate of the parameter 6;, based on the observed sample vector u.
We may then write (Van Trees, 1968; Nahi, 1969)

i=12....K (D.5)

Equation (D.5) is called the Cramér—Rao inequality. This theorem enables us to construct
a lower limit (greater than zero) for the variance of any unbiased estimator, provided, of
course, that we know the functional form of the log-likelihood function. The lower limit
specified in the theorem is called the Cramér—Rao lower bound (CRLB).

If we can find an unbiased estimator whose variance equals the Cramér-Rao lower
bound, then according to the theorem of Eq. (D.5) there is no other unbiased estimator with
a smaller variance. Such an estimator is said to be efficient.

var[é;] = I,‘,‘,

D.3 PROPERTIES OF MAXIMUM-LIKELIHOOD ESTIMATORS

Not only is the method of maximum likelihood based on an intuitively appealing idea (that
of choosing those parameters from which the actually observed sample vector is most
likely to have come), but also the resulting estimates have some desirable properties.
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Indeed, under quite general conditions, the following asympfotic properties may be proved
(Kmenta, 1971):

1. Maximum-likelihood estimators are consistent. That is, the value of 6, for which
the score aL/09, is identically zero converges in probability to the true value of
the parameter 8;, i = 1,2,.. ., K, as the sample size M approaches infinity.

2. Maximum-likelihood estimators are asymptotically efficient; that is,

{Var{ei,ml — 91]] =1,

[

lim

M—s

i=12,...,K

where 0, -, is the maximum-likelihood estimate of parameter 8;, and I; is the ith
diagonal element of the inverse of Fisher’s information matrix.

3, Maximum-likelihood estimators are asymptotically Gaussian.

In practice, we find that the large-sample (asymptotic) properties of maximum-likelihood
estimators hold rather well for sample size M = 50.

D.4 CONDITIONAL MEAN ESTIMATOR

Another classic problem in estimation theory is that of the Bayes estimation of a random
parameter. There are different answers (o this problem, depending on how the cost func-
tion in the Bayes estimation is formulated (Van Trees, 1968). A particular type of the Bayes
estimator of interest to us in this book is the so-called conditional mean estimator. We now
wish to do two things: (1) derive the formula for the conditional’ mean estimator from first
principles, and (2) show that sach an estimator is the same as a minimum mean-squared-
error estimator.

Consider a random parameter x. We are given an observation y that depends on x,
and the requirement is to estimate x. Let&(y) denote an estimate 'of the parameter x; the
symbol #(y) emphasizes the fact that the estimate is a function of the observation y. Let
C(x, £(y)) denote a cost function. Then, according to Bayes estimation theory, we may
write an expression for the risk as follows (Van Trees, 1968).

R = E[Clx, X))

= I dx I CO, 2 frer(x. ¥) dy (D.6)

where fy y(x, ¥} is the joint probability density function of x and y. For a specified cost
function C(x, £(3)), the Bayes estimate is defined as the estimate £(y) that minimizes the
risk .

A cost function of particular interest (and which is very much in the spirit of the
material covered in this book) is the mean-squared error. In this case, the cost function is
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specified as the square of the estimation error. The estimation error is itself defined as the
difference between the actual parameter value x and the estimate 3(y), as shown by

€e=x— i(y) D.7
Correspondingly, the cost function is defined by
Clx, 2(y)) = Clx — () (D.8)
or, more simply,
Cle) = € (D.9)

Thus, the cost function varies with the estimation error € in the manner indicated in Fig.
D.1. It is assumed here that x and y are both real. Accordingly, for the situation at hand, we
may rewrite Eq. {D.6) as follows:

Be= | dx| lx = 500herten dy (D.10)

where the subscripts in the risk R, indicate the use of mean-squared error as its basis.
Using Bayes’ rule, we have

Sy p) = f () fr®) (D.11)
where fx(xly) is the conditional probability density function of x, given y, and fy(y) is the
(marginal) probability density function of y. Hence, using Eq. (D.11) in (D.10), we have

O = | dopv) | tx—5ONhetely) (D.12)

We now recognize that the inner integral and fy(y) in Eq. (D.12) are both nonnega-
tive. We may therefore minimize the risk R, by simply minimizing the inner integral. Let
the estimate so obtained be denoted by X,s(¥). We find i (y) by differentiating the inner
integral with respect to %(y) and then sefting the result equal to zero.

Cle)

¢ . Figure D.1 Mean-squared error as the cost
0 function.
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To simplify the presentation, let / denote the inner integral in Eq. (D.12). Then dif-
ferentiating / with respect to %(y) yields

4. -ZI xfx(xly) dx + Zi(y)f Sxtxly) dx (D.13)

a&
The second integral on the right-hand side of Eq. (D.13) represents the total area under a
probability density function and therefore equals 1. Hence, setting the derivative dl/dz
equal to zero, we obtain
S} = f x filly) d (D.14)

The solution defined by Eq. (D.14) is a unique minimum.

The estimator X.,,(¥) defined in Eq. (D.14) is naturally a minimum mean-squared-
error estimator, hence the use of the subscripts “ms.” For another interpretation of this
estimator, we recognize that the integral on the right-hand side of Eq. (D.14) is just the
conditional mean of the parameter x, given the observation y.

We therefore conclude that the minimum mean-squared error estimator and the con-
ditional mean estimator are indeed one and the same. In other words, we have

Ems(y) = E [x]y] (D.15)

Substituting Eq. (D.15) for the estimate X(y) in Eq. (D.12), we find that the inner integral
is just the conditional variance of the parameter x, given y. Accordingly, the minimum
value of the risk R, is just the average of this conditional variance over all observa-
tions y.
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Maximum-Entropy
Method

The maximum-entropy method (MEM) was originally devised by Burg (1967, 1975) to
overcome fundamental limitations of Fourier-based methods for estimating the power
spectrum of a stationary stochastic process. The basic idea of MEM is to choose the par-
ticular spectrum that corresponds to the most random or the most unpredictable time series
whose autocorrelation function agrees with a set of known values, This conditicn is equiv-
alent to an extrapolation of the autocorrelation function of the available time scries by
maximizing the entropy of the process, hence the name of the method. Entropy is a mea-
sure of the average information content of the process (Shannon, 1948). Thus, MEM
bypasses the problems that arise from the use of window functions, a feature that is com-
mon to all Fourier-based methods of spectrum analysis. In particular, MEM avoids the use
of a periodic extension of the data (as in the method based on smoothing the periodogram
and its computation using the fast Fourier transform algorithm) or of the assumption that
data outside the available record length are zero (as in the Blackman-Tukey method based
on the sample autocorrelation function). An important feature of the MEM spectrum is that
it is nonnegative at all frequencies, which is precisely the way it should be.

E.1 MAXIMUM-ENTROPY SPECTRUM

Suppose that we are given 2M + 1 values of the autocorrelation function of a stationary
stochastic process u(n) of zero mean. We wish to obtain the special value of the power

905
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spectrum of the process that corresponds to the most random time series whose autocor-
relation function is consistent with the set of 2M + 1 known values. In terms of informa-
tion theory, this statement corresponds to the principle of maximum entropy (Jaynes,
1982).

In the case of a set of Gaussian-distributed random variables of zero mean, the
entropy is given by (Middleton, 1960)

H = }in[det(R)] E.Dl)

where R is the comelation matrix of the process. When the process is of infinite duration,
however, we find that the entropy H diverges, and so we cannot use it as a measure of
information content. To overcome this divergence problem, we' may use the entropy rate
defined by

=A}l:_l}1° %ln{det(R)]ll(Mi*l) (E-2)
Let S(w) denote the power spectrum of the process u(r). The limiting form of the deter-
minant of the correlation matrix R is related to the power spectrum S(w) as follows (see
Problem 14 of Chapter 4):

lim [det(R)]V™ D = exp[l J InS(w) dw} (E.3)
M- 2w J_,
Hence, substituting Eq. (E.3) in (E.2), we get
h= L In[S(w)]dw {E.4)
4

-
Although this relation was derived on the assumption that the process u{n) is Gaussian,
nevertheless, the form of the relation is valid for any stationary process.
We may now restate the MEM problem in terms of the entropy rate. We wish to find
a real positive-valued power spectrum characterized by entropy rate h, satisfying two
simultaneous requirements: '

1. The entropy rate h is stationary with respect to the unknown values of the auto-
correlation function of the process.

2. The power spectrum is consistent with respect to the known values of the auto-
correlation function of the process.

We will address these two requirements in turn.
Since the autocorrelation sequence r(m) and power spectrum S(w) of a stationary
process 1(n) form a discrete-time Fourier-transform pair, we write

o0

S@ =D r(m)exp(~ jmw) (E.5)

m= -~
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Equation (E.5) assumes that the sampling period of the process u(n) is normalized to unity.
Substituting Eq. (E.5) in (E.4), we get

R .
h= E Jl,, ln[m ;w r(m) exp(— ]mm)] dw (E.6)
We extrapolate the autocorrelation sequence -r(m) outside the range of known values,
~M = m = M, by choosing the unknown values of the autocorrelation function in such |
a way that no information or entropy is added to the process. That is, we impose the
condition

dh -
ar(m)

0, ImlzM+1 (E.7)

Hence, differentiating Eq. (E.6) with respect to r(m) and setting the result equad to zero,
we find that the conditions for maximum entropv are as follows:

f XL jmo) gy 0, |ml=M+1 (ES)
e Svem(w)

where Sypm(w) is the special value of the power spectrum resulting from the imposition
of the condition in Eq. (E.7). Equation (E.8) implies that the power spectrum Snmem(®) is
expressible in the form of a truncated Fourier series:

M

L z ¢ eXp(— jkw) (E.9)

Smem(w) —k =—-M
The complex Fourier coefficient ¢, of the expansion satisfies the Hermitian condition
ct=coy (E.10)

s0 as to ensure that Syem(w) s real for all w.

The next requirement is to make the power spectrum Smem(w) consisient with the
set of known values of the autocorrelation function 7(m) for the interval — Msm=<M
Since r(m) is a Hermitian function, we need only concern ourselves with<m=M.
Accordingly, r(m) must equal the inverse discrete-time Fourier transform of Syem(w) for
0 < m < M, as shown by

rim) = ‘21_11_ I Smem(©) expymw) do, 0=m=M (E-11)

Therefore, substituting Eq. (E.9) in (E.11), we get

= [T ) osm=M (E.12)
2m M
é ¢ exp(—jkw)

—m k=—M
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Clearly, in the set of complex Fourier coefficients {c,}, we have the available degrees of
freedom needed to satisfy the conditions of Eq. (E.12). "

To proceed with the analysis, however, we find it convenient to use z-transform nota-
tion by changing from the variable o to z. Define

z = exp(iw) - (E.13)

Hence,

do = 24
F4

h-.lb—-

and so we rewrite Eq. (E.12) in terms of the variable z as the contour integral

j2n M (E.14)

The contour integration in Eq. (E.14) is performed on the unit circle in the z-plane in a
counterclockwise direction. Since the complex Fourier coefficient ¢, satisfies the Her-
mitian condition of Eq. (E.10), we may express the summation in the denominator of the
integral in Eq. (E.14) as the product of two polynomials, as follows:

ki, ezt = G(z)G*(zi*) E.15)

where "
G = - (E.16)

and =0

M
G*(—lv—) = et E17)

We choose the first polynomial G(z) to be minimum phase, in that its zeros are all located
inside the unit circle in the z-plane. Correspondingly, we choose the second polynomial
G*(1/z*) to be maximum phase, in that its zeros are all located outside the unit circle in
the z-plane. Moreover, the zeros of these two polynomials are the inverse of each other
with respect to the unit circle. Thus, substituting Eq. (E.15) in (E.14), we get

1

1 § 2 dz
Jj2m | G(2)G*(1/z%) ’

rim) = O0=m=M (E.18)
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We next form the summation

M
7! Z gk
1 k=0

M
-k =
,;)g"’('" )= 2m ] Gooramm “ (E.19)

1 § Zm—- 1
= 0<ms<
2m 1 o m=M

where in the first line we have used Eq. (E.18), and in the second line we have used
Eq. (E.16).

To evaluate the contour integral of Eq. (E.19), we use Cauchy’s residue theorem of
compiex variable theory (see Appendix A). According to this theorem, the contour integral
equals 27j times the sum of residues of the poles of the integral 2" Y1G*(1/z*) that lie
inside the unit circle used as the contour of integration. Since the polynomial G*(1/z*) is
chosen to have no zeros inside the unit circle, it follows that the integral in Eq. (E.19) is
analytic on and inside the unit circle for m = 1. For m = 0 the integral has a simple pole
at z = O with a residue equal 1o 1/g}. Hence, application of Cauchy’s residue theorem
yields

§ g %L’ m=0 E.20
Gy T (E.20)
0, m=%¥2 .. .M

Thus, substituting Eq. (E.20) in (E.19), we get

M -1'-, m=0
> gr(m— k) =188 (E.21)
k=0

0, m=12...M

We recognize that the set of (M + 1) equations in (E.21) has a mathematical form
similar to that of the augmented Wiener-Hopf equations for forward prediction of order M
(see Chapter 6). In particular, by comparing Egs. (E.21) and (6.16), we deduce that

d=——a,. O=k<M | (E.22)
8oPwu

where the a are coefficients of a prediction-error filter of order M, and Py is the aver-
age output power of the filter. Since apo = 1 for all M, by definition, we find from Eq.

(E.22) that for k = O:

. E23
|80l P (E.23)
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Finally, substituting Eqs. (E.15), (E.22), and (E.23) in (E9) with z = exp(jw),
we get
Pu
Smem(w) = W (E24)
L |2
‘1 + Z apie

k=1

We refer to the formula of Eq. (E.24) as the MEM spectrum.

E.2 COMPUTATION OF THE MEM SPECTRUM

The formula for the MEM spectrum given in Eq. (E.24) may be recast in the alternative
form

1 :
Smem(@) = T3 (E.25)

> Wke

k=M

where Yi(k) is defined in terms of the prediction-error filter coefficients s follows:

M—k
i a _,-a’h,; fork=0, 1,...,M
Wb = { Pu Zo T (E26)
$(—k) fork=—-M, ..., ~1

The parameter Y(k) may be viewed as some form of a correlation coefficient for predic-
tion-error filter coefficients.

Examination of the denominator polynomial in Eq. (E.25) reveals that it represents
the discrete Fourier transform of the sequence (k). Accordingly, we may use the fast
Fourier transform (FFT) algorithm (Oppenheim and Schafer, 1989) for the efficient com-
putation of the denominator polynomial ‘and therefore the MEM spectrum. Given the auto-
correlation sequence r(0), r(1), . . ., r(M), pertaining to a wide-sense stationary stochas-
tic process u(n), we may now summarize an efficient procedure for computing the MEM
spectrum:

YT "Wm
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Step 1: Levinson-Durbin Recursion.

Initialize the algorithm by setting

app = 1
Po = r(0)
Form = 1,2, ..., M, compute
M~1
K = — Py r(i —m)a,,_,;
1 fori=0
Ui = 1t K@l 1 i fori=1,2,.
- fori=m

Pr= Pra(1 ~ [kal?)
Step 2: Correlation for Prediction-Error Filter Coefficients.

Compute the correlation coefficient

M-k

1
- a .-a’x,;_.- fork==0,1,...,M
Wk = PMZT: e
Yk(—k) fork=-M,...,~1

Step 3: MEM Spectrum.

an

oom—1

(E.26)

Use the fast Fourier transform algorithm to compute the MEM spectrum for varying angu-

lar frequency:
1
Smem(w) = 7

> ke

k=-M
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F

Minimum-Variance
Distortionless Response

Spectrum

In Section 5.8, we derived the formula for the minimum-variance distortionless response
(MVDR) spectrum for a wide-sense stationary stochastic process. In this appendix we do
two things. First, we develop a fast algorithm for computing the MVDR spectrum, given
the ensemble-averaged correlation matrix of the process (Musicus, 1985); the algorithm
exploits the Toeplitz property of the correlation matrix. Second, in deriving the algorithm,
we develop an insightful relationship between the MYDR and MEM spectra.

F.1 FAST MVDR SPECTRUM COMPUTATION

912

Consider a zero-mean wide-sense stationary stochastic process u(n) characterized by an
(M + 1)-by-(M + 1) ensemble-averaged correlation matrix R. The minimum-variance dis-
tortionless response (MVDR) spectrum for such a process is defined in terms of the inverse
matrix R™' by

1

)R s(w) (F1)

Smvor(w) =

where

—jw —j2 —jMunT
s(w) =[1, e, e/, ..., e "]
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Let R}, denote the (I k)th element of R™!, Then, we may rewrite Eq. (F.1) in the form
1

SMvDr(W) = (E2)
> e
k=M
where
min(M—k, M)
M= D Rik E3)
I=max(0,k)

We recognize that the correlation matrix R is Toeplitz. We may therefore use the
Gohberg—Semencul formula (Kailath et al, 1979) to express the (/k)th element of the
inverse matrix R™! as follows:

!
|
Rix= P Z (am.ia¥i+k—1 = Qhpm+1—i QMM+ 1-i—k+1) k=1 (F4)
i=0
where 1, ap 1, . - . , Gag are the coefficients of a prediction-error filter of order M, and
Py is the average prediction-error power. Substitating Eq. (F4) in (F.3) and confining
attention to k = 0, we get

M-k 1 M-k
1
wik) = —— Z Z am, iR ivk — P Z Z Ry M1 ~iOM M1 —i—k (E3)
I=0 i=0 =0 i=0

Interchanging the order of summations and setting j = M + 1 — i — k, we may rewrite

u(k) as

M-k M—k M+1—k M=k
(k)-~Z Z api gk — Z > atyeam;  (F6
) i j=1 I=M+1—j=k

The terms that do not involve the index / permit us to collapse the summation over
! into a multiplicative integer constant. We may thus combine the two summations in Eq.
(F.6). Moreover, we may use the Levinson—Durbin recursion for computing the prediction-
error filter coefficients. Given the autocorrelation sequence r(0), r(1), . . . , r(M), we may
now formulate a fast algorithm for computing the MVDR spectrum as follows (Musicus,
1985):

Step 1: Levinson-Durbin Recursion.

Initialize the algorithm by setting

a0 =1
Py = r(0)
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Hence, compute form=1,2,...,. M

m—1

Km = — ! z P‘(l - m)ant*l.i

P, &3
1 fori =0

i =4 G + Kol e fori=1,2,...,m—1
K fori=m

Pp = Ppy(1 = [knl))
Step 2: Correlation of the Predictbr Coefficients.

Compute the parameter (k) for varying k:

M—k
® = Pl M+ 1—k — 2Dap;ak:4 fork=0,... .M E7)
B M =0 .
w*(—k) fork=-M,..., ~1

Step 3: MVDR Spectrum Computation.

Use the fast Fourier transform algorithm to compute the MVDR spectrum for varying
angular frequency:

1
Smvpr(®) = FY;

D ke (F38)

ke=—M

F.2 COMPARISON OF MVDR AND MEM SPECTRA

Comparing the formula for computing the MVDR spectrum with that for computing the
MEM spectrum, we se¢ that the only difference between the MVDR formula in Eq. (F.8)
and the MEM formula in Eq. (E.25) lies in the definitions of their respective correlations
of predictor coefficients. In particular, a linear taper is used in the definition of (k) given
in Eq. (E.7) for the MVDR formula. On the other hand, the definition of the correspond-
ing parameter (k) given in Eq. (E.26) for the MEM formula does not involve a taper. This
means that for a large-enough model order M, such that ayy; = 0 for i > M/2, the linear
taper involved in the computation of (k) acts like a triangular window on the product
terms ay ; %y i+« This has the effect of deemphasizing higher-order terms with large i for
large values of lag k (Musicus, 1985). Accordingly, for a given process, an MVDR spec-
trum is smoother in appearance than the corresponding MEM spectrum.
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Gradient Adaptive
Lattice Algorithm

The adaptive lattice filtering algorithms considered in Chapter 15 are all exacr manifesta-
tions of recursive least-squares estimation, exact in the sense that no approximations are
made in their derivations. In this appendix we derive another adaptive lattice filtering algo-
rithm known as the gradient adaptive lattice (GAL) algorithm (Griffiths, 1977, 1978),
which is a natural extension of the least-mean-square (LMS) algorithm.

Consider a single-stage lattice structure the input—output relation of which is char-
acterized by a single parameter, namely, the reflection coefficient k,,. We assume that the
input data are wide-sense stationary and that k,, is complex valued. Define a cost function
for this stage as ‘

I = El| fn(m)? + |Bim)|] (G.1)

where f,.(n) is the forward prediction error and b,,,(n) is the backward prediction error, both
measured at the output of the stage; E is the statistical expectation operator. The input-
output relations of the lattice stage under consideration are described by

Jo) = frnr(n) + kEDp_1(n—1)
bm(n) = bm-—l(n_l) + Kmfm—l(n)

The gradient of the cost function J,, with respect to the real and imaginary parts of the
reflection coefficient k,, is given by

Vi, = 2E(fmbm_1(1—1) + bpfn}ffi(n)] G-2)

915
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where f,,..1(n) is the forward prediction error and b,,_(n — 1) is the delayed backward
prediction error, both measured at the input of the lattice stage; the-other two prediction
errors in Eq. (G.2) refer to the output of the stage. Following the development of the LMS:
algorithm as presented in Chapter 9, we may use instantaneous estimates of the expecta-
tions in Eq. (G.2) and thus write

E[fr ()b, —1(n—1)] = fh(mb, -\ (n—1)
Eba(m)fl—10m)] = by} f 5—1(n)
Correspondingly, we may express the instantaneous estimate of the gradient V,,.J as

Vol (1) = 205 m)b_1(n~1) + bu(n)fl ()] (G.3)

Let k,,(n — 1) denote the old estimate of the reflection coefficient k,, of the mth lattice
stage. Let &,,(n) denote the updated estimate of this reflection coefficient. We may com-
pute this updated estimate by adding to the old estimate k.(n — 1) a correction term pro-
portional to the gradient estimate V,J(n), as shown by

k() = Ren=1) = S im0 ) (G4

where ., denotes a time-varying step-size parameter associated with the mth lattice stage.
Substituting Eq. (G.3) in (G.4), we thus get

Rn() = R(n—1) = pn(m)[fln(Mbm—1(n—1) + bu(m)ffu_1 (M)} (G.5)
The adaptation parameter w.,,(n) is chosen as

I '
Kom(1) . (G.6)

where

Cras(m) = D [t OF + (s (G— D]
=1 ) (G.7)

= Bmt(t—1) + | fum s + b in—D]

For a well-behaved convergence of the algorithm, we usually set ji < 0.1. The parameter
%.m— 1(n) represents the total energy of both the forward and backward predictiod errors at
the input of the mth stage, measured up to and including time n.

In practice, a minor modification is made to the energy estimator of Eq. (G.7) by
writing it in the form of a single-pole average of squared data, as shown by (Griffiths,
1977, 1978)

B 1 () = P 1(n=1) + (1=B)|foue (W + [bms(n—1)|"] (G.8)

where 0 < B < 1. The introduction of the parameter B in Eq. (G.8) provides the GAL algo-
rithm with a finite memory, which helps it deal better with statistical variations when oper-
ating in a nonstationary environment,
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TABLE G.1 SUMMARY OF THE GAL ALGORITHM

Parameters: M = final prediction order
@ = constant, lying in therange 0 < f < 1
p<0l
Initialization; For prediction orderm = 1,2, . . ., M, put
fm(0) = b, (0) = 0
Em_1(0) = 8, B = small constant
Rm(0) = 0
Fortimen =1,2,...,put

Joln) = bo(n) = u(n), u(n) = lattice predictor input
Prediction: Fot prediction orderm = 1,2, ..., M and time n = 1, 2, .. . , compute
Jn() = frn1ln) + RE(n)bp—1(n—1)
Bon(1) = B 1 (1) + KA )i 1(R0)
Bne1(n) = BEnoi(n=1) + (1= B)Ufut D + [ stn=DP)

Rmln) = Ko = 1) — ;ﬁ—(;)- e ()b(R) + by y(n— IR
m—1

A summary of the GAL algorithm is presented in Table G.1.
Properties of the GAL Algorithm

The use of time-varying step-size parameter k(1) = /%, (n) in the update equation for
the reflection coefficient &,,(n) introduces a form of normalization similar to that in the
normalized LMS algorithm. From Eq. (G.8) we see that for small magnitudes of the pre-
diction errors f,,—,(n) and b,,_y(n) the value of the parameter €,.—1(n) is correspondingly
small or, equivalently, the step-size parameter p.,(n) has a correspondingly large value.
Such a behavior is desirable from a practical point of view. Basically, a small value for the
prediction errors means that the adaptive lattice predictor is providing an accurate model
of the external environment in which it is operating. Hence, if there is any increase in the
prediction errors, it should be due to variations in the external environment, in which case
it is highly desirable for the adaptive lattice predictor to respond rapidly to such variations.
This objective is indeed realized by having the step-size parameter W) assume a large
value, which makes it possible for the GAL algorithm to provide an initially rapid conver-
gence to the new environmental conditions. If, on the other hand, the input data applied to
the adaptive lattice predictor are too noisy (i.e., they contain a strong white-noise compo-
nent in addition to the signal of interest), we find that the prediction errors produced by the
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adaptive lattice predictor are correspondingly large. In such a situation, the parameter
€m—1{n) has a large value or, equivalently, the step-size parameter p.,,(n) has a small value.
Accordingly, the GAL algorithm does not respond rapidly to variations in the external
environment, which is precisely the way we would like the algorithm to behave (Alexan-
der, 1986a).

Another point of interest is that the convergence behavior of the GAL algorithm is
somewhat more rapid than that of the LMS algorithm, but inferior to that of exact recur-
sive LSL algorithms.
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H —— ‘
Solution of the Difference
Equation (9. 78]

In this appendix we fill in the mathematical details concerning the mean-squared error
analysis of the LMS algorithm. We begin by reproducing Eq. (9.75):

x(n+1) = Bx(n) + p o (H.1)
where B is a real, positive, and symmetric matrix; A is a vector of eigenvalues pertaining
to an ensemble-averaged correlation matrix R of size M-by-M.

Equation (H.1) is a difference equation of order 1 in the vector x(r). Therefore,
assuming an initial value x(0), the solution to this equation is'

n—1

x(1) = B'X(0) + p¥/min Y BA (H2)
i=0

By analogy with the formula for the sum of a geometric series, we may express the finite
. n—1

sum Z B' as follows:
i=0 n-—1

> B=a-ya-»"' (H3)
i=0

where I is the identity matrix. Substituting Eq. (H.3) in (H.2), we thus get
x(n) = B"[X(0) — Wil = B)T'A] + prin@ — B)T'A (H4)

! The approach we follow here is adapted from Mazo (1979). However, we differ from Mazo in that our
analysis is for complex data, whereas that of Mazo is for real data.

919
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The first term on the right-hand side of Eq. (H.4) is the transient component of the vector
x(n), and the second term is the steady-state component. Since the matrix B is symmetric,
we may apply to it an orthogonal similarity transformation. We may thus write

G™G =C (H.5)

The matrix C is a diagonal matrix with elements ¢; = 1, 2, . . ., M, which are the eigen-
values of B. The matrix G is an orthonormal matrix whose ith column is the eigenvector
g; of B, associated with eigenvalue c;. Because of the property

GG =1 (H.6)
we find that
B” = GC'G" (H.7)
Hence, we may rewrite Eq. (H.4) in the form
x(n) = GC"GT[x(0) — p V(I — B) A} + p2ma@ —B)™'A (H.8)
Since C is a diagonal matrix, we have 7
C" = diag[c], c3, . . ., ¢l (H.9)

It follows therefore that the solution defined by Eq. (H.8) is stable if and only if the eigen-
values of matrix B all have a magnitude less than 1. The eigenvalues of matrix B are all
positive, since the matrix B is positive definite. For stability, we therefore require the con-
dition

0<e¢; <1 foralli (H.10)

When this condition is satisfied, the transient component in Eq. (H.8) decays to zero as the
numbser of iterations, n, approaches infinity. This would then leave the steady-state com-
ponent as the only component. We may thus write

x(®) = p i — B)7'A (H.11)
Substituting Eq. (H.11) in (H.8), we may rewrite the solution as
x(n) = GC"GT[x(0) — x(=)] + x() (H.12)

In view of the diagonal nature of matrix C", and since the orthonormal matrix G consists
of the eigenvectors of B as its columns, we may express the matrix product GC"G” as
follows:

M
GC'G™ = > el (H.13)

i=1

Accordingly, we may rewrite Eq. (H.12) one more time in the equivalent form

M
x(m) = > cIgglx0) — X()] + () (H.14)
=i

This is the desired solution to the difference equation (HL.1).
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| ————
Steady-State Analysis of the
LMS Algorithm Without

Invoking the Independence
Assumption

In this Appendix, we revisit the steady-state analysis of the LMS algorithm by taking an
iterative approach that avoids the independence assumption (Butterweck, 1995a). The the-
ory applies to small values of the step-size parameter. It proceeds in two stages. First, a
power series solution is derived for the weight-error vector in terms of the step-size para-
meter. The result so obtained is next used to derive a corresponding expansion for the
weight-error correlation matrix.

1.1 ITERATIVE SOLUTION FOR THE WEIGHT-ERROR VECTOR

The weight-error vector €(n) computed by the LMS algorithm is defined by the stochastic
difference equation (9.55), reproduced here for convenience of presentation:

e(n+1) = [I-pu(mu(n)le(n) + pu(ne*(n) (LD

where u(n) is the tap-input vector, . is the step-size parameter, and e,(n) is the estimation
error produced by the Wiener solution. Under the condition that p. is small, the direct-aver-
aging method leads us to say that the solution of this equation is approximately the same
as that of Eq. (9.56), reproduced here in the form

€o(n+1) = (I~ pR)eg(n) + pu(n)et(n) (12)

a1
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where R = E[u(m)u”(n)]. For reasons that will become apparent presently, we have used
a different symbol for the weight-error vector in Eq. (L.2). Note that the solutions of Egs.
(I.1) and (1.2) become equal for the limiting case of a vanishing step-size parameter .

In the iterative procedure described by Butterweck (1995a), the solution of Eq. (1.2)
is used as a starting point for generating a whole set of solutions of the original stochastic
difference equation (I.1). The accuracy of the solution so obtained improves with increas-
ing iteration order. Thus, starting with the solution €g(n), the solution of Eq. (I.1) is
expressed as a sum of partial functions, as shown by

€(n) = gy(n) + €;,(n) + €;(n) + - - - a3
Define the zero-mean difference matrix:
P(n) = u(n)ufi(n) - R (L4)

Then, substituting Eq. (I1.4) in (I.1) yields
en+ D +e(n+ 1)+ ez(n_+ D+ -
= (I — uR)€(n) + €1(n) + €x(m) + - -
— pP(n)e\(n) + €xn) + - - ] + pun)e’y(n)
from which we readily deduce that
€(n+1) = (I — pR)e(n) + f(n), i=012,-.- (L5)

where the subscript i refers to the iteration order. The “driving force” fi(n) for the differ-
ence equation (1.5) is defined by

pa(me’(n),
tm = [—m’(n)e.--l(n).

Thus, a time-varying system characterized by the stochastic difference equation (L.1) is
transformed into a set of equations having the same basic format as described in (1.5), such
that the solution to the ith equation in the set (i.e., step i in the iterative procedure) follows
from the (i—1)th equation. In particular, the problem is reduced to a study of the trans-
mission of a stationary stochastic process through a low-pass filter with an extremely low
cutoff frequency.

2. (L6)

.2 B3ERIES EXPANSION OF THE WEIGHT-ERROR CORRELATION MATRIX

On the basis of Eq. (I.3), we may express the weight-error comrelation matrix in the form
of a corresponding series as follows:

K(n) = Ele(n)e"(n)]
= Z zE[e.(n)Ei’(n)], Gk=0,1,2,.-- (L7
i k
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Expanding this series in light of the definitions given in Egs. (1.5) and (1.6), and then
grouping equal-order terms in the step-size parameter ., we get the following series
expansion:

K(n) = Ko(n) + pK(n) + pKq(n) + - - (1.8)
where the various matrix coefficients are themselves defined as follows:
Eleq(n)e5(n)) forj=0
K{n) = . 1.9
forall (,k)= 0 ‘
H,
Z z Elemedm]  quch thati + k = 2j1,2j

These matrix coefficients are defined, albeit in a rather complex fashion, by the spectral
and probability distribution of the environment in which the LMS algorithm operates. Ina
general setting with arbitrarily colored signals, the calculation of K{(n) for j = 1 can be
rather tedious, except in some special cases (Butterweck, 1995a).

The zero-order term Ky(n) in Eq. (1.8) is of special interest for two reasons. First, for
a small p it may be used as an approximation to the actual K(n), as discussed in Section
9.4. Second, it lends itself to examination without any statistical assumptions concerning
the environment in which the LMS algorithm operates. In particular, we find that under
steady-state conditions (i.e., large n), Kq(n) is determined as the solution to the equation
(Butterweck, 1995b):

RK(n) + Ko(n)R = z JO RD,  largen (1.10)
where ’

JO. = Ele,(n) eX(n — D], 1=0,1,2,... : (L.11)

RY = Efunpun - b, [=0,1,2,... (L.12)

Note that for I = 0, we have J&, = Jpn and R? = R.

The steady-state value of the misadjustment M derived in Chapter 9 under the inde-
pendence assumption corresponds to setting ! = O in Eq. (1.10) and ignoring all higher-
order terms. This special case corresponds to the assumption that the estimation error e(n)
produced by the LMS algorithm is drawn from a white noise process. Thus, Eq. (1.10) 3s
approximated by

RKO(") + KO(")R = MminR’ large n
from which we readily find that the misadjustment is
o = HIRKgn)]
J, min

Jzi iR}

M
-_-J2i;)\i

This is indeed the result derived in Eg. (9.95).

R
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J

The Complex

Wishart Distribution

The Wishart distribution plays an important role in statistical signal processing. In this
appendix we present a summary of some important properties of the Wishart distribution
for complex-valued data. In particular, we derive a resuit that is pivotal to a rigorous analy-
sis of the convergence behavior of the standard RLS algorithm, presented in Chapter 13.
We begin the discussion with a definition of the complex Wishart distribution.

J.1 DEFINITION

Consider an M-by-M time-averaged (sample) correlation matrix ®(n), defined by

®(n) = ) w(durD) A}

i=1
where

u(i) = [uy (i), ui), . -y . uad))”

924
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In what follows, we assume that u(1), w(2), . . ., u(n) (n> M) are independently and iden-
tically distributed. We may then formally define the complex Wishart distribution as fol-
lows (Muirhead, 1982):

If (41(0), u2(d), ..., sl i = 1,2,..., n}, n = M, is a sample from the M-dimen-
sional Gaussian distribution N(O,R), and if ®(n) is the time-averaged correlation matrix
defined in Eq. (J.1), then the elements of @(n) have the complex Wishart distribution
“Wps(n,R), which is characterized by the parameters M, n, and R.

In specific terms, we may say that if matrix @ is Wa{(n,R), then the probability den-
sity function of @ is

1
:z"""zrﬂ,(l n)(det(lst))"*'2

where det() denotes the determinant of the enclosed matrix, etr(*) denotes the exponential
raised to the trace of the enclosed matrix, and [',(a) is the multivariate gamma function
defined by

AD) = ctr(-— 1 R—‘«Ir,)(d.et(cb))‘"““"”’2 (J.2)

I'W(a) =J etr(— A)(det(A))*~ M+ V2dA a3
A

where A is a positive definite matrix.

J.2 THE CHI-SQUARE DISTRIBUTION AS A SPECIAL CASE

‘For the special case of a univariate distribution, that is, M = 1, Eq. (J.1) reduces to the

scalar form:
om) = D Ju(i? (1.4)
i=1
Correspondingly, the correlation matrix R reduces to the variance o”. Let
X(n) = L;';) (.5)

Then, using Eq. (J.2) we may define the normalized probability density function of the
normalized random variable x X(n) as

2\n/2-1 2
(5

fx = I (J.6)
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where T'(1/2n) is the (scalar) gamma function.! The variable x*(n), defined above, is said
to have a chi-square distribution with n degrees of freedom. We may thus view the com-
plex Wishart distribution as a generalization of the univariate chi-square distribution.

A useful property of a chi-square distribution with n degrees of freedom is the fact
that it is reproductive with respect to 1/2n (Wilks, 1962). That is, the rth moment of xz(n)

15
Z'F!-g— + r!
Elx"(n)] = - )
&)
2

Thus, the mean, mean-square, and variance of z(z(n) are as follows, respectively:

El*ml =n (J.8)
Elx*(m] = n(n + 2) 3.9
var[x%(n)] = n(n +2) — n’*=2n J.10)

Moreover, from Eq. (J.7) we find that the mean of the reciprocal of xz(n) is
Y L
2

E[xztn)] -3 r(a)

2

O G)
)

J.11)

'For the general case of a complex number g whose real par is positive, the gamma function ['(g) is
defined by the definite integral (Wilks, 1962)

Tig) = Jnx‘_' e dx
Integrating it by parts, we readily find that °

Fg=@-l'g-1
For the case when g is a positive integer, we may thus express the gamma function T'(g) as the factorial

Fg)=@-Nn!
When g > 0, but not an integer, we have
T =~ NDI®

where 0 < 8 < 1. For the particular casc of 8 = 172, we have I'(8) = V'r.
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J.3 PROPERTIES OF THE COMPLEX WISHART DISTRIBUTION

Returning to the main theme of this appendix, the complex Wishart distribution has some
important properties of its own, which are summarized as follows (Muirhead, 1982;
Anderson, 1984):

1.

If ® is Wydn, R) and a is any M-by-1 random vector distributed independently
of @ with P(a = 0) = 0 (.., the probability that a = 0 is zero), then a”®a/a"Ra
is chi-square distributed with n degrees of freedom, and is independent of a.

. If @ is Wy (n,R) and Q is a matrix of dimensions M-by-k and rank k, then Q7®Q

is W (n,Q"RQ).
If ® is Wyu(nR) and Q is a matrix of dimensions M-by-k and rank &, then -
(QP™'Q) " isWiln — M + LQ"RT'Q™H.

. If @ is Wy, (n,R) and a is any M-by-1 random vector distributed independently of

@ with Pa = 0) = 0, then a"R™'a/a”® 'a is chi-square distributed with
n — M + 1 degrees of freedom.

. Let @ and R be partitioned into p and M — p rows and columns, as shown by

@ By
®= [‘1’21 ‘1’22]
_[Ru Ry
R= [:21 Rzz]

If @ is distributed according to “Wy(n,R), then ®,, is distributed according (o
pr(n’R”).

J.4 EXPECTATION OF THE INVERSE CORRELATION MATRIX ®~'(n)

Property 4 of the complex Wishart distribution may be used to find the expectation of the
inverse correlation matrix ®~'(n), which is associated with the convergence of the RLS
algorithm in the mean square. Specifically, for any fixed and nonzero in R, we know
from Property 4 described above that a”R™'ova”® ™ 'a is chi-square distributed with
1 — M + 1 degrees of freedom. Let x*(n = M + 1) denote this ratio. Then, using the result
describer in Eq. (J.11), we may write

Hegy— — Hp-1 1
Ela'® " '(nya] = «”R QE[XZ("_M+1)]

el MR, n>M+1
n-M-—1

which, in turn, implies that

Ao ()] = ————
—

R, n>M+1 012
M—-1



