CHAPTER

11

Method of Least Squares

In this chapter, we use a model-dependent procedure known as the method of least squares
to solve the linear filtering problem, without invoking assumptions on the statistics of the
inputs applied to the filter. To illustrate the basic idea of least squares, suppose we have a
set of real-valued measurements #(1), #(2), ..., w(N), made at times ¢,, t5, . . ., ¢y, respec-
tively, and the requirement is to construct a curve that is used to fir these points in some
optimum fashion. Let the time dependence of this curve be denoted by f#,). According to
the method of least squares, the “best” fit is obtained by minimizing the sum of squares of
difference between fir;) and u(i} fori = 1, 2, . . . , N, hence the name of the method.

The method of least squares may be viewed as an alternative to Wiener filter theory.
Basically, Wiener filters are derived from ensemble averages with the result that one filter
(optimum in a probabilistic sense) is obtained for all realizations of the operational envi-
ronment, assumed to be wide-sense stationary. On the other hand, the method of least
squares is deterministic in approach. Specifically, it involves the use of time averages, with
the result that the filter depends on the number of samples used in the computation. We
begin our study in the next section by outlining the essence of the linear least-squares esti-

mation problem.

11.1 STATEMENT OF THE LINEAR LEAST-SQUARES ESTIMATION PROBLEM
Consider a physical phenomenon that is characterized by two sets of variables, d(i) and
u(i). The variable d(i) is observed at time i in response to the subset of variables u(i),

u(i = 1),...,u(i — M + 1) applied as inputs. That is, d(i) is a function of the inputs u(i),
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u(i— 1), ...,u(i — M+ 1). This functional relationship is hypothesized to be linear. In
particular. the response d(i) is modeled as

M=1
diy = D whali —K) + e,(0) (11.1)
k=0

where the w,, are unknown parameters of the model, and ¢,(i) represents the measurement
error to which the statistical nature of the phenomenon is ascribed; each term in the sum-
mation in Eq. (11.1) represents a scalar inner product. In effect, the model of Eg. (11.1)
says that the variable d(/) may be determined as a linear combination of the input variables
u(i), u(i — 1), ..., u(i — M + 1), except for the error e,(i). This model, represented by the
signal-flow graph shown in Fig. 11.1, is called a muitiple linear regression model.

The measurement error e,(i) is an unobservable random variable that is introduced
into the mode! to account for its inaccuracy. It is customary to assume that the measure-
ment error process e,(i) is white with zero mean and variance a2 That is,

Ele, (D] =0 forall i

and

2’ ;= k
Ele (i)ek)) = {g

, izk
The implication of this assumption is that we may rewrite Eq. (11.1) in the ensemble-aver-
aged form

M-
ELd()] = D whali — &)
k=0

where the values of u(i), «(i — 1), . .., u(i — M + 1) are known. Hence, the mean of the
response d(i), in theory, is uniquely determined by the model.

The problem we have to solve is to estimate the unknown parameters of the multi-
ple linear regression model of Fig. 11.1, the w,, given the two observable sets of vari-
ables: u(i) and d(i),i = 1,2, ..., N. To do this, we postulate the linear transversal filter of
Fig. 11.2 as the model of interest. By forming inner scalar products of the tap inputs u(i),
u(i — 1),...,u(i —M + 1) and the corresponding tap weights wo, W, .. ., War—1, and by
utilizing d(i) as the desired response, we define the estimation error or residual (i) as the
difference between the desired response d(i) and the filter output y(i), as shown by

e(i) = d(i) — y(i) (11.2)
where
M-1
W) = Z wh uli —- k) (11.3)
k=0
That is, M1
eli) = d(i) — > whuli = k) (11.4)

k=0
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In the method of least squares, we choose the tap weights of the transversal filter, the w,,
s0 as to minimize a cost function that consists of the sum of error squares:

2
Cwor . - wa-) = 0 lelhf? (11.5)

P=iy

where i; and i, define the index limits at which the error minimization occurs; this sum
may also be viewed as an error energy. The values assigned to these limits depend on the
type of data windowing employed, as discussed in Section 11.2. Basically, the problem we
have to solve is to substitute Eq. (11.4) into (11.5) and then minimize the cost function
E(wg, - . . . Wa—) with respect to the tap weights of the transversal filter in Fig. 11.2. For
this minimization, the tap weights of the filter wg, w), . . ., wa—, are held constant during
the interval i, < i < i,. The filter resulting from the minimization is termed a linear least-
squares filter. ‘

11.2 DATA WINDOWING

Given M as the number of tap weights used in the transversal filter model of Fig. 11.2, the
rectangular matrix constructed from the input data, u(1), #(2), . . ., u(N), may assume -
ferent forms, depending on the values assigned to the limits i; and i, in Eq. (11.5). In par-
ticular, we may distinguish four different methods of windowing the input data:

1. Covariance method, which makes no assumptions about the data outside the
interval [1, N]. Thus, by defining the limits of interest as i, = M and i; = N, the
input data may be arranged in the matrix form

Cu{ M) uM+1) - u(I}D ]
wM - 1) u(M) " ulN—1)
Lu(l) u(2) "o u(N — M+ 1)

2. Autocorrelation method, which makes the assumption that the data prior to time
i = 1 and the data after i = N are zero. Thus, by using iy, = landi; =N+ M —
1, the matrix of input data takes on the form

Fu(1) w(2) »«+« ulM) uM+ 1) + =+« wN) 0 see 0]
0 w(ly +++ uM-—1) u(M) see uN-1) u(N) see 0

» - * . -

L0 0 eee u(D) u(2) cer uN—M+1) uN=M =+« udJ
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3. Prewindowing method, which makes the assumption that the input data prior to
i = | are zero, but makes no assumption about the data afier i = N. Thus, by
using i; = 1 and i, = N, the matrix of the input data assumes the form

(1) w(2) e+ w(M) UM+ 1) «++ uN) ]
0 u(l) =+ uM—1 ulM) ve e a{N-1)
L O 0 = s u(l) u(2) e uN—M+ 1)

4. Postwindowing method, which makes no assumption about the data prior to time
i = 1, but makes the assumption that the data after i = N are zero. Thus, by using
iy =Mand i, = N + M — 1, the matrix of input data takes on the form

" u(M) UM+ 1) ¢+ ulN) 0 eer 07
M~ 1) uw(M) cee uN-1) u(N) cee 0
Lu(l) u(2) cee UN-M+1) WN-M) -+ ul)]

The terms “covariance method” and “‘autocorrelation method” are commonly used-
in speech-processing literature (Makhoul, 1975; Markel and Gray, 1976). It should, how-
ever, be emphasized that the use of these two terms is not based on the standard definition
of the covariance function as the correlation function with the means removed. Rather,
these two terms derive their names from the way we interpret the meaning of the known
parameters contained in the system of equations that result from minimizing the index of
performance of Eq. (11.5). The covariance method derives its name from control theory
literature where, with zero-mean tap inputs, these known parameters represent the ele-
ments of a covariance matrix, hence the name of the method. The autocorrelation method,
on the other hand, derives its name from the fact that, for the conditions stated, these
known parameters represent the short-ferm autocorrelation function of the tap inputs,
hence the name of the second method, It is of interest to note that, among the four win-
dowing methods described above, the autocorrelation method is the only one that yields a
Toeplitz correlation matrix for the input data.

In the remainder of this chapter, excepi for Problem 4, which deals with the auto-
correlation method, we will be exclusively concemed with the covariance method. The
prewindowing method is considered in subsequent chapters.

11.3 PRINCIPLE OF ORTHOGONALITY (REVISITED)

When we developed the Wiener filter theory in Chapter 5, we proceeded by first deriving
the principle of orthogonality (in the ensemble sense) for wide-sense stationary discrete-
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time stochastic processes, which were then used to derive the Wiener—Hopf equations
that provide the mathematical basis of Wiener filters. In this chapter we proceed in a sim-
ilar fashion by first deriving the principle of orthogonality based on time averages, and
then use it to derive a system of equations known as the normal equations that provides the
mathematical basis of linear least-squares filters. The development of this theory will be -
done for the covariance method.

The cost function or the sum of the error squares in the covariance method is defined
by

N
CWor ..., W) = D le() (11.6)
i=M

By choosing the limits on the time index i in this way, in effect, we make sure that for each
value of i, all the M tap inputs of the transversal filter in Fig. 11.2 have nonzero values. As
mentioned previously, the problem we have to solve is to determine the tap weights of the
transversal filter of Fig. 11.2 for which the sum of error squares is minimum.
We first rewrite Eq. (11.6) as
N
Bwos .- - Wp—1) = . e(i)e*(i) (11.7)
i=M

where the estimation error e(i) is defined in Eq. (11.4). Let the kth tap-weight w, be
expressed in terms of its real and imaginary parts as follows:

wi = a; + jbg, k=0,1,....M—-1 (11.8)
Thus, substituting Eq. (11.8) in (11.4), we get
M—1

ei) = d(i) = ) (ay = jbouli — k) (11.9)
k=0

We define the kth component of the gradient vector V¢ as the derivative of the cost func-
tion €(wp, . . . , wa—1) With respect to the real and imaginary parts of tap-weight w,, as
shown by

6% g
= — + ——— 11.10
V€ J ab, ( )

Hence, substituting Eq. (11.7) in (11.10), and recognizing that the estimation error e(i) is
complex valued, in general, we get

=-Z[()"" Dt e 5D e S+ e 2| ann

Next, differentiating e(i) in Eq. (11.9) with respect to the real and imaginary parts of wy,
we get the following four partial denivatives:
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AU
6ak
Y
90 — i - b
6ak
. 11.12)
dei) _ . . (
"ok, Ju(i — k)
d0e*() _ .o
_6bk Jur(i = k)
Thus, the substitution of these four partial derivatives in Eq. (11.11) yields the result:
N
Ve = =2 > uli — ke*Gi) (11.13)
i=M

For the minimization of the cost function (wy, . . . , wa—) With respect to the tap
weights wy, . . ., wa—; of the transversal filter in Fig. 11.2, we require that the following
conditions be satisfied simultaneously:

V,€=0, k=0,1....M-1 (11.14)

Let ein(i) denote the special value of the estimation error e(i) that results when the cost
function %(wg, . . . , Way—,) is minimized (i.e., the transversal filter is optimized) in accor-
dance with Eq. (11.14). From Eq. (11.13) we then readily see that the set of conditions
(11.14) is equivalent to the following; '

N

> ui— Beka® =0,  k=0,1,..., M-I (11.15)
i=M
Equation (11.15) is the mathematical description of the temporal version of the principle
of orthogonality. The time average' on the left-hand side of Eq. (11.15) represents the
cross-correlation between the tap input u(i — &) and the minimum estimation error &m;n(i)
over the values of time i in the interval [M, N), for a fixed value of k. Accordingly, we may
state the principle of orthogonality as follows:

The minimum error time series e,;,(/) is orthogonal to the time series u(i — k) applied to
tap k of a transversal filter of length M for k = 0,1, ..., M — 1, when the filter is oper-
ating in its least-squares condition.

This principle provides the basis of a simple fest that we can carry out in practice to
check whether or not the transversal filter is operating in its least-square condition. We

"To be precise in the use of the term “time average,” we should divide the sum on the left-hand side of
Eq. (11.15) by the number of terms (N — M + 1) used in the summation. Clearly, such an operaticn has no effect
on Eq. (11.15). We have chosen to ignore the inclusion of this scaling factor merely for convenience of presen-
tation. -
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merely have to determine the time-averaged cross-correlation between the estimation error
and the time series applied to each tap input of the filter. It is only when all these M cross-

correlation functions are identically zero that we find the cost function €(wy, . . ., was—1)
is mipimum.

Corollary

Letvig, W, . . . , Way— denote the special values of the tap weights wg, wy, .. ., wa—1 that

result when the transversal filter of Fig. 11.2 is optimized to operate in its least-squares
condition. The filter output, denoted by ymiq(i), is obtained from Eq. (11.3) to be
M-1
Yoo} = > Whu (i = &) (11.16)
k=0
This filter output provides a least-squares estimate of the desired response d(i), the esti-
mate is said to be linear because it is a linear combination of the tap inpats u(i), u(i — 1),
., u(i — M + 1). Let U, denote the space spanned by the tap inputs u(i), . . .,
u(i — M + 1). Let d(i|U;) denote the least-squares estimate of the desired response d(i),
given the tap inputs spanned by the space U;. We may thus write

W) = Yeminli) (1117)
or, equivalently,
M—-1
i) = > W i — k) (11.18)
k=0

Returning to Eq. (11.15), suppose we multiply both sides of this equation by W} and
then sum the result over the values of k in the interval [0, M — 1]. We then get (after inter-
changing the order of summation):

N M-l
> [ W4 ui — k)]e‘!‘,,i,,(ﬂ =0 (11.19)
i=M L k=0
The summation term inside the parentheses on the left-hand side of Eq. (11.19) is recog-
nized to be the least-squares estimate d(i|3L,) of Eq. (11.18). Accordingly, we may simplify
Eq. (11.19) to
N

D AilUetiali) = 0 (11.20)

=M
Equation (11.20) is a mathematical description of the corollary to the principle of orthog-
onality. We recognize the time average on the lefi-hand side of Eq. (1 1.20) is the cross-
correlation of the two time series d(i[;) and e;,(7). Accordingly, we may state the corol-
lary to the principle of orthogonality as follows:

When a transversal filter operates in its least-squares condition, the least-squares estimate
of the desired response, produced at the filter output and represented by the time series
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d(i|%;), and the minimum estimation error time series e.,;,(i) are orthogenal to each other
over time i.’

A geometric illustration of this corollary to the principle of orthogonality is deferred to
Section 1.6.

11.4 MINIMUM SUM OF ERROR SQUARES

The principle of orthogonality, given in Eq. (11.15), describes the least-squares condition
of the transversal filter in Fig. 11.2 when the cost function é(wy, . . ., wp—;) is minimized
with respect to the tap weights wy, . . ., wy— in the filter. To find the minimum value of
this cost function, that is, the minimum sum of error squares €., it is obvious that we

may write
di) = 4w + emali)
—— ——— —_—
desired estimate of estimation
response desired error (11.21)
response

Hence, evaluating the energy of the‘time series d(i) for values of time i in the interval [M,
N1, and using the corollary to the principle of orthogonality [i.e., Eq. (11.20)], we get the
simple result

%q = €est + Emin (11.22)
where
N
€= |dil? (11.23)
i=M
N
Bes= . ldlilU) (11.24)
i=M
N
(gesl = Z |emin(i)|2 (1 125)
i=M

Rearranging Eq. (11.22), we may express the minimum sum of error squares €y in terms
of the energy €, and the energy ..., contained in the time series d(i) and d(i|,), respec-
tively, as follows:

cémin = %d - c'gcsl (I 126)

Clearly, given the specification of the desired response d(i) for varying i, we may use Eq.
(11.23) to evaluate the energy €. As for the energy €., contained in the time series d(/ ;)
representing the estimate of the desired response, we are going to defer its evaluation to
the next section.
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Since %, is nonnegative, it follows that the second term on the right-hand side of
Eq. (11.26) can never exceed €. Indeed, it reaches the value of €, when the measurement
error e,(f) in the multiple linear regression model of Fig. 11.1 is zero for all i , which is a
practical impossibility.

Another case for which €,;, equals €, occurs when the least-squares problem is
underdetermined. Such a situation arises when there are fewer data points than parameters,
in which case the estimation error and therefore €., is zero. Note, however, that when the
least-squares problem is underdetermined, there is no unique solution to the problem. Dis-
cussion of this issue is deferred to the latter part of the chapter.

11.5 NORMAL EQUATIONS AND LINEAR LEAST-SQUARES FILTERS

There are two different, and yet basically equivalent, methods of describing the least-
squares condition of the linear transversal filter in Fig. 11.1. The principle of orthogonal-
ity, described in Eq. (11.15), represents one method. The system of normal equations rep-
resents the other method; interestingly enough, the system of normal equations derives its
name from the corollary to the principle of orthogonality. Naturally, we may derive this
system of equations in its own independent way by formulating the gradient vector V%€ in
terms of the tap weights of the filter, and then solving for the tap-weight véctor W for
which V& is zero. Alternatively, we may derive the system of normal equations from the
principle of orthogonality. We are going to pursue the latter (indirect) approach in this sec-
tion, and leave the former (direct) approach to the interested reader as Problem 7.

The principle of orthogonality in Eq. (11.15) is formulated in terms of a set of tap
inputs and the minimum estimation error emy;.(i). Setting the tap weights in Eq. (11.4) o
their least-squares values, we get

M-t
emin(d) = d(i) = > Wi — ) (11.27)
r=:0
where on the right-hand side we have purposely used 7 as the jummy summation index.
Hence, substituting Eq. (11.27) in (11.15), and then rearranging terms, we get a system of
M simultaneous equations:

N
S > wi-buri - = wi—kd*@),  k=0,... .M-1 (1128
t=0 i=M i=M

The two summations in Eq. (11.28) involving the index i represent time-averages, except
for a scaling factor. They have the following interpretations:

1. The time average (over i) on the left-hand side of Eq. (11.28) represents the fime
averaged autocorrelation function of the tap inputs in the transversal filter of Fig.
11.2. In particular, we may write

N
S = ui—kui—n O=@EH=M-1 (1129

i=M
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2. The time average (also over i) on the right-hand side of Eq. (1 1.28) represents the
cross-correlation between the tap inputs and the desired response. In particular,

we may write
N

A== ui—Kd*D), O0sk=M-1 (11.30)

i=M

Accordingly, we may rewrite the system of simultaneous equations (11.28) as follows:
M—1

> wdt b =zd-k,  k=01,....M-1 (11.31)
=0

The system of equations (11.31) represents the expanded system of the normal equations
for a linear least-squares filter.

Matrix Formulation of the Normal Equations

We may recast this system of equations in matrix form by first introducing the following
definitions:

1. The M-by-M time-averaged correlation matrix of the tap inputs u(i), u(i — 1),

Coouli— M+ )
(0, 0) H1,0) oo HM-1,0) 7
(0, 1) (1, 1) cee M- 1,1)
o= ° ) - : | 4132

O, M—1) HILM-1) ¢+ SbM-1,M~—1)]

2. The M-by-1 time-averaged cross-correlation vector between the tap inputs u(i),
u(i — 1), ..., u(i — M + 1) and the desired response d(i):

z = [z(0), z2(~1), ..., z2(-M + )T (11.33)

3. The M-by-1 tap-weight vector of the least-squares filter:
W = [fo, Wy, .. .o War]T (11.34)

Hence, in terms of these matrix definitions, we may now rewrite the system of M simulta-
neous equations (11.31) simply as

oW =1z (11.3%)

Equation (11.35) is the matrix form of the normal equations for linear least-squares filters.
Assuming that & is nonsingular and therefore the inverse matrix P! exists, we may
solve Eq. (11.35) for the tap-weight vector of the linear least-squares filter:

=0z (11.36)
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The condition for the existence of the inverse matrix @' is discussed in Section 11.6.

Equation (11.36) is a very important result. In particular, it is the linear least-squares
counterpart to the solution of the matrix form of the Wiener—Hopf equations (5.36). Basi-
cally, Eq. (11.36) states that the tap-weight vector % of a linear least-squares filter is
uniquely defined by the product of the inverse of the time-averaged correlation matrix ¢
of the tap inputs of the filter and the time-averaged cross-correlation vector Z between the
tap inputs and the desired response. Indeed, this equation is fundamental to the develop-
ment of all recursive formulations of the linear least-squares filter, as pursued in subge-
quent chapters of the book.

Minimum Sum of Error Squares

Equation (11.26), derived in the preceding section, defines the minimum sum of error
squares i, We now complete the evaluation of €, expressed as the difference
between the energy €, of the desired response and the energy ., of its estimate. Usually,
%, is determined from the time series representing the desired response. To evaluate €,
we wrile

N
Ce= ) ldGIU)?
i=M

N M-1M-1
= z Wlu(i — uri — 1) (1137)
i=M =0 k=0
M-—1M=-1 N
= RWE > uli ~ Kt = 1)
=0 k=0 i=M

where, in the second line, we have made use of Eq. (1118). The inner summation over
time  in the final line of Eq. (11.37) represents the time-averaged autocorrelation function
(1, k) [see Eq. (11.29)]. Hence, we may rewrite Eq. (11.37) as

M—1 M-I
Ben= Zwrcb(r W, (11.38)

r=0 k=0

=WiDw

where & is the least-squares tap-weight vector and @ is the time-averaged correlation
matrix of the tap inputs. We may further simplify the formula for €, by noting that from
the normal equations (11.35), the matrix product ® equals the cross-correlation vector z.
Accordingly, we have

Ces = Wz

(11.39)
=%
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Finally, substituting Eq. (11.39) in (11.26), and then using Eq. (11.36) for W, we get
Brin = &g — Z'W (11.40)
= ng - Z'H‘p- ll

Equations (11.40) is the formula for the minimum sum of error squares, exprcssed in terms
of three known quantities: the-energy €, of the desired response, the time-averaged corre-
lation matrix @ of the tap inputs, and the time-averaged cross-correlation vector z between
the tap inputs and the desired response.

11.6 TIME-AVERAGED CORRELATION MATRIX ®

The time-averaged correlation matrix or simply the correlation matrix @ of the tap inputs
is shown in its expanded form in Eq. (11.32), with the element ¢(z, k) defined in Eq.
(11.29). The index k in d(z, k) refers to the row number in the matrix @, and ¢ refers to the
column number. Let the M-by-1 tap-input vector u(i) be defined by

u() = [u(@), wG — 1), ..., ui—- M+ D)7 (11.41)
Hence, we may use Eqgs. (11.29) and (11.41) to redefine the correlation matrix @ as the
time average of the outer product u(i)u”(i) over i as follows:

N
® =) uiuG (11.42)
=M

To restate what we said earlier under footnote 1, the summation in Eq. (11.42) should be
divided by the scaling factor (N — M + 1) for the correlation matrix @ to be a time aver-
age in precise terms. In the statistics literature, this scaled form of ® is referred to as the
sample correlation matrix. Inany event, on the basis of the definition given in Eq. (11.42),
we may readily establish the following properties of the correlation matrix:

Property 1. The correlation matrix ® is Hermitian; that is
o =a
This property follows directly from Eq. (11.42).
Property 2. The correlation matrix ® is nonnegative definite; that is,
x?dx = 0

for any M-by-1 vector X.
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Using the definition of Eq. (11.42), we may write
x"dx = Z Tu@u’x

x"u(ix e

I
Mz [l

[}
E

[z

|x¥u@)]? =0

i
ES

which proves Property 2. The fact that the correlation matrix @ is nonnegative definite
means that its determinant and all principal minors are nonnegative. When the above
condition is satisfied with the inequality sign, the determinant of ® and its principal
minors are likewise nonzero. In the latter case, @ is nonsingular and the inverse @'
exists.

Property 3. The eigenvalues of the correlation matrix ® are all real and non-
negative.

The real requirement on the eigenvalues of ¥ follows from Property 1. The fact that
all these eigenvalues are also nonnegative follows from Property 2.

Propwty 4. The correlation matrix is the product of two rectangular Toeplitz
matrices that are the Hermitiar transpose of each other.

The correlation matrix @ is, in general, non-Toeplitz, which is clearly seen by exam-
ining the expanded form of the cormrelation matrix given in Eq. (11.32). The elements on
the main diagonal, &(0, 0), &(1, 1),..., &M — 1, M — 1), have different values; this also
applies to secondary diagonal above or below the main diagonal. However, the matrix ®
has a special structure in the sense that it is the product of two Toeplitz rectangular matri-
ces. To prove this property, we first use Eq. (11.42) to express the matrix @ as
follows:

[w(m)
ufiM —- 1)
= [uM),uM + 1),... . wN)] |- (11.43)

LNy
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Next, for convenience of presentation, we introduce a data matrix A, whose Hermitian

transpose is defined by
A= [uM, M+ 1), o, uM]
" (M) M+ 1) oo u®™) b
uM—1) u(M) see wN—1)
= . . . (11.44)
Lu(l) u(2) seo uN—M +1) ]

The expanded matrix on the right-hand side of Eq. (11.44) is recognized to be the matrix
of input data for the covariance method of data windowing (see point 1 of Section 11.2).
Thus, using the definition of Eq. (11.44), we may rewrite Eq. (11.43) in the compact form

& = A"A (11.45)

From the expanded form of the matrix given in the second line of Eq. (11.44), we see that
A" consists of an M- by-(N — M + 1) rectangular Toeplitz matrix. The data matrix A itself
is likewise an (N — M + 1)-by-M rectangular Toeplitz matrix. According to Eq. (11.45),
therefore, the correlation matrix @ is the product of two rectangular Toeplitz matrices that
are the Hermitian transpose of each other: this completes the proof of Property 4.

11.7 REFORMULATION OF THE NORMAL EQUATIONS IN TERMS
OF DATA MATRICES

The system of normal equations for a least-squares ransversal filter is given by Eq. (11.35)
in terms of the correlation matrix ® and the cross-correlation vector z. We may reformu-
late the normal equations in terms of data matrices by using Eq. (11.45) for the correlation
matrix ® of the tap inputs, and a corresponding relation for the cross-correlation vector z
between the tap inputs and the desired response. To do this, we introduce a desired data
vector d, consisting of the desired response d(i) for values of i in the interval [M, N]; in
particular, we define

& = [dM), dM + 1), ..., dN) (11.46)

Note that we have purposely used Hermitian transposition rather than ordinary transposi-
tion in the definition of vector d to be consistent with the definition of the data matrix A
in Eq. (11.44). With the definitions of Eqgs..(11.44) and (11.46) at hand, we may now use
Eqs. (11.30) and (11.33) to express the cross-correlation vector z as

z= A" (11.47)
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Furthermore, we may use Eqs. (11.45) and (11.47) in {11.35), and so express the system
of normal equations in terms of the datamatrix A and the desired data vector d as
AfAw = AFd

Hence, the system of equations used in the minimization of the cost function ¢ may be rep-
resented by Aw =, d. Furthermore, assuming that the inverse matrix (A¥A)™" exists, we
may solve this system of equations by expressing the tap-weight vector & as

& = (A¥A)" 1AM (11.48)

We may complete the reformulation of our results for the linear least-squares prob-
lem in terms of the data matrices A and d by using (1) the definitions of Egs. (11.45) and
(11.47) in (11.40), and (2) the definitions of Eq. (11.46) in (11.23). By so doing, we may
rewrite the formula for the minimum sum of error squares as

Emin = 07d — dYAAYA) A (11.49)

Although this formula looks somewhat cumbersome, its nice feature is that it is expressed
explicitly in terms of the data matrix A and the desired data vector d.

Projection Operator

Equation (11.48) defines the least-squares tap-weight vector W in terms of the data matrix
A and the desired data vector d. The least-squares estimate of d is therefore given by

d = AW
= A(AFA)"'A"d (11.50)
Accordingly, we may view the multiple matrix product AA”A)"'A" as a projection
operator onto the linear space spanned by the columns of the data matrix A, which is the

same space L; mentioned previously for i = N. Denoting this projection operator by P, we
may thus write '

P = A(A"A) A (11.51)
The matrix difference
I-AAPA) AR =1-P

is the orthogonal complement projecior. Note that both the projection operator and its
complement are uniquely determined by the data matrix A. The projection operator, P,
applied to the desired data vector d, yields the corresponding estimate d. On the other
hand, the orthogonal complement projector, I — P, applied to the desired data vector d,
yields the estimation error vector €., = d — d. Figure 11.3 illustrates the functions of the
projection operator and the orthogonal compiement projector as described herein.
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I-P —» o, Figure 11.3  Projection operator P and
orthogonal complement projector I — P.

Example 1

Consider the example of a linear least-squares filter with two taps (i.e., M = 2) and a real-
valued input time series consisting of four samples (i.e., N = 4), hence N-M+1=3.
The input data matrix A and the desired data vector d have the following values:

[ uw(2) (1)
A=1| uB u2)
| u(4)  u(3)

r 2 3
1 2]
-1 1
d(2)
d= [d@)]
di4)

2
= 1 ]
1734

The purpose of this example is to evaluate the projection operator and the orthogonal com-
plement projector, and use them to illustrate the principle of orthogonality.

The use of Eq. (11.51), reformulated for 1eal data, yields the value of the projection
operator P as

1

P=AATA)'AT

1 26 15 -2
=—1 15 10 5
35

-3 5 34

The corresponding value of the orthogonal complement projector is

) 9 -15 3
I-P=—{-15 25 -5

Bls -5 1
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Accordingly, the estimate of the desired data vector and the estimation error vector have the
following values, respectively:

d="Pd
1.91
=]1.15
-0
€min = a- P

0.09
=1-0.15
0.03

Figure 11.4 depicts three-dimensional geometric representations of the vectors d and
€min. This figure clearly shows that these two vectors are normal (i.e., perpendicular) to
each other in accordance with the corollary to the principle of orthogonality, hence the ter-
minology “normal” equations. This condition is the geometric portrayal of the fact that in
a linear least-squares filter the inner product e dis zero. Figure 11.4 also depicts the
desired data vector d as the “vector sum” of the estimate d and the error en,;,. Note also
that the vector €y, is orthogonal to span(A), defined as the set of all linear combinations
of the column vectors of the data matrix A. The estimate & is just one vector in span(A).

Uniqueness Theorem

The linear least-squares problem of minimizing the sum of error squares, €(n), always has
a solution. That is, for given values of the data matrix A and the desired data vector d, we
can always find a vector W that satisfies the normal equations. It is therefore important that
we know if and when the solution is unigue. This requirement is covered by the following
unigueness theorem (Stewart, 1973):

The least-squares estimate # is unique if and only if the nullity of the data matrix A
equals zero.

Let A be a K-by-M matrix; in the case of the data matrix A defined in Eq. (11.44),
we have K = N — M + 1. We define the null space of matrix A, written as N(A), as the
space of all vectors x such that Ax = 0. We define the nullity of matrix A, written as
null(A), as the dimension of the null space N(A). In general, we find that

null{A) # null(A”).

In light of the uniqueness theorem, which is intuitively satisfying, we may expect a
unique solution to the linear least-squares problem only when the data matrix A has /in-
early independent columns; that is, when the data matrix A is of full column rank. This im-
plies that the matrix A has at least as many rows as columns; thatis, N~ M+ D= M
This latter condition means that the system of equations represented by Aw = d used in
the minimization is overdetermined, in that it has more equations than unknowns. Thus,
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Coordingte
for i=3

Coordinate
for i=2

Coordinate
for i=4

Figure 11.4 Three-dimensional geometric interpretations of vectars d, d, and €.

provided that the data matrix A is of full column rank, the M-by-M matrix A" A is non-sin-
gular, and the least-squares estimate has the unique value given in Eq. (11.48).

When, however, the matrix A has linearly dependent columns, that is, it is rank defi-
cient, the nullity of the matrix A is nonzero, and the result is that an infinite number of
solutions can be found for minimizing the sum of error squares. In such asituat:~n, the lin-
ear least-squares problem becomes quite involved, in that we now have the new problem
of deciding which particular solution to adopt. We defer discussion of this issue to the lat-
ter part of the chapter. In the meantime, we assume that the data matrix A is of full column
rank, so that the least-squares estimate W has the unique value defined by Eq. (11.48).
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11.8 PROPERTIES OF LEAST-SQUARES ESTIMATES

The method of least squares has a strong intuitive feel that is reinforced by several out-
standing properties of the method, assuming that the data matrix A is known with no
uncertainty. These properties, four in number, are described next (Miller, 1974; Goodwin
and Payne, 1977). )

Property 1. The least-squares estimate W is unbiased, provided that the measure-
ment error process &,(i) has zero mean.

From the multiple linear regression model of Fig. 11 1, we have [using the defini-
tions of Egs. (11.44) and (11.46)]

d=Aw, + €, (11.52)

Hence, substituting Eq. (11.52) into (11.48), we may express the least-squares estimate
W as
& = (A7A)'AMAw, + (AMA) A,

(11.53)
=w, + (A"A)""ANe,

The matrix product (AA)7'A” is a known quantity, since the data matrix A is completely
defined by the set of given observations u(1), u(2), . . ., (N}, see Eq. (11.44). Hence, if
the measurement error process e,(i} or, equivalently, the measurement error vector €, has
zero mean, we find by taking the expectation of both sides of Eq. (11.53) that the estimate
W is unbiased, that is,

EfWw] = w, (11.54)

Property 2. When the measurement error process e, (i) is white with zero mean and
variance o>, the covariance matrix of the least-squares estimate W equals o’ P!

Using the relation of Eq. (11.53), we find that the covariance matrix of the least-
squares estimate & equals

covi] = E[@& — w )W — w,)"]
= E[(AYA) 'A"e€7AAMA) " (11.55)
= (AFA)Y 'A"Ele eIAAPA) !

With the measurement error process e,(i) assumed to be white with zero mean and vari-
ance -, we have

Ele€”] = ¢”1 (11.56)
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where I is the identity matrix. Hence, Eq. (11.55) reduces to
coviv] = A(AFA) 'AYAARA) !
= g} (A"A)”! (11.57)
=g’
which proves Property 2.

Property 3. When the measurement error process e, (i) is white with zero mean, the
least-squares estimate W is the best linear unbiased estimate.
Consider any linear unbiased estimator W that is de.fined by

w = Bd (11.58)
where B is an M-by-(N — M + 1) matrix. Substituting Eqg. (11.52) into {11.58), we get
W = BAw, + Be, (11.59)

With the measurement error vector €, having zero mean in accordance with Property 1, we
find that the expected value of W equals

EW] = BAw,

For the linear estimator W to be unbiased, we therefore require that the matrix B satisfy
the condition

BA =1
| Accordingly, we may rewrite Eq. (11.59) as follows:
W =w, + Be,
The covariance matrix of % equals
coviw] = E[f — W) — w,)"]
= E[Be,€/B"]
= o’BB” (11.60)

Here, we have made use of Eq. (11.56), which describes the assumption that the elements
of the measurement error vector €, are uncorrelated and have a common variance a?; that
is, the measurement error process e,(i) is white. We next define a new matrix W in terms

of B as
¥ =B — (A7A)" A" (11.61
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Now we form the matrix product ¥¥" and note that BA = I:
W7 = [B — (A"A) 'AT)BY — A(A%A)T!)
= BB ~ BA(A"A)™' — (A"A)"'APBY + (APA)!
= BB — (A"A)”!

Since the diagonal elements of WW* are always nonnegative, we may use this relation to
write

o’ diag[BB”] = o? diag[(A¥A)™'} (11.62)

The term o”BB* equals the covariance matrix of the linear estimate W, as in Eq. (11.60).
From Property 2, we also know that the term o’(A”A) ™" equals the covariance matrix of
the least-squares estimate W. Thus, Eq. (11.62) shows that within the class of linear unbi-
ased estimates the least-squares estimate W is the “‘best” estimate of the unknown parame-
ter vector w, of the multiple linear regression model, in the sense that each element of %
has the smallest possible variance. Accordingly, when the measurement error process e,
contained in this model is white with zero mean, the least-squares estimate W is the best
linear unbiased estimate (BLUE).

Thus far we have not made any assumption about the statistical distribution of the
measurement error process e,(i) other than that it is a zero mean white-noise process. By
making the further assumption that the process e (i) is Gaussian distributed, we obtain a
stronger resuit on the optimality of the linear least-squares estimate, as discussed next.

Property 4. When the measurement error process e (i) is white and Gaussian, with
zero mean, the least-squares estimate W achieves the Cramér—Rao lower bound for unbi-
ased estimates.

Let fx{€,) denote the joint probability density function of the measurement error vec-
tor €,. LetW denote any unbiased estimate of the unknown parameter vector W, of the mul-
tiple linear regression model. Then the covariance matrix of W satisfies the inequality

coviw] = J~! (11.63)
where
covie] = E[(W — W)@ — W,)"] (11.64)
The matrix J is called Fisher’s information matrix; it is defined by”

4]

where ! is the log-likelihood function, that is, the natural logarithm of the joint probability
density of €,, as shown by

1 = Infe,) (11.66)

2pisher’s information matrix is discussed in Appendix D for the case of real parameters.
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Since the measurement error process ¢,(n) is white, the elements of the vector €, are
uncorrelated. Furthermore, since the process ey(n) is Gaussian, the elements of €, are sta-
tistically independent. With e,(7) assumed to be complex with a mean of zero and variance
o?, we have (see Section 2.11)

N
1 1 )
fele) = mm CXP[— ? Z Ieo(t)|2:| (11.67)

[=M
The log-likelihood function is therefore

=F - #eﬂea (11.68)
where F is a constant defined by
F=—(N- M+ 1) In(no?)
From Eq. (11.52), we have

€, =d— Awo
Using this relation in Eq. (11.68), we may rewrite / in terms of w, as
l=F— lz d“d + lz wiAMd + lz d"Aw, — lz wi A Aw, (11.69)
o o o c

Differentiating the real-valued log-likelihood function ! with respect to the complex-
valued unknown parameter vector W,, in accordance with the notation described in Appen-

dix B, we get
ol 1
W™ ? AH(d - Awo)
= —1-5 Ae, (14.70)
a

Thus, substituting Eq. (11.70) into (11.65) yields Fisher's information matrix for the prob-
lem at hand as

APEle.€11A (11.71)
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where, in the third line, we have made use of Eq. (11.56) describing the assumption that
the measurement error process e, (i) is white with zero mean and variance a’. Accordingly,
the use of Eq. (11.63) shows that the covariance matrix of the unbiased estimate W satis-
fies the inequality

coviw] = ¢’ ™! (11.72)

However, from Property 2, we know that 0°® ™' equals the covariance matrix of the least-
squares estimate W. Accordingly, W achieves the Cramér-Rao lower bound. Moreover,
using Property 1, we conclude that when the measurement error process e,(/) is a zero-
mean white Gaussian noise process, the least-squares estimate W .is a minimum variance
unbiased estimate (MVUE).

11.9 PARAMETRIC SPECTRUM ESTIMATION

The method of least squares is particularly well suited for solving parametric spectrum
estimation problems. In this section we study this important application of the method of
least squares. We first consider the case of autoregressive (AR) spectrum estimation,
assuming the use of an AR model of known order. From the discussion of linear predic-
tion presented in Chapter 6, we know that there is a one-to-one correspondence between
the coefficients of a prediction-error filter and those of an AR model of similar order. Next,
we consider the case of minimum variance distortionless response (MVDR) spectrum esti-
mation. In this second case, we have a constrained optimization problem to solve.

AR Spectrum Estimation

The specific estimation procedure described herein relies on the combined use of forward
and backward linear prediction (FBLP).? Since the method of least squares is basically a
block estimation procedure, we may therefore view the FBLP algorithm as an alternative
to the Burg algorithm (described in Section 6.15) for solving AR modeling problems.
There are, however, three basic differences between the FBLP and the Burg algorithms:

1. The FBLP algorithm estimates the coefficients of a transversal-equivalent model
for the input data, whereas the Burg algorithm estimates the reflection coeffi-
cients of a lattice-equivalent model.

2. In the method of least squares, and therefore the FBLP algorithm, no assumptions
are made concerning the statistics of the input data. The Burg algorithm, on the
other hand, exploits the decoupling property of a multistage lattice predictor,
which, in turn, assumes wide-sense stationarity of the input data. Accordingly, the

*The first application of the FBLP method to the design of a linear predictor that has a transversal filter
structure, in accordance with the method of least squares, was developed independently by Ulrych and Clayton
(1676) and Nuttatl (1976).
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FBLP algorithm does not suffer from some of the anomalies that are known to
arise in the application of the Burg algorithm.*

3. The Burg algorithm yields a minimum-phase solution in the sense that the reftec-
tion coefficients of the equivalent lattice predictor have a magnitude less than or
equal to unity. The FBLP algorithm, on the other hand, does not guarantee such
a solution. In spectrum estimation, however, the lack of a minimum-phase solu-
tion is of no particular concem.

Consider then the forward linear predictor, shown in Fig. 11.5(a). The tap weights

of the predictor are denoted by W, Ws, . . . , Wps and the tap inputs by u(i — 1), u(i — 2).
., u(i — M), respectively. The forward prediction error, denoted by fa(i), equals
M
fuld) = ) — D Wiuti = k) (11.73)
k=1

The first term, #(i), represents the desired response. The convolution sum, constituting the
second term, represents the predictor output; it consists of the sum of scalar inner prod-
ucts. Using matrix notation, we may also express the forward prediction error as

fuD = u(i) — wia(i — 1) (11.74)
where W is the M-by-1 tap-weight vector of the predictor:
w o= [, W, .. W’
and u(i — 1) is the corresponding tap-input vector:
uG — 1) = [u(i = D, u( ~ 2), .0, (i — M)

Consider next Fig. 11.5(b), which depicts the reconfiguration of the predictor so that
it performs backward linear prediction. We have purposely retained W W, . . ., Wy as the
tap weights of the predictor. The change in the format of the tap inputs is inspired by the
discussion presented in Section 6.2 on backward linear prediction and its relation to for-
ward linear prediction for the case of wide-sense stationary inputs. In particular, the tap
inputs in the predictor of Fig. 11.5(b} differ from those of the forward linear predictor of
Fig. 11.5(a) in two respects:

1. The tap inputs in Fig. 11.5(b) are zime reversed, in that they appear from right to
left whereas in Fig. 11.5(a) they appear from left to right.

“For example, when the Burg algorithm is used to estimate the frequency of an unknown sine wave in
additive noise, under certain conditions a phenomenon commonly referred to as spectral line spliging may occur.
This phenomenon refers to the occurrence of two (or more) closely spaced spectral peaks where there should only
be a single peak; for a discussion of spectral line splitting, sec Marple (1987), Kay (1988), and Haykin (1989);
the original reference is Fougere et al. (1976). This anomaly, however, does not arise in the application of the
FBLP algorithm.
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Figure 11.5 (a) Forward linear predictor; (b) reconfiguration of the predictor so as to perform
backward linear prediction.

2. With u(i), u(i — 1), ..., u(i — M + 1) used as tap inputs, the structure of Fig.
11.5(b) produces a linear prediction of u{i — M). In other words, it performs
backward linear prediction. Denoting the backward prediction error by by(i), we
may thus express it as

M
badi = uli — M) = > Wi — M + k)
k=1]

(11.75)

where the first term represents the desired response and the second term is the
predictor output. Equivalently, in terms of matrix notation, we may write

badi) = u(i ~ M) = u®T(HW
where u?(i) is the time-reversed tap-input vector:

T =i —M+ 1D, ..., ui—1),u@)]

(11.76)
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Let €, denote the minimum value of the forward-backward prediction-error energy.
In accordance with the method of least squares, we may therefore write

N
Gu= [l + |baddl?) (ALT7)
i=M+1 ) )
where the subscript M signifies the order of the predictor or that of the AR model. The
lower limit on the time index i equals M + 1 so as to ensure that the forward and back-
ward prediction errors are formed only when all the tap inputs of interest assume nonzero
values. In particular, we may make two observations:

1. The variable u(i — M), representing the last tap input in the forward prediction of
Fig. 11.5(a), assumes a nonzero value for the first time when i = M + 1.

2. The variable u(i — M), playing the role of desired response in the backward pre-
dictor of Fig. 11.5(b), also assumes a nonzero value for the first time when
i=M+ 1

Thus, by choosing (M + 1) as the lower limit on i and N as the upper limit, as in Eq.
(11.77), we make no assumptions about the data outside the interval (1, N], as required by
the covariance method.

Let A denote the 2(N — M)-by-M data matrix, whose Hermitian transpose is de-

fined by
Fu(M) «e u(N —1) u*(2) + e u*(N— M+ 1))
uM—1) .. u(N — 2) u*(3) " e ut(N— M+ 2)
AH= L] - L] [ ] - L ]
Lu(l) cee uN-M) uwM+1) -« u¥N) i
_— —— ~ -

forward half backward half (11.73)
The elements constituting the left half of matrix A¥ represent the various sets of tap inputs
used to make a total of (N — M) forward linear predictions. The complex-conjugated ele-
ments constituting the right half of matrix A” represent the corresponding sets of tap
inputs used to make a total of (N — M) backward linear predictions. Note that as we move
from one column to the next in the forward or backward half in Eq. (11.78), we drop a
sample, add a new one, and reorder the samples. _
Let @ denote the 2(N — M)-by-1 desired data vector, defined in a manner corre-
sponding to that shown in Eq. (11.78):

a7 = (M + D), ..., u(N),u*(l), ..., u*(N— M)] (11.79)
forward half backward half
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Each element in the left half of the vector @” represents a desired response for forward lin-
ear prediction. Each complex-conjugated element in the right half represents a desired
response for backward linear prediction.

The FBLP method is a product of the method of least squares; it is therefore
described by the system of normal equations [see Eq. (11.48)]

AfA%w = A"d (11.80)

The resulting minimum value of the forward-backward prediction error energy equals [see
Eq. (11.49)]

Emin = d7d — d¥AA%A)"'AMd (11.81)

The data matrix A and the desired data vector d are defined by Eqs. {11.78) and (11.79),
respectively.
We may combine Eqgs. (11.80) and (11.81) into a single matrix relation, as shown by

d”d dHA 1 _ %min
where 0 is the M-by-1 null vector. Equation (11.82) is the matrix form of the augmented

normal equations for FBLP. Define the (M + 1)-by-(M + 1) augmented correlation
matrix:

M H
®= [:,,‘:1 iﬂﬂ (11.83)

The @ in Eq. (11.83) is an (M + 1)-by-(M + 1) matrix; it is nof to be confused with the
@ in Eq. (11.45) that is an M-by-M matrix. Define the (M + 1)-by-1 tap-weight vector of
the prediction-error filter of order M:

= [ 1 ] : (11.34)

—W

-~

Figure 11.6 shows the transversal structure of the prediction-error filter, where ap, a,,
..., ap denote the tap weights® and ag = 1. Then

A rgmirl
(Da—[ 0 ] (11.85)

The augmented correlation matrix @ is Hermitian persymmetric; that is, the indi-
vidual elements of the matrix @ satisfy two conditions:

Ok, 1) = $*(¢, k) 0=t =M (11.86)

dM — kM —1) = d*k 1), O0s@thk=M (11.87)

5The subscripts assigned to the tap weights in the prediction-error filter of Fig. 11.6 do not include a direct
reference 1o the prediction order M, unlike the terminology used in Chapier 6. The reason for this simplification
is that, in the material presented here, there is no order update to be considered.
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Figure 11.6 Forward prediction-error filter.

The property described in Eq. (11.87) is unique to a correlation matrix that is cbtained by
time averaging of the input data in the forward as well as backward direction; see the data
matrix A and the desired data vector d defined in Eqgs. (11.78) and (11.79), respectively.
The matrix @ has another property: it is composed of the sum of two Toeplitz matrix prod-
ucts. The special Toeplitz structure of the matrix 4 has been exploited in the development
of fast recursive algorithms® for the efficient solution of the augmented normal equations
(11.85).

Starting with the time series u(i), 1 = i = N, the FBLP aigorithm is used to compute
the tap-weight vector W of a forward linear predictor or, equivalently, the tap-weight vec-
tor & of the corresponding prediction-error filter. The vector & represents an estimate of the
coefficient vector of an autoregressive (AR) model used to fit the time series «(i). Similarly,
the minimum mean-squared error €, except for a scaling factor, represents an estimate
of the white-noise variance o in the AR model. We may thus use Eq. (6.101) to formulate
an estimate of the AR spectrum as follows:

r%min
M
1+ ape

k=1

Siglw) = . (11.88)

where the d, are the elements of the vector &; the leading element &, of the vector @ is equal
10 unity, by definition. We may also express Sag(w) as

n _ Boin
SAR([A)) __lﬁ s(m)l‘z‘ (ll 89)

*The correlation matrix & of Eq. (11.83) dves nor possess a Toeplitz structure. Accordingly, we cannot
use the Levinson recursion to develop a fast solution of the augmented normal equations (f 1.85), as was the case
with the augmented Wiener-Hopf eguations for stationary inputs. However, Marple (1980, 1981) describes fast
recursive algorithms for the efficient solution of the augmented normal equations (11.85). Marple exploits the
special Toeplitz structure of the correlation matrix €. The computational complexity of Marple's fast algorithm
is proportional to M2, When the predictor order M is large, the use of Marple’s algorithm results in significant
savings in computation. .
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where s(w) is a variable-frequency vector or frequency scanning vector:
sl =(lLe”™ ...,e™, -—m<o=w (11.90)

Intuitively, the model order M should be as large as possible in order to have a large
aperture for the predictor. However, in applying the FBLP algorithm the use of large val-
ues of M gives rise to spurious spectral peaks in the AR spectrum. For best performance
of the FBLP algorithm, Lang and McClellan (1980) suggest the vaiue

M?ﬂ% (1L.en

where V is the data length.

MVDR Spectrum Estimation

In the method of least squares, as described up to this point in our discussion, there are no
constraints imposed on the solution. In certain applications, however, the use of such an
approach may be unsatisfactory, in which case we may resort to a constrained version of
the method of least squares. For example, in adaptive beamforming that involves spatial
processing, we may wish to minimize the variance (i.e., average power) of the beamformer
output while a distortionless response is maintained alorg the direction of a target signal
of interest. Correspondingly, in the temporal counterpart to this problem, we may be
required to minimize the average power of the spectrum estimator, while a distortionless
response is maintained at a particular frequency. In such applications, the resulting solu-
tion is referred to as a minimum-variance distortionless response (MVDR) estimator for
obvious reasons. To be consistent with the material presented heretofore, we will formu-
late the temporal version 'of the MVDR algorithm.

Consider then a linear transversal filter, as depicted in Fig. 11.7. Let the filter out-
put be denoted by y(i). This output is in response to the tap inputs u(i), u(i — 1), . . .,
u(i — M). Specifically, we have

M (
Y =) atuli - 1) (11.92)
=0 .

where ag, a;, . . . , ., are the transversal filter coefficients. Note, however, that unlike the
prediction-error filter of Fig. 11.6, there is no restriction on the filter coefficient ay; the
only reason for using the same terminology as in Fig. 11.6 is because of a desire to be con-
sistent. The requirement is to minimize the oufput energy (assuming the use of the covari-
ance mithod of data windowing):

N
Cou = Z l)’(i)|2

- ) =M+
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u(i) u(i=1) uli-M+1) UM
z-1 sesn - z-1
Output
D— - —& @)
Figure 11.7 Transversal filter.
subject to the constraint
M
> apeien= g (11.93)
k=0
where wy is an angular frequency of special interest. As in the conventional method of least
squares, the filter coefficients ag, ay, . . ., a, are held constant for the observation interval

1 == N, where N is the total data length.
To solve this constrained minimization problem, we use the method of Lagrange
muitipliers.” Specifically, we define the constrained cost function

N M :

g= > DO+ x(z ate o — 1) (11.94)
i=M+1 k=0
[ — . > —_—
output energy linear constraints

where \ is a complex Lagrange multiplier. Note that in the constrained approach described
herein, there is no desired response; in place of it, however, we have a set of linear con-
straints. Note also that in the absence of a desired response and therefore no frame of ref-
erence, the principle of orthogonality loses its meaning in this new setting.

To solve for the optimum values of the filter coefficients, we first determine the gra-
dient vector V€ and then set it equal to zero. Thus, proceeding in a manner similar to that
described in Section 11.3, we find that the kth element of the gradient vector for the con-
strained cost function of Eq. (11 94) is

VE =2 Z u(i — K)y*G) + \re /o (11.95)

i=M+1

"The method of Lagrange multipliers is described in Appendix C.
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Next, substituting Eq. (11.92) in (11.95), and rearranging terms, we get

M N
V& =2 a p uli— buri— 1)+ Nre e
=0 i=M+1
M
=22 abt k) + e (11.96)
=0

where, in the first term of the second line, we have made use of the definition of Eq.
(11.29) for the time-averaged autocorrelation function (!, k) of the tap inputs. To mini-
mize the constrained cost function €, we set

V& =0, k=0,1,... .M (11.97)

Accordingly, we find from Eq. (11.96) that the tap-weights of the optimized transversat fil-
ter satisfy the following system of M + | simultaneous equations:

M
z &rd)(ra k) = —‘;— h*e_jkw[), k = 0, 1, “e sy M (11.98)

=0

Using matrix notation, we may rewrite this system of equations in the compact form
Pd = — Ns(wo) (11.99)

where @ is the (M + 1)-by-(M + 1) time-averaged correlation matrix of the tap inputs; &
is the (M 1)-by-1 vector of optimum tap weights; and s(wo) is the (M + 1)-by-1 fixed fre-
quency veclor:

s(wo) = [1, e7/®0, ..., e My (11.100)
Assuming @ is nonsingular and therefore its inverse @7 exists, we may solve Eq. (11.99)
for the optimum tap-weight vector:

-;—)\*d)_’s(wo) (11,101)

f=—
There only remains the problem of evaluating the Lagrange multiplier A. To solve for A,
we use the linear constraint in Eq. (11.93) for the optimized transversal filter, written in
matrix form as

allsta) = 1 (11.102)

Hence, evaluating the inner product of the vector so and the vector & in Eq. (11.101), set-
ting the result equal to 1 and solving for A, we get
2

__ 11.103
N T o) ® 's(w) (11.103)
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Finally, substituting this value of A in Eq. (11.101), we get the MVDR solution:®

A P~ lS(wo)
s (@)™ 's(wo)

(11.104)

Thus, given the time-averaged correlation matrix @ of the tap inputs and the frequency
vector s(wg), we may use the MVDR formula of (11.104) to compute the optimum tap-
weight vector & of the transversal filter in Fig. 11.7.

Let Syvpr(vg) denote the minimum value of the output energy €, which results
when the MVDR solution & of Eq. (11.104) is used for the tap-weight vector under the con-
dition that the response is tuned to the angular frequency wg. We may then write

Smvor(wo) = a'da (11.105)
Substituting Eq. (11.104) in (11.105), and then simplifying the result, we finally get

1
§"(wo)® ™ 's(wy)

Equation (11.106) may be given a more general interpretation. Suppose that we
define a frequency-scanning vector s(w) as in Eq. (11.90), where the angular frequency w
is now variable in the interval (—, 7). For each w, let the tap-weight vector of the trans-
versal filter be assigned a corresponding MVDR estimate. The output energy of the opti-
mized filter then becomes a function of w. Let Spypr(@) describe this functional depen-
dence, and so we may write®

Smvpr(wg) = (11.106)

Suvor(@) = m) (11.107)

We refer to Eq. (11.107) as the MVDR spectrum estimate, and the solution given in Eq.
(11.104) as the MVDR estimate of the tap-weight vector. Note that at any w, power due to
other frequencies is minimized. Hence, the MVDR spectrum computed in accordance with
Eq. (11.107) exhibits relatively sharp peaks.

The MVDR spectrum and AR spectrum are commonly referred to as super-resolu-
tion or high-resolution spectra, in the sense that they both exhibit sub-Rayleigh resolution
as power spectrum estimators. For the numerical computation of these spectra, and linear
least-squares solutions in general, the recommended procedure is to use a technique known
as singular value decomposition, which is considered next.

8Equation (11.104) is of the same form as that of Eq. (5.97), except for the use of the time-averaged cor-
relation matrix @ in place of the ensemble-averaged correlation matrix R, and the use of symbol a in place of w,
for the tap-weight vector.

$The method for computing the spectrum in Eq. (11.107) is also referred to in the literature as Capon’s
method (Capon, 1969). The term “‘minimum-variance distortionless response” owes its origin to Owsley (1984).
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11.10 SINGULAR VALUE DECOMPOSITION

The analytic power of singular-value decomposition lies in the fact that it applies to square
as well as rectangular matrices, be they real or complex. As such, it is extremely well
suited for the numerical solution of linear least-squares problems in the sense that ir can
be applied directly to the data matrix. A

In Sections 11.5 and 11.7 we described two different forms of the normal equations
for computing the linear least-squares solution:

1. The form given in Eq. (11.36), namely,
w=0'z

where W is the least-squares estimate of the tap-weight vector of a transversal fil-
ter model, @ is the time-averaged correlation matrix of the tap inputs, and z is
the time-averaged cross-correlation vector between the tap inputs and some
desired response.

2. The form given in Eq. (11.48) directly in terms of data matrices, namely,
v = (A"A)"'A"d

where A is the data matrix representing the time evolution of the tap input vec-
tors, and d is the desired data vector representing the time evolution of the
desired response.

These two forms are indeed mathematically equivalent. Yet they point to differeat compu-
tational procedures for evaluating the least-squares solution %. Equation (11.36) requires
knowledge of the time-averaged correlation matrix @ that involves computing the product
of AY and A. On the other hand, in Eq. (11.48) the entire term (A”A)™'A can be inter-
preted, in terms of the singular-value decomposition applied directly to the data matrix A,
in such a way that the solution computed for W has twice the number of correct digits as
the solution computed by means of Eq. (11.36) for the same numerical precision. To be
specific, define the matrix

A = (A"A)7'A" (11.108)
Then we may rewrite Eq. (11.36) simply as
w=A"%d (11.109)

The matrix A* is called the pseudoinverse or the Moore-Penrose generalized inverse of the
matrix A (Stewart, 1973; Golub and Van Loan 1989). Equation (11.109) represents a con-
venient way of saying that “the vector W solves the linear least-squares problem.” Indeed,
it was with the simple format of Eq. (11.109) in mind and also the desire to be consistent
with definitions of the time-averaged correlation matrix ¢ and the cross-correlation vec-
tor z used in Section 11.5 that we defined the data matrix A and the desired data vector d
in the manner shown in Eqgs. (11.44) and (11.46), respectively.
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In practice, we often find that the data matrix A contains linearly dependent
columns. Consequently, we are faced ‘with a new situation where we now have to decide
on which of an infinite number of possible solutions to the least-squares problem to work
with. This issue can indeed be resolved by using the singular-value decomposition tech-
nique as described in Section 11.12, even when null(A) # J, where J denotes the nuli
set.

The Singular-Value Decomposition Theorem

The singular-value decomposition (SVD) of a matrix is one of the most elegant algorithms
in numerical algebra for providing quantitative information about the structure of a system
of linear equations (Klema and Laub, 1980). The system of linear equations that is of spe-
cific interest to us is described by

AW =d (11.1190)

in which A is a K-by-M matrix, d is a K-by-1 vector, and W (representing an estimate of
the unknown parameter vector) is an M-by-1 vector. Equation (11.110) represents a sim-
plified matrix form of the normal equations. In particular, premultiplication of both sides
of the equation by the vector A” yields the normal equations for the least-squares weight
vectorW. i

Given the data matrix A, there are two unitary matrices V and U, such that we may
write

20
H =
UAV—[o 0] (1L.111)
where X, is a diagonal matrix:
3 = diag(o), 02, ..., Ow) (11.112)

The o's are ordered as o} = o, = ... = aw > 0. Equation (11.111) is a mathematical
statement of the singular-value decomposition theorem. This theorem is also referred to as
the Autonne—Eckart—Young theorem in recognition of its originators.'®

Figure 11.8 presents a diagrammatic interpretation of the singular value decomposi-
tion theorem, as described in Eq. (11.111). In this diagram we have assumed that the num-
ber of rows K contained in the data matrix A is larger than the number of columns M, and
that the number of nonzero singular values W is less than M. We may of course restructure
the diagrammatic interpretation of the singular value decomposition theorem by express-

ing the data matrix in terms of the unitary matrices U and V, and the diagonal matrix X;
this is left as an exercise for the reader.

194 ccording to DeMoor and Golub (1989), the singular-value decomposition was introduced in its gen-
eral form by Autonne in 1902, and an important characterization of it was described by Eckart and Young {1936).
For additional notes on the history of the singular-value decomposition, see Klema and Laub (1980).
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The subscript W in Eq. (11.112) is the rank of matrix A, written as rank(A); it is

defined as the number of linearly independent columns in the matrix A. Note that we
always have rank(A") = rank(A).
‘ Since it is possible to have K > Mor K < M, there are two distinct cases to be con-
sidered. We prove the singular-value decomposition theorem by considering both cases,
independently of each other. For the case when K > M, we have an overdetermined sys-
tem in that we have more equations than unknowns. On the other hand, when K < M, we
have an underdetermined system in that we have more unknowns than equations. In the
sequel, wg consider these two cases in turn.

Case 1: Overdetermined System. For the case when K > M, we form the M-
by-M matrix A¥A by premultiplying the matrix A by its Hermitian transpose A¥. Since
the matrix A”A is Hermitian and nonnegative definite, its eigenvalues are all real non-
negative numbers. Let these eigenvalues be denoted by a7, a3, . . . , oiy, where 0, = 0,
= ... 20y >0,and w1, Twaz . . - are all zero, where 1 < W < M. The matrix A”A
has the same rank as A; hence, there are W nonzero eigenvalues. Let vy, ¥, . . ., Vpy denote
a set of orthonormal eigenvectors of A¥A that are associated with the eigenvalues o3, 63,
..., 0, respectively. Also, let V denote the M-by-M unitary matrix whose columns are
made up of the eigenvectors v, ¥, . . . , V. Thus, using the eigendecomposition of the
matrix A”A, we may write

VAARAY = [202 g] (11.113)
Let the unitary matrix V be partitioned as
V=[V, V.l (11.114)
where V, is an M-by-W matrix,
Yi=1[v, vy ... ¥l (11.115)
and V, is an M-by-(M — W) matrix,
Vo = [Vwer, Ywaz, - - - > Yul (11.116)
with
viv,=¢ (1L117)

We may therefore make two deductions from Eq. (11 113

1. For matrix V,, we have
VAAHAY, = 32

Consequently,
3IWHAHAV,Z T = 1 (11.118)
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2. For matrix V5, we have

VAARAV, = 0

Consequently,
AV, =0 (11.119)
We now define a new K-by-W matrix
U, =AvE™! (11.120)
Then, from Eq. (11.118) it follows that
UiU, =1 (11.121)

which means that the columns of the matrix U, are orthonormal with respect to each other.
Next, we choose another K-by-(KX — W) matrix U, such that the K-by-K matrix formed
from U, and U,, namely.

U= [Uh Uz] (1]122)

is a unitary matrix. This means that
viu, =0 (11.123)

Accordingly, we may use Eqs. (11.114), (1 1.122), (11.119), (11.120), and (11.123), in that

order, and so write

Ut

- URAV, UHAV,
I U%AV, U%AV,

(3T 'VHATAY, U’{(O)]

- udu,3)
I3 0
|0 o

which proves Eq. (11.111) for the overdetermined case.

Case 2: Underdetermined System. Consider next the case when K < M.
This time we form the K-by-K matrix AA” by postmultiplying the matrix A by its Her-
mitian transpose A”. The matrix AA? is also Hermitian and nonnegative definite, so its
eigenvalues are likewise real nonnegative numbers. The nonzero eigenvalues of AA7 are
the same as those of APA. We may therefore denote the eigenvalues of AA” as af,

G5, ... 0f, wherea; 20,2 ... 20w >0, and ow, ), Oz, ... ATE all zero, where
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| < W=K Letu,,u,,. .., ugdenote a set of orthonormal eigenvctors of the matrix AA”
that are associated with the eigenvalues a2, a3, . . . , 0Z, respectively. Also, let U denote
the unitary matrix whose columns are made up of the eigenvectors uy, uy, . . ., ug. Thus,
using the eigendecomposition of AA”, we may write

U7AA"U = [f: g] (11.124)
Let the unitary matrix U be partitioned as
U = [U,, Uy] (11.125)
where
U, = [u,uy, ..., uy] (11.126)
U = [Uwe1, Uwea, o= - o Ug] (11.127)
and
viu,=0 (11.128)

We may therefore make two deductions from Eq. (11.124).

1. For matrix U,, we have

UfaAfy, = 32
Consequently,
3 IUHAARU ST =1 (11.129)
2. For matrix U,, we have
U4AARU, =0
Consequently,
A", =0 (11.130)
We now define an M-by-W matrix
v, = A"us! (11.131)
Then from Eq. (11.129), it follows that
viv, =1 (11.132)

which means that the columns of the matrix V, are orthonormal with respect to each other.
Next, we choose another M-by-(M — W) matrix V, such that the M-by-M matrix formed
from V, and V,, namely,

V=[V,.V,] (11.133)
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is a unitary matrix. This means that
Viv, =0 (11.134)

Accordingly, we may use Egs. (11.125), (11.133), (11.130), (11.131), and (11.134), in that
order, and so write

-Ufi(

UYAV =
U

]A[V., Vil

_ [ UKAV, UfAv,
| UfAv, U’{sz]

_{uiaafu,zh <2v’;'>vz]

_[2 o

o o
This proves Eq. (11.111) for the underdetermined case, and with it the proof of the singu-
lar-value decomposition (SVD) theorem is completed.

Terminology and Relation to Eigenanalysis

The numbers o, &5, . . . , Oy, constituting the diagonal matrix 3,, are called the singular
values of the matrix A. The columns of the unitary matrix V, that is, v, ¥5, . . ., Vuy, are
the right singular vectors of A, and the columns of the second unitary matrix U, that is,
u,, Uy, . . ., Oy are the left singular vectors of A. We note from the preceding discussion
that the right singular vectors ¥y, v, . . . . Vy are eigenvectors of A¥A | whereas the left
singular vectors u,, Uy, . . . , Uy are eigenvectors of AA”. Note that the number of positive
singular values is equal to the rank of the data matrix A. The singular-value decomposition

therefore provides the basis of 2 practical method for determining the rank of a matrix.

Since UU" equals the identity matrix, we find from Eq. (11.111) that
0
weuf3 9]
It follows therefore that

AV":U,’“,', 1.=1..2,...,W

Av;, =0, i=W+1,...,K

(11.135)

Correspondingly, we may express the data matrix A in the expanded form

w
A= ouy! (11.136)
i=1
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Since VV¥ equals the identity matrix, we also find from Eq. (11.111) that

Ha |2 0 H
UA—[O o]v

or, equivalently,

SR D |
A”U—V[o 0]

It follows therefore that

AHII,-=0’,—V,-, i= 1,2,...,W
" (11.137)
APy, =0, i=W+1,....M

In this case, we may express the Hermitian transpose of the data matrix A in the expanded

form

w
A=Y oyall (11.138)
=1

which checks exﬁctly with Eq. (11.136), and so it should.

Example 2

In this example, we use the SVD to deal with the different facets of matrix rank. To be
specific, let A be a K-by-M data matrix with rank W. The matrix A is said to be of full
rank if

W = min(X, M)

Otherwise, the matrix A is rank deficient. As mentioned previously, the rank W is simply the
number of nonzero singular values of matrix A.

Consider next a computational environment that yields a numerical value for each ele-
ment of the matrix A that is accurate to within *€. Let B denote the approximate value of
matrix A so obtained. We define the e-rank of matrix A as follows (Golub and Van Loan,
1989):

rank(A, €) = min rank(B) (11.139)
liA—Bll<e

where [|A — BJ| is the spectral norm of the error matrix A — B that results from the use of
inaccurate computations. Extending the definition of spectral norm of the matrix introduced
in Chapter 4 to the situation at hand, the spectral norm [|A — BJ| equals the largest singular
value of the difference A — B. In any event, the K-by-M matrix A is said to be numerically
rank deficient if

rank(A, €) < min(K, M)
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The SVD provides a sensible method for characterizing the €-rank and the numerical rank
deficiency of the matrix, because the singular values resulting from its use indicate how close
a given matrix A is to another matrix B of lower rank in a simple fashion.

11.11 PSEUDOINVERSE

Our interest in the singular-value decomposition is to formulate a general definition of
pseudoinverse. Let A denote a K-by-M matrix that has the singular-value decomposition
described in Eq. (11.111). We define the pscudoinirerse of the matrix A as (Stewart, 1973;
Golub and Van Loan, 1989):

o
AT = [0 O]U" (11.140)
where
37" = diagla 7!, 03 ..., oW

and W is the rank of the data matrix A. The pseudoinverse A* may be expressed in the

expanded form:
w

At =D Lot (11.141)
i=1 Ti

We may identify two special cases that can arise as described next.

Case 1; Overdetermined System. In this case, we have K > M, and we
assume that the rank W equals M so that the inverse matrix (A¥A) 7’ exists. The pseudoin-
verse of the data matrix A is defined by

At = (A"A)T'AH (11.142)

To show the validity of this special formula, we note from Eqs. (11.118) and
(11.120) that

(AHA)Y ! = v, X2V
and
AY = v 3U4
Therefore, using this pair of relations, we may express the right-hand side of Eq. (11.142)
as follows:
(A"A)T'AT = (V,E72VINV EUY)
=V, 27
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Case 2: Underdetermined System. In this second case, we have M > K, and
we assume that the rank .W equals K so that the inverse matrix (AA”)™! exists. The
pseudoinverse of the data matrix A is now defined by

A* = Af(AAFY! (11.143)

To show the validity of this second special formula, we note from Eqs. (11.129) and
(11.131) that

(AA%~!' = U7
and
A# =v U4
Therefore, using this pair of relations in the right-hand side of Eq. (11.143), we get
AfAATY! = (Vv ZUNHU U

=V|2_1U’|’

D e
"V{ 0 0]”
= A"

Note, however, the pseudoinverse A™ as described in Eq. (11.140) or equivalently,
Eq. (11.141) is of general application, in that it applies whether the data matrix A refers to
an overdetermined or an underdetermined system and regardless of what the rank W is.
Most importantly, it is numerically stable. '

11.12 INTERPRETATION OF SINGULAR VALUES AND SINGULAR VECTORS

Consider a K-by-M data matrix A, for which the singular-value decomposition is given in
Eq. (11.111) and the pseudoinverse is correspondingly given in Eq. (11.140). We assume
that the system is overdetermined. Define a K-by-1 vector y and an M-by-1 vector x that
are related to each other by the transformation matrix A, as shown by

y = Ax (11.144)
The vector X is constrained t6 have a Euclidean norm of unity; that is,
lIxd] = 1 (11.145)

Given the transformation of Eq. (ll.iM) and the constraint of Eq. (11.145), we wish to
find the resulting locus of the points defined by the vector y in a K-dimensional space.
Solving Eq. (11.144) for x, we get

x = A'y (11.146)
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where A™ is the pseudoinverse of A. Substituting Eq. (11.142) in (11.146), we get
w

1
X = —vaufly
— o
i=

W (11,147)

where W is the rank of matrix A, and the inner product u’’y is a scalar. Imposing the con-

straint of Eq. (11.145) on (11.147), and recognizing that the right singular vectors vy, va,
..., ¥y form an orthonormal set, we get

W 2
> Yol _ (11.148)
=1 i
Equation (11.148) defines the locus traced out by the tip of vector y in a K-dimensional
space. Indeed, this is the equation of a hyperellipsoid (Golub and Van Loan, 1989).

To see this interpretation in a better way, define the complex scalar

L=y (11.149) -

K .

=S Yy =L W
k=1

In other words, the complex scalar £, is a linear combination of all poésib}e values of the
elements of the left singular vector u;, so ¢, is referred to as the “span” of u;. We may thus
rewrite Eq..(11.148) as

w

2
> L (11.150)
=1 O :
This is the equation of a hyperellipsoid with coordinates lGs - - -, [Gwl and semi-axis
whose lengths are the singular values o, . . . , Ow, respectively. Figure 11.9 illustrates the

locus traced out by Eq. (11.148) for the case of W = 2 and 0, > 07, assuming that the data
. matrix A is real.

11.13 MINIMUM NORM SOLUTION TO THE LINEAR LEAST-SQUARES PROBLEM

Having equipped ourselves with the general definition of the pseudoinverse of a matrix A
in terms of its singular-value decomposition, we are now ready to tackle the solution to the
linear least-squares problem even when null(A) # . In particular, we define the solution
to the least-squares problem as in Eq. (11.109), reproduced here for convenience:

#=A"d (11.151)

The pseudoinverse matrix A" is itself defined by Eq. (11.140). We thus find that, out of
the many vectors that solve the least-squares problem when null (A) # J, the one defined

YV/7T R
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Ye
{; =spanofu,

EA €, = span of u,

G4

)'1'

Figure 11.9 Locus of Eq. (11.150) for real
data with W = 2 and &} > 05,

by Eq. (11.151) is unique in that it has the shortest length possible in the Euclidean sense
(Stewart, 1973).

We prove this important result by manipulating the equation that defines the mini-
mum value of the sum of error squares produced in the method of least squares. We note
that both matrix products VV¥ and UU* equal identity matrices. Hence, we may start with

. Eq. (11.49) and combine it with Eq. (11.48), and then write

Emin = d7d — d¥AW
= d%(d — AW)

(11.152)
= d7UUM(d - AVVHR)
= d"U(U"d - UAVVR)
Let
Viw=b
_ [P (11.153)
b,
and
Ud=¢

- [c.] (11.154)
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where b, and ¢, are W-by-1 vectors, and b, and ¢, are two other vectors. Thus, substitut-
ing Egs. (11.111), (11.153), and (11.154) in (11.152), we get

=[] [5 o0)

_ dHUi:cl _ Ebl] (11.155)
C;
For €., to be minimum, we require that
¢, = Xb, (11.156)
or, equivalently, .
b,=2%7"¢, . (11.57)

We observe that €,;, is independent of b,. Hence, the value of b, is arbitrary. However, if
we let b, = 0, we get the special result

W =Vb
-1
::V[Eocq (11.158)

We may also express W in the equivalent form:

. [ETT 0
% el

_v[ET 0ym
5 O
=A"d

This coincides exactly with the value defined by Eq. (11.151), where the pseudoinverse
A" is defined by Eq. (11.140). In effect, we have shown that this value of W does indeed
solve the linear least-squares problem.

Moreover, the vector W so defined is unigue, in that it has the minimum Euclidean
norm possible. In particular, since VV” = I, we find from Eq. (11.158) that the squared
Euclidean norm of W equals

Wif =27 eyl
Consider now another possible solution to the linear least-squares problem that is
defined by
, 3 le
w = V[ b2 :l, bzio
The squared Euclidean norm of w' equals
w'lF = =", + [Ibal?
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For any b; # 0, we see therefore that
liwlf < flw|| (11.159)

In summary, the tap-weight % of a linear transversal filter defined in by Eq. (11.151)
is a unique solution to the linear least-squares problem, even when null(A) # . The vec-
tor W is unique in the sense that it is the only tap-weight vector that simultaneously satis-
fies two requirements: (1) it produces the minimum sum of error squares, and (2) it has the
smallest Euclidean norm possible. This special value of the tap-weight vector W is called
the minimum-norm solution.

Another Formulation of the Minimum-Norm Solution

We may develop an expanded formulation of the minimum-norm solution, depending on
whether we are dealing with the overdetermined or underdetermined case. These two cases
are considered in tumn.

Case 1: Overdetermined. For this case, the number of equations X is greater
than the number of unknown parameters M. To proceed then, we substitute Eq. (11.140)
in (11.151), and then use the partitioned forms of the unitary matrices V and U. We may
thus write

W = (V,2"")Av,Z" )"
=V, 2713 'vHAHg (11.160)
= V,Z72V,A%d
Hence, using the definition [see Eq. (11.115)]
Vi={vi,va ..., Vy]

in Eq. (11.160), we get the following expanded formulation for W for the overdetermined
case:

w
— ¥; H
w_;;g;v{m d (11.161)

Case 2: Underdetermined. For this second case, the number of equations K is
smaller than the number of unknowns M. This time we find it appropriate to use the rep-
resentation given in Eq. (11.131) for the submatrix V, in terms of the data matrix A. Thus,

substituting Eq. (11.131) in (11.151), we get
& = (A"U,E7'(E UL 0)
= AFUZ 70
Substituting the definition (see Eq. (11.126)]

U] = [uls u2a- -.,uw]

(11.162)
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in Eq. (11.162), we get the following expanded formulation for % for the underdetermined
case:

w
H
= B (11.163)
. i=1 !

which is different from that of Eq. (11.161) for the overdetermined case.

The important point to note is that the expanded solutions of W given in Egs.
(11.161) and (11.163) for the overdetermined and underdetermined systems, respectively,
are both contained in the compact formula of Eq. (11.151). Indeed, from a numerical com-
putation point of view, the use of Eq. (11.151) is the preferred method for computing the
least-squares estimatee W.

11.14 NORMALIZED LMS ALGORITHM VIEWED AS THE MINIMUM-NORM

SOLUTION TO AN UNDERDETERMINED LEAST-SQUARES ESTIMATION
PROBLEM

In Chapter 9 we derived the normalized least-mean-square (LMS) algorithm as the solu-
tion to a constrained minimization problem. In this section we revisit this algorithm in light
of the theory developed on singular-value decomposition. In particular, we show that the
normalized LMS algorithm is indeed the minimum-norm solution te an underdetermined
linear least-squares problem involving a single error equation with M onknowns, where M
is the dimension of the tap-weight vector in the algorithm.

Consider the error equation

e(n) = din) — W(n + Duin) (11.164)

where d(n) is a desired response and u(n) is a tap-input vector, both measured at time n.
The requirement is to find the tap-weight vector W(n + 1), measured at time n + 1, such
that the change in the tap-weight vector given by

W(n + 1) = W(n + 1) — w(n) (11.165)
is minimized, subject to the constraint
&) =0 (11.166)
Using Eq. (11.165) in (11.164), we may reformulate the error e(n) as .
e(n) = dn) - WH(n)l:l(n} — 3% (n + Duin) (11.167)
We now recognize the customary definition of the estimation error, namely,
| e(n) = d(n) — W(mu(n) (11.168)
Hence, we may simpiify Eq. (11.168) as
€(n) = e(n) — 3% (n + Du(n) (11.169)
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TABLE 11.1 SUMMARY OF CORRESPONDENCES BETWEEN LINEAR LEAST-
SQUARES ESTIMATION AND NORMALIZED LMS ALGORITHM

Linear least-squares Normalized

estimation (underdetermined) LMS algorithm
Data matrix A u(n)
Desired data vector d e*(n)
Parameter vector W EW(n + 1)
Rank W 1
Eigenvalue ohi=1..., W a2
Eigenvector u,i=1..., W 1

Thus, complex conjugating both sides of Eq. (11.169), we note that the constraint of Eg.
(11.166) is equivalent to

¥ (n)ed(n + 1) = e¥(n) (11.170)

Accordingly, we may restate our constrained minimization problem as follows:

Find the minimum-norm solution for the change 8%(n + 1) in the tap-weight vector at time
n + 1, which satisfies the constraint

ui(n)d%(n + 1) = e*(n)

This problem is one of linear least-squares estimation that is underdetermined. To
solve it, we may use the method of singular-value decomposition described in Eq.
(11.163). To help us in the application of this method, we use Eq. (11.170) to make the
identifications listed in Table 11.1 between the normalized LMS algorithm and linear
least-squares estimation. In particular, we note that the normalized LMS algorithm has
only one nonzero singular value equal to the squared norm of the tap-input vector u(n);
that is, the rank W = 1. The corresponding left-singular vector is therefore simply equal to
one. Hence, with the aid of Table 11.1, the application of Eq. (11.163) yields

dW(n + 1) = u(n)e*(n) (11.171)

1
¢l

This is precisely the result that we derived previously in Chapter 9; see Eq. (9.139).
We may next follow a reasoning similar to that described in Section 9.10 and rede-
fine the change 8&(n + 1) by introducing a scaling factor i as shown by [see Eq. (9.140)]

sh(n + 1) = —E— u(n)e*(n)
( )]
or, equivalently, we may write

W + 1) = #(n) + —*‘7 u(n)e*(n) (11.172)

MR
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By so doing, we are able to exercise control over the change in the tap-weight vector from
one iteration to the next without changing its direction. Equation (11.172) is the tap-weight
vector update for the normalized ILMS algonthm.

The important point to note from the discussion presented in this section is that the
singular-value decomposition provides an insightful link between the underdetermined
form of linear least-squares estimation and LMS theory. In particular, we have shown that
the weight update in the normalized LMS algorithm may indeed be viewed as the mini-
mum norm solution to an underdetermined form of the linear least-squares problem. The
problem involves a single error equation with a number of unknowns equal to the dimen-
sion of the tap-weight vector in the algorithm.

11.15 SUMMARY AND DISCUSSION

In this chapter we presented a detailed discussion of the method of least-squares for solv-
ing the linear adaptive filtering problem. The distinguishing features of this approach
include the following:

« It is a model-dependent procedure that operates on the input data on a block-by-
block basis.

» It yields a solution for the tap-weight vector of an adaptive transversal filter that is
the best linear unbiased estimate (BLUE), assuming that the measurcment error
process in the underlying model is white with zero mean.

The method of least squares is well suited for solving super-resolution spectrum esti-

. mation/beamforming problems, such as those based on autoregressive (AR) and mini-

mum-variance distortionless response (MVDR) models. For the efficient computation of

these spectra, and linear least-squares solution in general, the recommended procedure is

to use singular value decomposition (SVD) that operates on the input data directly. The
SVD is defined by the following parameters:

* A set of left singular vectors that form a unitary matrix
» A set of right singular vectors that form another unitary matrix
* A corresponding set of nonzero singular values

The important advantage of using the SVD to solve a linear least-squares problem is that
the solution, defined in termns of the pseudoinverse of the input data matrix, is pumerically
stable. An algorithm is said to be numerically stable if it does not introduce any more sen-
sitivity to perturbation than that which is inherently present in the problem under study
(Klema and Laub, 1980).

Another useful application of the SVD is in rank determination. The column rank of
a matrix is defined by the number of linearly independent columns of the matrix. Specifi-



Problems ' 533

cally, we say that an M-by-K matrix, with M = K, has full column rank if and only if it has
K independent columns. In theory, the issue of full rank determination is a yes~no type of
proposition in the sense that either the matrix in question has full rank or it does not. In
practice, however, the fuzzy nature of a data matrix and the use of inexact (finite-preci-
sion) arithmetic complicate the rank determination problem. The SVD provides a practi-
cal method for determining the rank of a matrix, given fuzzy data and roundoff errors due
to finite-precision computations.

PROBLEMS

1. Consider a linear array consisting of M uniformly spaced sensors. The output of sensor &
observed at time i is denoted by w(k, ) where k = 1,2,. .. , Mandi=1,2,...,n. Ineffect,
the observations u(l, i), w(2, i), . . . , u(M, i) define snapshot i. Let A denote the n-by-M data
matrix, whose Hermitian transpose is defined by

v u(l,n) ]

uil, 1) wl,2) =

w2, 1) wW2,2) e~ w2 n)
Af=| . ) " :

\_u(M, 1) wM2) e  wMn)

where the number of columns equals the number of snapshots, and the number of rows equals

the number of sensors in the array. Demonstrate the following interpretations:

(@) The M-by-M matrix A”A is the spatial correlation matrix with temporal averaging. This
form of averaging assumes that the environment is temporally stationary.

(b) The n-by-n matrix AA” is the zemporal correlation matrix with spatial averaging. This form
of averaging assumes that the environment is spatially stationary.

2. We say that the least-squares estimate W is consistent if, in the long run, the difference between
w and the unknown parameter vector w,, of the multiple linear regression model becomes negli-
gibly small in the mean-square sense. Hence, show that the least-squares estimate W is consis-
tent if the error vector €, has zero mean and its elements are uncorrelated and if the trace of the
inverse matrix @~ approaches zero as the number of observations, N, approaches infinity.

3. In Example 1 in Section 11.6, we used a 3-by-2 input data matrix and 3-by-1 desired data vec-
tor to illustrate the corollary to the principle of orthogonality. Use the data given in that exam-
ple to calculate the two tap-weights of the linear least-squares filter.

4. In the autocorrelation method of linear prediction, we choose the tap-weight vector of a trans-
versal predictor to minimize the error energy

% = Z 2

where f{n) is the prediction error. Show that the transfer function F(z) of the (forward) predic-
tion-error filter is minimum phase, in that its roots must lie strictly within the unit circle.
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Hints: (1) Express the transfer function /(z) of order M (say) as the product of a simple zero
factor{1 — zz~ "V and a function H'(z). Hence, minimize the prediction-error energy
with respect to the magnitude of zero z,.
(2) Use the Cauchy-Schwartz inequality:

ReL}; Pg(n - 1)g*(n)] = [z Ig(,,)p]”’LZ legtn - 1)|2]“’

=]

The equality holds if and only if g(n) = ¢’g(n — 1) forn = 1,2,..., .
Figure 11.5(a) shows a forward linear predictor using a transversal structure, with the tap inputs
u(i — 1), u@@ — 2), ..., u(i — M) used to make a linear prediction of u(i). The problem is to find
the tap-weight vector W that minimizes the sum of forward prediction-esror squares:
N

€= |l

i=M+1

where f,,{i) is the forward prediction error. Find the following parameters:

(a) The M-by-M correlation matrix of the tap inputs of the predictor.

(b) The M-by-1 cross-correlation vector between the tap inputs of the predictor and the desired
response u(f).

(c) The minimum value of €,

. Figure 11.5(b) shows a backward linear predictor using a transversal structure, with the tap

inputs w(i — M+ 1), ....u(i — 1), u(i)vused to make a linear prediction of the input u(i — M).
The problem is to find-the tap-weight vector W that minimizes the sum of backward prediction-
error squares

N

= |bud
i=M+1
where by(i) is the backward prediction error. Find the following parameters:
(a) The M-by-M correlation matrix of the tap inputs. ‘
{b) The M-by-1 correlation vector between the tap inputs and the desired response u(i — M).
(¢) The minimum value of €,.

. Use a direct approach to derive the system of normal equations given in expanded form in Eq.

(i1.31).
Calculate the singular values and singular vectors of the 2-by-2 real matrix:

1 -1
A= [0.5 z]
Do the calculation using two different methods:
(a) Eigendecomposition of the matrix product ATA

(b) Eigendecomposition of the matrix product AA”.
Hence, find the pseudoinverse of matrix A.

9. Consider the 2-by-2 complex matrix

[i4j 1405
A“[o.s—j |~ ]
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10.

11

12.
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Calculate the singular values and singular vectors of the matrix A by proceeding as follows:
(a) Construct the matrix A¥A; hence, evaluate the eigenvalues and eigenvectors of A”A.
{b) Construct the matrix AA”; hence, evaluate the eigenvalues and eigenvectors of AAY,
(c) Relate the eigenvalues and eigenvectors calculated in parts (a) and (b) to the singular values
and singular vectors of A.
Refer back to Example 1 in Section 11.7. For the sets of data given in that example, do the fol-
lowing;: ‘
(a) Calculate the pseudo-inverse of the 3-by-2 data matrix A.
(b) Use this value of the pseudo-inverse A™* to calculate the two tap weights of the linear least-
squares filter.
In this problem we explore the derivation of the weight update for the normalized LMS algo-
rithm described in Eq. (9.144) using the idea of singular-value decomposition. This problem
may be viewed as an extension of the discussion presented in Section 11.14. Find the minimumn
norm sclution for the coefficient vector
cn+ )= [Wn0+ 1)]
that satisfies the equation

xfi(n)e(n + 1) = e*(n)

x(n) = [‘i(/n;)]

where

Hence, show that

=4 e
Win + 1) =W(n) + o o)
where a > 0, and 0 < [i < 2. [This is the weight update described in Eq. (9.144).]

You are given a processor that is designed to perform the singular-value composition of a
K-by-M data matrix A. Using such a processor, develop block diagrams for the following two
super-resolution algorithms:

(2) The autoregressive (AR) algorithm

(b) The minimum-variance distortionless response (MVDR) algorithm

P a(n)e*(n)



