CHAPTER

=

Stationary Processes

and Models

The term stachastic process or random process is used to describe the time evolution of a
statistical phenomenon according te probabilistic laws. The time evolution of the phenom-
enon means that the stochastic process is a function of time, defined on some observation
interval. The statistical nature of the phenomenon means that, before conducting an exper-
iment, it is not possible to define exactly the way it evolves in time. Examples of a sto-
chastic process include speech signals, television signals, radar signals, digital computer
data, the output of a communication channel, seismological data, and noise.

The form of a stochastic process that is of interest to us is one that is defined at dis-
crete and uniformly spaced instants of time {Box and Jenkins, 1976; Priestley, 1931).
Such a restriction may arise naturally in practice, as in the case of radar signals or digital
computer data. Alternatively, the stochastic process may be defined originally for a con-
tinuous range of real values of time; however, before processing, it is sampled uniformly
in time, with the sampling rate chosen to be greater than twice the highest frequency com-
ponent of the process (Haykin, 1994).

A stochastic process is not just a single function of time; rather, it represents, in the-
ory, an infinite number of different realizations of the process. One particular realization
of a discrete-time stochastic process is called a discrete-time series or simply time series.
For convenience of notation, we normalize time with respect to the sampling period. For
example, the sequence u(n), u(n — 1), ..., u(n — M) represents a time series that consists
of the present observation u(n) made at time n and M past observations of the process
made attimesn — 1,...,n — M.
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We say that a stochastic process is strictly stationary if its statistical properties are
invariant to a shift of time. Specifically, for a discrete-time stochastic process represented
by the time series u(n), u(n — 1) ..., u(n — M) to be strictly stationary, the joint probabil-

ity density function of these observations made at timesn,n — 1, ..., n — M must remain
the same no matter what values we assign to n for fixed M.

2.1 PARTIAL CHARACTERIZATION OF A DISCRETE-TIME
STOCHASTIC PROCESS ' '

In practice, we usually find that it is not possible to determine (by means of suitable mea-
surements) the joint probability density function for an arbitrary set of observations made
on a stochastic process. Accordingly, we must content ourselves with a partial character-
ization of the process by specifying its first and second moments.

Consider a discrete-time stochastic process represented by the time series u(n),
u(n — 1), ..., uln — M), which may be complex valued. We define the mean-value func-
tion of the process as

w(n) = Elu(n)] | Q.1

where E denotes the statistical expectation operator. We define the autocorrelation func-
tion of the process as '

r(nn— k) = Eutny*n = 0, k=0,%1,%2,..., 2.2)
where the asterisk denotes complex conjugation. We define the autocovariance function
of the process as . »

c(n, n— k) = El(u(n) ~ plm))u(n — k) = p(n — 0¥, k=0,2%1,£2,... 2.3)
From Egs. (2.1) to (2.3), we see that the mean-value, autocomelation and autocovariance
functions of the process are refated by

cl{n,n — k) = rin, n — k) — p{mp*(n — k) : 2.4)

For a partial characterization of the process, we therefore need to specify (1) the mean-
value function p(n) and (2) the autocorrelation function r(n, n — k) or the autocovariance
function c(n, n — k) for various values of » and k that are of interest. Note also the autocor-
relation and autocovariance functions have the same value wher_; the mean p(n) is zero for
all n.

This form of partial characterization offers two important advantages:

1. It lends itself to practical measurements.
2. Ttis well suited to linear operations on stochastic processes.

For a discrete-time stochastic process that is strictly stationary, al} three quantities defined
in Fgs. (2.1) to (2.3) assume simpler forms. In particular, we find that the mean-value
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function of the process is a constant p. (say), S0 we may write
i) = n forall n (2.5)

We also find that both the autocorrelation and autocovariance functions depend only on
the dz_'f_j‘erence between the observation times n and n — k, that is, k, as shown by

rin,n — k)= rk) (2.6)
and

cln,n—k) = ck) 2N

Note that when k = 0, corresponding to a time difference or lag of zero, r(0} equals the
mean-square value of u(n):

r(0) = Ellutm)|}) (2.8)

and c(0) equals the variance of u(n):
c(0) = o2 (2.9

The conditio of Egs. (2.5) to (2.7) are nort sufficient to guarantee that the discrete-time
stochastic process is strictly stationary. However, a discrete-time stochastic process that is
not strictly stationary, but for which these conditions hold, is said to be wide-sense station-
ary, OT stationary to the second order. A strictly stationary process {u(n)}, or u(n) for
short, is stationary in the wide sense if and only if (Doob, 1953)

Ellum)]?] < o0 for all n

This condition is ordinarily satisfied by stochastic processes encountered in the physical
sciences and engineering.

2.2 MEAN ERGODIC THEOREM

The expectations or ensemble averages of a stochastic process are averages “across the
process.” Clearly, we may also define long-term sample averages or time averages that
are averages “along the process.” Indeed, time averages may be used to build a stochastic
model of a physical process by estimating unknown parameters of the model. For such an
approach to be rigorous, however, we have to show that time averages converge to corre-
sponding.ensemble averages of the process in some statistical sense. A popular criterion
for convergence is that of mean square-error, as described next.

To be specific, consider a discrete-time stochastic process u(n) that is wide-sense
stationary. Let a constant p denote the mean of the process, and c(k) denote its autocovari-
ance function for lag . For an estimate of the mean ., we may use the time average

N-1
BNy = ,%,Zou(n) 2.10)
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}.vhere Nisthe tgtal number of samples used in the estimation. Note that the estimate jL(N)
is a random variable with a mean and variance of its own. In particular, we readily find
from Eq. (2.10) that the mean (expectation) of L(N) is

E[LN)] = p for all N @.11)

It is in the sense of Eq. (2.11) that we say the time average [i(N) is an unbiased estimator
of the ensemble average (mean) of the process.

Moreover, we say that the process u(n) is mean ergodic in the mean-square error
sense if the mean-square value of the error between the ensemble average . and the time
average [1.(N) approaches zero as the number of samples N approaches infinity; that is,

: . 2 _
lim [(p A(NM)1=0
Using the time average formula of Eq. (2.10), we may write

N~1 2

— 5 2 uln)

n=0

Ellu— AP = E

2

(u(n)—p)

- #E (u(ny — p) (e (k) ~ ) * .12)

cln—k

Let [ = n — k. We may then simplify the double summation in Eq. (2.12) as follows:
N-1
. 1 l
stw-ami =5 > (1-E)eo
i=~N+1
Accordingly, we may state that the necessary and sufficient condition for the process u(n)
to be mean ergodic in the mean-square error sense is that

N-1

limy . (1—%1)c(1)=0 @.13)

N
N== v

In other words, if the process u(n) is asymptotically uncorrelated in the sense of Eq.
(2.13), then the time average {i(N) of the process converges to the ensemble average p in
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the mean-square error sense. This is the statement of a particular form of the mean ergedic
theorem (Gray and Davisson, 1986).

The use of the mean érgodic theorem may be extended to other time averages of the
process. Consider, for example, the following time average used to estimate the autocorre-
lation function of a wide-sense stationary process:

N=1
R _ 1 z _ _
F(k,N) =N Ou(n)u(n k), O0=<k=N-1 (2.14)
The process u(n) is said to be correlation ergodic in the mean-square error sense if the
mean-square value of the difference between the true value r(k) and the estimate (k. N)
approaches zero as the number of samples N approaches infinity. Let z(n, ) denote a new
discrete-time stochastic process related to the original process u(r) as follows:

zin, k) = u(n)u(n — k) 2.15)

Hence, by substituting z(n; k) for u(r), we may use the mean ergodic theorem to establish
the conditions for z{n, k) to be mean ergodic or, equivalently, for u(n) to be correlation
ergodic.

2.3 CORRELATION MATRIX

Let the M-by-1 observation vector u(n) represent the elements of the timc series u(n),
un = 1), ..., u(n — M + 1). To show the composition of the vector u(n) explicitly, we
write -

u(n) = [u(m), win — 1), ..., u(n — M+ D))" | (2.16)

where the superscript T denotes transposition. We define the correlation matrix of a sta-
tionary discrete-time stochastic process represented by this time series as the expectation
of the outer product of the observation vector u(n) with itself. Let R denote the M-by-M
correlation matrix defined in this way. We thus write

R = Elu(n) u"(n)] _ (2.17)

where the superscript H denotes Hermitian transposition (i.e., the operation of transposi-
tion combined with complex conjugation). By substituting Eq. (2.16) in (2.17) and using
the condition of wide-sense stationarity, we may express the correlation matrix R in the
expanded form:

) r(1) cen M =1)

-1 0 v e M-=2
r(=1) r(0) riM —2) o)

. . »

Lr(—M+1) r(-M-+2) r(0)
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The element (0) on the main diagonal is always real valued. For complex-valued data, the
remaining elements of R assume complex values.

Properties of the Correlation Matrix

The correlation matrix R plays a key role in the statistical analysis and design of discrete-
time filters. It is therefore important that we understand its various properties and their
implications. In particular, using the definition of Eq. (2.17), we find that the correlation
matrix of a stationary discrete-time stochastic process has the following properties.

Property 1.  The correlation matrix of a stationary discrete-time stochastic pro-
cess is Hermitian.

"We say that a complex-valued matrix is Hermitian if it is equal to its conjugate
transpose. We may thus express the Hermitian property of the correlation matrix R by
writing

R =R (2.19)

This property follows directly from the definition of Eq. (2.17).
Another way of stating the Hermitian property of the correlation matrix R is to write

r(— k) = r¥k) (2.20)

where r(k) is the autocorrela‘lion function of the stochastic process u(n) for a lag of k.
Accordingly, for a wide-sense stationary process we only need M values of the autocorre-

tation function rik) fork =0, 1, ..., M — 1 in order to completely define the correlation
matrix R. We may thus rewrite Eq. (2.18) as follows:
r(0) r(l) s r(M-—1)
r*1) r(0) e o r(M-—12)
R= . . . . 2.21)

MM=1) KM =2) ..+ r(0)

From here on, we will use this representation for the expanded matrix form of the correla-
tion matrix of a wide-sense stationary discrete-time stochastic process. Note that for the
special case of real-valued data, the autocorrelation function r(k) is real for all k, and the
correlation matrix R is symmetric.

Property 2. The correlation matrix of a stationary discrete-time stochastic pro-
cess is Toeplitz.

We say that a square matrix is Toeplitz if all the elements on its main diagonal are
equal, and if the elements on any other diagonal parallel to the main diagonal are also
equal. From the expanded form of the correlation matrix R given in Eq. (2.21), we see that
all the elements on the main diagonal are equal to r(0), all the elements on the first diago-
nal above the main diagonal are equal to r(1), all the elements along the first diagonal
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below the main diagonal are equal to r*(1), and so on for the other diagonals. We con-
clude therefore that the correlation matrix R is Toeplitz.

It is important to recognize, however, that the Toeplitz property of the correlation
matrix R is a direct consequence of the assumption that the discrete-time stochastic pro-
cess represented by the observation vector u(r) is widé-sense stationary. Indeed, we may
state that if the discrete-time stochastic process is wide-sense stationary, then its correla-
tion matrix R must be Toeplitz; and, conversely, if the correlation matrix R is Toeplitz,
then the discrete-time stochastic process must be wide-sense stationary.

Property 3. The correlation matrix of a discrete-time stochastic process is
always nonnegative definite and almost always positive definite.

Let x be an arbitrary (nonzero) M-by-1 complex-valued vector. Define the scalar
random variable y as the inner product of x and the observation vector u(#n), as shown by

y= x”u(n)
Taking the Hermitian transpose of both sides and recognizing that y is a scalar, we get
yv* = ufn)x

where the asterisk denotes complex conjugation. The mean-square value of the random
variable y equals

ETiy[I’) = Elyy*]
= E[x"u(m)u"(n)x]
= x"E[u(nu’(n)]x
= x"Rx
where R is the correlation matrix defined in Eq. (2.17). The expression x"Rx is called a
Hermitian form. Since

Elvf1=0
it follows that

X'Rx =0 (2.22)
A Hermitian form that satisfies this condition for every nonzero x is said to be nonnega-
tive definite or positive semidefinite. Accordingly, we may state that the correlation matrix

of a wide-sense stationary process is always nonnegative definite.
If the Hermitian form x"Rx satisfies the condition

xRx > 0

for every nonzero X, we say that the correlation matrix R is positive definite. This condi-
tion is satisfied for a wide-sense stationary process unless there are linear dependencies
between the random variables that constitute the M elements of the observation vector
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u(n). Such a situation arises essentially only when the process u(n) consists of the sum of
K sinusoids with K < M; see Section 2.4 for more details. In practice, we find that this ide-
alized situation is so rare in occurrence that the correlation matrix R is almost always pos-
itive definite. _

The positive definiteness of a correlation matrix implies that its determinant and all
principal minors are greater than zero. For example, for M = 2, we must have

r0) nl)
>0
r*(1) n0)
Similarly, for M = 3, we must have
r0) Ab
>0
r<(1) n0)
r0) n2)
>0
r«2) no
0 nl) n2)

(1) 0 >0
*2)y r1) n0)

and so on for higher values of M. These conditions, in turn, imply that the correlation
matrix is nonsingular. We say that a matrix is nonsingular if its inverse exists; otherwise,
it is singular. Accordingly, we may state that a correlation matrix is almost always nonsin-

gular.

Property 4.  When the elements that constitute the observation vector of a sta-
tionary discrete-time stochastic process are rearranged backward, the effect is equivalent

to the transposition of the correlation matrix of the process.
Let u®(n) denote the M-by-1 vector obtained by rearranging the elements that consti-
tute the observation vector u(n) backward. We illustrate this operation by writing

vn) =[u(n — M+ 1), u(ln —M +2),..., u(®) (2.23)

where the superscript B denotes the backward rearrangement of a vector. The correlation
matrix of the vector u’(n) equals, by definition,

r(®) rX(1) cve rNM - 1)
1 r(O) . & & r*(M _— 2)
E[IIB(H)IIBH(H)] = ':( ) . - - (2.24)
AM=1) KM= -+ KO)
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Hence, comparing the expanded correlation matrix of Eq. (2.24) with that of Eq. (2.21),
we see that

E [w’(n) u®(m)} = R” (2.25)
which is the desired result.
Property 5.  The correlation matrices R, and R,,, | of a stationary discrete-time

stochastic process, pertaining to M and M + | observations of the process, respectively,
are related by

noy | ¥
Ry, =| "~ (2.26)
Lr R,
or equivalently,
i R, ¥
Ry,=| 7 CT (2.27)
LefT D r(0)
where r{0) is the autocorrelation of the process for a lag of zero, and
' =[r(1), r(2),....r (M) (2.28)
and
= (1 (M), (=M + 1),...,r(=1)] (2.29)

Note that in describing Property 5 we have added a subscript, M or M + 1, to the
symbol for the correlation matrix in order to display dependence on the number of obser-
vations used to define this matrix. We follow such a practice (in the context of the correla-
tion matrix and other vector quantities) only when the issue at hand involves dependence
on the number of observations or dimensions of the matrix. .

To prove the relation of Eq. (2.26), we express the correlation matrix R,,,, in its
expanded form, partitioned as follows:

TP 0 r(l) r(2) I
r"1) . r0) r(1) see rM-1)

Ry = | ¥ (D) 0 Dot TMED 30
L rXM) : rs{M—1) *FM—-2) s r® |

Using Eqgs. {2.18), (2.20), and (2.28) in (2.30), we get the result given in Eq. (2.26). Note
that according to this relation, the observation vector u,,, (n) is partitioned in the form
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W, (n)=| un-—2)

u(n) ]
| e @31)

where the subscript M + 1 is intended to denote the fact that the vector u,,, ,(n) has M + 1
elements, and likewise for u,{n).

To prove the relation of Eq. (2.27), we express the comelation matrix R,,,, in its
expanded form, partitioned in the alternative form

™ r(0) r(1) see rM=1) 1M T
r¥1) | r(0) vee  rM=—12) : rM—1)
R =| . . . : (2.32)
r{M - 1) r*M =2 s r0) r(1)
Loy PM—1) eee D RO

Here again, using Egs. (2.18), (2.20), and {2.29) in (2.32), we get the result given in Eq.
(2.27). Note that according to this second relation the observation vector wy, (n) is parti-
tioned in the alternative form

[ w(n) 1
wn—1
Uy ()= «
.u(n -M+1)
| utn—M)

u,ln)
=1.-...-. (2.33)
u(in - M) .
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2.4 CORRELATION MATRIX OF SINE WAVE PLUS NOISE

A time series of special interest is one that consists of a complex sinusoid corrupted by
additive noise. Such a time series is representative of several important signal-processing
applications. In the remporal context, for example, this time series represents the compos-
ite signal at the input of a receiver, with the complex sinusoid representing a target signal
and the noise representing thermal noise generated at the front end of the receiver. In the
spatial context, it represents the received signal in a linear array of sensors, with the com-
plex sinusoid representing a plane wave produced by a remote source (emitter) and the
noise representing sensor noise.

Let a denote the amplitude of the complex sinusoid, and w denote its angular fre-
quency. Let v(n) denote a sample of the noise, assumed to have zero mean. We may then
write a corresponding sample of the time series that consists of the complex sinusoid plus
noise as follows:

u(n) = aexp(jun) + v(n), n=01..,N—-1 (2.34)

The sources of the complex sinusoid and the noise are independent of each other. Since
the noise component v{n) has zero mean, by assumption, we see from Eq. (2.34) that the
mean of u(n) is equal to a exp( jwn).

To calculate the autocorrelation function of the process u(n), we clearly need to
know the autocorrelation function of the noise process v(n). To proceed then, we assume a
special form of noise characterized by the autocorrelation function

0'3, k=0
E[v(niv¥(n — k)] = { (2.35)
0., k#0

Such a form of noise is commonly referred to as white noise; more will be said about it in
Chapter 3. Since the sources responsible for the generation of the complex sinusoid and
the noise are independent and, therefore, uncorrelated, it follows that the autocorrelation
function of the process u(#n) equals the sum of the autocorrelation functions of its two indi-
vidual components. Accordingly, using Egs. (2.34) and (2.35), we find that the autocorre-
lation function of the process u(n) for alag k is given by

r(k) = Elulmu*in — k)]

2 2 —
- \a‘ +ay, k=0 (2.36)
la|? exp(jwk), k#0

where || is the magnitude of the complex_amplitude «. Note that for a lag & # 0, the auto-

correlation function r(k) varies with k in the same sinusoidal fashion as the sample u(n)

varies with n, except for a change in amplitude. Given the series of samples u(n), u(n — 1),
., u(n — M + 1), we may thus express the correlation matrix of u(n) as
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1 . |
1‘*’5 exp(jw) v oo exp(ju(M ~ 1))
o 1
,| Exp(—jo) t+3 <o v exp(ju(M — 2))
R=of]| - . . . 2.37)
i exp(— jo(M — 1)) exp(—joM—2)) -+« | +‘l)

where p is the signal-to-noise ratio, defined by

p= (2.38)

AlE,

The correlation matrix R of Eq. (2.37) has all of the properties described in Section 2.3;
the reader is invited to verify them.

Equation (2.36) provides the mathematical basis of a two-step practical procedure
for estimating the parameters of a complex sinusoid in the presence of additive noise:

1. Measure the mean-square value 7(0) of the process u(n). Hence, given the noise
variance o2, determine the magnitude Joc|.

2. Measure the autocorrelation function r(k) of the process u(n) for a lag ¥ # 0.
Hence, given |a|* from step 1, determine the angular frequency w.

Note that this estimation procedure is invariant to the phase of o, which is a direct conse-
quence of the definition of the autocorrelation function r(k).

Example 1

Consider the idealized case of a noiseless sinusoid of angular frequency w. For the purpose of
illustration, we assume that the time series of interest consists of three uniformly spaced
samples drawn from this sinusoid. Hence, setting the signal-to-noise ratio p = ® and the
number of sampies M = 3, we find from Eq. (2.37) that the correlation matrix of the time
series so obtained has the following value:

1 exp(jw) exp(i2w)
R=|af’ | exp(—jw) 1 expljw)
exp{—j2w) exp(—jw) 1

From this expression we readily see that the determinant of R and all principal minors are
identically zero. Hence, this correlation matrix is singular.

) We may generalize the result of this example by stating that when a process w(n)
consists of M samples drawn from the sum of K sinusoids with K < M and there is no
additive noise, then the correlation matrix of that process is singular.
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2.5 STOCHASTIC MODELS

The term mode! is used for any hypothesis that may be applied to explain or describe the
hidden laws that are supposed to govern or constrain the generation of physical data of
interest. The representation of a stochastic process by a model dates back to an idea by
Yule (1927). The idea is that a time series u(n), consisting of highly correlated observa-
tions, may be generated by applying a series of statistically independent “shocks” to a lin-
ear filter, as in Fig. 2.1. The shocks are random variables drawn from a fixed distribution
that is usually assumed to be Gaussian with zero mean and consiant variance. Such a
series of random variables constitutes a purely random process, commonly referred to as
white Gaussian noise. Specifically, we may describe the input w(n) in Figure 2.1 in statis-
tical terms as follows:

Ehvim)} =0 | foralln (2.39)

and
(rf, k=n
Elv(n)v*(k)] = (2.40)
0, otherwise

where o2 is the noise variance. Equation (2.39) follows from the zero-mean assumption,
and Eq. (240) follows from the white assumption. The implication of the Gaussian
assumption is discussed in Section 2.11.

In general, the time-domain description of the input—output relation for the stochas-
tic model of Fig. 2.1 may be descnibed as follows:

( present value

linear combination linear combination of
of model output) + =

of past values - present and past values] (2.41)
of model output of model input
A stochastic process so described is referred to as a linear process.

The structure of the linear filter in Fig. 2.1 is determined by the manner in which the
two linear combinations indicated in Eq. (2.41) are formulated. We may thus identify
three popular types of linear stochastic models:

1. Autoregressive models, in which no past values of the model input are used.
2. Moving average models, in which no past values of the mode! output are used.

3. Mixed autoregressive-moving average models, in which the description of Eq.
(2.41) applies in its entire form. Hence, this class of stochastic models includes
autoregressive and moving average models as special cases.

X N Sample of
Shock™ drawn Discrete-time discrete-time
from purely ] . i
linear filter stochastic
random process, rocess, u(n)
p ' Figure 2.1  Stochastic model.

vin)
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These models are described next, in that order.

Autoregressive Models

We say that the time series u(n), u(n — 1), . .., u(n — M) represents-the realization of an
autoregressive process (AR) of order M if it satisfies the difference equation

u(n) + atuin — 1) + - - - + au(n -~ M) = v(n) (2.42)

where a,, a,, . . ., @ are constants called the AR parameters, and w(n) is a white-noise
process. The term a*% u(n — k) is the scalar version of inner product of a, and u(n — k),
wherek=1,..., M.

To explain the reason for the term “autoregressive,” we rewrite Eq. (2.42)"in the
form

u(n) = wluln — 1) + wiu(n — 2)+ - - - + whu(n — M) + v(n) (2.43)
where w, = — a,. We thus see that the present value of the process, that is, &(n), equals a
finite linear combination of past values of the process, u(n — 1), ..., u(n — M), plus an

error term v(n). We now see the reason for the term “autoregressive.” Specifically, a lin-

ear model
M
y= zw; x,tv
k=1

relating a dependent variable y to a set of independent variables x, x,, . . . , X\, plus an
error term v is often referred to as a regression model, and y is said to be “regressed” on
X}, X3 . . ., Xy In Eq. 2.43), the variable u(n) is regressed on previous values of ftse[f;
hence the term “autoregressive.”

The left-hand side of Eq. (2.42) represents the convolution of the input sequence
u(n) and the sequence of parameters 2. To highlight this point, we rewrite Eq. (2.42) in
the form of a convolution sum:

M .
Z aju(n—k) =v(n) (2.44)
k=0

where a, = 1. By taking the z-transform of both sides of Eq. (2.44), we transform the con-
volution sum on the lefi-hand side of the equation into a multiplication of the z-transforms
of the two sequences u(n) and a. Let H,(z) denote the z-transform of the sequence a:
M
H = 20" 2.45)
Let U(z) denote the z-transform of the input sequence u(n):

U@ = Z wlmyz " (2.46)

n=0



110

Chap. 2 Stationary Processes and Models

where z is a complex variable. We may thus transform the difference equation (2.42) into
the equivalent form

H,(QU(z) = V(2) (2.47)
where
V(z) = zvm)z_" (2.48)
n=(}

The z-transform of Eq. (2.47) offers two interpretations, depending on whether the AR
process u(n) is viewed as the input or output of interest:

1. Given the AR process u(n), we may use the filter shown in Fig. 2.2(a) to produce
the white noise process v(n) as output. The parameters of this filter bear a one-to-
one correspondence with those of the AR process u(n). Accordingly, this filter
represents a process analyzer with discrete transfer function H,(z) = V(2)/U(2).
The impulse response of the AR process analyzer, that is, the inverse z-transform
of H,(2), has finite duration.

2. With the white noise v(n) acting as input, we may use the filter shown in Fig.
2.2(b) to produce the AR process u(n) as output. Accordingly, this second filter
represents a process generator, whose transfer function equals

H,(2) (2.49)

*_“h
a.z

The impulse response of the AR process generator, that is, the inverse z-trans-
form of H(z), has infinite duration.

The AR process analyzer of Fig. 2.2(a) is an ali-zero filter. It is so called because its
transfer function H,(z) is completely defined by specifying the locations of its zeros. This
filter is inherently stable.

The AR process generator of Fig. 2.2(b) is an all-pole filter. 1t is so called because
its transfer function H(z) is completely defined by specifying the locations of its poles, as
shown by

1
(1=pz HU-p ) (1= pyz™)

The parameters p,, p,. . . ., Py are poles of H(2); they are defined by the roots of the char-
acteristic equation

He(z) = (2.50)

1 +a*z7 +alz7? 4 +ale™=0 2.51)
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For the all-pole AR process generator of Fig. 2.2(b) to be stable, the roots of the character-
istic equation (2.51) must all lie inside the unit circle in the z-plane. This is also a neces-
sary and sufficient condition for wide-sense stationarity of the AR process produced by
the model of Fig. 2.2(b)."We have more to say on the issue of stationarity in Section 2.7,

Moving Average Models

In a moving average (MA) model, the discrete-time linear filter of Fig. 2.1 consists of an
all-zero filter driven by white noise. The resulting process u(n). produced at the filter out-
put, is described by the difference equation:

u(n) = vin) + bivin — N+ - + byv(n — K) (2.52)

where b,, . . ., b, are constants called the MA parameters, and v(n) is a white-noise pro-
cess of zero mean and variance . Except for v(n), each term on the right-hand side of
Eq. (2.52) represents the scalar version of an inner product. The order of the MA process
equals K. The term moving average is a rather quaint one; nevertheless, its use is firmly
established in the literature. Its usage arose in the following way: If we are given a com-
plete temporal realization of the white-noise process v(n), we may compute u(n) by con-
structing a weighted average of the sample values v(n), vin — 1), ..., v(n — K).

From Eq. (2.52), we readily obtain the MA model (i.e., process-generator) depicted
in Fig. 2.3. Specifically, we start with a white-noise process w(n) at the model input and
generate an MA process u(n) of order K at the model output. To proceed in the reverse
manner, that is, to produce the white-noise process v(n), given the MA process w(n), we
require the use of an all-pole filter. In other words, the filters used in the generation and
analysis of an MA process are the opposite of those used in the rase of an AR process.

Autoregressive-Moving Average Models

To generate a mixed autoregressive-moving average (ARMA ) process u(n), we use a dis-
crete-time linear filter in Fig. 2.1 with a transfer function that contains both poles and
zeros. Accordingly, given a white-noise process v(n) as the filter input, the ARMA process
u(n) produced at the filter output is described by the difference equation

w(n) + atu(n = 1) + - + afu(n — M)=v(n) + bun — 1) + - - - + bgvin — K)
(2.53)

wherea,, ..., ayand by, . .., b, are called the ARMA parameiers. Except for u(n) on the
left-hand side and v{n) on the right-hand side of Eq. (2.53), all of the terms represent scalar
versions of inner products. The order of the ARMA process equals (M, K).

From Eq. (2.53), we readily deduce the ARMA model (i.e., process generator)
depicted in Fig. 2.4. Comparing this figure with Figs. 2.2(b) and 2.3, we clearly see that
AR and MA models are indeed special cases of an ARMA mode!.



Stochastic Models 13

Sec. 2.5

{t)n

‘(101010028 ss2001d) [apowr aBesone Sutnoy g7 andrg

‘ssasod yiN q =
jo eydweg

OG- wa

wIN

e o @

2

@-ua

4

(s

——@—a— ‘510U BUYM

jo ejdweg




114 Chap.2  Stationary Processes and Models
Sample of Sample of
white noise, - p ARMA process,
vin) u(n)

z-

z-

(5_.._.41\
;‘j >/

z-

@.__

Figure 24 ARMA model (process generator) of order (M, K), assuming that M > K,
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The transfer function of the ARMA process generator in Fig. 2.4 has both poles and
zeros. Similarly, the ARMA analyzer used to generate a white-noise process v(n), given an
ARMA process u(n), is characterized by a transfer function containing both poles and
Z€ros.

From a computational viewpoint, the AR model has an advantage over the MA and
ARMA models. Specifically, the computation of the AR coefficients in the model of Fig.
2.2(a) involves a system of linear equations known as the Yule-Walker equations, details
of which are given in Section 2.8. On the other hand, the computation of the MA coeffi-
cients in the model of Fig. 2.3 and the computation of the ARMA coefficients in the model
of Fig. 2.4 are much more complicated. Both of these computations require solving sys-
tems of nonlinear equations. It is for this reason that, in practice, we find that the use of
AR models is more popular than MA and ARMA models. The wide application of AR
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models may also be justified by virtue of a fundamental theorem of time series analysis,
which is discussed next. ’

2.6 WOLD DECOMPOSITION

Wold (1938) proved a fundamental theorem, which states that any stationary discrete-time
stochastic process may be decomposed into the sum of a general linear process and a pre-
dictable process, with these two processes being uncorrelated with each other. More pre-
cisely, Wold proved the following result:

Any stationary discrete-time stochastic process x(n) may be expressed in the form
x(n) = u(n) + s(m) (2.54)
where

1
2. u(n) is a general linear process represented by-the MA model:

u{m) and s(n) are uncorrelated processes,

.

u{n) = Zbk'v(n ~k) (2.55)
k=0

with b, = 1, and

> <,

and where v(n) is a white-noise process uncorrelated with s(n); that is,
E[v(n)s*(k)] = 0 for all (n, k)

3. s(n) is a predictable process; that is, the process can be predicted from its own past
with zero prediction variance.

This result is known as Wold’s decomposition theorem. A proof of this theorem is given in
Priestley (1981).

According to Eq. (2.55), the general linear process u(n) may be generated by feed-
ing an all-zero filter with the white-noise process ¥{(n) as in Fig. 2.5(a). The zeros of the
transfer function of this filter equal the roots of the equation:

B(2) = Zob;‘z-n=o

A solution of particular interest is an all-zero filter that is minimum phase, which means
that all the zeros of the polynomial B(z) lie inside the unit circle. In such a case, we may
replace the all-zero filter with an equivalent all-pole filter that has the same impulse
response s, = b , as in Fig. 2.5(b). This means that except for a predictable component, a
stationary discrete-time stochastic process may also be represented as an AR process of
the appropriate order, subject to the above-mentioned restriction on B(z). The basic differ-
ence between the MA and AR models is that B(z) operates on the input v(n) in the MA
model, whereas the inverse B~ '(z) operates on the output «(n) in the AR model.
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Figure 2.5 (a) Model, based on all-zero filter, for generating the linear process u(n): (b)
model, based on all-pole filter, for generating the general finear process
u(n). Both filters have exactly the same impulse response.

2.7 ASYMPTOTIC STATIONARITY OF AN AUTOREGRESSIVE
PROCESS

Equation (2.42) represents a linear, constant coefficient, difference equation of order M,
in which v(rn) plays the role of input or driving function and u(n) that of output or solution.
By using the classical method' for solving such an equation, we may formally express the
solution u(n) as the sum of a complementary function, u(n), and a particular solution,
u,(n), as follows:

u(n) = u(n) + u,(n) (2.56)

The evaluation of the solution u(z) may thus proceed in two stages:

1, The complementary function u (n) is the solution of the homogeneous eguation
u(m) +aju(n—~1)+au(n—2)+ +ayu(n—M=0
In general, the complementary function u,(n) will therefore be of the form
u.(n) = B,p} + Byps+ - + By py (257

where B, B,, .". . , B, are arbitrary constants, and p|, p,, . . . , p, are roots of the
characteristic equation (2.51).

2. The particular solution u,(r) is defined by
u,(n) = Ha(D)v(n)) (2.58)

“We may also use the z-transform method to solve the differenice equation (2.42). However, for the dis-
cussion presented hete, we find it more informative to use the classical method.
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where D is the unit-delay operator, and the operator H (D) is obtained by sub-
stituting D for z~' in the discrete-transfer function of Eq. (2.49). The unit-delay

operator D has the property
D'u(n)] = u(n — &), k=0,1,2,... (2.59)
The constants B,, B,, . . ., B, are determined by the cheice of initial conditions that equal
M in number. It is customary to set
w0)=0
w-1)=0
L] (2'60)
u-M+1)=0

This is equivalent 10 setting the output of the model in Fig. 2.2(b) as well as the succeed-
ing (M — 1) tap inputs equal to zero at time # = 0. Thus, by substituting these initial con-
ditions into Egs. (2.56) — (2.58), we obtain a set of M simuitaneous equations that can be
solved for the constants B, B,, . .., B,

The result of imposing the initial conditions of Eq. (2.60) on the solution u(n) is to
make the discrete-time stochastic process represented by this solution nonstationary. On
reflection, it is clear that this must be so, since we have given a “special status” to the time
point n = 0, and the property of invariance under a shift of time origin cannot hold, even
for second-order moments. If, however, the solution u(n) is able to “forget™ its initial con-
ditions, the resulting process is asymptotically stationary in the sense that it settles down
10 a stationary behavior as n approaches infinity (Priestley, 1981). This requirement may
be achieved by choosing the parameters of the AR model in Fig. 2.2(b) such that the com-
plementary function u(n) decays to zero as » approaches infinity. From Eq. (2.57) we see
that, for arbitrary constants in the equation, this requirement can be met if and only if

lpd <1 forall k

Hence, for asymptotic stationarity of the discrete-time stochastic process represented by
the solution u(n), we require that all the poles of the filter in the AR model lie inside the
unit circle in the 7-plane. This is intuitively satisfying.

Correlation Function of an Asymptotically Stationary
AR Process

Assuming that the condition for asymptotic stationarity is satisfied, we may derive an
important recursive relation for the autocorrelation function of the resulting AR process
u(n) as follows. We first multiply both sides of Eq. (2.42) by u*(n — ) and then apply the
expectation operator, thereby obtaining

M

E Za;u(n-k)u;‘(n~l) = E{v(mu*{n—1)] (2.61)
=0



118 Chap. 2 Stationary Processes and Modeis

Next, we simplify the left-hand side of Eq. (2.61) by interchanging the expectation and
summation, and recognizing that the expectation E[u(n — k)u*(n — [)] equals the autocor-
relation function of the AR process for a lag of [ — k. We simplify the right-hand side by
observing that the expectation E{v(n)u*(n — )] is zero for | > 0, since u(n — [) only
involves samples of the white-noise process at the filter input in Fig. 2.2(b) up to time
n — [, which are uncorrelated with the white-noise sample v(n). Accordingly, we simplify
Eq. (2.61) as follows:

M

Z a;r(l-ky=0, 1>0 (2.62)
k=0
where g, = 1. Wethus see that the autocorrelation function of the AR process satisfies the
difference equation

r(y =wir(l= ) +wyr(I=2) + - +wpr(i—-M), [>0 (2.63)

where w, = —a, k = 1,2, ..., M. Note that Eq. (2.63) is analogous to the difference
equation satisfied by the AR process u(n) itself.
We may express the general soluticn of Eq. (2.63) as follows:

M
r(m) = ; C.pp (2.64)

where C,, C,, . . . , C,, are constants, and p,, p,. . . ., p, are roots of the characteristic equa-
tion (2.51). Note that when the AR model of Fig. 2.2(b) satisfies the condition for asymp-
totic stationarity, |p,] < 1 for all , in which case the autocorrelation function r(m)
approaches zero as the lag m approaches infinity.

The exact form of the contribution made by a pole p, in Eq. (2.64) depends on
whether the pole is real or complex. When p, is real, the corresponding contribution
decays geometrically to zero as the lag m increases. We refer to such a contribution as a
damped exponential. On the other hand, complex poles occur in conjugate pairs, and the
contribution of a complex-conjugate pair of poles is in the form of a damped sine wave.
We thus find that, in general, the autocorrelation function of an asymptotically stationary
AR process consists of a mixture of damped exponentials and damped sine waves.

2.8 YULE-WALKER EQUATIONS

In order to uniquely define the AR model of order M, depicted in Fig. 2.2(b), we need to
specify two sets of model parameters:

1. The AR coefficients a,, a,, . . ., gy
2. The variance crf of the white noise v(n) used as excitation.

We now address these rwo issues in turn.
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First, writing Eq. (2.63) for! = 1, 2, ..., M, we get a set of M simultaneous equa-
tions with the values r(0), r(1), . . ., r(M) of the autocorrelation function of the AR pro-
cess as the known quantities and the AR parameters a,. a,, . . ., a, as the unknowns. This
set of equations may be expressed in the expanded matrix form

) r(1) o M~ [ w ()]
r¥(1) (1)) eor riM—1) W, r*(2)
. . - . * _ - (2-65)
rFM -1 rfM-=2) +«.«. r{ Wy r¥(M)
L 4 1 L J

where we have w, = —a,. The set of equations (2.65) is called the Yule-Walker equations
(Yule, 1927; Walker, 1931).
We may express the Yule-Walker equations in the compact matrix form

Rw=r (2.66)
and its solution as (assuming that the correlation matrix R is nonsingular)
w=R"'r (2.67)
where R is the inverse of matrix R, and the vector w is defined by
w=[w, Wy .., wyl"

The correlation matrix R is defined by Eq. (2.21),.and vector r is defined by Eq. (2.28).
From these two equations, we see that we may uniquely determine both the matrix R and

the vector r, given the autocorrelation sequence r(0), r(l), . . ., r(M). Hence, using
Eq. (2.67) we may compute the coefficient vectior w and, therefore, the AR coefficients
a,=—w, k=12 ..., M Inother words, there is a unique relationship between the
coefficients a,, a,, . . ., @y of the AR model and the normalized correlation coefficients p,,

Pgs - - - » Py OF the AR process u(n), as shown by
(@ ay- .. 8y} = (P Ps Pyl (2.68)

where the correlation coefficient p, is defined by
pk=%%, k=12,....M (2.69)

Variance of the White Noise

For { = 0, we find that the expectation on the right-hand side of Eq. (2.61) assumes the
special form
E[v(n)u*(n)] = Elv(nv*(n)]
=0 (2.70)
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Figure 2.6  Model of (real-valued) autoregressive process of order 2.

where o2 is the variance of the zero-mean white noise v(n). Accordingly, setting { = 0 in
Eq. (2.61) and complex-conjugating both sides, we get the following formula for the vari-
ance of the white-noise process:

M
o= ar(k) @2.71)

k=0
where 4, = 1. Hence, given the autocorrelations »(0), r (1), . . ., 7 (M), we may determine

the white-noise variance o°.

2.9 COMPUTER EXPERIMENT: AUTOREGRESSIVE PROCESS
OF ORDER 2

To illustrate the theory developed above for the modeling of an AR process, we consider
the example of a second-order AR process that is real valued.” Figure 2.6 shows the block
diagram of the model used to generate this process. Its time-domain description is gov-
emed by the second-order difference equation

u(n) + au(n — 1) + au(n — 2) = v(n) {(2.72)

In this example, we foltow the approach described by Box and Jenkins (1976).
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where w(n) is drawn from a white-noise process of zero mean and variance o2. Figure
2.7(a) shows one realization of this white-noise process. The variance o2 is chosen to
make the variance of u(n) equal unity.

Conditions for Asymptotic Stationarity

The second-order AR process u(n) has the characteristic equation
1+ at,z_I + azz'2 =0 (2.73)
Let p, and p, denote the two roots of this equation:

Py Py =3(—a, * Jal—4ay) 2.74)

To ensure the asymptotic stationarity of the AR process w(n), we require that these two
roots lie inside the unit circle in the z-plane. That is, both p, and p, must have a magnitude
less than 1. This, in turn, requires that the AR parameters a, and a, lie in the triangular
region defined by

-1=<a,—aq (2.75)
as shown in Fig, 2.8.
Autocorrelation Function
The autocorrelation function r(m) of an asymptotically stationary AR process for lag m

satisfies the difference equation (2,62). Hence, using this equation, we obtain the follow-
ing second-order difference equation for the autocorrelation function of a second-order

AR process:
rimy+ ayrim —1)+aym—2)=0, m> 0 (2.76)
For the initial values, we have (as will be explained later)
0) = o
"0 =0 a @17
= 1 .2
r(1) = 3o
Thus, solving Eq. (2.76) for r(m}, we get (for m > 0)
p(pi-1) p,(p?—1) }
= 2! m — m
rim) a"[(Pz—Pl)(P|P2+ 1)P1 (Pz'Pl) (P]P'z"'l)pz (2.78)

where p, and p, are defined by Eq. (2.74). '
There are two specific cases to be considered, depending on whether the roots p, and
p, are real or complex valued, as described next.
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Figure 2.7  (a) One realization of white-noise input; (b}, (c}, (d) corrcspondin; outputs
of AR model of order 2 for parameters of Egs. (2.79), (2.80). and {2.81), respectively.
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ap

1

Region 1 Region 2

.Figure 2.8  Permissible region for the AR parameters g, and a,.

Case 1. Real Roots. This case occurs when
a —da, >0

which corresponds to regions 1 and 2 below the parabolic boundary in Fig. 2.8. In region
1, the autocorrelation function remains positive as it damps out, corresponding to a posi-
tive dominant root. This situation is illustrated in Fig. 2.9(a) for the AR parameters

a, = —0.10
az = —0-8

In Fig. 2.7(b), we show the time variation of the output of the model in Fig..2.6 {with q,
and a, assigned the values given in Eq. (2.79)]. This output is produced by the white-noise
input shown in Fig. 2.7(a).

In region 2 of Fig. 2.8, the autocorrelation function alternates in sign as it damps out,
corresponding to a negative dominant root. This situation is illustrated in Fig. 2.9(b) for
the AR parameters

(2.79)

'w\’.

a2, =01 (2.80)

a,=—028
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Figure 2.9  Plots of normalized autocorrelation function of real-valued AR(2) process;

{2) r (1) > 0: (b) r(1)-< 0; {c} conjugate roots.
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Figure 2.9  (conrinued)

In Fig. 2.7(c) we show the time variation of the output of the model in Fig. 2.6 [with a,
and a, assigned the values given in Eq. (2.80)). This output is also produced by the white-
noise input shown in Fig. 2.7(a).

Case 2: Complex-Conjugate Roots. This occurs when

which comresponds to the shaded region shown in Fig. 2.8 above the parabolic boundary.
In this case, the autocorrelation function displays a pseudoperiodic behavior, as illustrated
in Fig. 2.9(c) for the AR parameters

a, = —0.975
a, = 0.95

In Fig. 2.7(d) we show the time variation of the output of the model in Fig. 2.6 {with g,
and a, assigned the values given in Eq. (2.81)], which is produced by the white-noise input
shown in Fig. 2.7(a).

(2.31)

Yule-Walker Equations

Substituting the value M = 2 for the AR model order in Eq. (2.65), we get the following
Yule-Walker equations for the second-order AR process:
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r® r(l w, r(1
() O |wy | @ (282)
where we have used the fact that r (—1) = r(1) for a real-valued process. Solving Eq.
(2.82) for w, and w,, we get
ey LI rO@ )]
1 ! 2 0) - 2 )
g =@~ ()
0 - (1)
We may also use Eq. (2.82) to express r(1) and r(2) in terms of the AR parameters a, and
a, as follows:

(2.83)

Wz—_"

r(l) = 1:_“; 02
2
af (2.84)
r(2)y=|-a,+ 1—+'a—2 0‘5

where 03 = r(0). This solution explains the initial values for r(0) and r(1) that were
quoted in Eq. (2.77).

The conditions for asymptotic stationarity of the second-order AR process are given
in terms of the AR parameters a, and a, in Eq. (2.75). Using the expressions for (1) and
r(2) in terms of a, and a,, given in Eq. (2.84), we may reformulate the conditions for
asymptotic stationarity as follows:

-1<p, <1 (2.85)
p% < %(13’\92)

where p, and p, are the normalized correlation coefficients defined by

r(l)
P1~ r(0) .
and @) (2.86)
P2 = r(D)

Figure 2.10 shows the admissible region for p, and p,.

Variance of the White-Noise Process

Putting M = 2 in Eq. (2.71), we may express the variance of the white-noise process
v(n) as
o = r(0) + a,r(l) + ayr(2) (2.87)
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Figure 210  Permissible region for parameters of second-order AR process in terms of
the normalized correlation coefficients p, and p,.

Next, substituting Eq. (2.84) in (2.87), and solving for ¢2 = r(0), we get

l+a o?
2= 2 - 2.88

For the three sets of AR parameters considered previously, we thus find that the variance
of the white noise v(n) has the values given in Table 2.1, assuming that ol =1

TABLE 21 AR PARAMETERS AND NOISE VARIANCE

a a o
~0.10 -0.8 0.27
0.1 -0.8 0.27

—(.975 0.95 0.0731
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2.10 SELECTING THE MODEL ORDER

The representation of a stochastic process by a linear model may be used for synthesis or
analysis. In synthesis, we generate a desired time series by assigning a prescribed set of
values to the parameters of the model and feeding it with white noise of zero mean and
prescribed variance. In analysis, on the other hand, we estimate the parameters of the
model by processing a given time series of finite length. Insofar as the estimation is statis-
tical, we need an appropriate measure of the fit between the model and the observed data.
This implies that unless we have some prior information, the estimation procedure should
include a criterion for selecting the model order (i.e., the number of independently
adjusted parameters in the model). In the case of an AR process defined by Eq. (2.42), the
model order equals M. In the case of an MA process defined by Eq. (2.52), the model
order equals K. In the case of an ARMA process defined by Eq. (2.53), the model order
‘equals (M, K). Varous criteria for model-order selection are described in the literature
(Priestley, 1981; Kay, 1988). In this section we describe two important criteria for select-
ing the order of the modet, one of which was pioneered by Akaike (1973, 1974) and the
other by Rissanen (1978) and Schwartz (1978); both criteria result from the use of infor-
mation-theoretic arguments, but in entirely different ways.

An Information-Theoretic Criterion

Letu, = u(i),i = 1,2, ..., N, denote the data obtained by N independent observations of
a stationary discrete-time stochastic process, and g(x;) denote the probability density func-
tion of u,. Let f,{4,]8,,) denote the conditional probability density function of u,, given §,,
where @, is the estimated vector of parameters that model the process. Let m be the model
order, so that we may write

6 =| (2.89)

We thus have several models that compete with each other to represent the process of
interest. An information-theoretic criterion (AIC) proposed by Akaike selects the model

for which the quantity
AIC(m) = —2L(@,) + 2m (2.90)

is a minimum. The function L(§,,) is defined by

N
1@,) = max Zl In f(u,0,) (29D
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where In denotes the natural logarithm. The criterion of Eq. (2.91) is derived by minimiz-
ing the Kullback-Leibler mean information,’ which is used to provide a measure of the
separation or distance between the “unknown” true probability density function g(») and
the conditional probability density function f,,(«;§,,) given by the model in light of the
observed data.

The function L(#,, ), constituting the first term on the right-hand side of Eq. (2.90),
except for a scalar, is recognized as a logarithm of the maximum-likelihood estimates of
the parameters in the model; for a discussion of the method of maximum likelihood, see
Appendix D. The second term, 2m, represents a model complexity penalty that makes
AIC(m) an estimate of the Kullback--Leibler mean information.

The first term of Eq. (2.90) tends to decrease rapidly with model order m. On the
other hand, the second term increases linearly with m. The result is that if we plot AIC(m)
versus model order m, the graph will, in general, show a definite minimum value, and the
optimum order of the model is determined by that value of m at which AIC(m) attains its
minimum value. The minimum value of AIC is called MAIC(minimum AIC).

Minimum Description Length Criterion

Rissanen (1978, 1989) has used an entirely different approach to solve the statistical
model identification problem. Specifically, he starts with the notion that a model may be
viewed as a device for describing the regular features of a set of observed data, with the
objective being that of searching for a model that best captures the regular features or con-
straints that give the data their special structure. Recognizing that the presence of con-
straints reduces uhcertaimy about the data, the objective may equally be that of encoding
the data in the shortest or least redundant manner; the term “encoding” used here refers to
an exact description of the observed data. Accordingly, the number of binary digits needed
to encode both the observed data, when advantage is taken of the constraints offered by a
model, and the model itself may be used as a criterion for measuring the amount of the
same constraints and therefore the goodness of the model. ‘
We may thus formally state Rissanen's minimum description length (MDL)
criterion® as follows: Given a data set of interest and a family of competing statistical

*In Akaike (1973, 1974, 1977) and Ulrych and Oce (1983), the criterion of Eq, (2.90) is derived from the
principle of minimizing the expectation ETHgift>|é, )], where

= %

Hgf=|8.)) = L g (u) In g(u) du — L g (W ln f(uld, ) du

We refer to l(g;ﬂ-‘ ) as the Kullback—Leibler mean informarion for discrimination between g(u) and f[,(ulém}
(Kullback and Leibler, 1951). The idea is to minimize the information added to the time series by modeling it as
an AR, MA, or ARMA process of finite order, since any information added is virtually false information in a
real-world situation. Since g(u) is fixed and unknown, the problem reduces to one of maximizing the second term
that makes up I(g;ﬂ-|ﬁm)).

“The idea of minimum description length of individual recursively definable objects may be traced to
Kolmogorov (1968).
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models, the best model is the particular one that provides the shortest description length
for the data. In mathematical terms, it is defined bys (Rissanen, 1978, 1989; Wax, 1995)

MDL(m) = - L(®,) + % mInN (2.92)

where m is the number of independently adjusted parameters in the model, and & is the
sample size (i.e., the number of observations). As with Akaike's information—theoretic cri-
terion, L(@,,) is the logarithm of the maximum likelihood estimates of the model parame-
ters. In comparing Egs. (2.90) and (2.92), we see that the principal difference between the
AIC and MDL criterion lies in the structure-dependent term.

According to Rissanen (1989), the MDL criterion offers the following attributes:

* The model permits the shortest encoding of the observed data and captures all the
learnable properties of the observed data in the best possible manner.

» The MDL criterion is a consistent model-order estimator in the sense that it con-
verges to the true model order as the sample size increases.

+ The model is optimal in the context of linear regression problems as well as
ARMA models.

Perhaps the most significant point to note is the fact that in all of the applications involv-
ing the MDL criterion, there has been no anomalous resuit or a model with undesirable
properties reported in the literature.

2.11 COMPLEX GAUSSIAN PROCESSES

Gaussian stochastic processes, or simply Gaussian processes, are frequently encountered
in both theoretical and applied analysis. In this section we present a summary of some
important properties of Gaussian processes that are complex valued.®

Let u(n) denote a complex Gaussian process consisting of N samples. For the first-
and second-order statistics of this process, we assume the following:

1. A mean of zero as shown by

w = Elu(n)] =0 forn=12,....N (2.93)

3Schwartz (1989) has derived a similar result, using a Bayesian approach, In particular, he considers the
asymptotic behavior of Bayes estimators under a special class of priors. These priors put positive probability on
the subspaces that correspond o the competing models. The decision is made by selecting the model that yields
the maximum & posteriori probability.

It turns out thay, in the large sample limit, the two approaches taken by Schwartz and Rissanen yield
essentially the same result. However, Rissanen’s approach is much more general, whereas Schwartz’s approach is
restricted to the case that the observations are independent and come from an exponential distribution,

*For a detailed treatment of complex Gaussian processes, see the book by Miller (1974). Propertics of
complex Gaussian processes are also discussed in Keliy et al. (1960), Reed (1962), and McGee (1971}
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2. An autocorrelation function denoted by
r(b) = Elu(n)u*(n — k)], k=0,1,...,N—1 (2.94)

The set of autocorrelation functions {r(k), k= 0,1, ..., N — 1} defines the cor-
relation matrix R of the Gaussian process w(n).

The shorthand notation N'(0,R) is commonly used to refer to a Gaussian process with a
mean vector of zero and correlation matrix R.

Equations (2.93) and (2.94) imply wide-sense stationarity of the process. Knowl-
edge of the mean p. and the autocorrelation function r(k) for varying values of lag k is
indeed sufficient for the complete characterization of the complex Gaussian process u(r).
In particular, it may be shown that the joint probability density function of N samples of
the process 5o described is as follows (Kelly et al., 1960).

1 1 #, -1
W= ey ST A @-9%)

where u is the N-by-1 data vector; that is,
u = [w(1), u2), . .., u(N)}" (2.96)

and A is the N-by-N Hermitian-symmetric moment matrix of the process, defined in terms
of the correlation matrix R = {r(k)} as

A = } Fluu”] (2.97)
= 3R

Note that the joint probability density function fy(u) is 2N-dimensional, where the factor 2
accounts for the fact that each of the N samples of the process has a real and an imaginary
part. Note also that the probability density function of a single sample u(n) of the process,
which is a special case of Eq. (2.95), is given by

2
Julu) = —lacxp[—u‘-i—] (2.98)
waT o

where u| is the magnitude of the sample u(n) and ¢’ is its variance.

Based on the representation described herein, we may now summarize some impor-
tant properties of a zero-mean complgx Gaussian process u(n) that is wide-sense station-
ary as follows:

1. The process u(n) is stationary in the strict sense.
2. The process u(n) is circularly complex in the sense that any two different sam-
ples u(n) and u(k) of the process satisfy the condition

Elu(mu(k)) = 0 forn+k 2.99)

Tt is for this reason that the process u(n) is often referred to as a circularly com-
plex Gaussian process.
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3. Suppose that 4, = u(n), forn = 1,2, ..., N, are samples picked from a zero-
mean, complex Gaussian process u(n). We may thus state Property 3 in two parts
(Reed, 1962):

(a) Ifk # /, then
E[u_jlus2 RN u,}] =0 (2.100)

where s; and ¢; are integers selected from the available set {1, 2, ..., NJ.
(b) If k =/, then

Elw;u, ...uuu, ...ul=Elu, u lE[u, u]...E[u;, u]
i %2 TR ! w1 w2 2 o N (2.101)
where T is a permutation of the set of integers [l,‘2, ..., 1}, and 7 (j) is the jth

element of that permutation. For the set of integers (1, 2, . .., I} we have a total
of I! possible permutations. This means that the right-hand side of Eq. (2.101)
consists of the product of /! expectation product terms. Equation (2.101} is
called the Gaussian moment factoring theorem. ‘

Example 2
Consider the case of N = 4, for which the complex Gaussian process u(n) consists of the four

samples u,, u,, #,, and u,. Hence, the use of the Gaussian moment factoring theorem given in
Eq. (2.101) yields the following useful identity:

Elujusuyu,) = Eluju;) E[uqu,) + E{uju) E[uju,) (2.102)

For other useful identities derived from the Gaussian moment factoring theorem, see Prob-
lem 11.

2.12 SUMMARY AND DISCUSSION

In this chapter we studied the partial characterization of a stationary discrete-time sto-
chastic process. Such a characterization is uniquely described in terms of two statistical
parameters:

1. The mean, which is a constant

2. The autocorrelation function, which depends only on the time difference between
any two samples of the process

The mean of the process may naturally be zero, or it can always be subtracted from the
process to yield a new process of zero mean. For this reason, in much of the discussion in
subsequent chapters of this book, the mean of the process is assumed to be zero. Thus,
given an M-by-1 observation vector u(n) known to belong to a complex, stationary, dis-
crete-time stochastic process of zero mean, we may partially describe it by defining an M-
by-M correlation matrix R as the statistical expectation of the outer product of u(n) with
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itself. The matrix R is Hermitian, Toeplitz, and almost always positive definite; the latter
property means that R is almost always nonsingular, and therefore the inverse matrix R™'
exists. :
Another topic discussed in the chapter is the notion of a stochastic model, the need
for which arises when we are given a set of experimental data known to be of a statistical

nature, and the requirement is to analyze the data. In this context, we may mention two
general requirements for a suitable model:

1. An adequate number of adjustable parameters for the model to capture the
essential information content of the input data

2. Mathematical tractability of the model

The first requirement, in effect, means that the complexity of the model should closely
match the complexity of the underlying physical mechanism responsible for generating
the input data; in so doing, problems associated with underfitting or overfitting the input
data are avoided. The second requirement is usually satisfied by the choice of a linear
model.

Within the family of linear stochastic models, the autoregressive (AR) model is
often preferred over the moving average (MA) model and the autoregressive-moving
average (ARMA) model for an important reason: unlike an MA or ARMA model, compu-
tation of the AR coefficients is governed by a system of linear equations, namely, the
Yule—Walker equations. Moreover, except for a predictable component, we may approxi-
mate a stationary discrete-time stochastic process by an AR model of sufficiently high
order, subject to certain restrictions. To select a suitable value for the model order, we may
use an information-theoretic criterion (AIC) according to Akaike or the minimum-descrip-
tion length (MDL) criterion according to Rissanen. A useful feature of the MDL criterion
is that it is a consistent model-order estimator.

PROBLEMS

1. The sequences y(n) and u(n) are related by the difference equation
’ yn)y = u(n + a) = u(n — a)

where a is a constant. Evaluate the autocorrelation function of y(n} in terms of that of w(n).
2. Consider a correlation matrix R for which the inverse matrix R~ exists. Show that R™' is
Hermitian.
3. (a) Fquation (2.26) relates the (M + 1)-by-(M + 1) correlation matrix R,,,,. pertaining to the
observation vector u,.,(n) taken from a stationary stochastic process, to the M-by-M
carrelation matrix R, of the observation vector u,(r) taken from the same process. Evalu-
ate the inverse of the correlation matrix R,,,, in terms of the inverse of the comelation
matrix R,,. :
(b) Repeat your evaluation using Eq. (2.27).
4. A first-order autoregressive (AR) process u(n), which is real-valued, satisfies the real-valued
difference equation
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u(n) + a, u(n — 1) = vin})

where a, is a constant, and v(n) is a white-noise process of variance o?,
(a) Show that if v(n) has a nonzere mean, the AR process u(n) is nonstationary.
(b) For the case when v(n) has zero mean, and the constant a, satisfies the condition |a,| < 1,

show that the variance of u(n) equals

2

v

1 —a?

var[u(n)] =

(c) For the conditions specified in part (b), find the autocorrelation function of the AR process
u(n). Sketch this autocorrelation function for the two cases 0 < g, < land —1 < a, <0.

. Consider an autoregressive process u(n) of order 2, described by the difference equation

uny =u(n — 1) — 0.5u(n — 2) + v(n)

where v(n} is a white-noise process of zero mean and variance (.5.

(a) Write the Yule-Walker equations for the process.

(b) Solve these two equations for the autocorrelation function values r(1) and r(2).

{¢) Find the variance of u(n). )

Consider a wide-sense stationary process that is modeled as an AR process w(n) of order M. The
set of parameters made up of the average power P, and the AR coefficients a;, a,, . . ., a) beara
one-to-one correspondence with the autocorrelation sequence r(0), r(1), r(2), ..., r(M), as
shown by

{rQ), r(1), r(2), ..., r(M)} = {Ppa,ay...,ay}

Justify the validity of this statement.

Evaluate the transfer functions of the following two stochastic models:

(a) The MA model of Fig. 2.3

(b) The ARMA model of Fig. 2.4.

(¢) Specify the conditions for which the transfer function of the ARMA model of Fig. 2.4
reduces (1} to that of an AR model, and (2) to that of an MA model.

. Consider an MA process x(r) of order 2 described by the difference equation

x(n) = v(n) + 0.75v(n — 1) + 0.25v(n — 2)

where v(n) is a zero-mean white-noise process of unit variance. The requirement is to approxi-
mate this process by an AR process u(n) of order M. Do this approximation for the following
orders:

(a) M =2
by M=35
) M=10

Comment on your results. How big would the order M of the AR process u(n) have to be for it to
be equivalent to the MA process x(n) exactly?

. A time series u(n) obtained from a wide-sense stationary stochastic proces of zero mean and

correlation matrix R is applied to an FIR filter of impulse response w,. This impulse response

defines the coefficient vector w.

{(a) Show that the average power of the filter output is equal to wRw.

(b) How is the result in part (a) modified if the stochastic process at the filter input is a white
noise of variance o?



Problems 135

10. A general linear complex-valued process u(n) is described by

uln) = kZob;v(n -k)

where v(n).is a white noise process, and b, is a complex coefficient. Justify the following
statements:
{(a) If the process v(n) is Gaussian, then the original process u(n} is also Gaussian.
(b) Conversely, a Gaussian'proces_s u(n) implies that the process v(n) is Gaussian.
11. Consider a complex Gaussian process u(n). Let u(n) = w,. Using the Gaussian moment
factoring theorem, demonstrate the following identities:
(@) El(u%u)] = k! (Elul)*
(b) Eflul™] = k! (El|u]*D*



